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Abstract

Distribution has become an essential non-functional requirement of most applications.
The same application may be required to use different distribution platforms simultaneously
or during its evolution. However, distributed applications are considerably more difficult
to design, implement and test than centralized systems even with the same functionality.
We present an implementation method which guides the progressive transformation of an
initially centralized application into a distributed one. The method helps to tame the inherent
complexity of distributed systems and makes tests more effective. Additionally, it relies on
a design pattern promoting extensibility and reuse of other layers such as the user interface
and the business layers.

1 Introduction

Over the last decade, with the rapid growth of the Internet and the World Wide Web,
distribution has become an essential non-functional requirement of most applications,
spanning areas such as Electronic Commerce, Distance Learning, and Artificial Intelli-
gence. In fact, distributed applications may have a number of advantages over centralized
systems: scalability, fault tolerance, and resource sharing.

However, despite these advantages, the design and test of distributed applications are
considerably more difficult than those of centralized systems. Indeed, problems such as
non-determinism, livelock, and deadlock are easily introduced even in distributed systems
containing few components. The detection of these problems is also harder since cen-
tralized system testing techniques do not apply effectively in the distributed scenario.
Moreover, distributed applications are commonly implemented with other non-functional
requirements such as concurrency and persistence, which make their implementation a
complex task.

A great variety of languages and tools has been developed to support the implementa-
tion of distributed systems. For instance, Java [7] has a distributed object model provided
by RMI [16], which supports the implementation of distributed object collaborations in
the language itself without the need for low-level protocols. In addition, RMI also provides
a tool for automatic generation of components involved in the development of distributed
applications.

However, languages and tool support are not sufficient to avoid the problems which
arise in developing distributed applications. Support at a higher level is also required. In
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this context, the design of the software architecture [14] of such applications is critical.
The architecture describes the system’s overall organization, its components, and how they
interact. It helps to tame the system’s inherent complexity and provides a partial blueprint
for its construction. Furthermore, it promotes software’s reusability and extensibility.

In order to implement a software architecture, its components and their relationships
must be refined. Patterns [5, 6, 13] play a central role in this. By using them, programmers
build software systems with predictable non-functional properties. Therefore, a pattern
supporting software extensibility leads to the construction of applications where a change
in a non-functional requirement, such as persistence or distribution, does not entail the
need to redevelop most of the system.

On the other hand, current software development processes, despite improving analysis
and design methods, do not emphasize implementation methods [8]. In fact, implemen-
tation is commonly handled in an ad hoc manner. As a consequence, the benefits of
even a carefully designed architecture may be lost: although the resulting code may be
object-oriented, it can still tangle aspects of different layers and thus is difficult to reuse
and extend. This risk is specially higher when implementing distributed, concurrent, and
persistent applications, which account for a significant part of Web-based information
systems.

In this context, this work presents and evaluates an implementation method for in-
troducing distribution into an application. Our goal is to improve software quality, by
considering reuse and extensibility, and to increase development productivity, by con-
sidering the time spent during implementation. As an implementation method, the one
described in this work assumes that critical properties of a distributed application (such
as scalability, transaction support, and security) have already been considered in the de-
sign of the application. Such design issues are preserved by the implementation method
we present.

The rest of this paper is organized as follows. Section 2 overviews a design pattern for
distributed applications. An implementation method relying on this pattern is presented
in Section 3. An experiment in which the method was applied is described and analyzed
in Section 4. Related approaches are considered in Section 5, and Section 6 summarizes
our contributions.

2 A design pattern for distributed applications

This section overviews the Distributed Adapters Pattern (DAP) [1], which we have devel-
oped with the purpose of refining the distribution layer of distributed architectures. It is
actually a combination of the Facade, the Adapter, and the Factory design patterns [6].

Indeed, well known patterns for structuring distributed systems already exist. The
Broker [5] and the Trader [5] patterns are two examples. These are architectural pat-
terns [5] and focus mostly on providing fundamental distribution issues, such as mar-
shalling and message protocols. Therefore, they are mostly tailored to the implementa-
tion of distributed platforms, such as CORBA [11]. DAP uses these fundamental patterns
and provides a higher level of abstraction: distribution Application Programming Inter-
face (API) transparency to both clients and servers. Section 5 compares DAP to other
patterns.



