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Abstract 
 

In enterprise architecture, the goal is to integrate 
business resources and IT resources in order to improve 
an enterprise’s competitiveness. In an enterprise 
architecture project, the development team usually 
constructs a model that represents the enterprise: the 
enterprise model.  

In this paper, we present a modeling language for 
building such enterprise models. Our enterprise models 
are hierarchical object-oriented representations of the 
enterprises. This paper presents the foundations of our 
language (i.e. the Living System Theory and the RM-ODP 
standard), the definition of the language and ends by 
presenting an example of an enterprise model developed 
with our web-based CAD tool.  
 
Keywords: enterprise architecture, system engineering, 
Catalysis, hierarchical object-oriented model, modeling 
language, RM-ODP, Living System Theory.  
 
1. Introduction 
 

The enterprise architecture’s goal is to integrate 
business resources and IT resources in order to improve 
an enterprise’s competitiveness. Enterprise architecture 
(EA) deals with hierarchical systems that typically span 
from business entities (market, company, department…) 
down to IT components (e.g. applications, applets, 
servlets, bean, COM…). Our goal is the development of 
an object-oriented enterprise architecture method, called 
SEAM [1]. In this paper, we propose a modeling 
language, developed in the context of SEAM, which is 
particularly suitable for modeling hierarchical systems 
like enterprises. A CAD tool that we developed supports 
this language.  

In Section 2, we identify some the requirements that 
such modeling language should fulfill. These 
requirements were identified through the experience we 
gained in modeling hierarchical systems with the Unified 
Modeling Language (UML) [2]. We use a small case 
study to illustrate these requirements. In Section 3, we 
describe our language. This includes the theoretical 
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foundations (the Miller’s Living System Theory and the 
ISO/ITU standard Reference Model of Open Distributed 
Processing) and the language definition (the language 
meta-model and its semantics). In Section 4, we illustrate 
our language by presenting the enterprise model 
corresponding to our case study. We developed this model 
using our CAD tool. In Section 5, the paper ends with a 
comparison between our language and other object-
oriented hierarchical modeling languages/methods: UML 
[2], Catalysis [3], System Engineering [4], KobrA [5] and 
Object-Process Methodology (OPM) [6].  
 
2. Requirements Definition 
 

To illustrate EA and the modeling language’s 
requirements, we present a case study of an EA project. 
Our case describes a bookstore company whose 
management decides to sell books via Internet. The 
management sets up an EA team who is in charge of the 
project. In this project, an enterprise model is developed. 
The bookstore’s enterprise model is made of levels. 
Figure 1 shows an informal representation of what is in 
the enterprise model. 

 
Figure 1. Hierarchical representation of the systems 

represented in the enterprise model  
 
The market level represents BookCoMarket 

composed of the business systems BookCoBis and 
CustomerBis. The business system level represents 
companies or individuals working together to achieve a 
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commercial goal. In our example, the business system of 
the on-line book company (BookCoBis) is composed of 
the book publisher (PubCo), of the company itself 
(BookCo), of the shipping company (ShipCo) and of the 
bank. The business system of the customer is composed 
of the end customer, the bank and the shipping company 
that delivers the books. The company level represents the 
departments operating inside the companies. More 
specifically, in this example, BookCo has a purchasing 
department (PurchasingDep) that collaborates with the 
warehouse department (WarehouseDep) for processing 
the customers’ orders. The department level represents 
employees and IT systems. In our example, the 
purchasing department consists of a clerk and of an order 
processing application (OpApp). One of the main goals of 
the project is to redesign OpApp to add e-commerce 
capabilities; but the project also needs to redefine the 
responsibilities of the employees and of the departments. 
Note that it would be possible to have additional levels for 
describing the IT system implementation (e.g. server 
level, component level and programming language class 
level). 

