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Architectures and Formal Representations for Secure Systems

EXECUTIVE SUMMARY

As used in this report, the term formal methods encompasses mathematical and logical techniques
for representing and analyzing computer systems, with the intent of increasing (1) the rigor with
which a system can be defined, (2) the security and reliability that can be attained by system
design and implementation, and (3) the dependability with which the requirements can be met.

This report considers the design and development of secure distributed systems and networks of
such systems, and the use of formal methods for representing and analyzing those systems and
networks. The report takes a broad, system-oriented view of the overall problem of attaining
systems and networks that can enforce stringent security requirements with high assurance. It
considers the problem from a variety of perspectives, representing a chicken-and-the-egg situation
regarding practical secure systems and formal methods: Which comes first?

e How do we best achieve distributed-system architectures that can realistically result in cost-
effective system developments and cost-effective operational systems?

e How do we best apply formal methods that realistically facilitate the development of systems
with critical security requirements, and that provide increased levels of confidence in the
security of the resulting systems?

This report draws several conclusions.

e Greater and more immediate practical benefits can be obtained if distributed system archi-
tectures are conceptually somewhat different from the more centralized views that have been
the main focus in the past.

e Greater practical benefits can be attained by applying formal methods selectively in ways
that are better adapted to the architectural choices.

e These benefits can be realized most effectively if the architectures and the formal methods
go hand-in-hand — compatibly and mutually supportive. Neither the architectures nor the
use of formal methods should totally dominate the other.

For example, the choice of system and network architectures can have an enormous influence on
how effectively formal methods can be applied. Similarly, the ways in which formal methods are
applied can have an enormous effect on the benefits that can be attained. In particular, being able
to represent and reason about modular subsystems and their interactions (for example, through
serial compositions, parallel combinations, hierarchical layerings, and network connections) is an
essential ingredient of both the architectures and the formal methods.

Conventional commercial systems (that is, systems that are not multilevel secure) have generally
gone through their life cycles under a fix-only-the-most-severe-bugs strategy, whereby patches are
released only when absolutely necessary, and where serious security flaws generally remain ubiqui-
tously. Customized systems seem to be even more prone to have vulnerabilities, perhaps because



Secure Systems Architecture and Formalism

they have received much less attention from friendly enthusiasts and would-be attackers. Overall,
applications, systems, and network infrastructures are seriously at risk from both accidental and
intentional causes.

Cryptographic techniques may superficially appear to be as strong as their key lengths, but their
implementations may seriously compromise their effective strength. For example, using a two-
character pass phrase to generate a 56-bit DES key is not going to result in an effective key length
of 56 bits. Cryptographic implementations may also be compromised by their improper embedding
into operating-system or network environments — for example, because the keys are exposed, or the
unencrypted text can be accessed, or because the crypto can simply be bypassed.

Experience with past and present operating systems, networking software, and applications is not
reassuring, and extrapolations into the future are also not reassuring. Bugs get fixed, but new bugs
keep emerging.

Serious security vulnerabilities are continually being found (for example, see [159]), with recent
widely known examples including the following cases (to name just a few):

e The demonstrated vulnerability of Netscape’s security, subjected contemporaneously to ex-
haustive attacks of its 40-bit crypto by a French student and by a British team

e A second Netscape vulnerability involved the use of a randomization algorithm to create
a crypto initialization offset (seed) based on the calendar clock and additional static infor-
mation, subjected to an algorithmic approach that made the attack dramatically less than
exhaustive (discovered by two Berkeley student “cypherpunks”)

e A third Netscape vulnerability, in the Navigator software, which would cause the server to
crash when presented with overly long numbers (discovered by the “cypherpunks”)

e The vulnerability of Citibank’s funds-transfer protocols, subjected to penetration attacks
by a Russian intruder and 5 coconspirators (in the United States, The Netherlands and
Israel), resulting from weak user authentication (reusable passwords), and resulting in 40
unauthorized transfers totalling more than $10 million, although actual losses were minimal.
(These activities occurred in 1994, but became publically known only on 19 August 1995;
delays and total stonewalling in reporting such incidents seem to be typical when losses and
penetrations occur in financial systems.)

e An attack on the law-enforcement access field in the first version of Clipper [21]

Many additional vulnerabilities remain hidden, or known but not yet fixed. Consequently, other
attacks are possible today, and new attacks will continue to be possible in the future. With respect
to security, the infrastructure is weak, the operating systems and networking protocols are weak,
and new systems continue to have serious flaws.

Multilevel-secure systems have traditionally relied on a centralized all-powerful kernel and a trusted
computing base that together are supposed to enforce multilevel security. However, system pur-
veyors have not been sufficiently eager to develop such systems; the evaluation process seems to
have hindered progress because of its complexity and the long delays involved in the process, and
because the systems are generally moving targets that undergo continuing improvements. Overall,
formal methods have had only limited success in being applied to the development of widely used
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commercial systems. To combat these difficulties, we consider here parameterized modular archi-
tectures from which secure systems and secure networks can be readily configured and deployed,
whereby the components can be analyzed in isolation and their combinations then analyzed, and
whereby formal representations and analyses can become more useful in the real world.

Even ignoring the obstacles presented by the evaluation process and the difficulties experienced in
applying formal methods to real systems, the system-development process has remained troglodytic.
This is attributable to many causes, including the persistence of historically constrained architec-
tures, historically limited personnel factors, and regressive system-development practices — which
in some cases have been almost devoid of any serious discipline or methodology, and which have
been driven more by compatibility with the past than by visions of the future. Many other factors
are also relevant, including largely nontechnical issues such as perceived or real customer indif-
ference, the lack of true national or even global disasters involving serious security breaches, and
some negative effects of U.S. export control policy that are perceived by the system developers. At
present, this combination of factors appears to be present considerable obstacles to both system
security and the fruitful application of formal methods.

We focus here on a set of common principles that apply equally well to the establishment of system
architectures and to the use of formal methods, and that can work to the advantage of both.
We believe that this symbiotic approach can result in significantly greater progress toward the
achievement of realistically secure systems.

The key aspects of the recommended unified approach are as follows:

e Modular, hierarchical, and distributed system structures can make architectures more imple-
mentable in terms of off-the-shelf components and at the same time can simplify the formal
analyses. Concepts of good system development practice (such as the so-called field of soft-
ware engineering, particularly referring to abstraction, modularity, information hiding, and
some nontrivial aspects of object-oriented paradigms) can be pushed much more vigorously
than they have in the past. (For example, these concepts are barely evident in existing sets
of security criteria, poorly represented in university education and corporate training, and
widely ignored in many commercial systems.) Parameterized components and parameterized
interconnections can increase the ease with which such systems can be configured and put
to productive use. Trustworthy servers are essential to this approach. In addition, some cre-
ative high-integrity strategies for accommodating modular implementations of cryptography
are desirable, especially if they can improve the likelihood that good crypto can be available
domestically without creating a disincentive to vendors that inhibits them from producing
better domestic systems because of export-control problems that hinder their competition in
the international marketplace.

e Formal methods have the highest payoffs when applied to the most critical system attributes.
However, any localized properties should be related to properties of the overall architecture.
As one example, security of networks and distributed systems should be relatable to the se-
curity and other properties of their components. As another example, fault tolerance and
reliability are essential for the assurance of security, and critical properties relating to those
attributes should also be addressed. Real-time and performance properties may also be criti-
cal, and should be included, as appropriate. The manner in which components are configured
and interconnected should be rigorously represented, and the most critical properties of the
most critical components should be evaluated. The formal methods should apply coherently
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but not necessarily uniformly throughout the development cycle, at various layers of abstrac-
tion (high, intermediate, and low), across distributed systems and networks — without being
overly dedicated to particular implementation alternatives. These methods should apply to
the combination of system components, and permit analyses of the combined systems in terms
of the properties of the components. The intent of the appendix to the original draft Trusted
Network Interface document [150] (the Red Book) should be reconsidered and new criteria
established that represent the real complexities of distributed systems and networks, and that
provide a basis for applying formal methods thereto. Because different formal methods are
likely to be used in different contexts, these different methods should interoperate seamlessly
(or at least without too much difficulty). The greatest payoffs tend to come up front, from
having appropriate requirements and sound designs, although some involvement of formal
methods in the implementation process can also be very valuable — if the requirements are
appropriate and the design is sound.

Our intended audience is somewhat broad. The report is intended to be useful to its sponsoring
organization, of which the Special Projects Office is engaged in carrying on both internally and
funding externally research and development, whereas InfoSec groups are attempting to encourage
the development of highly secure systems and networks. It is also intended for other government
organizations engaged in funding research or procuring critical systems. The report is additionally
intended to be useful to would-be users of formal methods — namely, system developers and cus-
tomers with critical requirements — as well as researchers finding new ways to apply old techniques
in formal methods, pursuing new directions, and developing tools that embody those methods and
facilitate moving in those directions. It can serve as an introduction to the literature for those who
are not well versed in past work, and as a review for those who are long-time participants in the
application of formal methods to real systems.

The report suggests that some fundamental changes in approach can have significant benefits in
the attainment of dependably secure systems, particularly with regard to how system and network
architectures are conceived and how formal methods are applied. Major advances in the formal
methods themselves are not generally required, although improvements in the ease of use of the
corresponding tools would be helpful. In addition, integration of those methods and tools is needed,
particularly as it relates to the ability to handle modular combinations of subsystems for security,
and to accommodate other requirements that may be necessary for adequate security — such as
fault tolerance in the infrastructure, real-time performance — or that might compromise security
— such as emergency overrides.

To achieve the suggested benefits, some real changes in conceptual thinking are required; it is
not sufficient just to pay lipservice to the principles discussed herein. It is easy for developers or
institutions to say that these principles are indeed what they have been trying to follow all along.
It is another thing to actually follow them.

The bottom line involves the need for discipline in how systems are conceived, designed, developed,
modeled, analyzed, and used. That discipline should be applied to the architecture, to the develop-
ment practice, and to any uses of formal methods. The best strategy is one in which the discipline
is applied consistently throughout, and where the formal methods and the architectures serve to
help each other.
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Glossary

The following terms and abbreviations are used in this report:

Authentication The process of validating whether an object (user, agent, file, etc.) is indeed
authentic, based on some cryptographically or hashcoding-based authentifying information
(see cryptobinding, below). The term authentication is also used more generally (particularly,
by others) to include the process of cryptobinding as well. Here, authentication involves
primarily the validation of the cryptobinding. See Section 5.7.

BAN logic A belief logic for reasoning about cryptographic protocols. See Section 6.3.

Byzantine systems Systems that function properly despite arbitrary misbehavior on the part of
some maximum number of component subsystems. See Sections 2.7 and 8.4.

Clark-Wilson integrity properties A collection of application-layer integrity properties related
to well-formed transactions. See Section 2.5.

Composition The simplest form of composition involves serial hookups without feedback. Gener-
alized forms of composition involve subsystems with mutual feedback, hierarchical layering in
which a collection of modules collectively form a particular layer, and networked connections.
See Section 8.

Compromisibility The possibility of being penetrated, bypassed, subverted, or otherwise sub-
jected to attacks that cause violations of security policy. See Section 2.8.

Confidentiality An attribute of security implying that knowledge of information (for example,
a hardware design, software source code, or stored or transmitted data) cannot be acquired
without appropriate authorization.

Covert channel Flaws in the security of a system that permit the derivation of information that
cannot otherwise be obtained — that is, information that is not directly readable. Appendix C
considers only covert channels in multilevel-secure systems, although covert channels may also
exist in non-MLS systems.

Cryptobinding The process of creating an object that can later be authenticated. See Section 5.7.

Dependence A logical relation implying (in varying ways) that the behavior of a function or the
satisfaction of property is determined at least in part by other functions or properties. See
Section 2.7.

DBMS Database management system. See Section 3.3.

DSM Distributed, Single-level-user-processor, Multilevel-secure, applied to multicomputer sys-
tems. See Sections 5.1 and C.6.

Emergence A characteristic of a property that is is not meaningful with respect to lower layers or
to individual components at a particular layer, but that is meaningful with respect to a higher
layer or with respect to the composition of components at the given layer. See Section 8.1.
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Encapsulation The protection of an implementation from compromise. For example, the intent of
crypto may be compromised (for example, by exposure of keys or of unencrypted information)
if the crypto is not properly encapsulated. See Section 2.6.

Escrow binding The binding between keys that are escrowed and keys that are actually used in
escrowed-key encryption. See Section 5.7.

Formal methods Mathematical and logical techniques for representing and analyzing computer
systems, potentially resulting in much greater rigor, security, and dependability than other-
wise attainable. See Parts Two and Three of this report.

IDES Intrusion Detection Expert System. See Appendix B.

Integrity A property that an entity is in a proper state — that is, the entity is genuine, or that
the entity has not been accidentally or intentionally altered. Integrity properties include
consistency, correctness, and authenticity.

ISPL Independent subsystem per level. See Section C.3.

Liveness (Lamport) A property that implies that a system will eventually do something. See
Section 8.1.

MLA Multilevel availability. No entity can depend upon another entity that is not at least as
trustworthy with respect to availability. See Section 2.4.

MLI Multilevel integrity. No entity can depend upon another entity that is not at least as trust-
worthy with respect to integrity. See Section 2.3.

MLS Multilevel security. Information must never flow from a more sensitive entity to a less
sensitive entity. See Sections 2.3 and 2.9.

NIDES Next-generation Intrusion Detection Expert System, based on IDES. See Appendix B.

Nonrepudiation (strictly speaking, nonrepudiatability, which is too cumbersome a term) The
credibility with which a supposedly authenticated (id)entity cannot later be subjected to a
successful claim that the authentication had been erroneous, spoofed, or otherwise mishan-
dled. See Sections 7 and 11.3.

PSOS A provably secure operating system that represents an early example of an object-oriented
system hardware-software design, abstraction, layering, and formal specification. See Sec-
tion 3.2.

RISSC Reduced Interfaces for Secure System Components, in which the security-critical inter-
faces are sharply constrained — through careful design, pervasive use of separation of duties,
encapsulation, and other structural properties, as well as consistent implementation. See
Section 5.

Safety (human) A property relating to a system’s ability to protect human lives.

Safety (Lamport) A property that implies that if the system eventually does something, its
behavior will be as specified. See Section 8.1.
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SeaView A multilevel-secure database management system with no trustedness for MLS required
of the DBMS. See Section 3.3.

Security Security attributes considered here include confidentiality, integrity, availability, authen-
tication, and accountability.

TCB Trusted computing base. See Section 2.

Trusted Depending on context, either something that must be trusted because it is critical, or
something that is trusted, whether or not it is trustworthy. See Section 2.6.

Trustworthiness The characteristic of having a measure of dependability with respect to the
satisfaction of the stated requirements, that is, worthy of being trusted. See Section 2.6.

xii
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1 Introduction

This report summarizes the work of SRI Project 6401, which has considered the design and devel-
opment of secure distributed systems and networks of such systems, and the use of formal methods
for representing and analyzing those systems. Part of this work is a logical extension of the work
begun under SRI Project 6402 — the final report [158] for which considered the extent to which
assurance can be attained if cryptographic and cryptologic techniques are implemented in software,
for each of various families of system architectures; however, that report did not attempt to elabo-
rate on the specific techniques necessary to increase assurance of software implementations. It also
considered only very narrowly the roles of cryptographic approaches to security, rather than the
much broader view of security addressed here.

As used in this report, the term “formal methods” encompasses a wide variety of approaches
that apply mathematical and logical techniques to the representation and analysis of computer
and communication systems, in this case with particular emphasis on security. The report does not
attempt to provide a complete survey of everything relating to the union of the fields of architecture,
security, and formal methods. However, it does attempt to characterize the intersection of those
fields by examining the underlying principles and concepts, assessing the current state of the art,
and making recommendations about how significantly greater progress might be achieved.

1.1 Goals of the Project

The goals of the project are as follows:

1. To accelerate the learning curve with respect to secure distributed systems and the use of
formal methods associated with those systems, for technically sophisticated individuals not
familiar with the field and for newcomers to the field

2. To enhance the ease with which meaningfully secure distributed systems can be readily con-
figured out of commercially available hardware, operating systems, and network components
(to the maximum extent practical)

3. To increase the ease with which formal methods can be applied to practical secure systems

4. To enhance the ease with which secure-system products as well as distributed and networked
systems can be readily evaluated

5. To increase the impact that carefully developed system architectures can have on the future
— for example, aiding the development community, simplifying the implementation process,
easing the evaluation process, and facilitating the incorporation of important advances into
new systems

Toward those ends, this report does the following:

e Provides a historical context relating to secure-system architectures and formal methods
applicable to those architectures, addressing the current state of the art, its limitations, the
primary difficulties encountered in the past, and an analysis of why those limitations and
difficulties arose and how they might be overcome in the future
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e Examines a few representative secure-system architectures as illustrative of what has been
done in the past and what might be done in the future

e Makes recommendations for specific families of system architectures that would be suitable for
highly distributed and widely networked systems capable of overcoming the past difficulties

e Examines formal methods applicable to the representation and analysis of such architectures,
and provides illustrations of how those methods might best be applied, for the evaluation and
formal or informal analysis of models, designs, specifications, implementations, and configu-
rations

e Identifies new directions for research and development relating to formal methods applicable
to architectures for secure systems and networks, whose pursuit could substantively improve
the development, configuration, and evaluation of readily available secure systems

1.2 Background

This study encompasses a range of topics, all of which are relevant to the design, development, and
analysis of systems with stringent security requirements.

e System and network architectures. Many types of computer systems are considered here,
representing a wide architectural spectrum. Several basic architectural families are exam-
ined, including trusted computing bases (TCBs) with centralized security kernels, layered
TCBs, distributed systems with equivalent centralized kernels, and distributed systems with
distributed TCBs or with gateways and firewalls. Of special interest from an architectural per-
spective are multilevel-secure distributed systems that adhere to the Randell-Rushby [210] and
Proctor-Neumann concepts [192] — under which all end-user systems are single-level systems,
and multilevel security is enforced by judicious use of multilevel-secure servers. That concept
has subsequently been generalized into families of RISSC architectures (Reduced Interfaces
for Secure System Components, Neumann-Gong, 1994 [163]), in which the security-critical
interfaces are sharply constrained — through careful design, pervasive use of separation of
duties, encapsulation, and other structural properties, as well as consistent implementation.
The RISSC concept is considered in Section 5.

e Uses of cryptography. A recent SRI report [158] considers three basic types of applications
of cryptography — for storage, for communication, and for integrity (including both au-
thenticity and consistency). That report explores ten basic families of system architectures
employing cryptographic techniques. It considers the relative merits of software and hard-
ware implementations of the crypto. It also stresses the importance of integrating crypto
into system architectures, a topic that is of vital importance to the present study. In par-
ticular, hierarchical structures, layering, and dependencies relating specifically to software
implementations of cryptographic algorithms and protocols are fundamental to the assurance
necessary for cryptographic implementations. Both that study and the present one examine
the extent to which cryptographic implementations, operating systems, file servers, network
servers, and other components must be trustworthy to ensure that the overall systems and
networks provide adequate security with adequate assurance.
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e FEwvaluation criteria. The DoD Trusted Computer Security Evaluation Criteria (TCSEC) [151]
and the TCSEC Trusted Network Interpretation (TNI) [150] are the historically applicable
criteria documents for evaluations of computers and their networks, but those criteria are in-
complete when applied to secure distributed systems. The various newer criteria efforts from
Europe and Canada and the proposed Federal Criteria and Common Criteria are somewhat
less deficient, but still incomplete. Various deficiencies in the TCSEC, the European Informa-
tion Technology Security Evaluation Criteria (ITSEC) [60], and the Canadian Trusted Com-
puter Product Evaluation Criteria (CTCPEC) [34] have been discussed previously in [157].
For the TCSEC, greater emphasis is needed (for example) on applications, system integrity
and availability, trusted distribution below A1, trusted recovery below B3, Trojan horse avoid-
ance, and generalized composition. Furthermore, some unification of the differences between
product evaluations and system evaluations is necessary to overcome the serious delays in
evaluations.

e Behavioral models. Multilevel security of Bell and LaPadula [12, 13], multilevel integrity of
Biba [19], and application-layer integrity of Clark-Wilson [42] are three examples of security-
relevant models. They raise many issues of trust, trustworthiness, and dependence. However,
such models are not sufficiently general and not complete enough to characterize all the
essential properties of the various architectures that must be addressed.

e Programming practice. The roles of sensible programming languages (perhaps C++, for
example) and sensible software-engineering techniques are very important. A poor choice of
programming language or improper use of a good programming language can lead to serious
security vulnerabilities. However, even a superior language can be misused.

e Formal methods. Formal methods for expressing requirements, specifying designs, and demon-
strating consistency between specifications and requirements are fundamental to the develop-
ment of dependably secure systems. Varying degrees of rigor can be applied, and each may
be appropriate in certain circumstances. Specification methods and formal proof methods of
interest here include SRI’s HDM, EHDM, and PVS, Computational Logic Inc.’s (CLI) Gypsy
and Rose, Odyssey Research’s Romulus, the European Z (Zed), and many others. Criteria
for usefulness of specification methods include understandability, readability, writability, and
modifiability, as well as issues relating to the availability of a publication language and/or
a specification language. Formal verification that code is consistent with its specification
is initially less critical to the integrity of the system development process, wherein greater
emphasis is placed on formal methods for establishing and analyzing specifications (for exam-
ple, design validation with respect to stated requirements). Ongoing efforts at specification of
security-related systems are being pursued by Secure Computing Corporation (SCC), Trusted
Information Systems (TIS), the NSA evaluation group, DRA, the United Kingdom’s CESG,
and pursuits of Rushby’s earlier work on separation kernels [203, 205]. In addition, there is
significant recent progress in using formal methods in applications for which there are strin-
gent requirements for reliability, fault tolerance, and human safety. Some of those results are
discussed here, and related to what might comparably be done with respect to security.

This report documents various secure-system architectures and examines the applicability of formal
methods to the analysis and representation of those and other architectures. The report contains
extensive pointers to the literature, with recommendations regarding significant material for further
study.
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Part One: ARCHITECTURE

2 The Role of Structure in Enhancing Security

Section 2 illustrates the roles that system architecture and component structuring can play in system
and network applications that must satisfy critical requirements such as security, reliability, and
human safety. These concepts are seen to have significant implications on how effectively systems
can be designed, implemented, evaluated, maintained, and operated. They affect the entire system
life cycle.

