
Proceedings of the 38th Hawaii International Conference on System Sciences - 2005
Definition of an Object-Oriented Modeling Language for Enterprise Architecture

Lam-Son Lê, Alain Wegmann
Laboratory of Systemic Modeling

Swiss Federal Institute of Technology, Lausanne
EPFL-IC-LAMS, CH-1015 Lausanne, Switzerland
{LamSon.Le, Alain.Wegmann}@epfl.ch

Abstract

In enterprise architecture, the goal is to integrate
business resources and IT resources in order to improve
an enterprise’s competitiveness. In an enterprise
architecture project, the development team usually
constructs a model that represents the enterprise: the
enterprise model.

In this paper, we present a modeling language for
building such enterprise models. Our enterprise models
are hierarchical object-oriented representations of the
enterprises. This paper presents the foundations of our
language (i.e. the Living System Theory and the RM-ODP
standard), the definition of the language and ends by
presenting an example of an enterprise model developed
with our web-based CAD tool.

Keywords: enterprise architecture, system engineering,
Catalysis, hierarchical object-oriented model, modeling
language, RM-ODP, Living System Theory.

1. Introduction

The enterprise architecture’s goal is to integrate
business resources and IT resources in order to improve
an enterprise’s competitiveness. Enterprise architecture
(EA) deals with hierarchical systems that typically span
from business entities (market, company, department…)
down to IT components (e.g. applications, applets,
servlets, bean, COM…). Our goal is the development of
an object-oriented enterprise architecture method, called
SEAM [1]. In this paper, we propose a modeling
language, developed in the context of SEAM, which is
particularly suitable for modeling hierarchical systems
like enterprises. A CAD tool that we developed supports
this language.

In Section 2, we identify some the requirements that
such modeling language should fulfill. These
requirements were identified through the experience we
gained in modeling hierarchical systems with the Unified
Modeling Language (UML) [2]. We use a small case
study to illustrate these requirements. In Section 3, we
describe our language. This includes the theoretical

0-7695-2268-8/05/$
foundations (the Miller’s Living System Theory and the
ISO/ITU standard Reference Model of Open Distributed
Processing) and the language definition (the language
meta-model and its semantics). In Section 4, we illustrate
our language by presenting the enterprise model
corresponding to our case study. We developed this model
using our CAD tool. In Section 5, the paper ends with a
comparison between our language and other object-
oriented hierarchical modeling languages/methods: UML
[2], Catalysis [3], System Engineering [4], KobrA [5] and
Object-Process Methodology (OPM) [6].

2. Requirements Definition

To illustrate EA and the modeling language’s
requirements, we present a case study of an EA project.
Our case describes a bookstore company whose
management decides to sell books via Internet. The
management sets up an EA team who is in charge of the
project. In this project, an enterprise model is developed.
The bookstore’s enterprise model is made of levels.
Figure 1 shows an informal representation of what is in
the enterprise model.

Figure 1. Hierarchical representation of the systems

represented in the enterprise model

The market level represents BookCoMarket

composed of the business systems BookCoBis and
CustomerBis. The business system level represents
companies or individuals working together to achieve a

BookCoMarket

BookCoBis CustomerBis

ShipCo BookCo PubCo

PurchasingDep WarehouseDep

OpApp Clerk

Market level

Business system level

Company level

Department level

Technology level

Additional level
20.00 (C) 2005 IEEE 1

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005
commercial goal. In our example, the business system of
the on-line book company (BookCoBis) is composed of
the book publisher (PubCo), of the company itself
(BookCo), of the shipping company (ShipCo) and of the
bank. The business system of the customer is composed
of the end customer, the bank and the shipping company
that delivers the books. The company level represents the
departments operating inside the companies. More
specifically, in this example, BookCo has a purchasing
department (PurchasingDep) that collaborates with the
warehouse department (WarehouseDep) for processing
the customers’ orders. The department level represents
employees and IT systems. In our example, the
purchasing department consists of a clerk and of an order
processing application (OpApp). One of the main goals of
the project is to redesign OpApp to add e-commerce
capabilities; but the project also needs to redefine the
responsibilities of the employees and of the departments.
Note that it would be possible to have additional levels for
describing the IT system implementation (e.g. server
level, component level and programming language class
level).