In such a project, the EA team has at least four 
challenges. First, the team must identify the different 
systems (or objects1) and decide in which hierarchical 
level they exist (e.g. the market, the business, the 
company, the department level…). Second, the team has 
to model the actions happening between the systems 
belonging to the same level, as well as the corresponding 
responsibilities and properties of the systems. For 
example, it needs to represent what is happening between 
BookCo, ShipCo and PubCo when they serve the 
members of the customer business system. BookCo has 
the responsibility to find the books based on the 
description written in the customers’ orders. ShipCo is 
responsible for delivering books (possibly already packed 
by BookCo) and PubCo is responsible for providing 
ordered books that are unavailable in BookCo’s 
warehouse. In a similar way, the modeler should 
represent, in the other levels, what is happening between 
the systems and the systems’ responsibilities. Third, the 
EA team has to design and implement more than one 
system in parallel. For instance, in the department level, 
both the WarehouseDep and the PurchasingDep need to 
have new business processes. In the technology level, the 
application OpApp needs new functionalities and the 
clerks new job descriptions. Fourth, as there are multiple 
levels in the model, the team needs to maintain the 
traceability between levels: for example from BookCo 
downto PurchasinDep and WarehouseDep or from 
PurchasingDep to OppApp.  

                                                 
1We model systems. Because we use the object-oriented paradigm to 
represent these systems, we can consider these systems as objects. 
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From these challenges, we identify the following four 
requirements: 

i) Multiple consistent levels: The language should 
provide the modeler with as many levels as she 
wants. The language should be consistent across 
the different levels. For convenience, it might 
use different pictograms in each level, but the 
modeling principles should be the same.  

ii) Adequate representation of actions: In every 
level, we should be able to represent what is 
happening between systems and the 
responsibilities of each system. These concepts 
are similar to Catalysis joint actions and 
localized actions [3]. 

iii) Multiple systems of interest: The model should 
allow the detailed representation of multiple 
systems. Thanks to this, it is possible to design 
more than one system at a time.  

iv) Existence of traceability relationships: The 
model should allow the representation of the 
relations between two representations, at 
different levels, of a same system and the 
relations between a system and its environment 
(made of systems). We call these relations 
traceability relationship.  

In SEAM, we have developed a modeling language, 
inspired from UML, which provides the necessary means 
for modelers to represent in a systematic way hierarchical 
systems. The language supports the hierarchical 
representation of objects, actions and states. In the next 
section, we present a precise definition of our language.  
 
3. The SEAM modeling language 
 

In this section, we first present the foundations on 
which our modeling language is built (Section 3.1). We 
then present the language (Section 3.2). Note that the 
principles presented in this section are general. Our 
method, SEAM, illustrates the application of these 
principles.  
 
3.1 Foundations for hierarchical modeling 
 

The foundations of our modeling language come 
from Miller’s level [7] (Section 3.1.1) and from our 
interpretation of the Reference Model of Open Distributed 
Processing (RM-ODP) [8] (Section 3.1.2).  
 
3.1.1 Miller’s level. James Greer Miller introduced the 
concept of level in [7]. He made a thorough cross-
discipline analysis and synthesis of the functions and 
behavior of living systems. He published his results in 
1995 [7]. His theory is called “General Theory of Living 
Systems” or “Living Systems Theory” (LST). To develop 
his theory Miller analyzed 4000 publications from 
$20.00 (C) 2005 IEEE 2
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multiple living systems disciplines. He then developed a 
model that can be used to reason about any living systems 
(from individual cells to supranational organizations such 
as the United Nations Organization). 

The main goal of LST is to unify all scientific 
disciplines that study and model livings systems. In 
particular, LST integrates structural and behavioral 
sciences but still keeps some of the specificities of the 
individual disciplines. On one hand, LST applies the same 
general theory (i.e., it uses the same concepts and 
principles) recursively at all levels of living systems. On 
the other hand, in each level, LST factors in level-specific 
theories coming, for example, for biology, medicine or 
social sciences. The result is an original combination of 
genericity and specificity.  

One of the most important concepts is that of level. 
According to Miller “…the universe contains a hierarchy 
of systems, each more advanced or ‘higher’ level made of 
systems of the lower levels”. He identifies seven distinct 
levels for living systems: cells (free-living cells and 
aggregated cells), organs, organisms (such as humans…), 
group (such as families, workgroups…), organization 
(such as commercial companies…), society (such as 
countries) and supra-national systems (such as inter-
governmental organizations …). This level distinction is 
tightly linked to people’s experience in perceiving and 
studying the world of livings systems. Depending on the 
goal of the modeler, it is possible to have more or less 
levels.  