These concepts also can have a major impact on the effectiveness with which formal methods can
be applied to real systems. It is difficult to apply formal representations and formal analyses to
very complex systems in the absence of cleanly delineated system structures, which are themselves
facilitated by certain concepts of good software-engineering practice — such as abstraction of
functionality at each external or internal interface, hierarchical layering, modular encapsulation,
information hiding, separation of concerns (for example, duties or privileges), and the object-
oriented paradigm (which embraces abstraction, encapsulation, polymorphism, and inheritance).
This report revisits some of those concepts, in terms of what they offer to security and formal
methods.

These concepts all can contribute to security, safety, reliability, and overall system verifiability, if
they are used wisely. (For example, see [156, 154].) They can also be badly misused, especially
when treated as panaceas or magic bullets — as in the recent craze to label everything with
the “object-oriented” buzzterm. In general, there are no easy answers regarding system design,
implementation, specification, design validation, and formal program verification. However, each
of the techniques described here can add significantly to the structural integrity and the security
of a system or network complex.

2.1 Complexity

One of the main tasks in creating a system architecture is to avoid unnecessary complexity. Analysis
of the architecture can be greatly simplified by stripping away low-level details and obtaining an
accurate high-level understanding. Considering that people tend toward oversimplification, Albert
Einstein’s familiar statement is important here: “Everything should be made as simple as possible,
but no simpler.”

Complexity is in the eye of the beholder. A system may seem complex to someone who does not
understand it, and simple to someone who does. System designers and analysts often look for easy
answers to difficult problems, beginning with system conceptualization and continuing through the
development, use, and evolution of their systems, and culminating in the dismantling or replacement
of those systems. But there usually are no easy answers. '

Many of the techniques addressed here (system structuring, software engineering, abstraction, de-

!For a document devoted to complexity and what can be done about it, see the ACM publication, Managing
Complezity and Modeling Reality: Strategic Issues and an Action Agenda, D. Frailey (ed.), 1991, which includes,
among other articles, Neumann’s “Managing Complexity in Critical Systems” and Peter Denning’s “Can Human
Reality be Modeled Reliably?”.
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composition, composition, layering, and so on) can contribute directly to combatting complexity,
and by doing so can also increase security. For example, specifications of abstractions (for require-
ments or functionality) and their interrelationships are common sources of security flaws. Formal
methods are particularly valuable in detecting incompleteness and other errors in specifications, as
discussed in Section 6.

2.2 Architecturally Interesting Systems

Multics [171] was perhaps the first operating system to make extensive use of structure within
the operating system itself, as well as providing protection mechanisms that permitted multiple
application layers to be separated from the operating-system layers. The concentric interprocess
domains permitted the iterative implementation of policy-mechanism separation. The multilayered
directory hierarchy enabled sensible directory structuring. The virtual memory implementation
demanded separation of symbolic and physical addressing, where all real objects in memory are
accessed by means of symbolically named virtual objects. Multics is considered in further detail in
Section 3.1.

The hierarchically layered T.H.E. operating system [55] demonstrated that a strict hierarchical
locking strategy could avoid deadly embraces between layers (although occasional deadlocks still
occurred for many years within layers). This concept is important in preventing denials of service
as well as ensuring high system availability.

Dijkstra [54, 56] and Parnas [174, 176, 177, 180, 185] each contributed significantly to the construc-
tive structural decomposition of systems, and Parnas [44, 175, 178, 179, 181, 182, 183, 184, 186]
provided definitive advances toward the formal specifications and analysis of real and complex
systems, from the early 1970s to the present.

The concepts of abstraction and hierarchical layering, along with the work of Dijkstra and Parnas,
were very influential in two SRI system efforts from the 1970s. These two efforts were the so-called
Provably Secure Operating System (PSOS) [62, 161] and the Software-Implemented Fault-Tolerant
System (SIFT) [141, 147, 250], both of which were specified according to the SRI Hierarchical
Development Methodology (HDM) (Section 6.2). The object-oriented hierarchically layered PSOS
design is considered further in Section 3.2. The SIFT design and prototype implementation rep-
resented a seven-processor fly-by-wire avionics computer system that was resistant to hardware
faults; in the presence of faults, it was self-diagnosing and self-reconfiguring.

The PSOS design was the immediate ancestor of the sequence of developments beginning with the
Honeywell Secure Ada Target (SAT), which then led to the Honeywell/Secure Computing Tech-
nology Corporation (SCTC)/Secure Computing Corporation (SCC) LOgical Coprocessor Kernel
(LOCK) [39, 40, 65, 82, 83, 84, 85, 215] and the notion of trusted pipelines [23] — in which each
stage in a pipeline can have its own security policy. PSOS is in several senses an early system
adhering to the philosophy of Reduced Interfaces for Secure System Components (RISSC). PSOS
is considered in further detail in Section 3.

A rather different lineage that also adheres to the RISSC philosophy begins with the Rushby-
Randell Newcastle Distributed Secure System DSS [210], which involved a collection of single-level
Unix? systems linked via trusted network interface units (TNIUs). A descendent of DSS is now
also commercially available (DRA) in the United Kingdom. The Gemini GEMSOS and Trusted

2All product and company names mentioned in this report are trademarks of their respective holders.
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Network Processor (GTNP) multilevel-security gateway efforts also bear considerable kinship with
Multics and PSOS, and with the RISSC concept. Both LOCK and GTNP are operational systems
with potential usefulness in B3/Al-rated applications.

A TCSEC-orthodox system lineage [151] includes end-user systems with multilevel-secure kernels
and associated trusted computing bases (TCBs), such as the kernelized Unix system KSOS [16, 133],
the MITRE [221] and UCLA Secure Unix kernels, and the kernelized virtual-machine system KVM
for IBM’s VM [72, 214]. Rushby’s separation kernels [203, 205] represents a minimalized lower-layer
version of that approach, in which certain isolation properties are enforced, and on which other
properties such as multilevel security can be implemented.

Unix has led to many variants, such as CMU’s Mach, TMach, TIS’s DTMach (see [164] for an
analysis of secure reliable distributed systems), Synergy, and Secure Computing Corporation’s
DTOS.

Synergy [216] is also of considerable interest (although it has very little available documentation).
Synergy follows some of the careful abstraction, layering, and policy-mechanism separation found
in PSOS. Its layered architecture incorporates, from the lowest layer upward, (0) an extended Mach
microkernel, (1) a policy-enforcing security server, (2) a collection of functional servers (for files,
devices, names, authentication, networking, keys, crypto, and audit), (3) operating system servers,
and (4) applications, trusted or otherwise.

DTOS unifies the PSOS/LOCK object-oriented multiple-policy lineage with Unix-style operating
systems based on a Mach kernel, and provides Mach compatibility as well. Security policies are
implemented in a security-policy server, which is external to the Mach kernel — thus making it easier
to support multiple policies. DTOS provides fine-granularity access control, and experimentally
supports both a LOCK-style type-enforcement policy and a Chinese Wall policy.

Blacker [64, 249] provides a historically interesting approach to networked systems with end-to-end
encryption, although its architecture is unwieldy by modern standards.?

More recent efforts such as the Digital Distributed System Security Architecture [68] (DDSSA)
and Kerberos [14, 155, 236] are fundamental steps toward modern secure distributed systems,
employing Needham-Schroeder-like certificates [152, 153, 172] for trusted authentication. (DDSSA
is somewhat more secure than Kerberos, although both are susceptible to operating-system attacks.)
See [223] for a summary of these and related protocols.

End-to-end encryption for electronic mail is provided by various forms of Privacy Enhanced Mail
(PEM [108, 109, 110, 121]), including PGP [66, 224, 256]. In each case, the security depends on the
operating system or other platform on which the mail software exists. More general applications
of crypto are considered by Schneier [223].

Many other references could be cited for historical interest and for further approaches. For addi-
tional early references on security kernels, see [5, 219, 220]. Earlier references on security guards
include [17, 35, 45, 78]. For futher background on secure distributed systems, see [8, 36, 58, 67,
194, 203, 211, 244], and for useful further works on distributed systems see [148, 149, 239, 240, 241].
For additional references on capability-based architectures, see [103, 104, 193].

In this report, we have not attempted to analyze efforts that are still in flux. However, anyone

®The Blacker design experience has generally been restricted; a paper on the underlying trade-offs [249] won the
best-paper award at the 1988 IEEE Security and Privacy Symposium, but could not be published in the proceedings
until 1992.
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seriously interested in pursuing the concepts discussed in this report should attempt to evaluate
those other efforts in the light of the concepts discussed herein.

2.3 Multilevel Security and Integrity

Intuitively, the basic multilevel-security (MLS) property is that information must never flow from
a more sensitive entity (for example, file, database (DB), system, or user terminal) to a less sen-
sitive entity. Multilevel integrity (MLI) is a strict mathematical dual of multilevel security. We
oversimplify slightly for the moment, and elaborate on these two properties as follows.

e MLS. For reading, the multilevel-security flow property implies that the security level of the
recipient must be at least as high as the security level of the object being read, for otherwise
there would be a downward flow of information. For writing, the flow property implies that the
security level of the information source must be at most the security level of the destination,
for otherwise there would be a downward flow of information.

e MLI. Intuitively, the basic MLI property is that no entity (for example, process, program,
or data) can depend upon another entity whose integrity level is not at least as trustworthy
with respect to integrity.

The MLS/MLI afficianado is accustomed to lattice policies in which levels and categories are as-
sociated with each entity or user, and where flow and dependence are defined in terms of lattice
inclusion. However, that refinement is not necessary for an understanding of the concepts here, and
is obtained (if properties are stated appropriately) simply by replacing the linear relations with cor-
responding lattice set-inclusion relations — for example, replacing > by D (sometimes pronounced
“dominates”).

2.4 Multilevel Availability

In many systems, there is a need for priorities relating to the allocation of scarce resources. Fur-
thermore, when operating under emergency situations, it may be necessary to alter the priorities or
the way in which they are interpreted. Neumann et al. [164] have proposed a concept of multilevel
availability (MLA) that is somewhat analogous to MLS and MLI. Each resource has associated
with it a range of priorities within which it may operate, and each client is allocated (dynamically
or statically, according to circumstances) a priority instance; the allocated priority could depend
on the client’s identity or role, the intended operation, the objects on which the operation is acting,
and the destination of the results, although it could be assigned a preallocated value, as is the
case with statically allocated MLS labels. The precedences defined by the priorities would then be
enforced by a multilevel-availability TCB or server.

A mandatory multilevel-availability policy could also be viewed intuitively as a special kind of
mandatory multilevel integrity: with respect to levels of trustedness for availability, there shall be
no dependence on components that are less trustworthy with respect to availability. Note that
trustedness for availability and trustedness for integrity need not be equivalent. A high-integrity
component could attempt to guarantee correct results, but might not be able to control how long the
task might take; indeed, the task might never complete (in the case of the ultimate denial of service
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for that component). If multilevel availability labels can be mapped onto integrity labels, then the
MLA labels would become superfluous (particularly if the mapping is one-to-one); otherwise, they
would be independently meaningful. However, in the case of independently chosen labels for MLS,
MLI, and MLA, it is necessary to ensure that the three sets of labels are not mutually in conflict,
to the extent that an intended operation might be impossible to perform. Discretionary availability
policies might also be defined in addition to the mandatory MLA policy. However, for present
purposes, we consider only the priority structuring that would result from a simple mandatory
multilevel availability policy in which there is no reliance on less available resources, with the
possibility of trusted exceptions similar to what is necessary to make MLS and MLI realistically
workable.

Multilevel availability can be used to ensure that high-priority clients have sufficient precedence
over lower-priority clients. In this way, lower-priority clients can be prevented from causing denials
of services that affect higher-priority clients.

2.5 Software-Engineering Techniques

The software-engineering concepts noted at the beginning of Section 2 are fundamental to the
development of well-structured computer and communication systems. We next consider the Clark—
Wilson integrity properties, restated in Table 1 in terms more familiar to software engineers than
the original representation. (This table is derived from [159].)

Of particular relevance are abstract data types and their proper encapsulation, atomic transactions,
and various forms of consistency. It becomes clear that good software-engineering practice can
contribute directly to the enforcement of the Clark-Wilson properties and to other generalized
forms of system integrity.

Unless a Clark—Wilson type of application is implemented directly on hardware with no underly-
ing operating system, the sound enforcement of the Clark—Wilson properties will typically depend
upon lower-layer (e.g., operating system) integrity properties. Sound implementation is considered
by Karger [104] using a secure capability architecture (SCAP [105]), and by Lee [114] and Shock-
ley [228] employing an underlying trusted computing base that uses the notion of ‘partially trusted
subjects’ and that enforces both multilevel security (MLS) and multilevel integrity [19] (MLI).

A useful report analyzing Clark—Wilson integrity is found in [4].

Table 2 summarizes the ways in which software engineering can potentially contribute to the ar-
chitecture of sound systems, including the prevention and detection of the characteristic misuse
techniques, and the avoidance of or recovery from unreliability modes (through reliability and
fault-tolerance mechanisms). In the table, a plus sign indicates a positive contribution, whereas
a minus sign indicates a negative effect; parentheses indicate that the contribution (positive or
negative) is a second-order effect or a potential effect. (This table is derived from [159].)

The table illustrates in overview that good software engineering can contribute significantly to
system security and integrity, as well as to system reliability and human safety, with respect to
the underlying systems and to the applications. However, the mere presence of a technique is not
sufficient. All these techniques are frequently touted as magical answers, which they certainly are
not. Each can be badly misused.
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Table 1: Summary of Clark—Wilson integrity properties
CwW Clark-Wilson Integrity Properties
rule for Enforcement (E) and Certification (C)

CW-E1 | Encapsulation of abstract data types
CW-E2 | User authorization

CW-E3 | User authentication

CW-E4 | Nondiscretionary controls

CW-C1 | External data consistency

CW-C2 | Transformation (internal) consistency
CW-C3 | Separation of privilege and least privilege
CW-C4 | Complete nontamperable auditing
CW-C5 | Atomic input validation

2.6 Structural Encapsulation

Table 3 illustrates the potential effects of hardware, software, environmental, and other problems
in conventionally designed systems and networks, in which widespread disasters may be triggered
at any layer — for example, as a result of security breaches or system malfunctions. For simplicity,
only three layers are shown, denoted as 0, 1, and 2, which might typically correspond to an operating
system, an application environment, and user environments, respectively. The 1980 4-hour collapse
of the entire ARPAnet and the 1990 11-hour collapse of AT&T long-distance services are examples
of how seemingly minor local events can trigger widespread havoc. (See [159] for details.)

In contrast to such an undifferentiated and not wisely layered design, it is desirable to have an
architecture that places the most critical functions in the lowest layers, and then builds upon those
functions. In such a structure, it is desirable that defensive design be able to ensure that failures at
the lowest layer are very unlikely and if they do occur, their effects can be contained; that failures
in the next higher layers are only locally serious; and that failures in the highest layers are usually
inconsequential. An example is provided by the original ring structure of Multics, in which Ring 0
failures might crash the system, Ring 1 failures might crash the user process but not the system,
and Ring 2 failures might abort the user command without damaging the user process. More
recent examples are provided by architectures based on a kernel that enforces multilevel security,
with a trusted computing base that encapsulates subsystems that must be trusted to violate the
strict-sense multilevel security of the kernel and applications implemented on top of the TCB.

In the present context, frust may imply something other than just having to be trusted with
respect to multilevel security; it might typically imply trustedness for certain security and reliability
properties, for example, or more generally any properties that must be maintained — such as Clark-
Wilson consistency.

In the view of the TCSEC Orange Book [151], there is an ambiguity in the definition of trusted,
with one or both of two meanings: (1) a system can be trusted because it is believed to satisfy
certain requirements (for example, for reliability or security); (2) a system must be trusted because
deleterious consequences could result if it fails to satisfy its requirements. Whether the system is
actually trustworthy is another matter. In this report, calling a system or component trustworthy
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Table 2: Software-engineering principles and their potential effects

Properties to be ensured
Secure | System System Identity, | Auditing | Application
data | integrity | reliability, | authenti- properties

Principles availability cation
Modular decomposition + + + [+] + 4
Modular composition [+] [+] [+] + +
Strict isolation + + + + + [+]
Abstraction, encapsula-

tion, information hiding + + + + + +
Hierarchical layering + + + + + +
Type safety + + + + [+] +
Object orientation + + + + 4 +
Parameterization [+] + [+] [+] [+] [+]
Inheritance + + + + + +
Separation of duties + + [+] + 4 4
Least privilege + + + + + +
Virtualized location + + + + [+] +
Virtualized networking + + + 4 [+-] +
Virtualized concurrency + + + 4
Virtualized replication + + + 4
Virtualized recovery + —+ + [+] +
Fault tolerance [+-] + + [+] +

Legend:

Secure data includes data confidentiality and data integrity
+ = a primary contribution

— = a potential negative implication
[ ] = a second-order or potential effect

Table 3: Conventional system architectures

‘ Layer ‘ Typical hierarchy

‘ Effects on the system

2 Higher-layer functions

Global disaster possible from failure,

penetration, or accidental misuse

1 Middle-layer functions

Global disaster possible from failure,

penetration, or accidental misuse

0 Low-layer functions

Global disaster possible from failure,

penetration, or accidental misuse

10
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implies that its trustworthiness can or must be demonstrated in some convincing way; we tend to
avoid ambiguous uses of the term trusted.

Table 4 illustrates such a conceptual hierarchy in which defensive measures are taken appropriate
to each layer. In particular, at the lowest and potentially most vulnerable layer, the security and
fault-tolerance measures are most stringent, in an effort to prevent widespread effects. At higher
layers, such measures may be less necessary, because the design structure ensures that such effects
cannot occur. This conceptual hierarchy applies equally to isolated systems, distributed systems,
and networked systems where the networking must itself be robust — reliable and sufficiently
secure. The significant point is that the “kernel” at any layer must be trustworthy with respect to
whatever requirements are necessary, and that the functionality at one layer becomes the logical
“kernel” for the next higher layer.

This structural encapsulation of criticality works very nicely for multilevel security and certain
other security properties. In this way, secure systems can be composed out of components with
some assurance that the higher layers cannot circumvent or compromise the properties enforced by
the lower layers, and also cannot modify the lower-layer functionality — for example, by introducing
a Trojan horse. (In this report, we use the term compromise in the negative sense of subverting.
See Section 2.8, which elaborates on the notions of compromisibility and noncompromisibility.)
Structural separation also works to a considerable extent for reliability, where mechanisms that
are more reliable can be developed using less reliable components. In addition, it is relevant to
life-critical applications, although in such environments there is always a potential danger that the
highest-layer functionality may be sufficiently untrustworthy that it can result in loss of life despite
the integrity of the lower-layer functionality. However, the goal of structural encapsulation in a
functional hierarchy is to isolate the lower layers from tampering and other forms of compromise.
(Tampering implies modification; compromise implies subversion, but does not necessarily imply
modification — although it includes tampering as a special case.)

Structural encapsulation is also relevant in distributed systems in which the physical and logi-
cal separation of components can be used to advantage by enforcing certain additional controls,
such as remote access controls and authentication of both users and components. In this case,
the encapsulation is relevant horizontally (among comparable subsystems) and vertically (between
hierarchically layered subsystems).

Encapsulation is particularly important with respect to the uses of cryptography, as discussed
in [158]. Whether a crypto implementation is in hardware or in software is often less important
than how the crypto is encapsulated. For example, a flaw in the algorithm exists in both cases; a flaw
in the embedding of the crypto into an operating system or hardware chip may be compromisible
in either case; the presence of unencrypted forms that are not suitably protected can be a risk in
either case. The major advantage of a carefully encapsulated hardware implementation (including
tamperproofing and internal keys that never emerge from the hardware) arises in connection with
authentication that can be done completely in hardware, as in the case of the Fortezza chip (nee
Tessera). However, even such a completely encapsulated authentication chip must be protected
against spoofing attacks that might simply bypass the chip or replay its positive acknowledgments.

2.7 Dependence and System Decomposition

The notion of dependence is a fundamental structuring concept. Parnas [176] has examined a variety
of types of dependence relations, among which the relation depends upon for its correctness

11
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Table 4: A constructive hierarchy
‘ Layer ‘ Hierarchy ‘ Effects of hardware, software, and other problems ‘

2 Noncritical | Disasters unlikely to be caused by noncritical
functions, | (e.g., untrusted) software, due to sharply defined
isolated design isolation; assurance needed for correctness

of certain functions and application properties
1 Somewhat- | Disasters sharply limited by layer

critical separation and limited trust in this layer
functions
0 Most- Disasters possible but unlikely if systems
critical are partitioned sensibly, with hardware fault
functions tolerance, reliable software, rigorous authentication;

must be simple enough to be analyzed thoroughly

is particularly relevant to many systems. This relation (which we abbreviate here as depends
upon) can be used to induce an ordering on the components of a system, on subsystems, or on
different networked systems. In some cases the ordering is purely hierarchical, in the sense that
the components are linearly ordered or perhaps lattice ordered. In those cases in which the linear
ordering reflects the levels of abstraction, we speak of the system as being hierarchically layered by
its vertical dependencies; that is, the objects of a particular level of abstraction depend upon only
lower layers. In other cases, there may be an ordering of different subsystems with comparable
levels of abstraction, as in the case of a network of more-or-less coequal systems. In these cases,
we can still determine the presence of horizontal dependencies. In other cases, some dependencies
may be mutual (as in A depends upon B and B depends upon A), in which case no hierarchical
ordering can exist unless those mutually dependent components are collapsed into a single layer,
with just one component. In the worst case, when the totality of all dependencies is considered,
an entire system may necessarily collapse into a single layer, implying that there is no possible
substructure based on the depends upon relation. That is, the iterative closure of all dependencies
among subsystems results in a single system that contains precisely the set of all subsystems.
Largely unsubstructured systems are typical of the situation depicted in Table 3.

In general, in many system architectures, mutual dependence is a very bad practice — particularly
if a depended-upon component is less trustworthy than the components that depend upon it. In
a simplistic sense (which we do not insist on here), dependence on another component is accept-
able only if that other component is at least as trustworthy, with respect to meeting its expected
requirements. This simplistic sense is roughly equivalent to Biba’s notion of strict multilevel in-
tegrity [19], in which dependence on less trustworthy entities is not permitted — at least not when
trustworthiness and trustedness are equated. (Biba assigns multilevel integrity labels to subjects
and objects, and enforces a strict lattice ordering that is a precise formal dual of the Bell and
LaPadula multilevel security lattice.)