In such a project, the EA team has at least four
challenges. First, the team must identify the different
systems (or objects1) and decide in which hierarchical
level they exist (e.g. the market, the business, the
company, the department level…). Second, the team has
to model the actions happening between the systems
belonging to the same level, as well as the corresponding
responsibilities and properties of the systems. For
example, it needs to represent what is happening between
BookCo, ShipCo and PubCo when they serve the
members of the customer business system. BookCo has
the responsibility to find the books based on the
description written in the customers’ orders. ShipCo is
responsible for delivering books (possibly already packed
by BookCo) and PubCo is responsible for providing
ordered books that are unavailable in BookCo’s
warehouse. In a similar way, the modeler should
represent, in the other levels, what is happening between
the systems and the systems’ responsibilities. Third, the
EA team has to design and implement more than one
system in parallel. For instance, in the department level,
both the WarehouseDep and the PurchasingDep need to
have new business processes. In the technology level, the
application OpApp needs new functionalities and the
clerks new job descriptions. Fourth, as there are multiple
levels in the model, the team needs to maintain the
traceability between levels: for example from BookCo
downto PurchasinDep and WarehouseDep or from
PurchasingDep to OppApp.

1We model systems. Because we use the object-oriented paradigm to
represent these systems, we can consider these systems as objects.

0-7695-2268-8/05/
From these challenges, we identify the following four
requirements:

i) Multiple consistent levels: The language should
provide the modeler with as many levels as she
wants. The language should be consistent across
the different levels. For convenience, it might
use different pictograms in each level, but the
modeling principles should be the same.

ii) Adequate representation of actions: In every
level, we should be able to represent what is
happening between systems and the
responsibilities of each system. These concepts
are similar to Catalysis joint actions and
localized actions [3].

iii) Multiple systems of interest: The model should
allow the detailed representation of multiple
systems. Thanks to this, it is possible to design
more than one system at a time.

iv) Existence of traceability relationships: The
model should allow the representation of the
relations between two representations, at
different levels, of a same system and the
relations between a system and its environment
(made of systems). We call these relations
traceability relationship.

In SEAM, we have developed a modeling language,
inspired from UML, which provides the necessary means
for modelers to represent in a systematic way hierarchical
systems. The language supports the hierarchical
representation of objects, actions and states. In the next
section, we present a precise definition of our language.

3. The SEAM modeling language

In this section, we first present the foundations on
which our modeling language is built (Section 3.1). We
then present the language (Section 3.2). Note that the
principles presented in this section are general. Our
method, SEAM, illustrates the application of these
principles.

3.1 Foundations for hierarchical modeling

The foundations of our modeling language come
from Miller’s level [7] (Section 3.1.1) and from our
interpretation of the Reference Model of Open Distributed
Processing (RM-ODP) [8] (Section 3.1.2).

3.1.1 Miller’s level. James Greer Miller introduced the
concept of level in [7]. He made a thorough cross-
discipline analysis and synthesis of the functions and
behavior of living systems. He published his results in
1995 [7]. His theory is called “General Theory of Living
Systems” or “Living Systems Theory” (LST). To develop
his theory Miller analyzed 4000 publications from
$20.00 (C) 2005 IEEE 2

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

multiple living systems disciplines. He then developed a
model that can be used to reason about any living systems
(from individual cells to supranational organizations such
as the United Nations Organization).

The main goal of LST is to unify all scientific
disciplines that study and model livings systems. In
particular, LST integrates structural and behavioral
sciences but still keeps some of the specificities of the
individual disciplines. On one hand, LST applies the same
general theory (i.e., it uses the same concepts and
principles) recursively at all levels of living systems. On
the other hand, in each level, LST factors in level-specific
theories coming, for example, for biology, medicine or
social sciences. The result is an original combination of
genericity and specificity.

One of the most important concepts is that of level.
According to Miller “…the universe contains a hierarchy
of systems, each more advanced or ‘higher’ level made of
systems of the lower levels”. He identifies seven distinct
levels for living systems: cells (free-living cells and
aggregated cells), organs, organisms (such as humans…),
group (such as families, workgroups…), organization
(such as commercial companies…), society (such as
countries) and supra-national systems (such as inter-
governmental organizations …). This level distinction is
tightly linked to people’s experience in perceiving and
studying the world of livings systems. Depending on the
goal of the modeler, it is possible to have more or less
levels.

To be able to fully model enterprises, the model
should not be limited to the IT and software-intensive
systems but should also represent the business-related
systems. For this, we borrow the concept of level from
Miller. We call these levels the organizational levels.
These levels establish the organizational level hierarchy.
In the example of the on-line book company discussed
earlier, the enterprise model has six organizational levels:
market, business system, company, department, IT
application and technology level.

3.1.2 RM-ODP. Within the levels, we use RM-ODP to
represent what is perceived in the reality. RM-ODP is a
standard that defines the concepts necessary to build
“distributed information processing services to be realized
in an environment of heterogeneous IT resources” [8].
RM-ODP also proves to be suitable for general modeling
[9]. Our modeling language relies on the concepts defined
in RM-ODP.