DAP introduces a pair of object adapters [6] to achieve better decoupling of compo-
nents in distributed architectures. The adapters basically encapsulate the API that is
necessary for allowing distributed or remote access of business objects. In this way, the
business layer of an application becomes independent with respect to the distribution
layer, so that changes in the latter do not impact the former.

There are two kinds of adapters: source adapters and target adapters. Roughly,
the latter wraps server business objects in the places where they are located, and the for-
mer represents those objects in remote locations. In a typical interaction, a user interface
object (a GUI, for instance) in one machine would request the services of a source adapter
located in the same machine. The source adapter would then request the services of a
corresponding target adapter residing in a remote machine. Finally, the target adapter
would request the services of a Facade object co-located with the target adapter. Figure 1
illustrates this example.

Source
Adapter Adapter

TargetSource Target

Machine A Machine B

User interface Facade

Figure 1: An example of DAP.

The Facade component in Figure 1 is related to business aspects of an application. For
instance, the Facade of a banking application keeps references to entities such as account
and customer records, and has operations for manipulating these entities:

class Bank implements IBank {

private AccountRecord accounts;

Bank() throws BankInitializationException {...}

int addAccount(Account account)

throws AccountAlreadyExistsException {

accounts.add(account);

}

void deposit(String accountNumber, double value)

throws UnknownAccountException {

accounts.deposit(accountNumber,value);

}

}

where AccountRecord provides services for manipulating a record of accounts (insertion,
updating, querying, deletion, etc.) and also for depositing into or withdrawing from them.
The exceptions AccountAlreadyExistsException and UnknownAccountException are
specific to the banking application. The IBank interface implemented by the banking
facade is a business facade interface. It abstracts the behavior of the application:



interface IBank {

int addAccount(Account account) throws CommunicationException,

AccountAlreadyExistsException;

void deposit(String accountNumber, double value)

throws CommunicationException, UnknownAccountException;

}

where CommunicationException is a general exception representing failure in the distri-
bution layer. It does not depend on any particular distribution technology and is defined
since the application will eventually become distributed.

Source and target adapters provide a higher level of abstraction than stub and skeletons
do. The adapters isolate user interface and business code from distribution API, whereas
stubs and skeletons isolate user interface and business code from the implementation of
distribution issues, but not from distribution API. Source adapters delegate lower level
distribution issues such as marshalling to stubs, and target adapters delegate such issues
to skeletons.

2.1 Consequences

DAP provides the following benefits:

• Modularity. This pattern structures distribution aspects modularly, promoting loose
coupling between the different layers of an application’s architecture: distribution,
business, and user interface layers.

• Reuse and extensibility. Due to the modularity provided by the pattern, developers
can reuse business components easily in other applications based on other middle-
ware technologies. In addition, changes to the middleware aspects are simpler, since
these are restricted to the distribution layer.

• Progressive implementation. The pattern supports progressive implementation.
During the early phases of the development, developers construct a functionally
complete prototype, where a GUI, for example, depends directly on a business
Facade. Later, developers add the distribution layer seamlessly, since this layer
implements the same interface as the Facade.

This pattern has the following drawbacks:

• Increased number of classes. A pair of adapters, three factories, and an initializer are
necessary; however, their structure is simple and their generation could be mostly
automated by tools.

• Extra indirection. The pair of adapters introduce two additional method calls for
the same remote request. However, both of these are local calls, which are much less
expensive than remote ones. The work in [1] shows empirical data analyzing the
impact on efficiency caused by the adapters; the analysis reveals that such impact
is minimum.



3 Method

This section presents an implementation method that guides the developer in the pro-
cess of turning an initially non-distributed application into a distributed one, structured
according to DAP. Although we describe and illustrate the method in the context of dis-
tributing one application, the method is more general: it is useful for distributing any
kind of service remotely available. Since an implementation method is described (rather
than a design method), it is assumed that issues such as scalability, transaction support,
and security have already been considered in the design of the application. The method
presented here preserves such design issues.