The notion of dependence used in this report is more general than that found in the strict hierarchi-
cal layerings induced by the depends upon relation. Indeed, the generalization used here includes
the simple case in which the lower-layer (depended-upon) functionality is at least as trustworthy,

12
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but it also includes the more complex case in which the upper layer is able to tolerate untrustwor-
thiness in lower-layer functionality. This generalized concept also extends to dependence on other
subsystems at a comparable layer of abstraction. Furthermore, it also applies to properties at one
layer depending on properties at lower layers.

As examples, here are three design techniques that permit such generalized dependence:

e Error-correcting codes, in which reliable communications or storage representations can be
obtained by adding suitable redundancy, despite the presence of unreliable media

e Fault tolerance, whereby a system can continue to perform correctly despite the occurrence
of certain types of simultaneous faults

e Byzantine algorithms, in which correct behavior can be achieved despite arbitrary misbehavior
of a certain number of faulty or malicious components

These techniques are discussed subsequently.

In addition to encouraging a well-structured system design decomposition, this generalized notion
of dependence can also increase the soundness of the system if the design and implementation are
such that the depended-upon layers cannot be compromised from above (see Section 2.8) — for
example, through security penetrations or accidental misbehavior. Although no pun is intended,
consistent use of dependence in structuring a system can have beneficial effects in increasing the
dependability of the resulting system.

The Biba notion of strict lattice-ordered nondependence is much too restrictive in many system
contexts. Particularly in distributed systems, in which certain components may have unknown
trustworthiness, it becomes difficult to structure functional dependence based on trustworthiness.
In those cases, explicitly trusted mechanisms may desirably be invoked to mediate between trusted
components and questionable components. Confidentiality, integrity, and prevention of denials of
service are all relevant security issues. The gamut of safety issues must also be addressed, and
fault-tolerance techniques or Byzantine algorithms may be required in certain cases. Thus, we seek
here a structural framework in which reliable and trustworthy systems can be developed even if they
must rely on less reliable and less trustworthy subsystems. This generalized dependence relation
is denoted here simply as depends on, rather than the strict-sense Parnas relation, depends upon
[for its correctness]. Not only is the prepositional simplification from upon to on consistent
with modern English-language usage, it also is meant to suggest a broader sense of dependence.
(The depends on relation is close to, but not identical to, Parnas’s uses relation, and seems worthy
of being identified on its own.)

It is useful to distinguish between design principles and implementation principles. Modular de-
composition, hierarchical layering, fault tolerance and other constructive uses of redundancy, and
separation of duties are examples of design principles that can pervasively affect the design of a
system.

Decomposition can take on several forms. Vertical decomposition recognizes different layers of
abstraction and separates them from one another. Horizontal decomposition (modularization)
is useful at any particular design layer, identifying functionally distinct components. It can be
implemented in many ways, through coordination from higher layers, local message passing, or
networked interconnections. Refinement provides a less obvious form of temporal decomposition
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in which the representation of a particular function, module, layer, or system interface undergoes
successive definitude — for example, evolving from a requirements specification to a functional
specification to an implementation, and perhaps with additional functionality being added along
the way.

Jim Horning (at Digital’s Systems Research Center in Palo Alto) offered me the following guidance
relating to system decomposition:

Decomposition into smaller pieces is a fundamental approach to mastering complexity.
The trick is to decompose a system in such a way that the globally important decisions
can be made at the abstract level, and the pieces can be implemented separately with
confidence that they will collectively achieve the intended result. (Much of the art of
system design is captured by the bumper sticker “Think globally, act locally.”)

Various implementation principles are also desirable to ensure that the design principles are prop-
erly enforced by an actual system implementation; for example, the intent of structural design
properties must be preserved throughout the implementation. The distinction between design and
implementation is especially important in attempts to protect against both accidental system mis-
behavior and intentional system misuse. For example, redundancy techniques are generally thought
to be aimed at limiting accidental problems (for example, hardware fault modes), while separation
of duties is generally thought to be aimed at controlling intentional compromises. The two concepts
are in fact related, and each approach is applicable to both types of problems; the two concepts can
complement each other. Unfortunately, shortsighted views of the design and its implementation
generally result in inadequate solutions, and it is often in the design and implementation of the
system structure that flaws are introduced.

To motivate the generalized depends on relation, we consider various specific efforts to develop
reliable components out of less reliable building blocks, elaborating on the three bulleted design
techniques on the previous page.

e Error-correcting codes with parameters (n, N, d) typically permit up to e random bit errors
to be corrected out of a block length of n bits, where d = 2e + 1 is the minimum Hamming
distance of a code containing N distinct code words. (The Hamming distance [86] between two
equal-length binary code words is the number of bit positions in which the code words differ.)
Codes have also been developed for arithmetic processes, for byte-oriented representations,
and for certain classes of dependent errors. These codes provide a basic example of how
reliability can be gained through the constructive use of redundancy [187, 195].

e An early paper by von Neumann demonstrated that reliable components could be built out
of unreliable components [248], as long as the probability of failure is not precisely one-half.
A contemporaneous work by Moore and Shannon [143] demonstrated essentially the same
result for switching circuits built out of what were then affectionately referred to as crummy
relays. These papers provided early examples of fault-tolerant designs.

e Even more stringent requirements are met by fault-tolerant and Byzantine algorithms [113,
222], although those requirements span a wide range. A typical fault-tolerant storage com-
ponent could provide correct retrieval of a file despite the outage of an entire file server, by
using duplicate servers. A typical fault-tolerant system could ensure correct and undegraded
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operation despite the failure of any one processor, and ensure degraded but fail-safe perfor-
mance after the concurrent failure of a second processor, under suitable assumptions relating
to tolerated failure modes. A typical Byzantine algorithm goes even further; for example, it
could permit correct operation despite the arbitrary and completely unpredictable behavior
(maliciously or accidentally) of up to f out of its n components, with no assumptions regard-
ing failure modes. A Byzantine clock subsystem that can perform correctly despite arbitrary
misbehavior within up to f of its constituent 3f 4 1 clocks [113, 213] is discussed in Section 8.

To reiterate, we observe that, within this conception of layered abstraction, a reliable subsystem
implemented out of less reliable components depends on the underlying abstractions, but does
not necessarily depend upon them for its correctness. Similarly, the properties at one layer
depend on the lower-layer properties, and in principle should be derivable from the lower-layer
properties and the functionality at the given layer. (For example, see the mapping techniques
described by Robinson and Levitt [199].)

Closely related to Byzantine algorithms that provide fault-tolerance and misuse protection are
some of the multikey crypto algorithms. For example, Micali [142] demonstrates the possibilities of
requiring a confluence of n key-holders to enable decryption or signing (for authenticity or integrity).
Desmedt, Frankel, and Yung [52] have generalized that approach, whereby the crypto can function
properly despite the presence of at most f Byzantine agents (for example, faulty, malicious, or
simply not available) out of a total of n agents, whereby at least n — f agents must be functioning
properly.

Similarly, a trustworthy secure subsystem implemented out of less trustworthy components depends
on the underlying abstractions, but does not necessarily depend upon them for its correctness.
An example analogous to Byzantine algorithms is provided by the fragmented key-escrow scheme
of Reiter and Birman [196], whereby at most f out of n escrow agents can be untrustworthy (mali-
ciously or accidentally) or unavailable — that is, the contributing participation of at least n— f out
of n different escrow agents is required to enable successful decryption. Another example is provided
by encryption, which converts an untrustworthy communications medium into a medium that does
not have to be trusted for confidentiality or integrity. A further example involves an inherently
flawed subsystem that is used by a higher layer, but for which the higher-layer encapsulation is able
to completely mask its flaws, rendering those flaws unexploitable from the encapsulated interface
and also ensuring that the higher-layer interface is nonbypassable — that is, that the flawed sub-
system cannot be called on directly without going through the intermediation of the higher-layer
interface.

The Desmedt-Frankel-Yung and Reiter-Birman approaches both provide examples of a separation
of duties that incorporate a Byzantine-like resilience; each has architectural implications as well as
analytic implications. Overall, we wish to encourage approaches in which trustworthiness can be
increased through use of trustworthy mechanisms, despite the possible presence of untrustworthy
components.

Section 8 considers the process of composing a system out of its subsystems and deriving the
resulting system properties from its subsystem properties. This concept is of vital importance in
distributed systems and networks of such systems.
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2.8 Compromisibility and Noncompromisibility

To illustrate the importance of dependence on properties of underlying abstractions, consider the
necessity of depending on a life-critical system for the protection of human safety. In such a
system, safety ultimately depends upon the confidentiality, integrity, and availability of both the
system and its data. It also may depend upon component and system reliability, and on real-time
performance. Furthermore, it usually depends upon the correctness of much of the application
code. In the sense that each layer in a hierarchical system design depends upon the properties
of the lower layers, the way in which trusted computing bases are layered becomes important for
developing dependably safe systems — particularly in those cases in which the depends on relation
can be used more appropriately instead of depends upon to accommodate an implementation based
on less trustworthy components.

The same dependence situation is true of secure systems, in which each layer in the hierarchy
(for example, consisting of a kernel, a trusted computing base for primitive security, databases,
application software, and user software) must enforce some set of security properties. The properties
may differ from layer to layer, and various trustworthy mechanisms may exist at each layer, but
the properties at a particular layer are generally derived from lower-layer properties.

In the security context, there are many notions of compromise. For example, compromise might
entail accessing supposedly restricted data, inserting unvalidated code into a trusted environment,
altering existing user data or operating-system parameters, causing a denial of service, finding an
escape from a highly restricted menu interface, or installing or modifying a rule in a rulebase that
results in subversion of an expert system.

There is an important distinction between having to depend on lower-layer functionality (whether
it is trustworthy or not) and having some meaningful assurance that the lower-layer functional-
ity is actually noncompromisible under a wide range of actual threats. Noncompromisibility is
particularly important with respect to security, safety, and reliability.

Potentially, a supposedly sound system could be rendered unsound in any of three basic situations:
e Compromise from above (intuitively, outside)

e Compromise from within (intuitively, inside)

e Compromise from below (intuitively, underneath)

Each of these situations could be caused intentionally, but could also happen accidentally. (For
descriptive simplicity, a user may be a person, a process, an agent, a subsystem, another system,
or any other computer-related entity.)

e Compromise from above. Compromise from above is typically performed from an access point
that is nominally external to the component being compromised, and is typically perpetrated
by a completely unprivileged user, or by a privileged user gaining access to perpetrate a further
compromise. In general, no authorization is required, possibly because of an exploitable flaw
in the standard interface.

e Compromise from within. Compromise from within is typically performed by a user who has
somehow gained access (with or without authorization) to the internals of a component, such
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as privileged maintenance access to a database management system, a network controller, or
an automatic teller machine. It could be perpetrated by an authorized user who is misusing
privileges, or by a penetrator. Compromises from within include all the compromises possible
from above, plus certain additional compromises. In addition, compromises from above may
subsequently enable compromises from within.

e Compromise from below. Compromise from below is typically performed by a user who has
somehow gained access (with or without authorization) to layers of abstraction underlying
a particular component that is being compromised, which can then be undermined without
attacking the component itself. Compromise from below may result from malicious action or
accidental failure of an underlying mechanism on which the particular component depends.
Examples include (1) obtaining the unencrypted form of an encrypted message by reading
a temporary file in storage, (2) finding an occurrence of a particular word in a restricted
database to which access is not permitted by scanning the disk on which that database is
stored, and (3) editing an enqueued mail message after it is released by a user but before
it is actually sent out by the mailer. Compromises from below include all the compromises
possible from above or within, plus certain additional compromises. In addition, compromises
from above or within may subsequently enable compromises from below.

The distinctions among these three modes tend to disappear in systems that are not well structured,
in which inside and outside are indistinguishable (as in systems with only one protection state), or
in which above and below are merged (as in flat systems that have no concept of hierarchy).

Certain attack modes may occur in any of these forms of compromise. Examples of Trojan-horse
perpetrations are as follows:

e Compromise from above: a letter bomb (e.g., electronic mail) that when read or interpreted
can result in unanticipated executions, or a spoofing attack that piggybacks on a line or
replays a message

e Compromise from within: a surreptitious code patch that maintains a hidden trickle file of
sensitive information within the program data

e Compromise from below: a wiretap implanted inside a telephone switch, or Ken Thompson’s
now-classical object-code modification of the C compiler that permitted a trapdoor routine
to be planted in the login [242] (whereby it becomes clear that system security also depends
upon the compiler)

Table 5 summarizes some properties whose nonsatisfaction could potentially compromise system
behavior, by compromising confidentiality, integrity, availability, real-time performance, or correct-
ness of the application code, either accidentally or intentionally. To illustrate such compromises,
Table 5 also indicates possible compromises — whether they involve modification (tampering) or
not — that can occur from above, from within, or from below, for each representative layer of ab-
straction. The distinctions are not always precise: a penetrator may compromise from above, but
once having penetrated, is then in position to compromise from below or from within. Thus, one
type of compromise may be used to enable another. For this reason, the table characterizes only
the primary modes of compromise. For example, a user entering through a resource access control
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Table 5: Illustrative compromises

Architecture and Formalism

Layer of Compromise Compromise Compromise
abstraction || from above from within from below
Environment || Acts of God Lightning Chernobyl-like
Earthquakes disasters
User Masqueraders Accidental mistakes System outage or
Intentional misuse service denial
Application || Penetrations of Programming errors Application (e.g., DBMS)
application integrity in application code undermined within
operating systems (OSs)
Operating Penetrations of OS by | Flawed OS software OS undermined from
system unauthorized users Trojan-horsed OS within hardware:
Tampering by faults exceeding
privileged users fault tolerance;
hardware sabotage
Hardware Electromagnetic and | Bad hardware design/ Power failures
other interference implementation
Hardware Trojan horses
Unrecoverable faults

package such as RACF or CA-TopSecret, or through a superuser mechanism, and gaining appar-
ently legitimate access to the underlying operating system may then be able to undermine both
operating-system integrity (compromise from within) and database integrity (compromise from be-
low if through the operating system), even though the original compromise is from above. Similarly,
a software implementation of an encryption algorithm or of a cryptological check sum used as an
integrity seal can be compromised by someone gaining access to the unencrypted information in
memory or to the encryption mechanism itself, at a lower layer of abstraction. A user exploiting
an Internet Protocol router vulnerability may initially be able to compromise a system from within
the logical layer of its networking software, but subsequently may create further compromises from
above or below.

From the table, we observe that a system may be inherently compromisible, in a variety of ways.
The purpose of system design is generally not to make the system completely noncompromisible,
but rather to provide some assurance that the most likely and most devastating compromises are
properly addressed by the design, and — if compromises do occur — to be able to determine the
causes and effects, to limit the negative consequences, and to take appropriate actions. Thus, it
is desirable to provide underlying mechanisms that are inherently difficult to compromise, and to
build consistently on those mechanism. On the other hand, in the presence of underlying mech-
anisms that are inherently compromisible, it may still be possible to use Byzantine-like strategies
to make the higher-layer mechanisms less compromisible. However, flaws that permit compromise
of the underlying layers are inherently risky unless the effects of such compromises can be strictly
contained.
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2.9 Designing for Multilevel Security

The foregoing sections suggest that when designing a system or network of systems to enforce
multilevel security throughout, care should be taken to minimize the trustworthiness required at
the highest layers, to simplify the trustworthiness that must be required at the lowest layers, and to
ensure that no untrusted higher layer can compromise a lower layer. For example, in a local network
of workstations with highly distributed administration and control, it is inherently dangerous for
a system design to have to place trust in every workstation to enforce multilevel security and
other properties. However, conventional multilevel-secure architectures are generally based on the
assumption that all the end-user system components enforce multilevel security, that is, every user
workstation must conform to the appropriate Orange-Book B-level criteria.

The work of Proctor and Neumann [192]* and the subsequent generalization by Neumann and
Gong [163] propose an alternative family of architectures, each member of which is consistent with
the structural desiderata noted above; those architectures have in common the complete avoidance
of multilevel-secure end-user systems. That work is reconsidered in Section 5.

Appropriate use of system structure can contribute in many ways to system development.

e Systems that can be composed out of carefully analyzed (e.g., proven) components can lead
to improved security and reliability, and simpler analysis of the overall system. Reducing the
portions of systems and networks that have to be trusted with respect to various measures of
trustworthiness tends to enhance design integrity, reduce the extent of implementation flaws,
facilitate system operation and maintenance, and simplify system evaluation.

The structural integrity of a system design must be preserved throughout implementation and
operation, across distributed systems and networks and otherwise composed systems.

Similar comments apply to systems that must enforce related mandatory policies such as multilevel
integrity (Section 2.3) and multilevel availability (Section 2.4), subject to the facility for certain
trusted exceptions.

The notion that hierarchically designed systems must necessarily be inefficient is a myth, although
poorly conceived structure can of course be detrimental. Overall, the constructive use of appropriate
design structures is an undervalued technique in the quest for systems with increased security.

3 Three Representative Structured Architectures

Section 3 considers three historically interesting architectural designs: Multics, a pioneering oper-
ating system from the 1960s; PSOS, the design of a highly layered capability-based object-oriented
operating system from the 1970s; and SeaView, a database management system (DBMS) environ-
ment implemented on a multilevel-secure kernel from the 1980s. Each of these systems in turn
represents significant advances in the use of architectural structure to enhance security. These
three systems are chosen here because each represents what was at the time a relatively pure
self-consistent set of innovations, from which many other systems have subsequently borrowed
hybridized subsets of concepts.

Distributed-system architectures are deferred until Section 4.

“That work began under a study of distributed-system security [164], performed for Rome Laboratory.
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3.1 DMultics

Of particular interest from various historical perspectives is the extent to which architectural struc-
ture played a role in the development of Multics, which was a joint effort among MIT, Bell Tele-
phone Laboratories and Honeywell (initially General Electric). The Multics hardware design began
around 1963, and the software effort began in earnest in 1965. The original Multics design repre-
sented several very significant innovations. The file system introduced multitiered tree-structured
directories [49], with symbolic file names that were dynamically bound to run-time instances of real
storage objects, symbolic file-name links that acted as aliases, and a dynamically specifiable search
strategy that determined the order in which directories were searched for a particular file name.
The use of local and tree-structured symbolic file names enforced strict information hiding of the
corresponding dynamically linked hardware-recognizable segment numbers [48], where the specific
objects were determined according to a dynamic search strategy. The processor hardware sup-
ported a two-dimensional segmented virtual memory and dynamic paging within each segment —
with each virtual-memory segment being independently protectable.” The hardware-implemented
ring mechanism [79, 171] permitted the implementation of nested protection domains with different
privileges operating within a single process, and provided the ability to switch rapidly from one
domain to another, with appropriate argument validation. The associated stack discipline also
added a layer of structural domain isolation with carefully controlled interprocess communication.

The use of a higher-level programming language (Multics used the very first implementation of
PL/I, done by Doug Mcllroy and Bob Morris) added to the structural integrity of the development
process, by enforcing system-wide data declarations, stack disciplines, and linkage conventions. It
also facilitated the virtualization of the processors, whereby Multics was capable of shared-memory
multiple-processor execution. Each of these hierarchical structuring concepts added something
significant to the security attainable and to the ease of developing new subsystems. Relative to
what was going on elsewhere in the mid-1960s, Multics represents a remarkably innovative approach.

In the early 1970s, a subsequent restructuring of the innermost Multics system rings permitted
the retrofitting of kernel-enforced multilevel security [225] into the standard commercially available
system.

3.2 PSOS: Layered, Capability-Based, Object-Oriented

The Provably Secure Operating System [62, 161]% was designed by SRI over the period from 1973 to
1977, with a relatively minor revision of the 1977 report in 1980, and a subsequent implementation
feasibility study that continued into the early 1980s. In retrospect, PSOS represents what to our
knowledge is the first object-oriented operating-system design (although the concepts of inheritance
and polymorphism were only in their infancy at the time and were not yet so named). Table 6
summarizes the layered hierarchical design of PSOS, in which the abstraction at each layer acts
as the object manager for the type of objects that it creates or is otherwise responsible for; each
object manager completely encapsulates its implementation. Some of the abstractions are present

% An additional structural separation was provided by the input-output coprocessor (the GIOC), which permitted
interrupts to be fielded independently of the main processors and various processing to be done in parallel with the
general-purpose CPUs. However, the early design did not adequately protect main memory from the GIOC, which
had global permission and could perform reading and writing in terms of absolute addresses, bypassing the security
provided by the operating system. This weakness was later rectified.

®An obsolete early paper [162] is of potential historically interest.
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Table 6: PSOS abstraction hierarchy
‘ Layer ‘ PSOS Abstraction or Function ‘

16 | user request interpreter *

15 | user environments and name spaces *
14 | user input-output *
13 | procedure records *
12 | user processes*, visible input-output*
11 | creation and deletion of user objects*
10 | directories (*)[c11]

9 | extended types (*)[cl1]

8 | segmentation and windows (*)[c11]

7 | paging [8]

6 | system processes and input-output [12]
5 | primitive input/output [6]

4 | arithmetic, other basic operations *

3 | clocks [6]

2 | interrupts [6]

1 | registers (*), addressable memory [7]
0 | capabilities *

Notes | Interpretation

* = functions visible at user interface
(*) | = partially visible at user interface
[i] = module hidden by level i

[c11] | = creation/deletion hidden by level 11

at multiple layers in the hierarchy. For example, the system-process module at layer 6 is logically
a part of the specifications at layers 7 through 11, but is replaced by a higher-layer user-process
abstraction at layer 12. Similarly, the creation and deletion functions of layers 8, 9, and 10 are
replaced at layer 11 by similar but more abstract user-oriented functionality. (The masking of
lower-layer functionality by higher layers is indicated by square brackets in Table 6.)

A few functions appear as parts of all layers (indicated by asterisks in Table 6), as is the case
with the capability mechanism — which is the essence of PSOS. Capabilities are nonforgeable
hardware-created tagged primitive objects (that is, they are not handled by the extended-type
mechanism), and are the basis of accessing all higher-layer objects, each of which has an associated
typed capability. The objects of any particular type are managed solely by the corresponding
object manager for that type. The table exhibits various important layers of objects such as pages,
segments, type creation, hierarchically structured directories, processes, and named user objects.
The design explicitly permits the creation and implementation of application-layer types, and the
entire design is recursively extensible and open-ended. Thus, the Multics restriction of a small
finite number of domains does not apply.