According to RM-ODP part 2 (i.e. the foundations
part of RM-ODP), an entity is any concrete or abstract
thing of interest in the universe of discourse. An entity
can be considered as atomic or as non-atomic (i.e.
composed of components of the same kind). An entity is
represented in the model as a model element. So, a model
element can be seen as whole or as composite. A system
may be referred to as an entity. A component of a system
may itself be a system, in which case it may be called a
0-7695-2268-8/05/$
subsystem. The model element that corresponds to a
system is an object. An object can be seen as whole (i.e.
this corresponds to the external view of the object, also
called model-based specification [10]) or as composite
(i.e. this corresponds to the internal view, or
implementation, of the object). Other kinds of entities can
be modeled as action and state. Actions and states can
also be seen as whole or as composite. An action or a state
seen as composite can be broken down into component
actions or states. These component actions or states can
be further broken down into smaller component actions or
states. This hierarchy of actions and states corresponds to
the detail level hierarchy. The detail level hierarchy
includes detail levels. It is orthogonal to the
organizational level hierarchy defined in the previous
section (in which an object is broken down into its
component objects). In each organizational level, we can
find multiple detail levels. One of our previously done
research shows that all the terms we use above are the
minimum set of concepts that need to be considered in
general system modeling [11]. These concepts were
formalized [12] using Alloy, a formal specification
language [13].

According to RM-ODP part 3 (i.e. the architecture
part of RM-ODP), a system specification has five
viewpoints: enterprise, information, computational,
engineering and technology viewpoint. In the context of
hierarchical systems, we model organizational levels (cf.
Miller) made of computational objects (i.e. an object that
represents a system). The computational objects can be
specified by either an information viewpoint (of the
computational object seen as a whole) or by a
computational viewpoint (of the computational object
seen as a composite). In our modeling language we do not
use the term information viewpoint but, instead, we use
the term computational object as whole which is
synonymous. Similarly, we do not use the term
computational viewpoint but, instead, computational
object as composite.

A computational object as a whole is represented by
information objects (IO) and localized actions (LA). The
information objects are like attributes and represent the
states of the computational objects. The localized actions
represent the computational object’s responsibility. The
information objects represents either the fact that a
localized action executes (information objects called
transactions) or parameters exchanged with the
environment (information objects called parameters) or
elements of “knowledge” (information objects called
concepts). The “knowledge” of the computational object
is about itself or about other computational objects
belonging to the same organizational level.

A computational object as composite is represented as
component computational objects and actions happening
between them that we call joint actions. Note that as RM-
ODP part 2 just defines the term action, we have to define
20.00 (C) 2005 IEEE 3

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005
the localized actions and the joint actions. The names of
these actions are taken from Catalysis [3].

3.2 Language definition

Having taken our foundations from Miller [7], RM-
ODP [8], we now proceed in defining our language. In
Section 3.2.1 and 3.2.2, we illustrate the relevant model
elements with examples using our CAD tool. We then
define the model elements through a meta-model and
through a formal description of the meta-model (which
gives the semantics of the meta-model). In Section 3.2.1,
we define the model element computational object. In
Section 3.2.2, we define the model elements: joint action,
localized action and information object. All these
elements are defined as whole and as composite. In
Section 3.2.3, all the elements of the language are put
together to make a meta-model that is general enough to
deal with an unlimited number of organizational and
detail levels. The meta-model is in UML. The semantics
is formalized using Alloy 2.0, which is a lightweight
specification language based on set theory developed by
Daniel Jackson at MIT [13]. While presenting the
language, we highlight how our language fulfills the
requirements identified in Section 2.

3.2.1 Organizational level in terms of computational
objects as whole / composite. Figure 2 and 3 are
screenshots that present two views of the same model. In
Figure 2, the computational object Comm is broken down
into two computational objects Co1 and Co2 participating
to a joint action ja1. Co2 is viewed as whole and the
localized action la1 stands for the responsibility of Co2 in
its participation to ja1.

Figure 2. Comm as composite and Co2 as whole

In Figure 3, the computational object Co2 is seen as

composite, it has two component objects Co21, Co22.
Co21 and Co22 collaborate through ja2 that is the

0-7695-2268-8/05/$
“implementation” of la1 of Figure 2. Note that, in Figure
3, the modeler has hidden Comm and Co1.

Figure 3. Co2 as composite, Comm & Co1 hidden.

Once a computational object is seen as composite, it

contains component computational objects and joint
actions. By changing the view of the computational object
from the whole (e.g. Co2 in Figure 2) to the composite
(i.e. Co2 in Figure 3), the modeler moves to the next
organizational level. The use of organizational levels in
which computational objects exist both as whole and as
composite allows the modeler to manage the hierarchical
levels (from business down to code) in a systematic way.
This computational object can represent any entities such
as markets, companies, departments, people, IT systems,
software components and programming classes. This
illustrates how our language meets the requirement i)
“multiple consistent levels” discussed in the previous
section.