The method consists of five steps, each one describing the implementation of the
components of the design pattern mentioned in Section 2. The activities should be ex-
ecuted sequentially. These activities are illustrated with RMI [16]. However, developers
may follow these steps when using other platforms, such as Jini [17] and CORBA [11],
for example, with minor modifications. The following subsections describe the method’s
steps.

3.1 Preliminary step: prepare facade and client

The implementation method described in this work refines the Progressive Implementa-
tion Method (Pim) [4], thereby relying on its architectural and design patterns. The goal
of this step is to guarantee that these patterns are used in the initially non-distributed
application. Actually, this step should already have been considered in the design ac-
tivities and in the implementation of such application. Therefore, we list it here just as
an optional corrective action for possible failure in these previous activities. The step
described in this section is itself divided into three parts, which we list separately.

Different parameter passing mechanisms

In order to explain this step, let us consider the following banking facade interface:

interface IBank {

Iterator getAccountsList() throws CommunicationException;

Iterator getClientsList() throws CommunicationException;...

}

where Iterator is a type with methods for navigating through a sequence of items. The
design process must have identified the parameter passing mechanism of the types in the
facade interface. Since this interface describes the distributed behavior of the application,
the parameter passing mechanisms are also described in this context. Therefore, in the
banking interface above, Iterator could be passed by value in getClientsList, in which
case an object of this type would be serialized to be sent from a server to a client, and
by reference in getAccountsList, in which case a proxy would be sent from the server to
the client.

In the latter case, the semantics of interaction with an Iterator object is affected
by distribution: communication errors may arise, for instance; therefore, methods in
Iterator must declare an exception like CommunicationException to indicate this en-
hanced semantics. In addition, clients of this type must treat this exception. This implies



that clients of getClientsList also have to treat this exception. However, this latter
handling is unnecessary and conceptually inadequate, since in this case the client receives
an Iterator object through serialization, and thus this object is a local and not a dis-
tributed one. To avoid this, we may create a new type, RemoteIterator, rename the
return type of getAccountsList to this new type, and update references to this new type
in clients of this method. The facade interface thus becomes

interface IBank {

RemoteIterator getAccountsList() throws CommunicationException;

Iterator getClientsList() throws CommunicationException;...

}

where RemoteIterator and Iterator are separate types for each parameter passing
mechanism:

interface Iterator {

Object next();...

}

interface RemoteIterator {

Object next() throws CommunicationException;...

}

With these, clients of getClientsList handle local objects explicitly and clients of
getAccountsList manipulate actual remote objects.

To summarize, in this step, the developer should perform the following actions:

1. Identify types in facade interface f that are used with different parameter passing
mechanisms.

2. For each such type t create a new one, t’, with the same methods of t but with all
methods declaring CommunicationException in their throws clause.

3. Replace t with t’ in f wherever t is a return or a parameter type whose arguments
are passed by reference.

4. Guarantee that methods in t do not declare CommunicationException in their
throws clause.

5. Update clients of the methods of f passing t by reference so that these clients now
refer to t’.

Keep the client consistent

Suppose that in our banking application there is an operation for adding accounts: this
operation adds an account into the server and returns the account number to the client.
The operation itself generates a number, which is not informed by the client at the method
call. A careless specification of the facade interface would be:



interface IBank {

void addAccount(Account account) throws CommunicationException,

AccountAlreadyExistsException;

}

This specification assumes that the client would be following this protocol: the client
could create an Account object, call addAccount, passing this new Account object, and
then retrieve the account number by using an accessor method of Account, such as
getAccountNumber. This protocol would work in the initially non-distributed version
of the application, since there would be only one copy of Account. However, in the dis-
tributed version of the application, there would be two copies of Account: one at the
client and one at the server; the copy whose account number is set is the one at the
server. Therefore, the protocol above would not work since the client would be retrieving
the account number of the Account copy at the client, which is inconsistent with the one
at the server.