We observed at the time, but did not pursue in detail, that the basic architecture was amenable to
distributed implementations, because the abstractions at each layer (for example, object-oriented
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Table 7: PSOS generic hierarchy
‘ Layer ‘ PSOS generic hierarchy layer ‘ Layers ‘

F | user abstractions 14-16
E | community abstractions 10-13
D | abstract object manager 9
C | virtual resources 6-8
B | physical resources 1-5
A | capabilities 0

Table 8: PSOS properties
Layer | Illustrative PSOS Properties
(Not all are primary security properties)

17 | Soundness of user type managers

15 | Search path flaw avoidance

12 | Process isolation, user input-output integrity,
user authentication integrity

No lost objects (i.e., without capabilities)
Generic type safety

Correct segment access, no storage residues
Network and system input-output integrity,
hardware interrupts properly masked
Correctness of hardware instructions

0 | Capabilities nonforgeable, nonbypassable,
nonalterable (MLS if desired at this layer)

Y 00 O

o

type managers) could be distributed — either implicitly (invisibly) or explicitly (requiring program
or user awareness of remote locations). The notion of distributed objects is considered in Section 4.

Table 7 gives a conceptual generic hierarchy that is an abstraction of the PSOS architecture. The
basic PSOS architecture represented a single-level secure system. However, a multilayered design
for enforcing multilevel security was also included. In particular, it was noted that MLS could be
incorporated into the virtual resources layers, or directly incorporated into the existing layers, with
hardware that supports multilevel capabilities directly at the lowest layer. The latter alternative was
chosen in Honeywell’s PSOS-inspired Secure Ada Target, which was the precursor of SCTC/SCC'’s
LOgical Coprocessor Kernel, LOCK.

Table 8 illustrates typical properties to be enforced and verified at various layers. The integrity
of the capability mechanism (intended to be implemented in hardware) is fundamental to PSOS,
because that mechanism acts as a microkernel upon which all addressing is based. However, each
layer contributes relevant additional security properties.
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Table 9: SeaView design hierarchy
‘ Layer ‘ SeaView TCBs and their functionality ‘

UNTRUSTED:
7 User applications

TRUSTED FOR USER INTERFACE INTEGRITY:
6 User interface, presentation view manager,

conventional DBMS functions
TRUSTED FOR MSQL INTEGRITY:

5 MSQL provides virtual multilevel relations and views
TRUSTED FOR DB DAC, DB INTEGRITY:
) DBMS Resource Manager,

Extended DB DAC and DB consistency

TRUSTED SINGLE-LEVEL RELATIONS:

3-4 DAC in operating-system TCB, DAC on relations
OPERATING SYSTEM MLS TCB:

1-2 Mandatory MLS in operating-system TCB

0 Mandatory MLS in operating-system kernel segments

3.3 SeaView: An MLS DBMS without MLS trustworthiness

The significance of the multilevel-secure kernel approach is illustrated by SRI's SeaView archi-
tecture [50, 125, 126, 128, 191] for a multilevel-secure database management system. SeaView
explicitly uses multiple single-level databases to provide a multilevel-secure DBMS within which
no trustworthiness for multilevel security is required. The hierarchy is summarized in Table 9. The
abbreviation DAC is used for discretionary access controls.

SeaView illustrates the presence of different but mappable properties at each hierarchical layer.”

The SeaView DBMS enforces a variety of database-relevant integrity properties [125], including
entity integrity, referential integrity, and polyinstantiation integrity,®, as well as other consistency
properties. These properties are modeled formally in the SeaView work [125, 191]. Additional
notions of system and data integrity relate to integrity of atomic transactions, supposedly identical
replicated versions, and multiple versions possibly differing in recency.

The SeaView design structure is summarized in Table 9. The SeaView architecture is based on an
MLS kernel and an operating system TCB that enforces mandatory security on storage objects.
The original prototype development used Gemini’s GEMSOS OS-TCB, although GEMSOS was
subsequently replaced by the Sun Compartmented Mode Workstation.

"BEarlier recommendations for designing multilevel-secure DBMSs are found in [89, 24, 218]. TCB layering is
considered in [217], and had previously been considered in a more limited form in the database context by [89, 81].

8Polyinstantiation is a solution to the problem of avoiding inference channels arising in multilevel secure databases.
For example, suppose a low-level subject attempts to create a data item that the subject is not allowed to know already
exists, because such an item has already been created by a high-level subject as a high-level object. The low-level
subject cannot be given any negative response, because that would cause an adverse information flow; consequently,
everything must appear as if the low-level operation has succeeded (which it has!), by including the creation of a
polyinstantiated instance of the item.
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Table 10: SeaView model hierarchy
‘ Model ‘ SeaView Model Properties
DB-TCB | Database TCB for views, multilevel (virtual)
relations, discretionary access, labeling, data
consistency, sanitization, reclassification,
constraints on transactions, polyinstantiation integrity
OS-TCB | MLS security for single-level base relations

The OS-TCB is used to enforce mandatory security on single-level base relations for SeaView. An
extended database TCB (DB-TCB) enforces various other properties such as database integrity
and database discretionary access controls (DB DAC) on multilevel user relations (which are in-
visibly [virtually] mapped to single-level base relations), but is completely untrusted with respect
to the enforcement of MLS. That is, the DB-TCB cannot compromise the MLS property, whose
enforcement is completely controlled by the underlying OS-TCB. However, the DB-TCB is trusted
to enforce the otherd database properties such as integrity and database discretionary access. The
database management system is the Oracle RDBMS. The database language is called MSQL, for
multilevel-secure SQL, an extension of single-level SQL. Integrity of the MSQL interface is also
enforced for the sanity of the users, although it is not essential to security.

The MSQL processor is shown as a layer above the layer that is trusted for discretionary database
confidentiality and discretionary database integrity, although the prototype implementation of both
layers is in the same GEMSOS ring (ring 5). With the original ring assignments among the eight
GEMSOS rings, a trusted user application would have to be implemented in GEMSOS ring 7,
along with its users. Thus, even in a relatively simple system such as SeaView, there would be some
advantages to a domain architecture that could provide further layering as well as separation within
a layer such as in LOCK [23] or PSOS [62, 161], to support competing application environments.
A ring or two could of course be freed up, for example, if rings 1 and 2 were collapsed into one ring,
and rings 3 and 4 similarly, although the domain separation at the application layer might still be
desirable. Overall, the table thus illustrates the different meanings of “trust” and “trustworthiness”
at each hierarchical layer.

The properties at the operating system TCB layer and at the database TCB layer are summarized in
Table 10. There is a distinct model for each of the TCBs. The OS-TCB enforces MLS on operating-
system objects, while the DB-TCB enforces database security and integrity on database objects.
Layering raises a question not of composability of components with respect to a given property
(e.g., MLS), but rather of whether the higher layer can compromise the lower layer, because the
upper layer is enforcing different properties on different types of objects. SeaView represents a
system in which the kernel multilevel security properties and the database integrity properties are
both largely noncompromisible from above.’

The SeaView model [50, 124, 125] does not explicitly address distributed data, and the near-term
design focuses on a single database system [128]. A conceptual extension of the original design to
a distributed implementation is considered in Section 4.1.

®Tables 9 and 10 and their discussion are adapted from [156].
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4 Distributed-System Architectures

If each system in a collection of networked systems is itself structured fairly well — for example,
in terms of object abstraction and compatible layering — then the structural concepts in the
networking itself can add significantly to the security attainable. It is desirable to identify separately
the security of the constituent operating systems, the security of the networking software and
hardware, and the security of the networks themselves (for example, through the use of encryption).
However, the integration of this trichotomy is fundamental to the ability to develop sound networks
of systems.

4.1 Structural Concepts in Distributed Systems

From a security point of view, distributed systems must satisfy all the security requirements of a
stand-alone centralized system. In addition, distributed systems present many additional vulnera-
bilities, such as weaknesses in the networks and other opportunities for attacks that are not usually
considered in centralized systems. Consequently, much greater effort must be devoted to network
media confidentiality and integrity, network software integrity, and pervasive authentication — of
users, agents, and hosts. The partitioning of a distributed system into functionally distinct com-
ponents can add greatly to the security of the overall system. In that way, servers — for example,
network servers, file servers, and authentication servers — can be special-purpose systems that are
better protected against conceivable types of misuse, whether malicious or accidental.

Many serious security flaws in networked systems have resulted from the lack of proper abstraction
and encapsulation, and from the absence of both user and component authentication. In commu-
nications across organizational hierarchies, generals tend to speak only with generals, and CEOs
tend to speak only with CEOs. A comparable protocol hierarchy is useful in distributed systems
and networks, if it restricts interactions to those among peers. For example, it is usually risky from
a security point of view to permit arbitrary unauthenticated (and in some cases unknown) compu-
tational entities to initiate or control highly trusted functions. Forcing communications to occur
between comparable levels of trustworthiness and abstraction tends to diminish those risks con-
siderably. Encapsulation of functionality within local boundaries is another important structural
concept, permitting execution only within trusted and carefully controlled enclaves.

Two examples of the ease with which a well-structured conventional secure-system architecture can
be transformed into a secure distributed architecture are given by considering PSOS and SeaView.

e With respect to the PSOS design, secure distribution could be implemented at any of several
layers. For example, the capability mechanism could have been extended to support capabil-
ities that were globally unique across multiple processors and multiple systems. The paging
mechanism could have been extended to permit dynamic access to remotely stored segments.
The directory hierarchy could have been extended to provide globally unique symbolic names
across multiple file systems. The user-object layer could have been extended to support glob-
ally identifiable distributed objects. Each of these approaches has some advantages and some
disadvantages, and the appropriate choices are dictated by the trustworthiness of the various
system platforms.

e With respect to the SeaView design, it is conceptually simple to permit multilevel-secure
TCB-to-TCB communications from one SeaView platform to another, thus retaining the in-
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tegrity of the SeaView architecture with MLS-untrusted database management functionality.
This could be achieved either explicitly (with the DBMS being aware of remote physical
whereabouts of database objects) or implicitly (with the underlying TCBs keeping track of
remote locations). However, in either case, the multilevel-security separation would be en-
forced solely by the underlying TCBs.

If the distribution is done implicitly (that is, virtualized), so that it is largely hidden by the relevant
interface, then properties that are satisfied by the original nondistributed design can be transformed
straightforwardly into equivalent properties in the distributed design.

Structural contributions to distributed systems are considered further in [164].

4.2 Security Requirements

We begin with a few intuitively motivated high-level structural security requirements, each of which
implies lower-level functional requirements. The functional requirements are intended to be appli-
cable to each of the subsystems — for example, file servers, authentication servers, and network
servers. They in turn imply more detailed, finer-grained, requirements, which are considered in
Section 7 — which also considers the implications of these requirements on applying formal meth-
ods to secure distributed systems.

The Overarching Security Requirement

e Goal 1: Overall system security. The entire system environment must have adequate
security in the large, relating to the preservation of confidentiality, integrity, availability,
authentication, accountability, and other security-related attributes. There must be no ex-
ploitable weak links in the overall system, the components, or the infrastructure.

Structurally Oriented Security Requirements

e Goal 2: End-user-system security. Each end-user system must have sufficient integrity
to prevent its being compromised locally or remotely. Local data must be free from misuse
by others. Any communications or interactions with the rest of the system environment must
be free from loss of confidentiality and integrity. All users must be properly authenticated.

e Goal 3: System-infrastructure and server security. All servers (for example, network,
file, and authentication servers) and other components of the infrastructure must protect
the stored data, crypto and authentication keys, and transmitted audit data from browsing,
alteration, deletion, and spoofing. All server operations must be properly authenticated.

e Goal 4: Network-media security. All network media must provide adequate protection
against loss of confidentiality, loss of integrity, and denials of service. All network operations
must be properly authenticated. (Whenever the media are untrustworthy, the infrastructure
must compensate by means of encryption, fault tolerance, and other defensive techniques.)

Functional Requirements
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e Goal 5: System integrity. The system and each of its component subsystems must be
able to prevent or withstand intentional or accidental tampering. All subsystem components
must be legitimate, and checked for authenticity, to hinder Trojan horses and other forms
of tampering. Some subsystem confidentiality requirements are necessary to provide system
integrity — for example, relating to sensitive algorithms and parameters used in configuration,
authentication, and encryption (keys).

e Goal 6: Data confidentiality. Within systems and across networks, user data and internal
data must be protected from loss of confidentiality (such as unauthorized or unintended
disclosure).

e Goal 7: Data integrity. Within systems and across networks, user data and internal data
must be protected from loss of integrity (such as unauthorized or unintended modification).

e Goal 8: Nondenial of service. System and user resources must be protected from inten-
tional or accidental denials of service.

e Goal 9: Authentication integrity. Users, systems, subsystems, and other computational
entities must have their identities unambiguously validated, with adequate certainty, based on
sound associations of authentifying information with the entities in question (that is, based
on their cryptobindings, discussed in Section 5.7. (There are occasional exceptions in which
anonymity can be permitted.)

e Goal 10: Nonrepudiation. Authentication of (id)entities must be of sufficient credibility
that a supposedly authenticated (id)entity cannot with any credibility later support a claim
that the authentication had been erroneous or spoofed.

e Goal 11: Accountability. Monitoring, audit-trail analysis, and other accountability func-
tions must be protected from misuse (including undesired bypassing, reading, modification,
and denials of service). These functions must also not be able to interfere with the opera-
tions being monitored, via back-channel effects. All relevant operations must be monitored.
All secondary subsystems that monitor behavior of the primary systems must protect the
monitored data from misuse. The monitoring subsystems must not be able to interfere or
otherwise adversely affect the operations of the primary monitoring systems. Similarly, pas-
sive subsystems whose purpose is to provide accountability for system operations must also
be protected and isolated.

4.3 Preventing Misuse, Compromise, and Tampering

We next consider the protection of a system or subsystem environment — and how it can prevent
compromises such as some of those illustrated in Table 5, whether the environment is a distributed
system, a network, or a stand-alone encapsulated application.

The first line of defense involves ensuring that the security-critical system and network components
are legitimate. If components have been tampered with, all other defenses may already have been
compromised. Measures such as cryptographic checksums and tamperproof hardware encapsulation
may be helpful, both statically and dynamically.

The second line of defense involves identification and authentication — of users, agents, subsystems,
systems, network components, and other entities. Without authentication, access controls are
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almost meaningless, and monitoring is unable to gather enough evidence. Sensitive functionality
that requires no authentication (such as a freely exported network file system) is inherently riskful.
However, authentication may be compromisible unless the system components are tamper-resistant.

The next line of defense involves authorization, with selective access controls based on identities,
or roles, or other attributes. Without authorization, system use and misuse cannot be controlled.
Sensitive functionality that requires no authorization (such as a freely exported network file system)
is inherently riskful. However, authorization is almost meaningless in the absence of nontrivial
authentication.

Structural encapsulation (Section 2.6) throughout the system design provides an approach that
can help to prevent misuse. It aids in preventing compromise from above, by sealing off the in-
ternals from the external accesses. In combination with authentication and authorization, it also
aids in preventing compromises from within by blocking access to the internals. In the same way,
it can aid in preventing compromises from below, again in combination with authentication and
authorization, by blocking access to the underlying mechanisms. Because flaws in any structural
encapsulation might enable compromises, it is essential that security-relevant functionality be prop-
erly encapsulated.

Thus, it is vital that authentication, authorization, and structural encapsulation be used consis-
tently throughout a system or network environment. It is additionally essential that the protection
mechanisms and encapsulation specified in a system design must be strictly enforced by the im-
plementation. However, additional measures are also necessary, relating to the integrity of the
implementation, particularly those that hinder would-be attackers and malicious insiders.

Tampering may result from penetrations that led to code patches, data modifications, or other
subversions. It may be preceded by browsing or reverse engineering that unveils certain details that
can be used in subsequent tampering attacks. Either case may be critical in any particular operating
environment. The threats may arise from authorized users and from unauthorized outsiders.

Compromises that do not require modification must also be prevented. Once again, structural
encapsulation is essential, together with information hiding, authentication, and authorization.

The following section provides some of the basic security requirements that characterize defenses
against compromise.

5 Minimizing Trustedness Within Multilevel-Secure Systems

Section 5 considers the problems involved in developing and using systems and networks that must
operate under the constraints of multilevel security, and how the RISSC concept can contribute.
Section 5.1 considers the RISSC philosophy. Section 5.2 examines the advantages that can result.
Section 5.3 discusses some RISSC architectures. Sections 5.4, 5.5, and 5.6 elaborate on various
practical considerations. Section 5.7 considers the application of the RISSC approach to implemen-
tations of crypto.

The original PSOS architecture considered two possibilities: either providing trusted multilevel-
secure object managers at higher layers, or alternatively embedding multilevel-security enforcement
into the hardware capability mechanism at the lowest layer. Although the assurance of the higher-
layer approach of such an implementation would thus depend upon the lower layers, the intent
was that if the lower layers were largely in hardware and proven to be correct, then the multilevel
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security would have high assurance. The assurance of the lowest-layer approach would be more
directly in line with the RISSC philosophy, because the MLS enforcement would be primitive to the
entire system. However, if the lower layers are implemented in trustworthy hardware, the RISSC
approach with respect to the software would be equally well served in both cases.

The SeaView architecture relies on the presence of a multilevel-security kernel and a low-level
trusted computing base — that is, it corresponds to the Orange Book paradigm in which there is
a trusted computing base that enforces multilevel security, but where the database management
system is explicitly not a part of the trusted computing base for multilevel security.

Here, we consider an alternative approach to that represented by the monolithic kernel and TCB
of the TCSEC Orange Book. In this approach there are no multilevel-secure end-user systems;
multilevel security is assured by means of multilevel servers.

A basic need exists for commercially available computer systems that can be securely networked.
Conventional (single-level) systems and networks have not been adequately fulfilling this need,
because of weak operating systems and weak networking software. However, some improvements
are occurring.

Primarily in classified environments, there are serious needs for systems and networks that per-
vasively enforce multilevel security. However, there have been serious problems in developing,
evaluating, and continually modifying these systems. Relatively few high-end MLS systems exist
today that are consistent with the established criteria, and those criteria are themselves incom-
plete with respect to networking and distributed systems. Evaluation and reevaluation have been
enormous stumbling blocks to the availability of MLS systems.

We characterize here a class of multilevel-secure systems in which multilevel security can be achieved
without having to rely on MLS end-user systems. Instead, we rely upon single-level end-user systems
and a few trusted multilevel servers and network components.

Ideally, multilevel-secure application environments should be configurable as interconnections of
readily available commercial hardware, software, and networks. Unfortunately, the ability to con-
struct a multilevel-secure system from existing components and networks is hindered by several
serious obstacles.

e There is a dearth of suitably secure commercial operating systems, applications, and network
components, especially with respect to multilevel security. Even in single-level systems, com-
mercial offerings have serious security vulnerabilities. In addition, most existing systems lack
adequately secure interconnectability and interoperability. Each vendor has taken its own
approach, relatively independent of the others — although a few common efforts (such as
OSF) may ultimately emerge.

e There is very little real understanding as to how security can be attained by integrating a
collection of components, and even less understanding as to what assurance that security
might provide.

e Vendors are discouraged from offering secure systems because significant time and effort are
required to develop a system capable of meeting the TCSEC evaluation criteria and to mar-
shall it through the evaluation process. Moreover, because of evaluation delays, an evaluated
product is typically no longer the current version of the system, which necessitates repeated
reevaluation. For high-assurance systems, the difficulties of using formal methods add further
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complexity to both development and evaluation. Export controls, lack of awareness, and lack
of customer demands tend to provide further discouragement.

Because of these obstacles, and the resulting lack of viable high-assurance multilevel systems,
less secure systems are commonly used to store highly sensitive data — despite considerable risk.
(A compendium of vulnerabilities, threats, risks, and illustrative cases related to computer and
communication systems is given in [159].)

Many of the hopes that appeared attainable by the security community in the 1980s have not yet
been adequately fulfilled. We believe this shortfall is due to a variety of causes. For example, cus-
tomer demand for MLS systems has been limited to the DoD sector. The evaluation criteria have
emphasized architectural approaches that rely on monolithic, nondistributed multilevel-security
kernels and trusted computing bases, with much less emphasis on end-to-end security as in elec-
tronic mail, digital commerce, and other applications heavily dependent on secure networking. Few
R&D efforts have dealt comprehensively with real systems, particularly where formal methods are
concerned. Inherent difficulties in dealing with formal methods have also contributed. U.S. export
controls on crypto and high-end operating systems have also provided a damper in the eyes of
system vendors. All these factors seem to have considerably increased the complexity of system
development and evaluation, disenchanted the system developers, and retarded progress.

We propose an approach that is aimed at minimizing these obstacles while still attaining multilevel
security, with high assurance, and providing more functionality than is achievable with traditional
approaches.

5.1 The RISSC Philosophy

In an earlier paper [192] (reproduced here in Appendix C), Proctor and Neumann characterized
an architectural family of multilevel-secure networked systems in which the use of multilevel-secure
end-user systems can be avoided altogether, with reliance instead on multilevel-secure network
interface devices and possibly other multilevel servers. The primary consequence of this type of
architecture is that the existing infrastructure of single-level end-user systems can immediately
be incorporated. A secondary consequence of such an architecture is that user-exploitable covert
channels can be eliminated altogether.!”

This report extends the Proctor-Neumann concept. We advocate the construction of multilevel
systems using only a few carefully controlled multilevel components. We explicitly address the
issue of what portions of the overall system must be trusted with respect to multilevel security, and
conclude that this approach greatly reduces the need for trust. The RISSC concept is also appli-
cable to single-level systems, whereby the security-dependent functionality has been appropriately
isolated and constrained. (See Section 5.6.)

The 1992 paper by Proctor and Neumann [192] refers to DSM — an acronym for Distributed,
Single-level-user-processor, Multilevel-secure — systems. This report generalizes the DSM ap-
proach, and refers to the RISSC philosophy — where RISSC (as noted above) is an acronym for
Reduced Interfaces for Secure System Components. The RISSC philosophy is similar in concept to

10A covert channel is an out-of-band means of communication through which it is possible to signal information
— for example, based on the occurrence of exception conditions triggered by resource exhaustions. For example,
see [61, 189, 94, 251, 80] for analysis of covert channels, and [106] for avoiding them.
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the RISC philosophy (Reduced Instruction Set Computer), in seeking simplicity of mechanism. The
RISSC philosophy strives to localize the security-critical functionality within components that are
not directly accessible to users. The RISSC philosophy is conducive to multilevel-secure systems
that can be configured quickly and economically out of conventional single-level end-user systems,
without losing any essential functionality. It is primarily an architectural concept, but it also relies
heavily on sensible design efforts, good software-engineering practice, good system implementa-
tion, and good analysis. It is particularly amenable to formal specification and formal analysis, as
discussed in Section 6.