To be able to fully model enterprises, the model 
should not be limited to the IT and software-intensive 
systems but should also represent the business-related 
systems. For this, we borrow the concept of level from 
Miller. We call these levels the organizational levels. 
These levels establish the organizational level hierarchy. 
In the example of the on-line book company discussed 
earlier, the enterprise model has six organizational levels: 
market, business system, company, department, IT 
application and technology level. 
 
3.1.2 RM-ODP. Within the levels, we use RM-ODP to 
represent what is perceived in the reality. RM-ODP is a 
standard that defines the concepts necessary to build 
“distributed information processing services to be realized 
in an environment of heterogeneous IT resources” [8]. 
RM-ODP also proves to be suitable for general modeling 
[9]. Our modeling language relies on the concepts defined 
in RM-ODP.  

According to RM-ODP part 2 (i.e. the foundations 
part of RM-ODP), an entity is any concrete or abstract 
thing of interest in the universe of discourse. An entity 
can be considered as atomic or as non-atomic (i.e. 
composed of components of the same kind). An entity is 
represented in the model as a model element. So, a model 
element can be seen as whole or as composite. A system 
may be referred to as an entity. A component of a system 
may itself be a system, in which case it may be called a 
0-7695-2268-8/05/$
subsystem. The model element that corresponds to a 
system is an object. An object can be seen as whole (i.e. 
this corresponds to the external view of the object, also 
called model-based specification [10]) or as composite 
(i.e. this corresponds to the internal view, or 
implementation, of the object). Other kinds of entities can 
be modeled as action and state. Actions and states can 
also be seen as whole or as composite. An action or a state 
seen as composite can be broken down into component 
actions or states. These component actions or states can 
be further broken down into smaller component actions or 
states. This hierarchy of actions and states corresponds to 
the detail level hierarchy. The detail level hierarchy 
includes detail levels. It is orthogonal to the 
organizational level hierarchy defined in the previous 
section (in which an object is broken down into its 
component objects). In each organizational level, we can 
find multiple detail levels. One of our previously done 
research shows that all the terms we use above are the 
minimum set of concepts that need to be considered in 
general system modeling [11]. These concepts were 
formalized [12] using Alloy, a formal specification 
language [13].  

According to RM-ODP part 3 (i.e. the architecture 
part of RM-ODP), a system specification has five 
viewpoints: enterprise, information, computational, 
engineering and technology viewpoint. In the context of 
hierarchical systems, we model organizational levels (cf. 
Miller) made of computational objects (i.e. an object that 
represents a system). The computational objects can be 
specified by either an information viewpoint (of the 
computational object seen as a whole) or by a 
computational viewpoint (of the computational object 
seen as a composite). In our modeling language we do not 
use the term information viewpoint but, instead, we use 
the term computational object as whole which is 
synonymous. Similarly, we do not use the term 
computational viewpoint but, instead, computational 
object as composite.  

A computational object as a whole is represented by 
information objects (IO) and localized actions (LA). The 
information objects are like attributes and represent the 
states of the computational objects. The localized actions 
represent the computational object’s responsibility. The 
information objects represents either the fact that a 
localized action executes (information objects called 
transactions) or parameters exchanged with the 
environment (information objects called parameters) or 
elements of “knowledge” (information objects called 
concepts). The “knowledge” of the computational object 
is about itself or about other computational objects 
belonging to the same organizational level. 

A computational object as composite is represented as 
component computational objects and actions happening 
between them that we call joint actions. Note that as RM-
ODP part 2 just defines the term action, we have to define 
20.00 (C) 2005 IEEE 3
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the localized actions and the joint actions. The names of 
these actions are taken from Catalysis [3].  
 
3.2 Language definition 
 

Having taken our foundations from Miller [7], RM-
ODP [8], we now proceed in defining our language. In 
Section 3.2.1 and 3.2.2, we illustrate the relevant model 
elements with examples using our CAD tool. We then 
define the model elements through a meta-model and 
through a formal description of the meta-model (which 
gives the semantics of the meta-model). In Section 3.2.1, 
we define the model element computational object. In 
Section 3.2.2, we define the model elements: joint action, 
localized action and information object. All these 
elements are defined as whole and as composite. In 
Section 3.2.3, all the elements of the language are put 
together to make a meta-model that is general enough to 
deal with an unlimited number of organizational and 
detail levels. The meta-model is in UML. The semantics 
is formalized using Alloy 2.0, which is a lightweight 
specification language based on set theory developed by 
Daniel Jackson at MIT [13]. While presenting the 
language, we highlight how our language fulfills the 
requirements identified in Section 2.  