By providing the capability for the modeler to
represent multiple computational objects in the same
organizational level, our language meets the requirement
iii) “multiple systems of interest”.

Let define the concepts of computational objects as

whole and as composite. Table 1 gives the meta-model
that defines these concepts and the semantics of the meta-
model. As we can see in Table 1 a), the computational
object as composite is broken down into computational
objects (seen as whole) that are participants of one joint
action2. The joint actions are described with pre-
conditions and post-conditions that access information
objects of the participating computational objects as
whole. Note that breaking down a computational object
results not only in component objects but also in a
mediator. The mediator is a computational object that can
only be treated as whole. It is responsible for dispatching
joint actions. In the example of the bookstore, the
mediator of the book company (BookCo) corresponds to

2In the next section, we will present how multiple joint actions can be
represented. They correspond to the detail level.
20.00 (C) 2005 IEEE 4

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005
the way the company exchanges goods and information
between its departments (it is an abstract view of the
lower organizational levels).

Table 1 a): computational object as composite

Se
m

an
tic

s A computational object seen as composite consists of
component computational objects as whole and typically a
joint action as whole in which the component objects
participate. In our tool, computational objects are drawn using
pictograms similar to UML subsystems.

M
et

a-
m

od
el

Fo
rm

al
iz

at
io

n

disj sig CCompuObject extends CompuObject
{
 compu_whole : WCompuObject,
 compu_cpnts : set WCompuObject,
 compu_mediator : WCompuObject,
 ja : option WJointAction // 0 or 1
}{ one compu_mediator
 all c : compu_cpnts | c::compu_parent = this
 ja::compu_med = this }

Table 1 b) describes the computational object seen as

whole. It has one information object as a whole to model
the entire transaction of the computational object. This
information object represents the whole state of the
computational object. The Computational object also has
one localized action that represents its entire behavior (i.e.
the lifecycle of the object). This localized action changes
the state of the information object and thus affects the
state of the computational object.

Table 1 b): computational object as whole

Se
m

an
tic

s A computational object seen as whole contains an information
object as whole and a localized action as whole. This object
and action can be broken down further to reveal the detail
“knowledge” and behavior of the computational object.

M
et

a-
m

od
el

Fo
rm

al
iz

at
io

n

disj sig WCompuObject extends CompuObject
{
 compu_parent : option CCompuObject, // 0 or 1
 compu_composite : option CCompuObject,
 la : option WLocalizedAction,
 transaction : option WInfoObject,
}{ this::compu_composite::compu_whole = this
 la::compu_owner = this
 transaction::compu_host = this }

0-7695-2268-8/05
3.2.2 Detail level in terms of joint actions, information
objects and localized actions as whole / composite. Not
only computational objects but also joint actions,
localized actions and information objects can be treated as
whole and as composite. Once the modeler breaks down a
joint action, she moves down to the next detail level.
Figure 4 is again a screenshot of our CAD tool. Co2 is
shown at the next detail level compared to what is shown
in Figure 2.

Figure 4. Second detail level of Co2 and of the

relevant part of its environment

In Figure 4, the joint action ja1 (represented as a

whole in Figure 2) is seen as composite; it is composed of
ja11 and ja12. Correspondingly, the localized action la1
as composite consists of la11 and la12. The information
object la1Txn as composite is composed of la1TxnSelf,
la1Txn, la2Txn and Co1Concept (knowledge of Co2
about Co1). la1TxnSelf happens to be the “reference
point” of the information object la1Txn after it is broken
down into the component information objects la1Txn and
la2Txn. The “reference point” (as it is unique for each
information object) is useful for navigating in the
component information objects. It has a role similar to the
start and stop point in the behavior.

In general, an information object may represent a
transaction (standing for the execution of a localized
action), a concept (which is the knowledge of a
computational object about its environment or itself) or a
parameter. As information objects are modified by
localized actions, we also have different kind of localized
actions: the interaction localized action that exchanges
information with the environment through parameters
(thus, observable from outside) and the internal localized
action that has no exchange with the environment
(unobservable from outside).

By having joint actions in every computational object
as composite, localized actions in every computational
objects as whole and by allowing the representation of
/$20.00 (C) 2005 IEEE 5

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005
actions at different levels of detail, our language fulfills
the requirement ii) “adequate representation of actions”.

Note that our tool keeps the traceability between the
concepts and what it represents in the system’s
environment. This is done by a “trace” relationship such
as the relation going from Co1Concept to Co1 in Figure 4.
This, together with the possibility to represent
computational objects as whole and as composite and
with our representation of actions, enable our language to
satisfy the requirement iv) “existence of traceability
relationships”.