The problem above could be avoided by explicitly returning the account number in
the operation:

interface IBank {

int addAccount(Account account) throws CommunicationException,

AccountAlreadyExistsException;

}

This specification would prevent the client from following the erroneous protocol men-
tioned above. In general, we should

1. Make all methods in the facade interface return values if they should do so concep-
tually.

2. For these methods, propagate implementation changes to the corresponding meth-
ods in the business and data layers.

3. Change clients of these methods so that they use the values returned explicitly in
the methods.

Keep the server consistent

When interacting with the server of an application, a client may retrieve business objects,
such as Customer objects, and set its attributes. After such interaction, the client must
in addition remember to call an update method in the facade interface in order to keep
those business objects at the server consistent with the corresponding copies at the client.

For example, clients of the IBank facade interface typically write code such as the
following:

customer = bank.fetchCustomer(customerId);

for fetching a business object, where customer is either an attribute of a class in the
client (a GUI, for instance) or a local variable in the doPost method of a servlet [19]. The
fetchCustomer method would be called when an event happened at the GUI or when
the servlet received a HTTP request, which could actually come from another GUI in a
Web browser. Later the client could interact with customer and update its attributes:



customer.setName(...);

customer.setAddress(...);

where these invocations would be in a different method in the GUI or in another servlet.
Actually, since servlets interact with HTTP, which is a stateless protocol, this servlet
would have to call fetchCustomer again before setName and setAddress. However,
in either case and in the distributed version of the application, customer will not hold a
reference to the original customer; instead, it will hold a reference to a copy of the original
one. Therefore, in order to reflect the changes in the original customer, we should add
the following method call at the end of that code:

bank.updateCustomer(customer);

where IBank’s updateCustomer method is responsible for fetching and updating the orig-
inal customer with the attribute values of its argument. Therefore, the actions in this
step are:

1. Trace clients of the facade interface for updates to business objects.

2. After such updates, call the corresponding update method in the facade interface.

3.2 Step 1: implement adapters

This is the first concrete step in turning a non-distributed application into a distributed
one. The step assumes that the non-distributed application is structured according to
the Facade design pattern and that the implementation is to be based on the Distributed
Adapters Pattern (Section 2). In particular, we assume that the skeleton code for this
pattern has already been generated. In addition, the developer should also have already
considered the corrective actions described in the preliminary step presented previously.

Before the execution of this step, the implemented components in the original appli-
cation are the user interface and the facade. Essentially, what this step does it to add a
pair of adapters between these components; Figure 1 shows the structure of the result.
These adapters are the core elements of the design pattern mentioned in Section 2 and, in
essence, encapsulate and hide distribution details. In summary, for the facade of the ap-
plication, we create a pair of adapters, referred to as source adapter and target adapter.
These may be used to connect a user interface to a facade of a system (main service
adapters) or this facade to another facade, representing an auxiliary service (auxiliary
service adapters).

Source adapters

For the source adapter, the following tasks should be performed:

1. Make it implement the facade interface of the Distributed Adapters Pattern men-
tioned in Section 2.

2. Implement every method of the facade interface, by delegating the call to the target
adapter, calling a method of the same name, but replacing specific distribution
exceptions with the generic CommunicationException, which is declared in the
throws clause of methods in the facade interface.



3. Implement a connect method which allows the source adapter to find a reference to
the target adapter. This method may be called by the source adapter’s constructor
and by the clients of this adapter if the reference to the target adapter eventually
becomes invalid.

Target adapters

For the target adapter, we should do the following:

1. Make it implement a specific distribution interface, by means of which the source
adapter will interact with it. Such interface is essentially the facade interface with
the throws clause of each method augmented with platform specific exceptions.

2. Implement every method of the interface above, by delegating the invocation to
the facade component, calling a method of the same name. Differently from source
adapters, which replace specific distribution exceptions with a generic communi-
cation exception, the target adapter performs no exception filtering, since these
adapters are tied to a specific distribution platform.

3. Implement the target adapter’s constructor by registering it as a remote object at
a name service. This service is searched by the source adapter’s connect method.