 
3.2.1 Organizational level in terms of computational 
objects as whole / composite. Figure 2 and 3 are 
screenshots that present two views of the same model. In 
Figure 2, the computational object Comm is broken down 
into two computational objects Co1 and Co2 participating 
to a joint action ja1. Co2 is viewed as whole and the 
localized action la1 stands for the responsibility of Co2 in 
its participation to ja1.  
 

 
Figure 2. Comm as composite and Co2 as whole  

 
In Figure 3, the computational object Co2 is seen as 

composite, it has two component objects Co21, Co22. 
Co21 and Co22 collaborate through ja2 that is the 
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“implementation” of la1 of Figure 2. Note that, in Figure 
3, the modeler has hidden Comm and Co1.  

 

 
Figure 3. Co2 as composite, Comm & Co1 hidden. 

 
Once a computational object is seen as composite, it 

contains component computational objects and joint 
actions. By changing the view of the computational object 
from the whole (e.g. Co2 in Figure 2) to the composite 
(i.e. Co2 in Figure 3), the modeler moves to the next 
organizational level. The use of organizational levels in 
which computational objects exist both as whole and as 
composite allows the modeler to manage the hierarchical 
levels (from business down to code) in a systematic way. 
This computational object can represent any entities such 
as markets, companies, departments, people, IT systems, 
software components and programming classes. This 
illustrates how our language meets the requirement i) 
“multiple consistent levels” discussed in the previous 
section. 

By providing the capability for the modeler to 
represent multiple computational objects in the same 
organizational level, our language meets the requirement 
iii) “multiple systems of interest”. 

 
Let define the concepts of computational objects as 

whole and as composite. Table 1 gives the meta-model 
that defines these concepts and the semantics of the meta-
model. As we can see in Table 1 a), the computational 
object as composite is broken down into computational 
objects (seen as whole) that are participants of one joint 
action2. The joint actions are described with pre-
conditions and post-conditions that access information 
objects of the participating computational objects as 
whole. Note that breaking down a computational object 
results not only in component objects but also in a 
mediator. The mediator is a computational object that can 
only be treated as whole. It is responsible for dispatching 
joint actions. In the example of the bookstore, the 
mediator of the book company (BookCo) corresponds to 

                                                 
2In the next section, we will present how multiple joint actions can be 
represented. They correspond to the detail level.  
20.00 (C) 2005 IEEE 4
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the way the company exchanges goods and information 
between its departments (it is an abstract view of the 
lower organizational levels). 

 
Table 1 a): computational object as composite 

Se
m
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tic

s A computational object seen as composite consists of 
component computational objects as whole and typically a 
joint action as whole in which the component objects 
participate. In our tool, computational objects are drawn using 
pictograms similar to UML subsystems. 

M
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m
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disj sig CCompuObject extends CompuObject 
{ 
   compu_whole : WCompuObject, 
   compu_cpnts : set WCompuObject, 
   compu_mediator : WCompuObject, 
   ja : option WJointAction // 0 or 1 
}{ one compu_mediator 
   all c : compu_cpnts | c::compu_parent = this 
   ja::compu_med = this } 

 
Table 1 b) describes the computational object seen as 

whole. It has one information object as a whole to model 
the entire transaction of the computational object. This 
information object represents the whole state of the 
computational object. The Computational object also has 
one localized action that represents its entire behavior (i.e. 
the lifecycle of the object). This localized action changes 
the state of the information object and thus affects the 
state of the computational object.  

 
Table 1 b): computational object as whole 

Se
m

an
tic

s A computational object seen as whole contains an information 
object as whole and a localized action as whole. This object 
and action can be broken down further to reveal the detail 
“knowledge” and behavior of the computational object.  
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disj sig WCompuObject extends CompuObject 
{ 
   compu_parent : option CCompuObject, // 0 or 1 
   compu_composite : option CCompuObject, 
   la : option WLocalizedAction, 
   transaction : option WInfoObject, 
}{ this::compu_composite::compu_whole = this 
   la::compu_owner = this 
   transaction::compu_host = this } 
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3.2.2 Detail level in terms of joint actions, information 
objects and localized actions as whole / composite. Not 
only computational objects but also joint actions, 
localized actions and information objects can be treated as 
whole and as composite. Once the modeler breaks down a 
joint action, she moves down to the next detail level. 
Figure 4 is again a screenshot of our CAD tool. Co2 is 
shown at the next detail level compared to what is shown 
in Figure 2. 
  