In Table 2, we define the three model elements:
information object, join action, and localized action.
These elements can be seen as whole or as composite
along the detail level hierarchy. When an element as
whole becomes a composite element, this results in
component elements together with constraints on how
they are put together. The constraints for the joint actions
and localized actions seen as composite are behavioral
constraints. They may determine the sequence of the
component actions. The constraint for a composite
information object represents the navigation between the
component information objects.

Table 2 a): Information object as composite / whole

Se
m

an
tic

s

An information object represents a piece of information in a
computational object as whole. It may represent a transaction,
a concept or a parameter. It can be treated either as whole or as
composite. Once treated as composite, it has an entry point
from which navigation links are going to the components. In
our tool, it is drawn using the same pictogram as an UML
class.

M
et

a-
m

od
el

Fo
rm

al
iz

at
io

n

disj sig CInfoObject extends InfoObject
{
 info_whole : WInfoObject,
 info_self : WInfoObject,
 info_cpnts : set WInfoObject,
 concepts : set WInfoObject,
 parameters : set WInfoObject,
 navs : WInfoObject -> WInfoObject
}{ one info_self
 this::info_whole::info_composite = this
 all c : info_cpnts + concepts + parameters |
 some n : navs | c::info_parent = this &&
 c::compu_host = this::info_whole::compu_host &&
 n.info_self = c
}

disj sig WInfoObject extends InfoObject
{
 info_parent : option CInfoObject, // 0 or 1
 compu_host : WCompuObject,
 info_composite : option CInfoObject
}{ one compu_host }

0-7695-2268-8/05/$
Table 2 b): Joint action as composite / whole

Se
m

an
tic

s

A joint action represents an action happening between
computational objects. These objects are called participating
objects. The pre-condition and post-condition of a joint action
can be described in terms of its participating objects seen as
whole. In our tool, it is drawn using the same pictogram as an
UML collaboration.

M
et

a-
m

od
el

Fo
rm

al
iz

at
io

n

disj sig CJointAction extends JointAction
{
 joint_whole : WJointAction,
 joint_self : WJointAction,
 joint_cpnts : set WJointAction,
 joint_ cnstrnts : set BehaviorConstraint
}{ one joint_self
 this::joint_whole::joint_composite = this
 all c : joint_cpnts | c::joint_parent = this &&
 c::compu_med = this::joint_whole::compu_med }

disj sig WJointAction extends JointAction
{
 joint_parent : option CJointAction, // 0 or 1
 compu_med : CCompuObject,
 joint_composite : option CJointAction,
 participants : set WCompuObject
}{ one compu_med
 all p:participants | p::compu_parent = compu_med }

Table 2 c): Localized action as composite / whole

Se
m

an
tic

s A localized action represents a responsibility of a
computational object as whole when it participates in a joint
action. The localized action can be treated either as whole or
as composite. In our tool, it is drawn using the same
pictogram as an UML action state.

M
et

a-
m

od
el

Fo
rm

al
iz

at
io

n

disj sig CLocalizedAction extends LocalizedAction
{
 localized_whole : WLocalizedAction,
 localized_self : WLocalizedAction,
 interactions : set WLocalizedAction,
 internals : set WLocalizedAction,
 localized_cnstrnts : set BehaviorConstraint
}{ one localized_self
 this::localized_whole::localized_composite = this
 all c : interactions + internals |
 c::localized_parent = this }

disj sig WLocalizedAction extends LocalizedAction
{
 localized_parent : option CLocalizedAction,
 compu_owner : WCompuObject,
 localized_composite : option CLocalizedAction,
 affecteds : set WInfoObject
}{ one compu_owner
 all a : affecteds | a::compu_host = compu_owner }

20.00 (C) 2005 IEEE 6

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005
3.2.3 Combining organizational and detail levels. We
eventually come to one complete meta-model where each
element can be toggled between the whole and the
composite view (see Figure 5). The detail level can be
inferred via the composition relationship connecting Joint
Action, Information Object and Localized Action as
composite to the respective generalized element. The
constraints of the two roles of this composition ({detail
n+1} and {detail n}) say that the element as composite is
one detail level above the generalized element. Similarly,
the organizational level can be inferred via the
composition connecting Computational Object as
composite to the generalized Computational Object,
which is one organizational level below the composite
one ({org n+1} and {org n}). In fact, the complete meta-
model is simply made by assembling the meta-models
shown in Table 1 and Table 2. In a similar way, the Alloy
code presented in each table can be put together to make a
complete specification of the meta-model.

As discussed previously, our language supports
traceability. Thanks to traceability, our CAD tool can help
the modeler navigate those diagrams although they are
separately displayed. This tool should manage all model
elements in a way that diagrams are just extracted view

0-7695-2268-8/05/
based on some criteria (e.g. a diagram can represent one
given computational object (as whole or as composite),
with or without its environment, and doing a specific
localized action (as whole or as composite).