DSM architectures are one example of systems satisfying the RISSC approach, and are themselves
a logical successor to an earlier effort by Rushby and Randell, the Newcastle Distributed Secure
System (DSS) [210]. In the Newcastle DSS, trusted network interface units are added to standard
operating systems that are untrusted with respect to multilevel security. Rushby’s notion of a
separation kernel (e.g., [203, 205]) is another instance of RISSC. The RISSC philosophy is com-
patible with client-server architectures in which the servers are suitably trusted but the clients are
not, and therefore it can take advantage of existing work on Kerberos [14, 236] and the Digital
Distributed System Security Architecture [68] — although even stronger network authentication
will be desirable in the future.

5.2 Advantages of the RISSC Philosophy

Many potential advantages are offered by RISSC. Systems can be fully functional and multilevel
secure. Because an end-user workstation can efficiently read information at its level and below from
network servers, a user can integrate data from a variety of classifications. Advisory labels can be
provided in single-level end-user systems, as is the case in existing low-assurance compartmented-
mode workstations (CMWs). Because end-user systems are single-level, they can have full com-
mercial functionality, rather than having to be ported to the environment of a Trusted Computing
Base. This means that standard conventional, commercial-off-the-shelf (COTS) software and ex-
isting applications can be used without change for end-user systems.

System security and integrity can be increased because the reliance on the security of end-user
operating systems is minimized. No ordinary users have direct access to the multilevel-secure
components. Tampering with end-user systems cannot compromise multilevel security.

The evaluation effort for the entire system with respect to multilevel security is reduced to eval-
uating the multilevel components and their interactions with the rest of the system. It is largely
independent of the internals of the single-level components. Thus, the evaluation effort can focus on
the network interfaces and servers. It is easier to identify and monitor any residual covert channels
that arise because of the multilevel networking.

The reevaluation effort is also vastly reduced. Once an overall system has been evaluated and
certified, upgraded versions of component end-user operating systems can be installed without any
reevaluation for multilevel security, just as there was no such evaluation in the first place.

Thus, the RISSC philosophy has the potential for greatly increasing the ease of developing, evalu-
ating, and procuring multilevel-secure systems when contrasted with what is experienced with the
present TCSEC B-level evaluation process today.
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5.3 Alternative RISSC Architectures

In a precursor to this study, several architectural families were outlined that represent instances the
RISSC concept. To provide a framework for considering a variety of architectural types, the families
enumerated in [158] are summarized in Appendix A, with some modifications and extensions. (This
report therefore supersedes that earlier categorization.)

The families of primary interest here are those that have explicit relevance to the RISSC concept.
For example, the subfamilies [[1a]], [[2a]], and [[3a]]'! all have single-level single-end-user worksta-
tions and multilevel-secure network servers. Within those families, there are two basic alternatives
— one ([[la]] in Section A.1 and [[2a]] in Section A.2) with single-level file servers and the other
([[3a]] in Section A.3) with multilevel-secure file servers; the systems of family [[1]] have files stored
unencrypted, while those of family [[2]] have files stored encrypted. In a very rough sense (consid-
ered in Appendix A), these various alternatives can be considered as equivalent implementations of
the same conceptual design; trustworthiness is located somewhat differently, but the functionality
that must be trusted is roughly comparable.

To a lesser extent, several architectures that support multiple coexisting but competitive end users
([[1b]], [[2¢]], [[2d]], and [[3b]]) also have RISSC-like attributes, although the non-MLS security
perimeters are larger in those cases. In particular, greater reliance must be placed on the local
end-user operating systems, because of the presence of potentially competing users. However, in
other respects the security considerations are similar to the noncompetitive-user situation.

Several of these subfamilies are considered in greater detail in Section 11.

5.4 Realities of Multilevel Security

We next consider some of the practical implications of system architecture, first with respect to
conventional multilevel-secure system designs and then with respect to RISSC architectures.

Multilevel security has not been considered with uniform favor by the rest of the world outside of
the U.S. DoD — and in some cases, not even within the DoD. Air Force Lt. Gen. Carl O’Berry
(U.S. Air Force deputy chief of staff for command, control, communications, and computers) was
quoted!? as saying that multilevel security is “a brain-dead idea based on the assumption that you
can take responsibility for information security off the shoulders of man and put it in a machine.”
Also, he asserted that DoD has spent “billions upon billions” of dollars in trying to get MLS systems
accredited, but he doesn’t believe the process has served DoD well. His view is reported to be that
“InfoSec should focus on data transmission, user authentication, and risk assessment of transmitted
data.”

There are several reasons why efforts to make multilevel-secure systems more widely available have
not been more successful.

e Architectures adhering rigidly to the TCSEC kernel-TCB philosophy are inherently inflexible.

e The MLS requirements are only a small part of what is desirable in commercial systems. The
TCSEC MLS requirements have been overendowed — both in the development process and

"Double square brackets are used to identify classes of architecture family members. See Appendix A for the
notation that is used.
12 Article by Paul Constance, Government Computer News, 14 April 1995, p. 3.
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as a focus of the research community — at the expense of real user needs.

e Customer demand has not been sufficient to justify the development effort and associated
costs of MLS systems as mainline commercial offerings. There is considerable reluctance
inertia acting against multilevel security.

e MLS systems are difficult to evaluate, particularly at B2 and above, and the evaluation process
has great difficulty keeping up with incremental system changes.

The fact remains that multilevel security is important for DoD use, and possibly useful for non-DoD
use as well (for example, see [123]). Thus, we need to consider alternative MLS architectures that
can overcome the difficulties enumerated here.

5.5 Potentials of MLS RISSC Systems

If a RISSC system has no multilevel-secure end-user systems, the existing TCSEC criteria for B-
level systems are not directly sufficient to constrain the multilevel security of the overall system —
although the principles underlying the TCSEC [151] and the TNI [150] are valid when an entire
network of systems is considered as a single system. Clearly, the C2 requirements must be extended
to include some aspects of trusted system distribution and trusted paths (for example); however,
those extended C2 requirements would then be appropriate for the user systems out of which such
RISSC systems could be built. We believe that the TNI B-level criteria will be directly applicable
to (but also incomplete for) the trusted multilevel-secure network software that is at the heart
of the RISSC concept, although those criteria will need to be extended (just as they need to be
extended to accommodate distributed systems anyway).

Each RISSC trusted server is essentially a trusted computing base. However, because it has no end
users per se, it can be much simpler than that required for a multilevel-secure end-user operating
system. For example, file servers can be isolated as systems whose only direct users are system
agents. The trusted network interface is the primary component mediating between each end-user
system and other systems, but its role is reduced to that of a filter, gateway, or firewall (in software
and/or hardware), according to the functionality required. The TNI must ensure that imported
and exported data entities are at appropriate levels commensurate with the source and destination,
and that channel switching is done consistently with the multilevel constraints. Authentication and
key management help assure the integrity of the networking.

In the RISSC concept, trust for enforcing multilevel security resides solely in the multilevel servers,
and not in any end-user systems. Nevertheless, there are certain functionalities in the end-user
systems that must be noncircumventable, such as the protection of any stored encryption keys and
the integrity of the authentication process, in part through hardware or software encapsulation. A
challenge of any specific architecture is to minimize that need for trust.

The RISSC philosophy encompasses various options, the choices among which involve considera-
tion of the intended application environment. The strict DSM approach avoids end-user-created
covert channels altogether at the cost of separate system components for each security level and
compartment, as analyzed in [164, 192]. This approach may be appropriate for certain applications
but not for others. On the other hand, hybrid strategies may be able to provide better performance
in certain selected cases in which the exploitation of covert channels can be prevented or else mon-
itored by other techniques. Other trade-offs are also possible within the RISSC philosophy — for

33



Secure Systems Architecture and Formalism

example, whether there are multilevel-secure servers or multilevel media. There are also trade-offs
between multiple single-level servers or multilevel servers — for example, for name servers.

If the strict-sense DSM architecture is used, or if compartmented-mode workstation end-user nodes
can be avoided, the covert channels can be reduced. However, in certain RISSC environments,
CMWs could be used without introducing covert channels. That could be the case in a SeaView
environment [128] (noted in Section 3.3) in which a security officer needs to see both a Top Secret
view and a Secret view of the same data query — for example, in attempting to ensure that less
classified cover stories are sensible and consistent.

As an example of the effectiveness of the RISSC concept in the context of an application subsystem,
consider SeaView. By placing an off-the-shelf database management system (Oracle) on top of a
multilevel-secure trusted computing base, and completely encapsulating the TCB to prohibit all
external accesses to the TCB interface, a multilevel-secure DBMS can be implemented in which
there is no need to trust the database software with respect to multilevel security. Analysis shows
that the assurance with which multilevel security can be provided by SeaView is the same as that
provided by the TCB. (See [191].)

Furthermore, it is possible to develop an overall distributed-system/network concept in which
certain security flaws in the component operating systems can be tolerated, while still achieving
security in the large. This is somewhat analogous to the design of fault-tolerant and Byzantine
subsystems. In addition, we believe it is possible to support various operating-system interfaces
within the RISSC concept, such as Unix, POSIX, and Mach, as long as the networking interfaces
can be suitably trustworthy.

5.6 Potentials of non-MLS RISSC Systems

The RISSC concept is of course also valuable in conventional single-level systems and in hybrid
single-level systems that enforce compartmented separation within the single level.'? In the present
context, we consider single-level compartmented systems to be a special case of single-level systems
rather than a degenerate case of multilevel-secure systems, because the absence of multilevel re-
quirements for files and network interfaces can significantly simplify the architecture — particularly
when ultra-high assurance (e.g., Al) is not required. (This special-case association also makes sense
linguistically, because those hybrid systems are, strictly speaking, not multilevel secure.) However,
in practice, if high assurance is necessary, it is clearly better to dumb down a multilevel-secure sys-
tem to a single level than it is to add compartments to a conventional system — primarily because
many of the additional requirements would not be met.

In single-level systems, the RISSC concept is an architectural concept as well as an embodiment of
good software-engineering practice. It requires strict modularization and encapsulation of security-
critical functionality in such a way that the interfaces to that functionality can be completely
controlled. It also requires that the interconnections among different modules cannot compromise
security, through replays, spoofing, or other attacks. The RISSC concept is advantageous whether
or not the systems are distributed. However, it is particularly relevant to distributed systems, in
which the notion of isolating functionality within trusted servers (see Section 5.3) can contribute

!3As an example of such a hybrid system, the Internal Revenue Service is contemplating the use of single-level
compartmented servers throughout its Tax Systems Modernization program, with fine-grain access controls, in an
effort to minimize undesirable browsing and insider misuse.
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significantly to single-level systems as well as multilevel-secure systems. Indeed, most of the archi-
tectural issues in Section 5.3 apply directly to single-level systems, compartmented or otherwise;
the trusted servers still need to be trustworthy in some respects, even if they are not trusted for
maintaining multilevel-security separation.

We note in passing that Jagannathan’s GLU ([97, 96]) could be used to help partition processing
that has natural parallelism. GLU consists of a methodology and preprogramming language. It
facilitates dynamic virtual multiprocessing, flexible system configuration that can adapt to whatever
hardware is available, dynamically alterable fault tolerance, and distributed computation, while
placing very little burden on the programmer. GLU statements are preprocessed into C, which
after compilation can result in virtualized parallel tasks being dynamically allocated to whatever
real resources are available. Appropriate choice of GLU statements could be used to enhance the
RISSC nature of the implementation by partitioning functionality according to security constraints.

5.7 RISSC Applied to Crypto Implementations

One of the trickiest aspects of computer system architectures involves the encapsulation of crypto
in such a way that the security provided by the crypto cannot be compromised — despite the
presence of not-entirely-trustworthy system components. The potential risks are quite numerous.

In the following text, a careful distinction is made between the process of creating an object that can
later be authenticated and the subsequent process of validating that the object is indeed authentic.
The former process is generically referred to here as a cryptobinding, and the latter process is referred
to as authentication. In other contexts in which this distinction is not important, “authentication”
more conventionally includes both the cryptobinding and the validation of the cryptobinding.

In general, the cryptobinding function needs to have a sufficiently strong cryptographic basis that
it can be nonsubvertible under malicious attack. (Although in principle the binding could be
noncryptographic, as in the case of a cyclic redundancy checksum, we nevertheless refer to the
generic function of creating the binding as cryptobinding.)

e Loss of confidentiality — for example, due to key compromise that makes the crypto inef-
fective, cryptanalysis that breaks the crypto, or bypasses of the crypto that undermine the
crypto without requiring key compromise or cryptanalysis (as in penetrations of underlying
operating systems)

e Loss of integrity — for example, due to changes in cryptotext or in the cryptobound infor-
mation that is subsequently expected to be decrypted or authenticated

e Denials of service — for example, due to intentional or accidental losses of integrity

e Loss of authenticity — for example, due to spoofing of the cryptobinding process (for ex-
ample, creating a bogus digital signature or integrity seal), disabling the process of checking
authenticity, or conducting a replay attack

e Repudiation — that is, a claim that seemingly legitimate cryptobinding had actually been
erroneous, spoofed, or otherwise compromised

e Loss of key-escrow confidentiality — for example, due to breaches of the key-escrow process
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e Loss of key-escrow integrity — for example, avoiding key escrow altogether, breaking the
escrow binding between keys escrowed and keys actually used, using crypto implementations
for which the keys do not need to be escrowed, law-enforcement access-field attacks

e Loss of audit confidentiality — for example, undesired accesses to an encrypted audit trail

e Loss of audit integrity — for example, accidental or intentional modification of an encrypted
audit trail

The modularity implied by the RISSC concept can aid considerably in avoiding these risks — if
the modules are sufficiently noncompromisible.

A particular additional challenge is provided by the desire for high-assurance implementations that
can use modular crypto. At present, United States export-control restrictions seriously discourage
the use of modular crypto, sometimes misleadingly known as crypto-with-a-hole (although the hole
is in the surrounding system, not in the crypto).

The RISSC concept can provide considerable assistance in ensuring that modular crypto cannot
be subverted, bypassed, or removed for other purposes, if it is possible to encapsulate the crypto
within trustworthy subsystems. This can be achieved by isolating the crypto into separate modules
(whether they are implemented in hardware or in software). Some of the opposition to modular
crypto implicit in the export controls may be diminished if assurances can be provided that the
modular crypto cannot be removed, replaced, tampered with, bypassed, or otherwise compromised.
One way of accomplishing that goal is to provide a trustworthy cryptographic/cryptologic means
of ensuring that a given module is precisely in every respect one of a legitimate set of previously
authorized modules — for example, by applying serious cryptographic integrity checks within trust-
worthy components. In this way, it would be possible for a vendor to provide multiple versions
of a computer operating system or application software, with different crypto implementations
that could be adapted to the nature of the application and that could conform with any external
restrictions such as export controls.

At present, system developers are reluctant to provide multiple versions of software systems, because
of perceived difficulties in production and maintenance. Such an approach would sharply diminish
the difficulties involved.'*

Similarly, encapsulation within the RISSC concept could also enhance the assurance with which
certain usage restrictions could be accommodated — for example, requiring the presence of non-
subvertible key escrow on a crypto implementation.

In all crypto implementations and, more generally, in all system implementations, the risks must
be rigorously analyzed from a total systems point of view — including hardware platforms, op-
erating systems, application software, networking software, network media, supposedly untrusted
components that in fact are able to acquire unanticipated privileges, and supposedly trustworthy
components that are not trustworthy, as well as external attacks such as masquerading and spoof-
ing. Crypto algorithms, protocols, and implementations are particularly fertile topics for formal
analysis of security. This concept is considered further in Section 11.3.

"For example, two versions of RC-4 are used in the first commercial version of Netscape, one with long keys (128
bits) and the other with shorter keys (40 bits). As an interesting implementation quirk, the 40-bit version is achieved
by passing 88 bits of the 128-bit key along with the message, but without changing the implementation. However,
40-bit crypto is becoming unacceptable in commercial applications, as evidenced by recent cracking of 40-bit RC-4
within Netscape.
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Part Two: FORMAL METHODS

6 Formal Methods Applicable to Secure-System Architectures

Section 6 considers the applicability of formal methods to architectures for secure systems.

Much of the work to date in applications of formal methods has emphasized the specification
of relatively low-level functionality. A useful cross-section of the early history of formal methods
applied to computer systems can be found in the proceedings of the first three verification workshops
(VERkshops), the first two of which [165, 166] were coorganized by Peter Neumann and Steve
Walker (April 1980 and April 1981), and the third [117] was coorganized by Karl Levitt, Steve
Crocker, and Dan Craigen (February 1985). Because the proceedings of these VERkshops are not
widely available, and because of their historical importance to the evolution of formal methods
applied to security, we include a list of the VERKshop contributions in Appendix D.

Although there is some work on properties of systems in the large, and on the specification of
complex systems (as in HDM/EHDM and the CLI work), much of the effort in the past has been
devoted to properties of algorithms and components in the small.

The present study is much more concerned with specifications and properties of systems in the
large, with the fundamental belief that there is enormous potential to be obtained from the com-
position of systems and networks out of system building blocks — especially if that functionality
can be related to its components and their properties in a formal manner. Thus, we stress hier-
archical structures, vertical abstractions, horizontal compositions of distributed components, and
configuration management.

6.1 Goals of Formal Methods in System and Network Architecture

The need to apply formal methods to the architectures of supposedly secure systems and networks
suggests the following set of desirable goals. These goals are generally commonly perceived goals
that have been either implicit or explicit for many years, although many of them are still not
easily achieved. Thus, we believe that it is useful to articulate these goals coherently within the
global distributed-system scope of this report. The recommendations in Section 12 consider what
is needed to satisy these goals more fully.

e Formalisms should be readily understandable by appropriate people (designers, system im-
plementers, interface users who are developing higher layers, system maintainers, and docu-
menters) at a level of detail appropriate to their individual needs. That is, designers should
be able to write specifications that are sufficiently detailed and unambiguous to permit sound
implementation by programmers and hardware fabricators who have not been a part of the
design process; those specifications should also be viewable at varying layers of abstraction
— for example, by someone explicitly wishing to suppress certain types of detail, or alter-
natively, someone wishing to have particular upper-layer constructs explicitly expanded in
terms of lower-layer functionality.

e Formalisms should be realistically applicable to complex and practical systems, including op-
erating systems, special-purpose systems such as database management systems, firewalls and
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other types of gateways, network controllers, file servers, encryption control units, cryptologic
protocols, and critical application environments. Furthermore, such formalisms should also
be applicable to the specification and analysis of distributed systems and networks formed
from compositions of components, whereby the analysis of the overall system can be based
on properties derived from the analysis of the components. Formalisms should provide the
ability to handle complexity in its totality — for example, reflecting all possible exceptions
and other abnormal conditions. The formalisms should scale well, from simple systems to
highly interconnected complex systems. Difficult concepts as well as simple ones should be
capable of being clearly explicated.

e Formalisms should contribute significantly to the entire system life cycle — for example,
enhancing the requirement formulation, analyses of the requirements, the design process,
analyses of the design, the implementation, analyses of the implementation, and the man-
agement of the entire development. The benefits of these contributions might include tighter
management of the development process, sharply reduced production costs, fewer scheduling
delays, and improved satisfaction of the stated requirements — with greater reliability and
greater assurance of proper system behavior.

e The formalisms should be particularly helpful at the initial stages of the development cycle.
In general, many system flaws occur during the design phase rather than during implementa-
tion; the cost of repairing serious design flaws after a system has been fielded is often orders
of magnitude greater than the comparable cost for repairing code flaws. As a consequence,
the greatest payoffs from formal analysis are typically found up-front: formalizing require-
ments, and analyzing the adequacy, completeness, and self-consistency of those requirements;
attempting to demonstrate the consistency of specifications with requirements, and identi-
fying design flaws; carrying out explorations of incremental design alternatives, and being
able to iterate on the successive analysis of improved designs. All these attributes are highly
desirable.

e Formalisms should be applicable at different layers of abstraction and different types of ab-
straction, from hardware to operating systems to database management systems to appli-
cation software, and throughout distributed systems. Formalisms should facilitate vertical
(hierarchical) abstraction, relating each layer to its neighboring layers (either less abstract or
more abstract). They should also facilitate horizontal abstraction, allowing for consistent co-
existence among different interoperating distributed-system and networked components, and
for the transversal of any gateways or other network subsystems.

e Formalisms should be able to facilitate rigorous analyses, interrelating with one another when-
ever different formalisms are used or must be used in different contexts. For example, a partic-
ular system analysis might employ a requirements language, a module specification language
for operating-system and application functionalities, mathematical techniques for analyzing
the strength of cryptographic algorithms, and BAN logic 6.3 for reasoning about cryptologic
protocols. It should be possible for different analyses to be logically linked, interrelating re-
quirements analyses, design proofs and other specification analyses, and implementation proof
techniques for determining the consistency of code (or hardware) with its specifications. The
formalisms used should be substantively interoperable — in the sense that reasoning about
properties at one layer or component must be able to draw on assumptions, properties, and
inferences about other formalisms of depended-on functionality. Thus, expressions in one
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formalism should be transformable or otherwise representable in other formalisms, wherever
appropriate. In addition, properties of fault tolerance and real-time performance should be
able to accommodated, as relevant to security.

e Formalisms should be able to facilitate analytic and synthetic transformations, involving both
vertical and horizontal abstraction. For example, analysis of a composition of the specifica-
tions of multiple modules into a single module specification should be formally straightfor-
ward. The same is true for decomposition of a subsystem into separate modules, for example,
so that a component can be used separately elsewhere. Similarly, the resulting behavioral
properties resulting from composition or decomposition should be formally derivable, whether
the properties in question are invariant or transformed into other properties.

e Formalisms at certain higher levels of abstraction should be relatively independent of specific
programming languages and language constructs, but at lower levels should be capable of
explicitly and completely representing programming-language constructs, hardware instruc-
tions, and microcode.

e Formalisms should be broader and richer than just those relating to a few specific security
properties at a particular layer of abstraction. As appropriate to a particular application,
other relevant requirements should be addressed, such as application-layer properties relating
to interface completeness, ease of use, overall system reliability and fault tolerance, and system
safety.

Some of the past work is applicable to computer systems in general, although distributed systems
have been slighted until recently. Other work is specific to particular types of formalisms, such as
the BAN logic [29] for crypto protocols. Overall, it is clear that no single approach is sufficient for
specifying and reasoning about distributed systems in the large, and that multiple formalisms must
be used. An important open question is how to choose the different formalisms that are necessary
for a particular application and to integrate them effectively.