 
Figure 4. Second detail level of Co2 and of the 

relevant part of its environment 
 
In Figure 4, the joint action ja1 (represented as a 

whole in Figure 2) is seen as composite; it is composed of 
ja11 and ja12. Correspondingly, the localized action la1 
as composite consists of la11 and la12. The information 
object la1Txn as composite is composed of la1TxnSelf, 
la1Txn, la2Txn and Co1Concept (knowledge of Co2 
about Co1). la1TxnSelf happens to be the “reference 
point” of the information object la1Txn after it is broken 
down into the component information objects la1Txn and 
la2Txn. The “reference point” (as it is unique for each 
information object) is useful for navigating in the 
component information objects. It has a role similar to the 
start and stop point in the behavior.  

In general, an information object may represent a 
transaction (standing for the execution of a localized 
action), a concept (which is the knowledge of a 
computational object about its environment or itself) or a 
parameter. As information objects are modified by 
localized actions, we also have different kind of localized 
actions: the interaction localized action that exchanges 
information with the environment through parameters 
(thus, observable from outside) and the internal localized 
action that has no exchange with the environment 
(unobservable from outside).  

By having joint actions in every computational object 
as composite, localized actions in every computational 
objects as whole and by allowing the representation of 
/$20.00 (C) 2005 IEEE 5
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actions at different levels of detail, our language fulfills 
the requirement ii) “adequate representation of actions”. 

Note that our tool keeps the traceability between the 
concepts and what it represents in the system’s 
environment. This is done by a “trace” relationship such 
as the relation going from Co1Concept to Co1 in Figure 4. 
This, together with the possibility to represent 
computational objects as whole and as composite and 
with our representation of actions, enable our language to 
satisfy the requirement iv) “existence of traceability 
relationships”.  

In Table 2, we define the three model elements: 
information object, join action, and localized action. 
These elements can be seen as whole or as composite 
along the detail level hierarchy. When an element as 
whole becomes a composite element, this results in 
component elements together with constraints on how 
they are put together. The constraints for the joint actions 
and localized actions seen as composite are behavioral 
constraints. They may determine the sequence of the 
component actions. The constraint for a composite 
information object represents the navigation between the 
component information objects. 

 
Table 2 a): Information object as composite / whole 

Se
m

an
tic

s 

An information object represents a piece of information in a 
computational object as whole. It may represent a transaction, 
a concept or a parameter. It can be treated either as whole or as 
composite. Once treated as composite, it has an entry point 
from which navigation links are going to the components. In 
our tool, it is drawn using the same pictogram as an UML 
class.  
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disj sig CInfoObject extends InfoObject 
{ 
   info_whole : WInfoObject, 
   info_self : WInfoObject, 
   info_cpnts : set WInfoObject, 
   concepts : set WInfoObject, 
   parameters : set WInfoObject, 
   navs : WInfoObject -> WInfoObject 
}{ one info_self 
   this::info_whole::info_composite = this 
   all c : info_cpnts + concepts + parameters |  
   some n : navs | c::info_parent = this && 
        c::compu_host = this::info_whole::compu_host &&  
        n.info_self = c 
} 
 
disj sig WInfoObject extends InfoObject 
{ 
   info_parent : option CInfoObject, // 0 or 1 
   compu_host : WCompuObject, 
   info_composite : option CInfoObject 
}{ one compu_host } 

 
 

 