We have tested this language with a CAD tool that

we developed. The tool is a client-server web-based
application. The client is available for downloading [14].
The data structure in the implementation of the tool looks
very similar to Alloy code listed in Table 1 and Table 2.

Our modeling language and CAD tool have been
used in various projects. We have used it in some student
work in industry for small business process reengineering
projects. We are currently using it in a construction
project for a new building for our school. We are making
an enterprise model of the school that describes the
business goals we have for the construction project. From
this, we derive the infrastructure to deploy and the
requirements of our new IT system. We also have a
project in which we are defining the operational semantics
for the language [15]. Thanks to this we will be able to do
model checking (e.g. to compare two representation of a
same system, represented in two different organizational
levels).

Figure 5. Complete meta-model

$20.00 (C) 2005 IEEE 7

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005
4. Case study

In this section, we illustrate how to use our language

to model the bookstore case study presented in Section 2.
We have one enterprise model, represented by a serie of
diagrams. They represent all levels, from the market level
down to the internals of the IT system. The EA team uses
these diagrams to analyze and design the multiple systems
found in the business and IT levels. These diagrams were
created with our CAD tool [14] and were redrawn to save
space. In these diagrams, the levels to which the objects
and actions belong are visually illustrated with a tagged
value {org x, detail y}.

As we can see in Figure 6, at the top organizational

level, BookCoMarket as composite consists of two
business systems: BookCoBis and CustomerBis.
BookCoBis sells books to CustomerBis. They collaborate
through the joint action sale. BookCoBis is responsible for
performing the localized action Mfg_Sale.

In the second organizational level, BookCoBis as
composite is composed of the company BookCo that
collaborates with PubCo and ShipCo to fulfill the joint
action mfg_Sale that is in fact the implementation of the
localized action Mfg_Sale.

In the third organizational level, BookCo as
composite contains two departments: PurchasingDep (for
selecting books and processing orders) and
WarehouseDep (for packing selected book). Note that
both of them are specified as whole when participating in
the joint action market. The joint action market as
composite has component actions select, pack and order
that all belong to the second detail level (whereas market
as whole belongs to the first detail level). PurchasingDep
as whole is also specified in the second detail level with
MarketTxnSelf, SelectTxn, OrderTxn (information objects
representing the transactions) and with localized actions
Select, Order. Note the difference of responsibilities
between WarehouseDep and PurchasingDep.
WarehouseDep does the localized action Pack and the
PurchasingDep the localized action Select. In addition the
Order localized action is different in WarehouseDep and
in PurchasingDep.

In the fourth organizational level (Figure 7),
PurchasingDep as composite shows that a Clerk operates
the IT system OpApp. What is happening between the
Clerk and OpApp is modeled as the joint action operate.
OpApp’s responsibilities is represented as the localized
action Work. What Work means would be visible if we
would get to the next detail level of OpApp as whole (not
shown in figures).

In the fifth organizational level (technology level)
where OpApp as composite is represented, it is possible to
see a SearchApplet (a Java applet that is accessed by the
clerk), a SearchServlet (a Java servlet responsible for

0-7695-2268-8/05/
searching) that uses a Java class OrderPrinterClass (for
printing orders) and a JDBC connector (see Figure 7).

Figure 6. Model of the online bookstore for
business-related organizational levels

The model we built has 6 organizational levels. (four

in Figure 6 and two in Figure 7). We could consider

MarketTxn {org 4, detail 1}

BookCoMarket {org 1}

CustomerBis
{org 2}

sale
{org 2, detail1}

BookCoBis {org 2}

MfgSaleTxn {org 2, detail 1}

Mfg Sale {org 2, detail 1}

BookCoBis {org 2}

PubCo
{org 3}

mfg_sale
{org 3, detail 1}

BookCo {org 3}

MarketTxn {org 3, detail 1}

Market {org 3, detail 1}

ShipCo
{org 3}

Book
{org 2}

BookCo {org 3}

market {org 4, detail 1}

PurchasingDep {org 4}

MarketTxnSelf
{org 4, detail 2}

Select
{org 4, detail 2}

select
{org 4, detail 2}

order
{org 4, detail 2}

Order
{org 4, detail 2}

SelectTxn
{org 4, detail 2}

OrderTxn
{org 4, detail 2}

MarketTxn {org 4, detail 1}

WarehouseDep {org 4}

pack
{org 4, detail 2}

Market {org 4, detail 1}

MarketTxnSelf {org 4, detail 2}

Pack
{org 4, detail 2}

Order
{org 4, detail 2}

PackTxn {org 4, detail 2} OrderTxn {org 4, detail 2}

Market {org 4, detail 1}
$20.00 (C) 2005 IEEE 8

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005
adding levels to describe how the applet and the servlet
are built.