6.2 SRI’s Computer Science Laboratory: HDM, EHDM, and PVS

The SRI Hierarchical Development Methodology (HDM) (see [161, 199, 201, 231], plus an earlier
reference [200] for historical interest) was an early effort to unify formal methods within a single
framework that would be applicable to real systems, in hardware and software. HDM embodied a
first-order SPECIfication and Assertion Language (SPECIAL) [233] for specifying modules at each
hierarchical layer, and an abstract Intermediate-Level Programming Language (ILPL) [161] whose
pseudoprograms represented explicit mappings between hierarchical layers — acting as abstract
implementations for each layer written in terms of lower-layer functionality. In addition to hier-
archically layered abstractions, HDM encompassed staged development and module refinements,
extending from requirements to abstract design to abstract implementation to actual implementa-
tion. In concept, HDM also supported analysis techniques associated with each development stage
— namely, requirements analysis, design proofs, abstract code proofs, and real code verification.
The HDM effort began in 1973 under the PSOS project, in which it was used extensively. HDM is
no longer supported, but it pioneered several important concepts.

HDM tools included a syntactic specification checker and the Boyer-Moore Theorem Prover [26,
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27]'5 — which was used for both design proofs that specifications are consistent with their formally
stated requirements and for implementation proofs that code is consistent with its specification.
For example, for any given module specification, the Feiertag flow-analysis tool [61] identified all
potential information flows through that module and then formulated putative theorems whose
satisfaction would imply no adverse multilevel-security flow; the Boyer-Moore theorem prover was
then invoked to determine whether or not the putative theorems were indeed valid. If they were
valid, the flows satisfied the multilevel-security properties; if they were not valid, flaws in the
specification or the design were identified, including covert storage channels. (Actually, only a
fraction of the logical abilities of the Boyer-Moore theorem prover were required, and a simpler tool
could have sufficed.) As with most verification work, the benefits arise largely in the identification
of flaws rather in the demonstration that everything is perfect. This approach was applied to
several multilevel-security projects, including the kernelized Unix system KSOS [133, 16]. Out of
34 kernel functions in the initial KSOS kernel design, 16 were shown to have some sort of security
problem, many of which could be and were fixed; however, some of the covert storage channels that
were identified were not removed.

One of the important advances of HDM was its ability to take a group of modules specified in
SPECIAL, and arrange them either hierarchically or coexisting at a given layer, and then relate
those modules to one another using the abstract programming language ILPL [199]. It was also
possible to constrain precisely which higher layers could have access to which functions at lower
layers. In this way a particular functionality could be accessed only up to a particular layer, and
its functionality could then be replaced by a more abstract equivalent. This type of accessibility
constraint is demonstrated by the square-bracketed level numbers in Table 6 — an example of
which is given by the system processes at level 6 and user processes at level 12.

SRI’'s EHDM [204] and its higher-order specification language [234, 235, 245, 246, 247] provides a
facility for hierarchical layering comparable to that in HDM. EHDM provides a stronger subtype
mechanism than HDM, and also introduced module parameterization. It also had an improved
approach to the axiomatization of theories and subtheories, and their interrelations. The EHDM
effort began in 1981, under a project that was primarily concerned with investigating the feasibility
of implementing PSOS.16

SRI’s Prototype Verification System, PVS, is the intended successor to the verification tools used
in EHDM. Its specification language has a still richer type and subtype facility than that of EHDM
(including dependent types). Model checking (see Section 9) is compatibly being included in version
2. At present, PVS (in version 1 and in the soon-to-be-released version 2) does not yet provide sup-
port for hierarchical design validation and program verification that are found in EHDM, although
a new approach to that capability is planned for PVS version 3, along with an extension of the
EubM facility for interpretation of models and theories. On the other hand, the PVS verification
environment does support interactive proofs — which EHDM’s prover does not. Furthermore, the
specifications, proofs, and proof process of PVS appear to be significantly more comprehensible
and easy to develop than is the case for EHDM.

All three of these environments (HDM, EHDM, and PVS) provide tight coupling between the

'5See Donald MacKenzie's 1995 Annals article [129] for an excellent review of the history and sociological role of
theorem proving, with 185 references.

S EHnpM was originally so named because it began as an “Enhanced Hierarchical Development Methodology.” That
acronym expansion is no longer relevant, and it is now named simply EHDM; its specification language began life as
Revised SPECIAL [233].
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specifications and the verification systems, and permit early formal analysis of specifications as
well as formal code proofs. Since 1973, this sequence of SRI efforts has been explicitly aimed
at spanning the entire system-development cycle, with particular emphasis on effective up-front
analysis, applicability to large and complex systems, and long-term evolvability. A broad spectrum
of techniques is incorporated, including syntactic specification checking, strong type checking, some
ability to provide local executability of specifications, model checking, and various other forms of
semantic analysis such as forward incremental closure (reachability with respect to descendents)
and backward incremental closure (reachability with respect to ancestors).

A quote from Owre et al. [173] is appropriate to put these approaches in perspective:

It is not easy to directly compare EHDM and PVS with other approaches to formal
methods, such as those embodied in Z and VDM notations, or the Boyer-Moore theorem
prover, since they are based on very different foundations. The HOL system is based on
similar foundations to EHDM and PVS, but its language, proof-checker, and environment
are much more austere than those of our systems. Over several years of experimentation,
we have found that our specification languages have permitted concise and perspicuous
treatments of all the examples we have tried, and that the PVS theorem prover, in
particular, is a more productive instrument than others we have used.

In the short term, some of the considerable advantages of PVS exist as a result of PVS’s temporar-
ily eschewing the abilities of HDM/EHDM with respect to hierarchical layering; the comparative
appropriateness of PVS and EHDM must be considered specifically with respect to system-wide
architectural applications in the large. In the long term, PVS is expected to be more appropriate
in almost all cases.

The PSOS specification [161] gives an extensive example of how HDM can be used to provide
detailed specifications for a fairly complex hierarchically layered centralized operating system, in
hardware and software. Various examples of the use of EHDM and PVS are given in [173]. Although
these examples are relatively small, EHDM is at least as appropriate for large and complex systems
as HDM was. EHDM satisfies all the goals enumerated in Section 6.1 to a considerable extent.

The reader interested in pursuing PVS further should consider an elementary tutorial by Butler [30]
and a less elementary tutorial by Rushby and Stringer-Calvert [212].

Another SRI Computer Science Laboratory effort, due to Moriconi, Qian, and Riemenschnei-
der [145, 146], is also relevant to specifying the relationships among hierarchical abstractions. The
MQR approach provides a method for the stepwise refinement of an abstract architecture into a
(relatively) correct lower-layer architecture. Once a particular refinement pattern has been proved
correct, instances of that pattern can then be used directly without further proof. Refinements
can themselves be syntactically composed. At present, this approach is not integrated with EHDM
or PVS, although it appears that such a union could be very useful — in proving a priori that
refinements are correct and in then relating the refined architectures to their implementations. In
this way, the MQR approach could be used to reason about the security of an architecture in the
large, and PVS could be used to demonstrate the required properties of the components.

The SRI Computer Science Laboratory WorldWideWeb pages (http://www.csl.sri.com/) provide
further background and access to on-line reports.
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6.3 BAN Logic and Related Reasoning about Crypto Protocols

Efforts to formalize reasoning about cryptologic protocols include the Burrows, Abadi and Need-
ham’s BAN logic [29] and its augmentations (see Wenbo Mao [132]) — with some important
intermediate work by Gong, Needham and Yahalom [75], Abadi, and van Oostrup, among others.
All the work to date is lacking in one respect or another, for example, being based on unprovable
assumptions of key secrecy, or suffering from incompletenesses in the logic. (For example, see Gligor
et al. [70, 237].) In addition, prudent practice for cryptographic protocols such as that suggested by
Abadi and Needham [3] must be enforced. In any event, some sort of logic is essential for reasoning
about cryptographic protocols and how they interrelate with the systems that encapsulate them.
The use of formal techniques for cryptographic protocols is revisited in Section 8.6.

6.4 Other Approaches Relating to Security

We do not attempt here to provide comprehensive coverage of all of the various methodologies and
supporting tools. However, it is worth noting that there are many different approaches, each of
which has its own merits. We regret that we have not been able to track all recent developments
in other approaches.

Computational Logic Inc. has been pursuing its specification-programming languages Gypsy and
Rose, with formal methods applied to security and other application areas for almost as long as SRI.
The Boyer-Moore theorem-proving tools are now an integral part of the CLI environment. Relevant
references include documents on Gypsy [76, 77, 230], its flow analyzer [138], a code generator [253],
and applications [18, 78, 88|.

The CLI WorldWideWeb pages (http://www.cli.com/) provide further background and copies of
on-line reports.

Odyssey Research Corporation’s Romulus and Penelope provide similar capabilities. For example,
formal methods have been applied to the Theta security kernel [168, 169, 170, 226].

Odyssey’s WorldWideWeb pages (http://www.oracorp.com/) were still under construction when
this report was completed.

A very significant recent effort to formalize security requirements is given by Johnson et al. [101],
in which detailed formal specifications are provided for the MISSI security policy. This effort
embodies many of the recommendations made here, including a layering of policy elements and an
architecturally comprehensive approach that encompasses authentication and other infrastructure
funcationality as well as conventional multilevel security.

7 Formal Methods Applied to Secure Distributed Systems

Section 4.2 summarizes high-level requirements for distributed-system security. These requirements
are now reinterpreted in Section 7.1. The implications of attempting to apply formal methods to
the elaboration of those requirements are then considered in Section 10.
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7.1 General Properties of Distributed Systems

All the requirements outlined in Section 4.2 are directly applicable to distributed systems and to
RISSC systems in particular. We reinterpret them here with greater specificity, and consider how
to approach them formally. Our intent is to characterize the desired properties within the scope
of this report. As is the case in Section 6.1 for satisfying the stated goals, the recommendations in
Section 12 consider what is needed to reason about these properties more comprehensively.

1. Overall system security. To specify and reason about the security of a distributed system
as a whole, all the necessary requirements must be stated explicitly and related to the behavior
of the functions of corresponding visible interfaces. Those interfaces may be at the application
layer for a totally dedicated system, at the database layer for a database application, at the
operating-system layer for an open-system network of systems, or at a combination of layers
in those cases in which interfaces at multiple layers can be simultaneously visible. It must
be possible to relate the visible-layer interface requirement specifications to the lower-layer
specifications and corresponding lower-layer properties (whether visible or hidden), such as
those properties discussed in the subsequent bulleted items. Thus, for example, the formalisms
must facilitate abstraction refinement and mappings among different layers of abstraction.
Different formalisms may be appropriate for different functions and different properties at
different layers; these formalisms must be capable of interrelating, and should satisfy the
bulleted items in Section 6.1.

2. End-user-system security. The TCSEC Orange Book B-level criteria are heavily concerned
with multilevel security; it is important to be able to demonstrate that the kernel and TCB do
not violate the multilevel-security requirements even in highly distributed implementations.
Ideally, to demonstrate that, it should not be necessary to demonstrate the satisfaction of
all sorts of properties apparently unrelated to multilevel security. However, in a conventional
TCB architecture, there are many other properties beyond MLS with respect to which each
component system must be trusted. On the other hand, in a RISSC architecture, it may be
easier to demonstrate multilevel security without having to specify completely each individual
end-user system — on the grounds that the end-user system cannot compromise multilevel
security. Nevertheless, in the conventional architecture or in a RISSC architecture, it is much
too simplistic to be interested only in the MLS property when vulnerabilities can exist that
permit MLS compromise without a flaw in the MLS mechanisms themselves. Thus, the belief
that demonstrating MLS-ness of a mechanism in isolation is sufficient is both simplistic and
dangerous. For example, suppose the cryptobinding provided by an end-user system can be
compromised so that one user can masquerade as another user who is authorized at a higher
security level, or that the authentication itself can be subverted. It follows immediately that
security of the overall system may depend upon the integrity of the end-user systems not
being compromised, even in a RISSC architecture. Alternatively, in the presence of a trusted
authentication server, the design may permit the end-user system to be untrusted with respect
to authentication. In either case, the security of the overall system must be characterized and
demonstrated, and in both cases that security depends on strong authentication in addition
to enforcement of MLS.

3. System-infrastructure and server security. Traditional formal methods apply to servers
with respect to demonstrating multilevel security properties; they are also suitable for other
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properties essential to overall system security, such as the security of file servers, authen-
tication servers, and network servers. Thus, confidentiality, integrity, and authentication
properties must be characterized and ensured. Of particular concern is the management of
the networking and distributed-system intercommunications, which are particularly vulnera-
ble. The confidentiality and integrity of all crypto key management and networking crypto
must also be ensured, with respect to the networking — irrespective of whether the software
and hardware are located in network servers or (in non-RISSC architectures) in end-user
systems. As discussed in Section 6.3, a collection of well-integrated formalisms for analyzing
network protocols is very much needed; the BAN logic and subsequent extensions provide a
prototypical basis for such formalisms.

4. Network media security. Network security itself (that is, media protection to ensure
against loss of confidentiality, loss of integrity, and to some extent denials of service) would
presumably rely on the use of excellent cryptographic techniques. If that is the case, then
the network media need not be trusted to maintain confidentiality and integrity of commu-
nications, and presumably some alternative routing could minimize denials of service. Thus,
the extent to which formal representations might be applicable to the analysis of network
communications is related to the quality of the crypto and its key management. In a sensible
RISSC implementation, the media themselves would be largely untrusted, and no analysis
would be needed — except possibly for reliability and denials of service.

5. System integrity. Subsystem integrity relies on authentication, access controls, and many
other subsystem attributes. Tamperproofing is particularly important. (See Section 4.3.)
Formal requirements must embody and constrain structural encapsulation, nonbypassability,
and nonalterability (for example, via some sort of cryptographic integrity check). They must
also address responses to any detected alterations. For example, the use of cryptographically
based integrity seals to ensure the presence of legitimate software modules would require
formalisms to represent the security of the underlying operating-system mechanisms that
might embody the sealing and seal checking, and something like the BAN logic to reason
about the cryptographic processes.

6. Data confidentiality. Multilevel-secure systems can draw on the previous efforts to model
MLS properties, to specify functionality that must satisfy those properties, and to verify that
those properties are satisfied systemically. Additionally, formal methods can be applied to
access controls (such as in [1]), changes to permissions, and transfers of authority.

7. Data integrity. Cryptographic or other forms of integrity checks can be modeled. If data
integrity is handled similarly to system integrity (item 5, above), comparable methods would
apply. However, whenever data is significantly more ephemeral in nature in comparison with
the system software and hardware (which tend to remain unchanged for long periods of time),
then different techniques might have to be used.

8. Nondenial of service. Traditionally, the prevention or mitigation of service denials has been
less amenable to formal methods, although some existing research is applicable [69, 254].

9. Authentication integrity. The BAN logic [29] and its successors can be used to model and
analyze authentication protocols (such as are used in Kerberos [14, 155, 236] and the Digital
Distributed Secure System Architecture [68], and other strategies for distributed authentica-
tion — for example, [122, 252]).
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10. Nonrepudiation. Nonrepudiation requires strong cryptobindings and nontamperable au-
thentication, plus system security that would prevent or at least detect spoofing activities
within end-user operating systems and servers (including authentication servers, file servers,
and network servers). Ensuring nonrepudiatability requires more than just local reasoning
about authentication protocols.

11. Accountability. Accountability as an end in itself seems to have been widely ignored by for-
mal methodologists. It is a derived property rather than a primitive property. For example,
the confidentiality of the audit-trail data depends on the security of the infrastructure; sim-
ilarly, the nonbypassability of audit-trail data collection process depends on the integrity of
the systems being monitored and on the integrity of the monitoring subsystems. The integrity
of the audit-trail analysis depends on the nontamperability of the analysis subsystem. The
integrity of the systems being monitored depends on interfaces between the target systems
and the analysis subsystems.

A collection of typical properties that must be enforced is considered further in Appendix B, in the
context of a monitoring system.

7.2 Finer-Grained Properties of Distributed Systems

The eleven properties of distributed systems given in Section 7.1 are stated as rather broad char-
acteristic requirements. Table 11 illustrates some of the primary ways in which these properties
depend on other properties of distributed system architectures. The properties are numbered in
the table as enumerated above — although a finer-grain distinction is made among the system
infrastructure components (i), the end-user systems (e), and the network media (n). For simplicity,
all the infrastructure components (for example, file servers, authentication servers, and network
subsystems such as network servers, trusted interface units, gateways, and firewalls) are lumped to-
gether in the table, although there are clearly differences among the different types of infrastructure
components. However, we make a distinction between the networking subsystems (in software and
hardware) and the network media. The network media accommodate the transmission of informa-
tion, which is presumably encrypted whenever the use of an untrustworthy medium is deemed too
risky; the networking subsystems ensure that encryption and decryption are performed in a trust-
worthy and nonsubvertible fashion. (As seen from the table, the network media and the networking
subsystems depend on very different properties.)

Table 11 exhibits a collection of property dependencies that is considerably more complex than
the simplistic view of an application depending upon an MLS TCB to enforce application-layer
multilevel security (as in SeaView, in which the DBMS need not be trusted to enforce multilevel
security). The table’s depiction of dependencies is more realistic than the usual simplistic view
(but by no means complete), and suggests that a major challenge of formal methods is to represent
what really happens rather than to give an approximate and highly abstract oversimplification.
Nevertheless, abstract representations are very useful, as long as they do not diverge from reality.
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Table 11: Property dependence
‘ Goal ‘ Security Properties ‘ Depended-upon subgoal
OVERALL
1 | Overall system security: 2,3.4,
MLS, access controls, etc. 5,6,7,8,9,10,11 (i,e,n in each case)
STRUCTURAL
2 | End-user system security | 3,4,
He,6e,7e,8¢,9¢e,10e,11e,
51,61,71,8i,91,101,111,
51n,6n,7n,8n,9n,10n,11n

3 | Infrastructure security 4,
51,61,71,81,91,101,111,
51n,6n,7n,8n,9n,10n,11n
4 | Network media security 5n,6n,7n,8n,9n,10n,11n

FUNCTIONAL (within each infrastructure component)
51 | System integrity 61,71,91, 5n,6n,7n, reliability, fault-tolerance
61 | Data confidentiality 9i,6n
7i | Data integrity 9i,7n
81 | Nondenial of service 51,71,91,5n,7n,9n, hardware availability
9i | Authentication integrity | Authentication mechanism, keys
10i | Nonrepudiation 9i, algorithm strength, key protection
11i | Accountability 9i
FUNCTIONAL (within each end-user system)
5e | System integrity 51,61,71,81,91,10i,11i,6e,7e,8e,9e,
reliability, fault-tolerance
6e | Data confidentiality 61,91,9e, local encryption
7e | Data integrity 71,91,9e, local encryption
8e | Nondenial of service 51,61,71,91,5e,6e,7e,9e, hardware availability
9e | Authentication integrity | 9i (authentication server)
10e | Nonrepudiation 9i, and perhaps 9e (but ideally not!)
11e | Accountability 9i,9e
FUNCTIONAL (over network media)
5n | Media integrity No dependence if traffic well encrypted;

otherwise, dependent on media behavior,
malfeasors, and the environment

6n | Data confidentiality No dependence if traffic well encrypted;
otherwise, similar to media integrity, plus
strength of encryption and key management,

7n | Data integrity Strength of encryption and key management,
error-detecting and -correcting codes
8n | Nondenial of service Alternate routing, redundancy, retries;

depends on media being within tolerances
9n | Authentication integrity [Nonspoofing depends on infrastructure]

10n | Nonrepudiation [Also depends on the infrastructure]

11n | Accountability Network traffic monitoring
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8 Property Transformations Under Composition and Layering

Section 8 considers some fundamental types of system and subsystem properties, and how those
properties are affected by subsystem composition and hierarchical layering. In general, subsystem
properties may undergo transformations as a result of composition or layering of subsystems, and
properties of the resulting systems may be formally derived from the underlying properties. Our
intent here is to make explicit the properties, the transformations they undergo, and the process
of deriving composite properties — and to address all the assumptions on which formal reasoning
must depend.

8.1 Properties

In the past, much emphasis has been placed on properties that remain invariant under simple no-
feedback subsystem composition [2, 131, 134, 135, 136, 137, 139, 202, 206, 238, 255], in which the
outputs of one subsystem become the inputs to the next subsystem.

Here we take a more general view that properties may be transformed under less simple composi-
tions. Under the notion of generalized composition, we include aggregation of collections of modules
within particular layers, hierarchical layering of modules in the presence of privilege mechanisms,
and interactions among components — in both centralized and distributed systems. We also in-
clude effects of call-and-return semantics, feedback, and bilateral module structures in distributed
systems. In certain cases, a transformation may represent an identity — namely, when particular
properties are preserved by the composition. With this generalized approach, the compositions
that preserve properties become an important special case of the approach in which properties are
transformed, and to which case the existing body of research on composition invariants applies.

Basically, this notion of generalized composition is a tricky business. For example, suppose that we
have two Al systems that are connected via an unprotected local network. If passwords are able
to flow unencrypted over the network, and are able to be read en route by would-be misusers, then
the fact that two Al systems are involved becomes almost irrelevant with respect to the assurance
relating to the security of the composition. Similarly, if we layer a supposedly secure operating
system on top of a fault-tolerant hardware platform, we might hope that we have attained a secure,
reliable system. However, certain fault modes that exceed the given fault tolerance may result in a
serious loss of security.

Lamport considers two types of properties, safety and liveness. A liveness property implies that
a system will eventually do something; a safety property implies that if the system eventually
does something, its behavior will be as specified. Adequate behavior typically implies that certain
Lamport-style safety properties and certain liveness properties be satisfied. (In this report, we use
“safety” to imply human safety rather than Lamport-style safety, and explicitly qualify the latter
term.)

Several concepts that are normally undifferentiated in their relation to composition have been
treated individually in a recent doctoral thesis by Heather Hinton [90]. Hinton distinguishes among
five types of Lamport-style safety properties: faithfulness, provenance, authenticity, integrity, and
confidentiality. She also identifies four types of progress properties (a form of liveness): accessibility,
eventual progress, termination, and eventual output. Faithfulness implies consistent repeatability
in the behavior of any particular component. Provenance implies that the identity of an origi-
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nating system, program, or agent is known and well defined. Authenticity implies the absence of
masquerading and the genuineness of a resource or action — for example, that the provenance is
really genuine. Integrity and confidentiality essentially are as defined here. Accessibility implies
that inputs are eventually accepted for processing. Eventual progress implies that some forward
progress will eventually be made. Termination implies that the progress will ultimately conclude.
Eventual output implies that the results of the progress will eventually be released.