0-7695-2268-8/05/$
Table 2 b): Joint action as composite / whole 

Se
m
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s 

A joint action represents an action happening between 
computational objects. These objects are called participating 
objects. The pre-condition and post-condition of a joint action 
can be described in terms of its participating objects seen as 
whole. In our tool, it is drawn using the same pictogram as an 
UML collaboration.  
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disj sig CJointAction extends JointAction 
{ 
   joint_whole : WJointAction, 
   joint_self : WJointAction, 
   joint_cpnts : set WJointAction, 
   joint_ cnstrnts : set BehaviorConstraint 
}{ one joint_self 
   this::joint_whole::joint_composite = this 
   all c : joint_cpnts | c::joint_parent = this &&   
        c::compu_med = this::joint_whole::compu_med } 
 
disj sig WJointAction extends JointAction 
{ 
   joint_parent : option CJointAction, // 0 or 1 
   compu_med : CCompuObject, 
   joint_composite : option CJointAction, 
   participants : set WCompuObject 
}{ one compu_med 
   all p:participants | p::compu_parent = compu_med } 

 
Table 2 c): Localized action as composite / whole 

Se
m

an
tic

s A localized action represents a responsibility of a 
computational object as whole when it participates in a joint 
action. The localized action can be treated either as whole or 
as composite. In our tool, it is drawn using the same 
pictogram as an UML action state. 
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disj sig CLocalizedAction extends LocalizedAction 
{ 
   localized_whole : WLocalizedAction, 
   localized_self : WLocalizedAction, 
   interactions : set WLocalizedAction, 
   internals : set WLocalizedAction, 
   localized_cnstrnts : set BehaviorConstraint 
}{ one localized_self 
   this::localized_whole::localized_composite = this 
   all c : interactions + internals |  
       c::localized_parent = this } 
 
disj sig WLocalizedAction extends LocalizedAction 
{ 
   localized_parent : option CLocalizedAction, 
   compu_owner : WCompuObject, 
   localized_composite : option CLocalizedAction, 
   affecteds : set WInfoObject 
}{ one compu_owner  
   all a : affecteds | a::compu_host = compu_owner } 
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3.2.3 Combining organizational and detail levels. We 
eventually come to one complete meta-model where each 
element can be toggled between the whole and the 
composite view (see Figure 5). The detail level can be 
inferred via the composition relationship connecting Joint 
Action, Information Object and Localized Action as 
composite to the respective generalized element. The 
constraints of the two roles of this composition ({detail 
n+1} and {detail n}) say that the element as composite is 
one detail level above the generalized element. Similarly, 
the organizational level can be inferred via the 
composition connecting Computational Object as 
composite to the generalized Computational Object, 
which is one organizational level below the composite 
one ({org n+1} and {org n}). In fact, the complete meta-
model is simply made by assembling the meta-models 
shown in Table 1 and Table 2. In a similar way, the Alloy 
code presented in each table can be put together to make a 
complete specification of the meta-model.  
 

As discussed previously, our language supports 
traceability. Thanks to traceability, our CAD tool can help 
the modeler navigate those diagrams although they are 
separately displayed. This tool should manage all model 
elements in a way that diagrams are just extracted view 
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based on some criteria (e.g. a diagram can represent one 
given computational object (as whole or as composite), 
with or without its environment, and doing a specific 
localized action (as whole or as composite).  

 
We have tested this language with a CAD tool that 

we developed. The tool is a client-server web-based 
application. The client is available for downloading [14]. 
The data structure in the implementation of the tool looks 
very similar to Alloy code listed in Table 1 and Table 2. 

Our modeling language and CAD tool have been 
used in various projects. We have used it in some student 
work in industry for small business process reengineering 
projects. We are currently using it in a construction 
project for a new building for our school. We are making 
an enterprise model of the school that describes the 
business goals we have for the construction project. From 
this, we derive the infrastructure to deploy and the 
requirements of our new IT system. We also have a 
project in which we are defining the operational semantics 
for the language [15]. Thanks to this we will be able to do 
model checking (e.g. to compare two representation of a 
same system, represented in two different organizational 
levels).
 
Figure 5. Complete meta-model 
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4. Case study 
 
In this section, we illustrate how to use our language 

to model the bookstore case study presented in Section 2. 
We have one enterprise model, represented by a serie of 
diagrams. They represent all levels, from the market level 
down to the internals of the IT system. The EA team uses 
these diagrams to analyze and design the multiple systems 
found in the business and IT levels. These diagrams were 
created with our CAD tool [14] and were redrawn to save 
space. In these diagrams, the levels to which the objects 
and actions belong are visually illustrated with a tagged 
value {org x, detail y}.  