3.3 Step 2: implement other non-functional requirements

The adapters presented in the previous step deal with basic distribution details and hide
these details from the business and the user interface code. The adapters may also handle
additional non-functional behavior, which also should not affect the business and the user
interface code. In this step, we illustrate how the adapters may perform some of this
additional behavior, which might be useful for implementing distributed applications.
The execution of this step consists of enhancing the implementation of these adapters.
Section 4, which evaluates the method, explains the reason for implementing this enhanced
behavior as a separate step.

Fault tolerance

The source adapters presented previously have no fault tolerant behavior: if there is a
communication error or if the server is unavailable, they simply raise a communication
exception. Nevertheless, source adapters can also implement fault tolerant behavior.

If a source adapters receives a remote exception when interacting with the target
adapter, it may implement the policy of trying to contact the target adapter again a
certain number of times, or trying to contact another target adapter, representing a spare
service. This policy, being implemented by the source adapter, is hidden from its client,
a GUI, for instance.

Caching

Some operations may return a considerable amount of data, of which only part is useful
at any moment. Sending everything to the client at once is not desirable since it may



have a negative impact on network performance. One solution is to send a cache with
part of the required data and to transfer more data every time a fault happens.

A source adapter can implement this caching behavior. When a querying operation
returns many entries, part of them are used to initialize a source adapter. The client of
this adapter (a GUI, for instance) retrieves the entries from this adapter. When a fault
happens in the source adapter, it contacts the target adapter to retrieve more entries.
This caching behavior is implemented in the source adapter and is transparent to the
GUI.

3.4 Step 3: serialize objects

In the non-distributed application, there is usually only one copy of each business object.
When the application is distributed, these objects may have to be copied to different
machines. To accomplish this, these objects must be serializable; in RMI [16], this means
that they must implement the Serializable interface. A similar approach is used with
other technologies. In this step, we present serialization issues in the context of the design
pattern we mentioned in Section 2.

Facade types

In the facade interface of all services to be distributed, the developer should identify all
non-primitive return types or method parameters passed by value. All such types, and
their subtypes, must be serializable. For example, consider the following interface:

interface IBank {

int addAccount(Account account) throws CommunicationException,

AccountAlreadyExistsException;

Iterator getAccountsList() throws CommunicationException;

}

where Iterator is an interface and Account is a class. After identifying those two types,
we should then modify Account so that it implements the Serializable interface. In
addition, we should also look for the classes implementing Iterator and also make them
implement Serializable.

Type dependency

For a type to be serializable, all types on which it depends (through inheritance or
clientship) must also be serializable. Primitive Java types are serializable by default [7].
Therefore, the hierarchy of non-primitive types that are attributes of the types identified
in the previous step must also be serialized. For example, if Account has a Transaction

History attribute, then we should make this attribute serializable. If Transaction

History has any attribute of a non-primitive type, then we serialize those types as well,
and so on.

Transient information

Some business objects may contain sensitive information that we do not want to send to
clients because it is either useless or not secure. For instance, such information could be



database connections, query results, and file handles. To prevent such information from
being sent, these should be declared as transient attributes [7] in order to guarantee
that they will not be serializable.

3.5 Step 4: prepare environment

To distribute an application, we must choose at least one platform. For this platform,
there must be some configuration information, such as the location of a server and names of
specific adapters, for example. In order to incorporate these details into the the application
modularly, we use a set of Factories [6] in the design pattern presented in Section 2.
Essentially, these factories are used in the creation of the adapters illustrated in the
pattern.

Supporting these factories, there is, both at the client and at the server, a configuration
file which specifies whether or not the application is distributed, identifies the distribution
platform to be used, and indicates the location of one or more servers.

4 Method evaluation

The implementation method described in the previous section was validated by an ex-
periment. This section describes the experiment and evaluates the method, discussing its
soundness and usefulness.