Figure 7. Model of the online bookstore for IT-

related organizational levels

We can see that joint actions are expressed in every

composite computational object. For each joint action, the
participant computational objects have a localized action
expressing their responsibility. These localized actions
correspond to a joint action in the next organizational
level. This illustrates the how our language satisfies the
requirements i) “multiple consistent levels”, ii) “adequate
representation of actions”, and iv) “existence of
traceability relationships”. By permitting to work on
multiple systems in parallel, our language satisfies the
requirement iii) “multiple systems”:

With our CAD tool, the modeler can navigate up and
down the hierarchy by selecting the relevant model
element (typically a computational object, a joint action or
a localized action) and by using a pop-up menu to toggle
between whole and composite. Within an organizational
level, the modeler can also hide or show the environment
of the computational object of interest.

5. Related work

In this section, we position our contribution with
respect to the existing object-oriented languages and
methods such as UML, Catalysis, Kobra, SysEng and
OPM. In this paper, we do not consider the Zachman
framework [16], popular in EA, as it is not object-
oriented. Our choice of an object-oriented approach is
justified by our attempt to have a consistent modeling
paradigm between IT and business levels. In software
engineering, objects are widely used and UML has made
a significant impact.

OpApp {org 5}

JDBC
{org 6}

run
{org 6, detail 1}

SearchServlet {org 6}

ServiceTxn {org 6, detail 1}

Service {org 6, detail 1}

OrderPrinterClass
{org 6}

PurchasingDep {org 4}

Clerk
{org 5}

operate
{org 5, detail 1}

OPApp {org 5}

WorkTxn {org 5, detail 1}

Work {org 5, detail 1}

SearchApplet
{org 6}

0-7695-2268-8/05/$
UML [2], defined and managed by Object
Management Group (OMG) [17], is the industry-standard
modeling language developed originally for software
development. In the profile created for business modeling,
the object systems, organizational units and work units are
all subsystems. They differ only in stereotypes. Since a
subsystem in UML meta-model can contain UML
classifiers, which may be again subsystems, the business
hierarchy can be established by having an organizational
unit being composed of other units. Our modeling
language also uses the subsystem notation for
computational objects but it provides joint actions and
localized actions in every organizational level (which is
not the case in UML). Therefore, the hierarchy has not
only structures but also behaviors represented in a
consistent way.

Catalysis [3], defined by Desmond D’Souza and Alan
C. Wills, is a development process that addresses business
and software. Catalysis analyzes and designs at three
levels: business, IT system and software components.
Catalysis uses its own modeling notation, inspired by
UML. A conceptual model [18] defines the notation. We
base our work on the Catalysis approach (and, in
particular, on the joint actions and localized actions). Our
initial goal was to develop a CAD tool for Catalysis. As a
result, we have defined a meta-model more precise than
the one provided by the Catalysis authors [18] and which
provides a more general approach to the concept of
organizational and detail levels.

System Engineering (SysEng) [4] also defined by the
OMG [17] is a development process that addresses the
design of systems in general (e.g. airplanes) using the
UML notation. The Conceptual Model [19] of SysEng
addresses the hierarchical modeling via the loop on the
system/subsystem as well as on the component. Both of
them have the loop aggregation “Made up with”. Our
final meta-model also have a loop on Computational
Object that establishes the hierarchy along organizational
levels. Our difference lies in the fact that we do not have
sub-systems and components in our meta-model but only
computational objects. Thanks to this, our language
becomes more consistent and traceable across the
organizational levels. As SysEng is based on UML, the
comments made about UML also apply to SysEng.

KobrA [5], developed by Colin Atkinson et al.,
addresses component-based software development. It
proposes a recursive model that describes the IT system,
its components and the Java classes using the UML
notation. In KobrA meta-model [20], a component can be
either a UML subsystem or a flat class. KobrA defines a
recursive top-down approach that allows the modeler to
interleave the specification and the realization of the
components starting from a top-level context [5]. In our
language, both the specification (i.e. information object
and localized action) and “realization” (i.e. computational
object and joint action) appear in all organizational levels.
20.00 (C) 2005 IEEE 9

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005
Our language thus can deal with not only software-related
but also business-related organizational levels. As Kobra
is based on UML, the comments made about UML also
apply to Kobra.