 
As we can see in Figure 6, at the top organizational 

level, BookCoMarket as composite consists of two 
business systems: BookCoBis and CustomerBis. 
BookCoBis sells books to CustomerBis. They collaborate 
through the joint action sale. BookCoBis is responsible for 
performing the localized action Mfg_Sale.  

In the second organizational level, BookCoBis as 
composite is composed of the company BookCo that 
collaborates with PubCo and ShipCo to fulfill the joint 
action mfg_Sale that is in fact the implementation of the 
localized action Mfg_Sale. 

In the third organizational level, BookCo as 
composite contains two departments: PurchasingDep (for 
selecting books and processing orders) and 
WarehouseDep (for packing selected book). Note that 
both of them are specified as whole when participating in 
the joint action market. The joint action market as 
composite has component actions select, pack and order 
that all belong to the second detail level (whereas market 
as whole belongs to the first detail level). PurchasingDep 
as whole is also specified in the second detail level with 
MarketTxnSelf, SelectTxn, OrderTxn (information objects 
representing the transactions) and with localized actions 
Select, Order. Note the difference of responsibilities 
between WarehouseDep and PurchasingDep. 
WarehouseDep does the localized action Pack and the 
PurchasingDep the localized action Select. In addition the 
Order localized action is different in WarehouseDep and 
in PurchasingDep.  

In the fourth organizational level (Figure 7), 
PurchasingDep as composite shows that a Clerk operates 
the IT system OpApp. What is happening between the 
Clerk and OpApp is modeled as the joint action operate. 
OpApp’s responsibilities is represented as the localized 
action Work. What Work means would be visible if we 
would get to the next detail level of OpApp as whole (not 
shown in figures). 

In the fifth organizational level (technology level) 
where OpApp as composite is represented, it is possible to 
see a SearchApplet (a Java applet that is accessed by the 
clerk), a SearchServlet (a Java servlet responsible for 
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searching) that uses a Java class OrderPrinterClass (for 
printing orders) and a JDBC connector (see Figure 7).  

 
Figure 6. Model of the online bookstore for 
business-related organizational levels 

  
The model we built has 6 organizational levels. (four 

in Figure 6 and two in Figure 7). We could consider 
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ShipCo 
{org 3} 

Book 
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Pack 
{org 4, detail 2} 
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adding levels to describe how the applet and the servlet 
are built.  

 

 
Figure 7. Model of the online bookstore for IT-

related organizational levels 
 
We can see that joint actions are expressed in every 

composite computational object. For each joint action, the 
participant computational objects have a localized action 
expressing their responsibility. These localized actions 
correspond to a joint action in the next organizational 
level. This illustrates the how our language satisfies the 
requirements i) “multiple consistent levels”, ii) “adequate 
representation of actions”, and iv) “existence of 
traceability relationships”. By permitting to work on 
multiple systems in parallel, our language satisfies the 
requirement iii) “multiple systems”:  

With our CAD tool, the modeler can navigate up and 
down the hierarchy by selecting the relevant model 
element (typically a computational object, a joint action or 
a localized action) and by using a pop-up menu to toggle 
between whole and composite. Within an organizational 
level, the modeler can also hide or show the environment 
of the computational object of interest.  
 
5. Related work 
 

In this section, we position our contribution with 
respect to the existing object-oriented languages and 
methods such as UML, Catalysis, Kobra, SysEng and 
OPM. In this paper, we do not consider the Zachman 
framework [16], popular in EA, as it is not object-
oriented. Our choice of an object-oriented approach is 
justified by our attempt to have a consistent modeling 
paradigm between IT and business levels. In software 
engineering, objects are widely used and UML has made 
a significant impact.  
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{org 6, detail 1} 
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ServiceTxn {org 6, detail 1} 

Service {org 6, detail 1} 

OrderPrinterClass 
{org 6} 

PurchasingDep {org 4} 
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{org 5, detail 1} 

OPApp {org 5} 

WorkTxn {org 5, detail 1} 

Work {org 5, detail 1} 

SearchApplet 
{org 6} 
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UML [2], defined and managed by Object 
Management Group (OMG) [17], is the industry-standard 
modeling language developed originally for software 
development. In the profile created for business modeling, 
the object systems, organizational units and work units are 
all subsystems. They differ only in stereotypes. Since a 
subsystem in UML meta-model can contain UML 
classifiers, which may be again subsystems, the business 
hierarchy can be established by having an organizational 
unit being composed of other units. Our modeling 
language also uses the subsystem notation for 
computational objects but it provides joint actions and 
localized actions in every organizational level (which is 
not the case in UML). Therefore, the hierarchy has not 
only structures but also behaviors represented in a 
consistent way. 