4.1 The experiment

In the experiment, we implemented a distributed and persistent Web based information
system, that allows manipulation of business entity records. The name of the system
and its actual code is not disclosed for commercial reasons. We started from a non-
distributed application which was already running in a company; we then implemented
two use cases [3] of this application from its design, and finally we distributed this imple-
mentation. The technologies used in the development were

• Java [7], which is proposed by Pim [4];

• HTML and Servlets [19], for user interface across the Web;

• Oracle [12] and JDBC [18] for persistent storage and database connection;

• RMI [16] as the distribution technology.

In fact, the system has two distribution levels, one handled by HTTP and the other by
RMI. The deployment diagram [3] in Figure 2 illustrates the system’s physical structure.

4.2 Implementation

The project development had a team of three programmers: S, T, and V, where V is the
author of this work. The project used the RUPim [10] process, which is a combination
of RUP [8] with Pim [4]. Essentially, this means the development consisted of a series
of iterations, each of these refined a set of functionalities from requirement specification



Figure 2: Physical structure of the implemented system.

through implementation. Former iterations considered major risks and were essential for
establishing the software architecture. Latter iterations just added functionality to an
already established architecture.

Initially, T and V built a functionally complete prototype; this prototype is a cen-
tralized and a volatile version of the system and implements only the business logic of
the two use cases. In addition, these programmers also designed, but not implemented,
distribution issues for this prototype. During the implementation of this version, the
programmers performed unit and integration tests. After all of these, system tests were
performed. Next, V implemented distribution aspects, and T implemented persistent
aspects. The implementation of such aspects happened concurrently and independently;
S implemented concurrent aspects later. After each such aspect implementation, the
corresponding programmer performed integration and system tests.

In particular, V implemented distribution aspects according to the method described
in Section 3. V implemented the initially non-distributed version of the application
according to the conditions in the preliminary step (Section 3.1): different types for
different parameter passing mechanisms were used, and the facade interface was changed
to return data explicitly in one method. This change prompted modifications in some
classes in the business and in the data layers.

Subsequently, in Step 1 (Section 3.2), V created a pair of main service adapters, the
source adapter being used by the Web server and the target adapter by the server. In
Step 2 (Section 3.3), a pair of auxiliary service adapters was implemented for caching
in order to handle queries returning much data more efficiently. Later, in Step 3 (Sec-
tion 3.4), V serialized four business classes and the source adapter of the auxiliary caching
service. Finally, in Step 4 (Section 3.5), V created three factories. Table 1 summarizes
the components implemented.

The implementation of all aspects consisted of 84 classes and 5.425 lines of code.
Total implementation time was 33 hours. Table 2 shows how the implementation effort is
fractioned considering several types of code.



Component Quantity Implemented
Main service adapters 2
Auxiliary service adapters 2
Serialized classes 5
Factories 3
Configuration files 1

Table 1: Implemented components

Types of code Time (%) Lines of code (%)
Business 37 53
Persistence 33,5 37
Distribution 23,5 9,5
Concurrency control 6 0,5

Table 2: Fraction of implementation effort.

4.3 Discussion

Table 1 and the system’s size refer to an implementation of two use cases. If more use cases
were considered in the application, there would be a refinement in the implementation of
the main service adapters, other auxiliary services would be created, and additional classes
might be serialized. The number of factories and configuration files would not change.
This behavior is expected for Web-based applications similar to the one in this experiment.
For applications with additional levels of distribution (more levels than those depicted in
Figure 2), there would be additional pairs of main and auxiliary service adapters. In
addition, for each distribution platform used, there would be a configuration file and a
specific distribution factory.

Table 2 reveals that, although distribution code represents a modest amount in the
size of the implemented application, the time spent to implement such code was signifi-
cant when compared to other aspects. In fact, this time could be reduced substantially
since the adapters creation in Steps 1 and 2 was a time consuming and a tedious task;
since the adapters structure is canonical, they could be generated automatically by tools.
Aspects [9] may provide an alternative implementation, as discussed in Section 5.

The method is useful since it guides the developer in the non-trivial implementation
of distribution aspects: there is a sequence of steps to follow, each one specifying the
components to be implemented and where they should be deployed. Moreover, the method
is sound, as it implements these aspects modularly, minimizing the impact on other layers
of the application (business, and user interface, for instance). This has been useful to
tame the inherent complexity of distributed applications.