This classification is useful in understanding the effects of subsystem composition. Some types of
properties are domain independent (namely, faithfulness, provenance, authenticity, and the progress
properties), whereas the others are domain dependent (integrity and confidentiality). With respect
to Hinton’s definition of composability (which is somewhat different from that of Sutherland [238]),
the domain-independent properties are composable, whereas the domain-dependent properties are
not always composable — depending on whether or not the composition permits feedback. Without
feedback, the domain-independent properties are composable; with feedback, those properties are
contingently composable, that is, they remain true for a particular component locally, but may not
be true for interconnections of that component with other components having the same property.

Of particular interest here is the concept of an emergent property — namely, a property that is not
meaningful with respect to lower layers or to individual components at a particular layer, but that
is meaningful with respect to a higher layer or with respect to the composition of components at the
given layer.'” Hinton shows that the composition of domain-independent composable properties
does not result in emergent properties, whereas the composition of domain-dependent composable
properties may result in emergent properties. This concept is important because it reinforces the
necessity of addressing domain-dependent properties.

To understand the intrinsic nature of emergent properties, consider the class of application-layer
safety properties. Ultimately, user safety depends not only on the implementation of the application
layer, but also on lower-layer functionality. For example, it depends on the reliability of hardware,
operating systems, and database management systems (if any). It also depends on the ability
of those lower layers to withstand malicious or accidental misuse, because any subversion could
potentially result in a loss of safety. Whereas it is theoretically possible to expand the highest-layer
properties in terms of all the subtended properties, it is in practice absurd to do so. It would
violate the tenets of software engineering (such as abstraction) as well as common sense. Thus, we
stress the importance of a specification approach in which abstractions at any particular layer are
specified in terms of their own relevant constructs, and where the mappings between layers are used
to bridge the gaps in abstraction between layers — in terms of both specifications and properties to
be satisfied, in the style of Robinson and Levitt [199]. As a consequence, many of the higher-layer
properties are either emergent or partially emergent. On the other hand, a module specified at
one layer may also appear identically at higher layers, as illustrated by the asterisks and square
brackets in the PSOS hierarchy shown in Table 6. In cases where identical functionality appears
at different layers, the corresponding higher-layer properties are not emergent.

In dealing with hierarchical layering and compositions, abstraction is really the fundamental con-
cept. However, Einstein’s statement noted in Section 2.1 must be observed. Abstractions must be
sufficiently complete, consistent, and truthful to describe everything that is essential to permit the

'"Emergent properties are an old concept — in cellular biology and other disciplines. More recently, Leveson [116]
considers emergent properties in the context of software safety, making the case that safety is itself an emergent
property that is not meaningful at lower layers. Jim Horning privately suggested that resonance is an emergent
property in a circuit composed of resistors, capacitors, and inductors.
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gaps among different abstractions to be bridged and to enable reasoning about properties to be
based on realistic assumptions. Parnas makes the distinction between abstractions and falsehoods.
Abstractions are incomplete descriptions that intentionally simplify reality. Ideally, they must be
truthful (as far as they go). On the other hand, descriptions that permit incorrect behavior to
occur are dangerous, and must be avoided. There is a serious risk of errors of omission resulting
from incomplete descriptions that introduce falsehoods.

8.2 Transformations in MLS systems

Viewed somewhat simplistically, the canonical kernel-TCB decomposition espoused by the TCSEC
leads to a kernel that enforces the strict MLS property but that also must permit certain privileged
operations that may (and can) actually violate the strict-sense MLS properties (for example, no
adverse flow with respect to security levels and no bypasses of the kernel interface); the TCB
then attempts to ensure that the privileged operations cannot be misused from the TCB interface,
which must itself be nonbypassable and must properly encapsulate the kernel. An example of such
a violation of the kernel MLS property occurs when it is necessary to perform trusted downgrading,
sanitization, or abstracting. Thus, the set of kernel properties that must be satisfied is not identical
to the set of TCB properties, and the TCB objects are not necessarily identical to the kernel
objects. Whether or not the abstract objects are the same at each layer, the trusted exceptions
that potentially violate strict MLS must be completely modeled and analyzed, and the relationship
between the TCB and the rest of the system must be suitably constrained.

An early effort to model privileged TCB operations was reported in 1985 by Benzel and Tavilla [15]
for the Honeywell Secure Communications Processor (SCOMP), using Gypsy to specify and analyze
the TCB. The kernel enforced multilevel security [229], but permitted some privileged overrides.
The trusted mechanisms were represented by three TCB policies, as follows:

e Privilege Policy, relating to the invocation of privileged kernel functions, the privileged mod-
ification of certain kernel attributes, and the explicit overriding of the kernel properties (in
particularly, enabling writing down in violation of Bell and LaPadula).

e Integrity Policy, in particular the Biba policy of preventing low-integrity entities from con-
taminating higher-integrity entities, with respect to objects perceived by the TCB. Note that
in SCOMP, MLI was enforced by the TCB and not by the kernel.

e Functional Correctness Policy, with respect to certain highly critical but unprivileged TCB
functions that must operate correctly. Critical functions included correct (noncompromisible)
labeling of security levels and Trojan-horseless system editors.

Each of these policies represents an emergent property that is not relevant to the underlying security
kernel. The strict MLS property of a security kernel (even including any privileged-exception
mechanisms) is typically considered as the primary kernel property of interest. However, the
trusted computing base must also be analyzed thoroughly, and that requires the representation
and mappings of emergent properties above and beyond the kernel MLS property, as noted in
Section 8.1.

As described in [15], the formal design proofs carried out with Gypsy found one multilevel-security
flow violation and one covert channel. This example clearly illustrates that there is much more
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than strict MLS that must be considered, and that the TCB and kernel each has its own set of
properties to be enforced and maintained. This example, along with SeaView and PSOS, show how
the properties of one layer can be analyzed based on the specifications and properties of the lower
layers.

Also of interest in this context is an effort undertaken for the LOCK system, to show the relationship
between properties at one layer and properties at the next layer [215].

8.3 Transformations of SeaView Properties

The transformational approach is further illustrated by considering the SeaView properties noted
in Table 10. The OS-TCB layer enforces multilevel security on operating-system virtual memory
objects, while the DB-TCB layer enforces a variety of database properties on database objects.
Although the multilevel-security property is in a vague sense preserved by ascending from the
OS-TCB to the DB-TCB, a formal representation of the properties at each layer must reflect the
fact that the objects at each layer are actually quite different, and therefore that the property
representations are different. Indeed, the objects at the different layers must be different, in the
interest of type consistency. Furthermore, there are numerous other database properties at the
upper layer that can be derived from the properties of the lower layer and the specification of the
upper-layer functionality. Besides, the exception conditions are different at each layer, and at each
layer they are expressed in terms of their own abstract objects. Whereas it is possible in an abstract
sense to polymorphically have the same property hold at both layers, the complete representation
must include the different interface semantics as well as the relevant different exception conditions.
Thus, it makes sense to consider how properties of the upper-layer specifications can be considered
as transformations of the lower-layer properties.

Referring to Table 10, the relevant DB-TCB property relating to MLS requires that, for any given
granularity of database access (e.g., queries or updates on multirelation joins, single-relation views,
relations, or elements), the security level of the requester must be commensurate with the security
level applicable to the requested data. In addition, many of the upper-layer properties are emergent,
and dependent on lower-layer properties that are not noted in the table, for example, relating to
the correctness or fault-masking abilities of the lower layer. Thus, to reason about the upper-layer
properties, a more complete set of lower-layer properties must be present. Perhaps this added
difficulty is why so much emphasis has historically been placed on simple properties such as strict
MLS and on simple compositions, rather than on more complex properties and on less simple
compositions and layerings.

8.4 Transformations Within a Byzantine Clock Subsystem

Byzantine protocols also present an opportunity for a transformational view. Consider a Byzantine
clock subsystem [113] that is built out of 3f + 1 ordinary clocks, for which the Byzantine clock
subsystem provides the correct time despite the arbitrary misbehavior of any f constituent clocks
(each of which, for example, might maliciously or accidentally provide substantively different read-
ings to its neighboring clocks at any particular time). Here the Byzantine clock subsystem depends
on the constituent clocks, but does not depend upon the correctness of all the constituent clocks;
furthermore, the properties of the individual clocks can be used to derive (that is, to prove) the
properties of the resulting Byzantine clock, based on the details of the particular Byzantine clock
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algorithm and its implementation, and on the details of the logic for masking misbehavior. The
nature of the transformations from components to subsystem is similar to a simple hierarchical
layering, although the resulting subsystem properties can be derived despite a total lack of assump-
tions about the behavior of at most f misbehaving components. This is somewhat different from
the more conventional layering, in which explicit formalization of relevant properties of lower-layer
functionality is required to derive the desired properties of the upper layer.

Further discussion of a three-layered model consisting of (1) clock synchronization [207], (2) Byzan-
tine agreement [118, 119], and (3) diagnosis and removal of faulty components is considered by
Lincoln et al. [120] — who also provide formal verifications for a variety of hybrid algorithms [119]
that can greatly increase the coverage of misbehaving components. This three-layered integration
of separate models and proofs is of considerable practical interest, as well as representing innovative
uses of formal methods.

8.5 Transformations Under Gateway Interposition

A different kind of example is provided by a gateway that controls all traffic entering or leaving
a given site (that is, the inputs and outputs of potentially all functionality logically inside the
gateway). For example, a gateway might act as

e a filter that permits certain communications subject to specific authorizations (inbound, or
outbound, or both)

e a firewall that blocks all communications (inbound and outbound)

e a firedoor that operates only in emergency situations (inbound, or outbound, or both)

Each of these cases might involve differing constraints on inbound and outbound traffic, and on
different types of communications.

Gateways to the Internet represent a popular example of the need for a trustworthy subsystem.

Three types of desirable properties are suggested (in addition to the properties normally expected
by the systems on whose behalf the gateway is operating):

e Maintenance of the confidentiality of information within the given site, with respect to infor-
mation traversing the gateway from the given site to the rest of the Internet. Thus, there must
be no possibilities of information confidentiality being compromised through the gateway.

e Maintenance of the system integrity of the given site, with respect to traffic traversing the
gateway from the rest of the Internet to the given site. Thus, modifications of internal site
systems (including the insertion of Trojan horses and other nasty software) must be prevented
by the gateway.

e Prevention of denials of service within the given site, caused from the rest of the Internet.

In each of these three cases, the gateway has been described as protecting or governing what is
logically inside the gateway. Alternatively, by reflection, a gateway could conceptually act on behalf
of both the inside and the outside, for any of the three types of properties — for example, in the
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case of a bidirectional filter. (In that case, it might seem superficially that a bidirectional filter
could be split into two unidirectional filters; however, it may be desirable for the filter to have a
state memory that can enable it to relate what has gone out to what has come in and vice versa
— in which case the filter may more easily be considered as either a single bidirectional filter, or
as two unidirectional filters with controlled communications.)

The first two of these gateway properties have the appearance of properties that must be preserved
by the gateway, with respect to outward information flow and inward information flow, respectively.
However, the gateway must also be able to enforce transformed versions of those properties, and
in some cases stronger versions — for example, relating to additional authentication, monitoring,
and traceability that may not be present in the internal systems that the gateway is protecting.
Furthermore, the third property relating to the prevention of denials of service within the gateway
and within the internal systems could be absent or only vestigially present in the internal systems.
Thus, the third property is emergent (in the sense of Section 8), whereas the first two properties
also have some emergent aspects. Thus, the relationships among properties to be satisfied by the
gateway and the properties to be satisfied by the internal systems can beneficially be addressed by
considering the transformations that each property undergoes.

8.6 Transformations Within a Cryptographic Protocol

Situations in which information and associated properties are transformed from step to step within
a cryptographic protocol can be modeled by a logic such as the BAN logic [29] (Section 6.3), which
assists in reasoning about trustedness and trustworthiness in cryptographic protocols.

As information undergoes transformations, so do properties pertaining to the information.

e Crypto for confidentiality implies a transformation from an unencrypted form to an encrypted
form and a transformation from an encrypted form to an unencrypted form. Properties per-
taining to the use of such crypto include nonbypassability of the encryption process, nonex-
posure of the keys, and algorithmic strength. For example, what happens to these properties
overall? Furthermore, there may be vulnerabilities if intermediate stages of a particular im-
plementation are accessible, as in the case of a software-implemented triple DES.

e Crypto for user or peer authentication implies a transformation from identity information
to cryptobinding information, and a transformation on the cryptobinding information that
authenticates the original identity. Properties that may themselves be transformed under
these information transformations involve (for example) authenticity, nonspoofability, and
nonrepudiatability. For example, these attributes typically depend on the integrity of the
underlying operating system and on the protection of crypto keys.

e Crypto for entity integrity implies a transformation from (for example) a message to its cryp-
tobinding information and another transformation from the message and its cryptobinding
information to a binary decision that verifies entity integrity. Properties that may be assessed
involve (for example) integrity, nonspoofability, and nonrepudiatability.

Confidentiality, integrity, authenticity, nonspoofability, and nonrepudiatability are all dynamic
properties that can be compromised during system use.
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8.7 Commonalities Among Different Types of Transformations

The foregoing sections exhibit various forms of composition and layering, above and beyond the
traditional simple serial connection in which outputs from one component become inputs to another
(with no reverse path in the automata sense) or invocation (with some sort of call-and-return
semantics). These forms are summarized as follows.

e 8.2. Multilevel security: Layering of a trustworthy mechanism on top of a privilege mechanism

e 8.3. SeaView: Layering of an untrusted mechanism on top of a trusted mechanism

8.4. Byzantium: Layering of a trustworthy mechanism on top of untrusted mechanisms

e 8.5. Trustworthy gateways such as firewalls: Interposition of a trustworthy mechanism be-
tween two mechanisms of indeterminate trustworthiness, to control the flow of traffic (in one
or both directions)

e 8.6a. Crypto for confidentiality: Interposition of a trustworthy mechanism between two
mechanisms of indeterminate trustworthiness, to protect the intermediate medium and one
or both of the two end mechanisms from being compromised while information is in an
untrustworthy transmission or storage medium

e 8.6b. Crypto for entity authentication: Inclusion of a trustworthy mechanism for crypto-
binding to determine an authentication signature, and a possibly somewhat less trustworthy
mechanism for checking the authenticity of the cryptobinding

e 8.6c. Crypto for entity integrity: Inclusion of a trustworthy mechanism for applying an
integrity signature, and a possibly somewhat less trustworthy mechanism for checking its
integrity

9 Formal and Semiformal Methods Useful in Other Disciplines

Section 9 summarizes only briefly a few relevant efforts outside of the security area that should be
studied further for their potential applicability to security.

A session organized and chaired by P.G. Neumann for the 1995 National Information System
Security Conference considers recent progress relating to reliability, fault tolerance, safety, and
security applications, and how progress in other disciplines might be applied to secure systems and
communications. Position statements from Neumann [160], R.W. Butler [31], R. Kurshan [112],
and W. Legato [115] are included in the 1995 NISSC proceedings.

Butler has sponsored extensive work at the NASA Langley Research Center, aimed at applying
formal methods to life-critical subsystems in aerospace applications — much of which is summa-
rized in [32]. In various relevant R&D and technology-transfer projects, formal methods have been
applied to architectural-level fault tolerance, clock synchronization, interactive consistency and
Byzantine agreement, design of special-purpose hardware devices and units, asynchronous com-
munication protocols, design and verification of ASICs (application-specific integrated circuits —
custom-designed hardware for specific problem domains such as signal processing), decision tables,
railroad-signalling systems, and analysis of both the Space Shuttle software and aircraft navigation
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software. Some of this work uses approaches and tools developed by organizations known for past
security work, notably SRI Computer Science Laboratory (SRI’s PVS for specifying the instruction
set and microarchitecture of the AAMP5 microprocessor, EHDM for the Reliable Computing Plat-
form and for clock synchronization — see [173]), Odyssey Research Associates (modeling railway
switching control for Union Switch and Signal, using TBell for decision tables, and the develop-
ment of Romulus, and using Penelope for a Boeing 777 component), to cite just a few recent efforts.
See [32, 33] for further references, and [92] for the proceedings of the most recent Langley Formal
Methods Workshop. Also, see [37, 38] for two NASA guidebooks on the use of formal methods in
NASA applications.

John Rushby provides a comprehensive general view of the ways in which formal methods are
applicable to airborne systems [209], and to safety more generally [208]. Many of his conclusions
relative to safety are also applicable here. (See Section 12.1.)

David Parnas and Nancy Leveson have each used extensive formal analytic techniques to model
control-system properties, for example, related to the Ontario Hydro nuclear-power shutdown sys-
tem. Parnas’s techniques for formalizing documentation and applying them to state tables appears
to be quite applicable to security applications. For the FAA’s aircraft collision-avoidance systems,
Leveson has also provided formal requirements that have been adopted as the official requirements.
Her techniques for fault-tree analysis and hazard analysis are somewhat specialized, but represen-
tative of a kind of analysis that might be useful in security applications. Leveson’s recent book on
Safeware [116] provides extensive background on these techniques. Some of Parnas’s recent work
is summarized in [179].

Model checking is becoming recognized as a useful middle ground between two extremes: higher-
order logics that require complicated verification, and informal description languages that permit
little or no formal analysis. Model checking uses finite-state representations (such as binary decision
diagrams) and enables a decidable analysis (explicit or implicit) of the state space to determine the
satisfaction of certain properties. It is applicable to hardware and software. Typical approaches
involve exhaustive or heuristically motivated searches through the entire state space.

Edmund Clarke and Kenneth McMillan (SMV [43, 140]) at Carnegie Mellon University, Robert
Kurshan (COSPAN [87]) and G.J. Holzmann (SPIN [93]) at AT&T Bell Laboratories, David Dill
at Stanford (Mur¢ [57]), and others have used model checking in various applications, involving
communications protocols, cache-coherence algorithms, hardware designs, and asynchronous sys-
tems. For additional references, see [9, 11, 25, 28]. Model checking is easily automated, and is
adept at finding design flaws — which are explicitly represented in the analysis rather than merely
suggested. Model checking does not seem to scale well for very large systems, but is ideal for
analyzing relatively small state spaces. It would appear to be most useful if it could be used in
combination with hierarchical and compositional formal methods, and with theorem proving and/or
proof checking. However, this integration of different approaches has not yet been accomplished
other than partially and experimentally.

The European community is very fond of formal description languages (FDLs) such as Z (Zed),
VDM, ESsTELLE (Extended Finite State Machine Language), LoTos (Language Of Temporal Or-
dering Specification), and SDL (Specification and Description Language). See Spivey [232] and
Potter et al. [190] for definitions of Z and [243] for a detailed overviews of ESTELLE, LOoTOS, and
SDL. Each of these languages is logically based on finite-state machines. ESTELLE uses Pascal data
types; LoTos and SDL use algebraic specifications of abstract data types. Of these languages, Es-
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TELLE appears best able to accommodate hierarchical layering of specifications. One of the main
uses of the last three of these languages is for protocol specification and verification; for example,
see [100] for an application of ESTELLE. The establishment of each language was heavily driven by
desires for language standardization, but each is amenable to some formal analysis. Each of these
approaches has its own strengths and areas of applicability.

7 has been used in a variety of applications, including specification of a safety-critical control
system [95] and a specification of part of IBM’s CICS operating system component. Various
examples of the use of the other three FDLs are given in [243].

Bicarregui and Ritchie give a comparison between the specifications in VDM and B of a communi-
cations protocol previously specified in CCS [20].

Numerous algebraic (as opposed to state-based) specification languages also can be considered,
such as OBJ [71] using equational logic, and CSP [91] using Communicating Sequential Processes.
Historically, algebraic techniques have generally been less applicable to representing and reasoning
about large and complex systems, and have not been used much for secure systems.

Various temporal logics exist that are suitable for specifying real-time algorithms. However, they
have usually not been applied to security problems or to specifying large systems.

A useful summary of the use of formal methods in a variety of real-system industrial applications
is given by Craigen at al. [47], based on an earlier report [46].
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Part Three: FORMALIZING RISSC ARCHITECTURES

10 Implications of the RISSC Philosophy on Formal Methods

Section 10 considers the effects that RISSC architectures have on system specification and analysis.
We examine whether the use of formal methods in the design and implementation of RISSC systems
can be simpler than the corresponding uses in more conventional distributed-system and centralized
architectures. In particular, we consider the implications of subsystem dependence and property
dependence on the corresponding statements and proofs of properties.

In principle, the reduced-interface notion of the RISSC philosophy should simplify the task of
applying formal methods to complex distributed systems. In general, in a given design (or worse
yet, in its implementation), it is difficult to disentangle interrelationships among properties unless
the corresponding design and implementation entities to which those properties refer are themselves
suitably decoupled. Thus, the primary challenge is one of decoupling a design into relatively
separable components, according to the RISSC philosophy; from that decoupling, a simplification
of the specification and analysis can follow.

The dependencies of Table 11 are seemingly more elaborate than those made explicit in published
formal analyses. However, this apparent complexity must not be construed as an indication that
things are any more complicated than they have always been. Reality is often more complex than
we would like it to be, and the table merely illustrates that (1) the satisfaction of a particular
abstract property typically depends on the satisfaction of other properties, in a way that is usually
not made explicit, and (2) many detailed properties and the ways in which they interrelate have
tended to be sublimated in the past.

10.1 Implications on the System Development Process

Conventional distributed systems are typically plagued by a variety of shortcomings that affect
system development and analysis, such as the following:

e Overly powerful global mechanisms (such as the Unix superuser facility) violate the principle
of least privilege. (There are various efforts to separate the superuser functionality into
privileged subdomains — such as Badger et al. [10], who describe a partitioning of the Unix
superuser functionality into 27 different privilege classes.)

e Unprotected external and internal interfaces such as .rhosts, rsh, and rlogin mechanisms
may be easily penetrated. Pervasive interconnectivities that are largely unchecked are also
risky (such as the use of root within mechanisms that in actuality do not require privileges
but are given them primarily to simplify implementation).

e Unforeseen interactions may exist among seemingly isolated or single-purpose subsystems
(such as global dependence on a single nonredundant authentication server, depended upon
for a variety of functions above and beyond just authentication).

e Unvalidated executables may be hidden within apparently benign information — for example,
PostScript files or Microsoft icons containing Trojan horses, or E-mail letter bombs that get
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interpreted by mail-reader programs.