Catalysis [3], defined by Desmond D’Souza and Alan 
C. Wills, is a development process that addresses business 
and software. Catalysis analyzes and designs at three 
levels: business, IT system and software components. 
Catalysis uses its own modeling notation, inspired by 
UML. A conceptual model [18] defines the notation. We 
base our work on the Catalysis approach (and, in 
particular, on the joint actions and localized actions). Our 
initial goal was to develop a CAD tool for Catalysis. As a 
result, we have defined a meta-model more precise than 
the one provided by the Catalysis authors [18] and which 
provides a more general approach to the concept of 
organizational and detail levels.  

System Engineering (SysEng) [4] also defined by the 
OMG [17] is a development process that addresses the 
design of systems in general (e.g. airplanes) using the 
UML notation. The Conceptual Model [19] of SysEng 
addresses the hierarchical modeling via the loop on the 
system/subsystem as well as on the component. Both of 
them have the loop aggregation “Made up with”. Our 
final meta-model also have a loop on Computational 
Object that establishes the hierarchy along organizational 
levels. Our difference lies in the fact that we do not have 
sub-systems and components in our meta-model but only 
computational objects. Thanks to this, our language 
becomes more consistent and traceable across the 
organizational levels. As SysEng is based on UML, the 
comments made about UML also apply to SysEng.  

KobrA [5], developed by Colin Atkinson et al., 
addresses component-based software development. It 
proposes a recursive model that describes the IT system, 
its components and the Java classes using the UML 
notation. In KobrA meta-model [20], a component can be 
either a UML subsystem or a flat class. KobrA defines a 
recursive top-down approach that allows the modeler to 
interleave the specification and the realization of the 
components starting from a top-level context [5]. In our 
language, both the specification (i.e. information object 
and localized action) and “realization” (i.e. computational 
object and joint action) appear in all organizational levels. 
20.00 (C) 2005 IEEE 9
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Our language thus can deal with not only software-related 
but also business-related organizational levels. As Kobra 
is based on UML, the comments made about UML also 
apply to Kobra.  

OPM [6], defined by Dove Dori, addresses the 
modeling of systems in general and can be used from 
business processes modeling down to software 
implementation modeling. OPM defines three main model 
elements: object, process and state, together with some 
mechanisms that help the modeler define a hierarchy of 
systems. The notation is specific to OPM. With a CAD 
tool called OpCat that was particularly developed for 
OPM [21], the modeler can manage the complexity of a 
hierarchical system that is mainly related to the levels via 
two mechanisms: in-zooming / out-zooming and 
unfolding / folding [21]. Our language has strong 
similarities to OPM but is much closer to UML. In 
addition, the meta-model of our language makes the 
hierarchy of organizational levels and detail levels more 
explicit than the OPM meta-model.  
 
6. Conclusion 
 

Modeling object-oriented hierarchical systems 
requires: (1) a consistent way to model hierarchical levels 
(from business down to IT); (2) the possibility to model 
what happens between systems (joint actions) and 
systems’ responsibilities (localized actions) and this in all 
necessary organizational and detail levels; (3) to work on 
multiple systems of interest, and (4) to have traceability 
relationships.  

To meet these requirements, we propose a new 
modeling language that is based on Miller’s Theory of 
Living Systems [7] and on RM-ODP [8]. The main 
contribution of this work is the definition of four basic 
modeling concepts (computational object, joint action, 
information object and localized action) together with the 
application of two complementary views 
(composite/whole). These two views allow us to define 
the concepts of organizational level hierarchy and detail 
level hierarchy. These concepts are general and can be 
taken by the other hierarchical modeling approach.  

A CAD tool is implemented to show how our 
modeling language practically works. Through various 
examples, we have validated the language and tool. Our 
experience with the tool shows that the user interface shall 
be designed with great care. As the models are complex, 
the tool should reduce this complexity for the user. This is 
the direction of our future work. 
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