In addition to helping to tame implementation complexity, the method also improved
tests considerably. We tested business code in the non-distributed version. Such code
itself is not trivial and the task would be considerably more difficult if we were already
considering distribution issues, since distributed applications are considerably more com-
plex than local ones. When following the steps of the method, we solely concentrated on
distribution issues; during the test, we also focused on these issues. If, however, we came
across a business error, then we would just turn off (simply by setting a variable in the



configuration file) the distribution code, fix the business code, which could be done by a
different developer, and turn on the distribution code again. This simplicity is achieved
by flexible configuration provided by the factories mentioned in Step 4.

As pointed out before, distribution aspects were implemented simultaneously with
persistent aspects, but after the GUI and the business layers so that the functionally
complete prototype would be available as soon as possible, which is useful for validating
user requirements. However, distribution issues could also be implemented at the same
time than those layers, since the method relies on a modular architecture. This could
be done, for instance, to assess risks related to distribution if they were critical to the
application.

5 Related work

The work of Urban et al. [20], which was presented at the same time as Pim [4], uses source
and target adapters in order to introduce CORBA-based distribution into an engineering
application. As in this work, the aim is to isolate business from communication code.
However, the adapters presented in that study perform extensive type transformation
between CORBA and application types, which causes a 50% decrease in performance.
The adapters used in our experiment do not perform such transformation, since the dis-
tribution platform is the same platform in which both client and server are implemented,
namely, Java. Moreover, the pattern in that work does not use factories and is not ex-
plicitly supported by a method as in this work.

In [15] and [2], adapters are also used to isolate business code from RMI-based dis-
tribution. The first work deals with source adapters, and the second with target ones.
The adapters in these guides are similar to the source and target adapters in this work,
but there they act only as main service adapters, do not handle other non-functional re-
quirements, such as caching and fault tolerance, and assume that the client has not been
designed to acknowledge a general communication exception as the adapters in this work
do. Additionally, those adapters are illustrated to serve only a single level of distribution,
whereas the ones in this work may be applied to additional levels.

In [21], a downloadable proxy is used to handle additional non-functional requirements,
such as selectively choosing when to make a remote call and when to make a local one.
This is similar to the source adapter of an auxiliary service, but such proxy does not
interact with a target adapter.

Aspect-Oriented Programming [9] could provide modular support for the introduction
of distribution code. Such non-functional behavior can be treated as a unit, an aspect,
whose specification is made separatedly and independently from business code. This
aspect also has a similar role to the adapters in this work, and it affects business objects
by transforming local calls into remote ones. The adapters and the other distribution
code illustrated here could be implemented as aspects, and our method could be slightly
adapted to support that.

6 Conclusion

The main contribution of this work is to propose a method for the implementation of
distributed Java applications. This method guides the programmer in the non-trivial



task of turning an initially centralized application into a distributed one. The method is
both sound and useful.

Its soundness follows from implementing distribution issues modularly, thereby pro-
moting software quality principles such as reuse and extensibility. In particular, the same
business classes may be used in several applications and accessed by different distribution
platforms, even in the same application. Additionally, changing business or communica-
tion code is easier for the programmer, since these are autonomous and, in fact, such task
can be performed by different programmers, each one handling a different part.

We performed an experiment that has shown the method’s usefulness. It is useful
because it helps the programmer to tame the inherent complexity of implementing dis-
tributed applications. By following the method, the programmer will not tangle code of
different layers, such as user interface, distribution, and business, thereby not having to
deal with two different aspects at the same time. The method also improves tests, by
making them simpler and more effective: once a problem in the business layer is detected,
the communication code can be simply disconnected while such error is fixed; similarly,
once a communication error occurs, business, user interface, and persistent code can be
disconnected to fix such error.

The method refines Pim [4], but can also be used outside Pim to implement systems
considering distribution in early development iterations. By being a part of Pim, the
method in this work contributes to the improvement of current software development
processes, which generally do not emphasize implementation issues [8], handling them in
an ad hoc manner.
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