OPM [6], defined by Dove Dori, addresses the
modeling of systems in general and can be used from
business processes modeling down to software
implementation modeling. OPM defines three main model
elements: object, process and state, together with some
mechanisms that help the modeler define a hierarchy of
systems. The notation is specific to OPM. With a CAD
tool called OpCat that was particularly developed for
OPM [21], the modeler can manage the complexity of a
hierarchical system that is mainly related to the levels via
two mechanisms: in-zooming / out-zooming and
unfolding / folding [21]. Our language has strong
similarities to OPM but is much closer to UML. In
addition, the meta-model of our language makes the
hierarchy of organizational levels and detail levels more
explicit than the OPM meta-model.

6. Conclusion

Modeling object-oriented hierarchical systems
requires: (1) a consistent way to model hierarchical levels
(from business down to IT); (2) the possibility to model
what happens between systems (joint actions) and
systems’ responsibilities (localized actions) and this in all
necessary organizational and detail levels; (3) to work on
multiple systems of interest, and (4) to have traceability
relationships.

To meet these requirements, we propose a new
modeling language that is based on Miller’s Theory of
Living Systems [7] and on RM-ODP [8]. The main
contribution of this work is the definition of four basic
modeling concepts (computational object, joint action,
information object and localized action) together with the
application of two complementary views
(composite/whole). These two views allow us to define
the concepts of organizational level hierarchy and detail
level hierarchy. These concepts are general and can be
taken by the other hierarchical modeling approach.

A CAD tool is implemented to show how our
modeling language practically works. Through various
examples, we have validated the language and tool. Our
experience with the tool shows that the user interface shall
be designed with great care. As the models are complex,
the tool should reduce this complexity for the user. This is
the direction of our future work.

0-7695-2268-8/05/$
7. References

[1] A. Wegmann, "On the Systemic Enterprise Architecture
Methodology (SEAM)," presented at ICEIS 2003, Angers,
France, April 2003.
[2] OMG, UML 1.5 Specification,
http://www.omg.org/technology/documents/formal/uml.htm
[3] D. Francis D'souza, Cameron Wills, A., Object, Components
and Frameworks with UML, The Catalysis Approach: Addison-
Wesley, 1999.
[4] OMG, System Engineering, http://syseng.omg.org
[5] C. Atkinson, Paech, B., Reinhold, J., Sander, T.,
"Developing and applying component-based model-driven
architectures in KobrA," presented at EDOC 2001, Seattle,
USA, September 2001.
[6] D. Dori, Object-Process Methodology, A Holistic Systems
Paradigm: Springer Verlag, 2002.
[7] J. G. Miller, Living Systems: University of Colorado Press,
1995.
[8] OMG, "ISO/IEC 10746-1, 2, 3, 4 | ITU-T Recommendation,
X.901, X.902, X.903, X.904, Reference Model of Open
Distributed Processing," 1995-1996.
[9] A. Wegmann, Naumenko, A., "Conceptual Modeling of
Complex Systems using an RM-ODP based Ontology,"
presented at EDOC 2001, Seattle, USA, September 2001.
[10] B. Schätz, Pretschner, A., Huber, F., Philipps, J., "Model-
based development of embedded systems," in In Advances in
Object-Oriented Information Systems, Lecture Notes in
Computer Science 2426, 2002.
[11] A. Naumenko, "Triune Continuum Paradigm: a paradigm
for General System Modeling and its applications for UML and
RM-ODP," in School of Computer and Communication
Sciences. Lausanne: Swiss Federal Institute of Technology,
Lausanne, 2002.
[12] A. Naumenko, Wegmann, A., Genilloud, G., Frank, W.F.,
"Proposal for a formal foundation of RM-ODP concepts,"
presented at ICEIS/WOODPECKER 2001, Setúbal, Portugal,
July 2001.
[13] MIT, The Alloy Constraint Analyzer, http://alloy.mit.edu/
[14] L. S. Lê, CAD tool for Systemic Enterprise Architecture
Modeling, http://lamspeople.epfl.ch/le/SEAMtool
[15] I. Rychkova, Wegmann, A., Balabko, P., "Operational
ASM semantics behind Graphical SEAM notation," presented at
FMOODS/DAIS 2003 Student Workshop, Paris, France,
November 2003.
[16] J. A. Zachman, "A Framework for Information System
Architecture," IBM System Journal, 1988.
[17] Object Management Group, http://www.omg.org/
[18] Catalysis Concept Map,
http://www.catalysis.org/overview/concepts/concept-
map/graphical-concept-map.htm
[19] System Engineering Conceptual Model (Work in Process),
http://syseng.omg.org
[20] Meta-model for KobrA method,
www.iese.fhg.de/Publications/book/Guides/Metamodel.pdf
[21] D. Dori, Reinhartz-Beger, I., Sturm, A., "OPCAT - A
Bimodal CASE Tool for Object-Process Based System
Development," presented at ICEIS 2003, Angers, France
20.00 (C) 2005 IEEE 10

	Select a link below
	Return to Main Menu
	Return to Previous View