Vulnerabilities such as these present an open invitation to Trojan horses and other forms of misuse.

The RISSC approach seeks to minimize these harmful effects, by decoupling the subsystems and
localizing effects to within subsystems, wherever possible — especially with respect to security,
but also with respect to system reliability and fault tolerance. In a narrower sense, that is sort
of what the TCSEC TCB-kernel approach attempted to do in the small. The significance of
the RISSC approach is that it attempts to extend the intent of the TCSEC, in the large — to
highly distributed systems and networks, to reliability issues, and to a broader sense of security.
Abstraction, modularization, structural encapsulation, separation of concerns, allocation of least
privilege, minimization of dependencies, and other similar techniques are completely consistent with
the RISSC philosophy, and can significantly enhance security, as noted in Sections 2, 4.1, and 5.
These concepts also lend themselves naturally to easier application of formal methods.

10.2 Implications on System Analysis

RISSC techniques can contribute notably to the security inherent in a system design, perhaps
most significantly by forcing a structure on the design that in turn can simplify specification and
implementation, and can help to avoid many of the more common system vulnerabilities that
typically result from poor design (such as those enumerated in [159]). Assuming that a design has
adhered to the RISSC philosophy, the analysis of that design and of its implementation can also
be greatly simplified.

Interactions among seemingly isolated subsystems must be made explicit, and potentially harmful
interactions must either be demonstrably avoided, or else masked by higher layers. In addition, the
effects of would-be Trojan horses and design flaws must be prevented, masked, or at least identified
and isolated. A pitfall with all system specification techniques is that a component may do exactly
what it is expected to do, but may additionally do something else that is not explicitly prohibited —
such as occurs in surreptitious Trojan-horse activities. Thus, it is advisable to have both positive
specifications as to what must occur, and negative constraints as to what must not occur — in
whatever form is suitable, for example, requirements or specifications. However, because it is very
difficult to enumerate exhaustively all the bad things that should not happen, explicit requirements
that constrain bad effects are important, particularly if those bad effects can arise from weaknesses
resulting from the structure of the overall architecture.

11 Appropriate RISSC Architectures

Section 11 selects several representative subfamilies from three basic families of multilevel-secure
architectures enumerated in Appendix A. These subfamilies are more or less adherents of the
RISSC concept, and have varying ease of amenability to formal methods.

The first family [[1]] of system architectures in Section A.1 contains two subfamilies [[1a]] and [[1b]],
denoted as follows:

e [[1a]] MLS,User-S1,AT,ZN-ZT-MT,XU,FP-FS-MU-CT
e [[1b]] MLS,User-Sn,AT,ZN-ZT-MT,XU,FP-FS-MU-CT
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The second family [[2]] includes one subfamily that is of particular interest, namely, [[2a]] — which
is a slight variant of [[1a]]:

e [[2a]] MLS,User-S1,AT,ZN-ZT-MT,XU,FNc-FS-MU-CT

The architectures of [[1a]], [[1b]], and [[2a]] have only single-level file servers, and are useful examples
of the RISSC concept. Another subfamily [[3a]] allows the presence of multilevel-secure file servers,
and is therefore somewhat less RISSC oriented, but still appropriate for discussion:

e [[3a]] MLS,User-S1,AT,ZN-ZT-MT ,XU,FP-FT-FM-MT

The notation used to represent these cases is that used in Appendix A. For each of the selected
RISSC-oriented architecture subfamilies, multilevel-secure systems (MLS) are composed of single-
level end-user systems (User-S), trustworthy authentication servers (AT), trustworthy networking
that enforces multilevel security (ZN-ZT-MT), untrusted network communication media (XU), and
semitrusted file servers. Neither [[1a]] nor [[1b]] nor [[3a]] adds any encryption for file storage (FP),
while [[2a]] is identical to [[1la]] except that files are encrypted by the end-user system and stored
by the file servers in the resulting encrypted form. Each of [[1a], [[1b], and [[2a]] has file servers
that are trusted to support discretionary access controls for shared file access, but that do not
need to enforce multilevel security (FS-MU-CT); that is, each file server is a single-level server
(FS). Family [[3a]] has multilevel-secure servers. Variants [[1a]], [[2a]], and [[3a]] have single-user
end-user systems (User-S1); variant [[1b]] has end-user systems any of which may have competitive
users (User-Sn).

Because these architectural subfamilies are closely related to each other, they are considered to-
gether in Section 11.1.

This report has devoted some effort to multilevel-secure system complexes. It suggests that the
RISSC concept is beneficial in simplifying the problems of getting vendors to provide multilevel
security without having to do massive redesign of their primary product lines, while at the same
time simplifying some of the uses of formal methods as applied to those systems.

On the other hand, Section 5.6 considers the usefulness of the RISSC concept even in the context of
conventional single-level applications in which no multilevel security is required. The architectural
subfamily [[7a]] also represents a RISSC-oriented architecture that has most of the benefits of [[2a]]
— except that it does not support multilevel security:

e [[7a]] User-S1,AT,ZN-ZT ,XU,FNc-FU
Much of the discussion of [[2a]] applies to [[7a]] as well.

The choice of architecture ultimately depends on what components can sensibly be trusted. If end-
user systems are not trustworthy, placing more security in the servers is important. If file servers
and network connections are particularly trustworthy in the environments in which they operate,
encryption may be unnecessary for storing files on the file servers. If file servers cannot be secure,
then end-user encryption is desirable, along with multiple storage sites to avoid denial-of-service
attacks. If end-user systems are really trustworthy, then multiuser end-user systems are feasible. If
it is absolutely essential that each end-user system be multilevel secure, then trustworthiness must
be much greater. Whether or not the resulting analysis is simplified depends on which architecture
is chosen.
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11.1 Properties of RISSC Architectures

We characterize here the security-relevant properties that must be satisfied in each case. These
properties provide an instantiation of the generalized properties of Section 7.1. Properties are
treated as a group wherever they are identical for multiple cases, and differences are explicitly
noted (namely, those relating to end-user-systems, file encryption, and file servers). The term
trustworthy is used in the general sense, not just in the narrow sense of MLS; we attempt to be
very explicit as to what functionality must be trustworthy.

e Overall system security (MLS). Every system complex of each subfamily must enforce
multilevel security with respect to all end users and all accessible objects (irrespective of the
MLS-trustworthiness of the end-user systems). In addition, all other relevant security criteria
(including but not limited to the applicable elements of the TCSEC and its successors) must
be satisfied, as required.

e Overall network security (MLS). Any networking of each subfamily must enforce mul-
tilevel security with respect to all end users and all accessible objects (irrespective of the
MLS-trustworthiness of the end-user systems), as well as other relevant security criteria.

e End-user-system security for [[1a]], [[2a]], and [[3a]] (User-S1) and [[1b]] (User-Sn).
The common requirements among the subfamilies are as follows. Each end-user workstation is
a single-level system. Consequently, there are no local multilevel-security requirements. The
end-user systems must be trustworthy with respect to user authentication (nonspoofable),
whether there is only one user or a collection of potentially competitive users. The end-user
systems must be free of maliciously implanted Trojan horses that could compromise user-
system integrity. Their network interface software must not permit unintended leakage of
(single-level) outbound information or insertion of extraneous inbound information (data and
executables). The audit-trail collection must be nonbypassable.

— Noncompetitive end-user systems [[1la]], [[2a]], and [[3a]] (User-S1). Single-
user end-user systems do not require individualized access controls, although they still
can benefit from controls that isolate users from the operating system and other utility
software.

— Competitive end-user systems [[1b]] (User-Sn). Competitive-user end-user sys-
tems must additionally provide local separation of users, in terms of discretionary access
control and user process isolation.

e Authentication-server security (AT). Normal user-to-system authentication (that is, au-
thenticating the user to the system) and the reverse-direction system-to-user authentication
(as in the TCSEC trusted path that authenticates the system to the user) could in principle
be distributed and replicated into each of the end-user systems, whereas system-by-system
(e.g., server-by-server) authentication cannot. However, such distribution of responsibility
would imply a level of authentication-trustworthiness that would often not be commensurate
with the trustworthiness of the available end-user systems — which themselves might be
too easily compromisible. Furthermore, the bilateral authentication is an example of mutual
suspicion, where the lack of integrity on both sides is a potential vulnerability. Thus, it is
sensible to remove from the end-user systems as much trustworthiness as possible for end-user
authentication.
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The use of trustworthy authentication servers can avoid the need to trust the end-user systems
for user-to-system authentication, although it is still desirable to have end-user systems be
able to trust the authentication servers and other servers via server-to-user authentication.
The avoidance of trust in the end-user systems is perhaps more important in [[1b]] than in
[[1a]], [[2a]], and [[3a]], but can also be important in [[la]] and [[2a]] environments whenever
physical security cannot be trusted. The authentication servers must be secure against both
remote and internal attacks, and their authentication process must be nonspoofable (including
protection against replay attacks). Although the authentication servers do not need to be
trusted to enforce multilevel separation with respect to user objects, they may still need some
knowledge about the association of maximum clearance levels with users and with systems.
They must also be concerned with inference channels and possibilities for traffic analysis that
may exist because of the presence of the authentication servers. If this is perceived as a
problem, it is possible to have separate authentication servers for the most sensitive levels.
Alternatively, distributed authentication can be employed, using multikey encryption schemes
such as Micali [52, 142], whereby dependence on a single authority can be avoided.

e Network-server security (ZN-ZT-MT). In each of these RISSC subfamilies, network in-
terfacing cannot be distributed and replicated into each of the end-user systems — because
the network servers must ultimately be enforcers of multilevel security, and the end-user sys-
tems cannot be trusted for multilevel security. The usual MLS properties must be satisfied
by all traffic passing through the network servers, and those servers must not be bypassable
or compromisible. The network servers are also responsible for encryption and decryption
of any sensitive communications, especially whenever those functions are not provided end-
to-end by the end-user systems. In addition, cryptographic checksums and error-detecting
and error-correcting coding would presumably be provided by the network servers to increase
integrity, reliability, and availability. File access is mediated by the combination of the au-
thentication servers and the network servers, which prevent violation of multilevel security.
Encryption and decryption of files for transmission can be provided either by the end-user
systems (particularly in [[la]] and [[2a]]) or — whenever the paths between end-user systems
and network servers are suitably trustworthy — by the network servers).

In architecture family [[1]], the single-level file servers are not required to provide any file
encryption, although they could decrypt encrypted transmissions of files from the network
servers. In [[2a]], the network servers may not need to provide additional crypto for files,
because the end-user systems already do so. In [[3a]], encryption by the network servers is
desirable.

e Communication security (XU). The communication media can be untrusted for confi-
dentiality (CU), and also for integrity (IU) if the network servers provide integrity checks
and error-correcting coding. Some additional protection may be desired for defense against
denials of service (DT), such as alternative routing among en-route network controllers.

e File-server security (FP-FS-MU-CT in [[1a]] and [[1b]], FNc-FS-MU-CT in [[2a]]).
In each of these subfamilies, the single-level file servers store information only at a single level
(and, if desired, compartment). The common requirement is that the file servers must isolate
the files for one user from the files for another user. That is, the file servers must deliver
the unimpaired files to the proper end-user system. In [[1b]], it is then the responsibility of
the end-user system to ensure appropriate separation among competing users on each end-
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user system. Because there is no multilevel security per se (and labels, if they exist, would
presumably be for advisory purposes only), only discretionary access controls are required in
the file servers, with read, write, execute, and any other appropriate privileges, as desired.
Whenever files may be shared among different users, the access-control permissions must
reside in the file servers.

File encryption and decryption are not required in [[1]]. File encryption is provided by the
end-user systems in [[2a]], which architecture (as noted above) is identical to [[1a]] except
that the user client provides the encryption before files are transmitted to the file server. In
this case, discretionary access controls include the typical read-write permissions, but access
also requires possession of the appropriate file-storage keys. Consequently, controlled sharing
of stored-encrypted files also requires controlled key distribution.'®

e File-server security (FP-FM-MT-FT in [[3a]]). In this subfamily, the multilevel-secure
file servers must enforce multilevel-security separation, with sufficiently high assurance com-
mensurate with the overall security requirements. This adds considerably greater trustworthi-
ness requirements and necessitates that the file servers must be strongly noncompromisible.
With respect to enforcing multilevel security, there are various trade-offs between having to
trust primarily the network servers (as in [[1]] and [[2]]) and also having to trust the file
servers as well (as in [[3]]).

Other architectures can be subjected to similar analyses. In addition, hybrid architectures can
be considered, with combinations of components and interconnections from several families or
subfamilies. The main purpose of this section is to demonstrate the types of properties that must
realistically be made explicit.

Of the four cases shown, [[la]] and [[2a]] most strongly adhere to the RISSC concept, with [[1b]]
less strictly compliant, and [[3a]] also less — but for different reasons. Nevertheless, all four
cases are of considerable interest from the point of view of incorporation into readily configurable
commercial systems, and have great potential in terms of their implications on the application of
formal methods, as noted in Sections 10.1 and 10.2. Similar comments apply to the single-level
systems of subfamily [[7a]].

11.2 RISSC Relevance to Security Criteria

Table 12 exhibits the various TCSEC criteria elements [151] and indicates how relevant they are for
each of these different system components of each of the RISSC-oriented architecture subfamilies,
[[1a]], [[1b]], and [[2a]]. The TCSEC criteria elements are used here for illustrative purposes,
because they are familiar. One extra item is added, augmenting covert-channel analysis with a new
requirement for defense against non-MLS traffic analysis, such as provided by OPSEC (Operational
Security) techniques. Other, more recent, criteria could be used, but would have very similar
manifestations in the table.

In the table, a solid bullet (o) indicates that the particular component contributes significantly to
the satisfaction of the given criteria element. An open bullet (o) indicates a secondary contribution.

18 Although it is conceptually possible that access controls could be replaced altogether by using different keys for
encrypting the same objects with different access permissions, this is not a good idea, for a variety of reasons.
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Table 12: Relevance of RISSC families [[1]] and [[2]] to security criteria

Architectural Components
[[1a]] [[1b]] [[2a]] AT | ZN-7ZT- | XU FS-
Criteria elements User-S1 | User-Sn | User-S1 MT MU-CT
TCSEC Security Policy:
Discretionary access control . . ° °
Object reuse . e[[1]] only
Labels:
Label integrity o o o .
Exportation (3 criteria)
Labeling human-read output o o o
Mandatory access controls .
Subject sensitivity labels o o o
Device labels .
TCSEC Accountability:
Identification/authentication .
Audit . ° °
Trusted path . . ° ° ° °
TCSEC Assurance:
System architecture o . . o
System integrity o o o . . .
Security testing o o o . . o
Design spec/verification . . o
MLS covert-channel analysis o
Non-MLS traffic analysis °
Trusted facility management o . . o
Configuration management o . . o
Trusted recovery o . o . . o
Trusted distribution o . o . . o
Legend:

e = primary contribution to criterion fulfillment
o = secondary contribution to criterion fulfillment
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Table 13: Relevance of RISSC family [[3]] to security criteria

Architectural Components
[[3a]] [[3b]] AT | ZN-ZT- | XU | FP-FM-
Criteria elements User-S1 | User-S1 MT MT-FT
TCSEC Security Policy:
Discretionary access control . ° °
Object reuse . .
Labels:
Label integrity ° o . .
Exportation (3 criteria) o
Labeling human-read output o o .
Mandatory access controls . .
Subject sensitivity labels o o .
Device labels . .
TCSEC Accountability:
Identification/authentication .
Audit
Trusted path . . . . .
TCSEC Assurance:
System architecture o . . o
System integrity o o . . .
Security testing ° o . . o
Design spec/verification . . o
MLS covert-channel analysis o
Non-MLS traffic analysis °
Trusted facility management o . . o
Configuration management ° . . o
Trusted recovery o . . . o
Trusted distribution o . . . o
Legend:

e = primary contribution to criterion fulfillment
o = secondary contribution to criterion fulfillment
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Family [[3]] is considered in Table 13. Because of the requirement that potentially all the file
servers may need to enforce multilevel security, the architectures of family [[3]] are somewhat less
in tune with the RISSC philosophy, although still vastly moreso than the more TCSEC-oriented
systems in which all end-user systems may be multilevel secure. The analysis for [[3a]] is similar
to those of [[la]] and [[2a]]. Table 13 clearly demonstrates the criteria-related critical dependence
on multilevel separation for the file servers. However, this is not an obstacle if such file servers are
routinely available. For comparison, Table 13 also includes subfamily [[3b]], which bears the same
resemblance to [[3a]] as [[Lb]] bears to [[1a]], namely it allows competitive users on the end-user
systems:

e [[3b]] MLS,User-Sn,AT,ZN-ZT-MT,XU,FP-FT-FM-MT

11.3 Illustrative RISSC Properties: Modular Crypto

As an illustration of desirable properties relating to the RISSC architectures of Section 11.1, consider
the design and implementation of systems with modular crypto discussed in Section 5.7, and the
risks that must be avoided. In these RISSC architectures, crypto contributes to the satisfaction of
several security criteria elements of Table 12, notably, discretionary access controls in [[1b]], object
reuse in [[la]] and [[1b]] (it is not a problem in [[2a]] or [[7a]]), cryptobinding and authentication,
and trusted paths from end-user systems to servers and vice versa. It also can help to reduce covert
channels and non-MLS traffic analysis of network media transmissions.

The risks to be avoided include, for example (among those noted in Section 5.7), key capture, replay
of encrypted commands, key tampering to cause denials of service, and unauthorized replacement
of an implementation of escrowed-key crypto with an implementation that undermines the escrow
process.

The following list enumerates a collection of illustrative properties that may be desirable for certain
crypto implementations, or on which the strength of such implementations depends. Satisfaction of
some of these properties is desirable in facilitating countermeasures to the various risks, to whatever
extent is desired. However, none of the given properties is absolute, and each must be tailored
somewhat to various relevant assumptions and implementation circumstances (such as hardware
versus software implementation, and whether the operating environment is an open one or a closed
one). Some properties are system properties relating to how the crypto is encapsulated or used,
while others pertain specifically to the crypto algorithms or protocols, or to their implementation.

The properties are grouped functionally. The first property is a generic catch-all that relates to risk
reduction; it depends on many of the succeeding properties. The next three groups of properties
relate to crypto implementations, cryptobinding and authentication, and key escrow. Pervasive
auditing is lumped together as a single property, even though it is distributed throughout and
associated with most security-relevant functions. The last property involves the security of the
underlying infrastructure, which is itself a broad category that encompasses operating systems,
database management, networking, with any or all the usual attributes such as confidentiality,
integrity, and availability (and in some cases invoking certain crypto mechanisms). This ordering is
followed in Table 14, which summarizes these properties; Table 14 also indicates for each property
the other properties on which the given property depends. In the case of infrastructure security,
specific aspects are noted as applicable.

¢ Risk reduction. All the potential risks summarized in Section 5.7 must be addressed — for
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example, must be minimized or determined to be acceptable risks.

e Crypto strength. Any cryptographic algorithm (or hashing function, in the case of authen-
tication) must be sufficiently strong to resist cryptanalytic attacks and brute-force exhaustion
(commensurate with the perceived risks of compromise).

e Crypto encapsulation. Any cryptologic implementation must be resistant to subversion,
tampering, or other form of compromise, including attacks on its encapsulating environment
(for example, operating system, application software, network server, or hardware) and its key
management. This property relies critically on the security of the underlying infrastructure.

e Source protection. A proprietary or classified crypto module must have its source code
protected or isolated, so that it cannot be reimplemented easily in similar or different operating
environments. This property is primarily for closed-world applications, such as SKIPJACK.

e Object protection. A proprietary or classified crypto module must have its object code
or hardware implementation protected, so that it cannot easily be reverse engineered. Im-
plementation could require stealthy encapsulation or tamper-resistant hardware enchipment.
This property is primarily for closed-world applications, of which Clipper and Capstone are
examples.

e Crypto integrity. A crypto module must be difficult to replace, tamper, bypass, spoof,
or otherwise compromise. (However, replacement may be possible under certain carefully
controlled circumstances, with proper authorization. See the next item.) In addition, each
crypto-relevant module must be authenticated as being the desired module — for example,
to prevent substitution of a trapdoored module or a Trojan horse that makes surreptitious
uses of the unencrypted information or the keys.

e Operational flexibility. Whether embedded in a larger subsystem or modularly pluggable,
a crypto module must be amenable to installation, initialization, and operation by authorized
persons or agents. It must be replaceable or configurable only by authorized agents, in
terms of its source code, object code, or hardware components, under specifically designated
circumstances (for example, at installation or system recompilation), as permitted.

e Crypto usability. Crypto implementations and the very existence of crypto should be
essentially invisible within their encapsulation, primarily for ease of use. In particular, key
management should be of low visibility.

e Secure key management. Crypto keying information must be protected with great care.
Establishing keys through key exchange or key agreement must be largely hidden, irrespective
of its complexity, subjected to stringent controls, and at the same time very difficult to
intercept, spoof, or jam.

e Authentication nonspoofability. Crypto used for cryptobinding, authentication, and in-
tegrity checking must be nonspoofable (for example, it should hinder reverse engineering
of a hash algorithm or a digital signature, masquerading, forging, using replay attacks, or
simulating a positive acknowledgment from an authentication server).

e Authentication nonrepudiatability. Crypto used for cryptobinding, authentication, and
integrity checking must be nonrepudiatable, with whatever degree of certainty is required.
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e Escrowing process integrity. If key escrow is required, all established keys must be prop-
erly escrowed (under a suitable definition of “properly”). This is a special case of crypto
integrity.

e Escrowed-key confidentiality. Escrowed keys must be strongly protected against loss of
confidentiality (for example, through system failures or human misbehavior, whether acci-
dental or intentional, or misuse of the court-authorized escrowed-key decryption process).

e Escrowed-key nonbypassability. The validity of an escrowed key must not be superseded
or overridden by the use of a key that is not properly escrowed. For example, the keys that
are escrowed must be the keys that are actually used. (Note that this property does not
preclude superencryption.)

e Escrowed-key decryption nonsubvertibility. Alterations in transmitted or stored in-
formation (as in the attacks on the Clipper law-enforcement access fields described by Matt
Blaze [21]) must not be able to subvert the validity of the decryption process with respect to
the properly escrowed keys.

e Escrowed decryption confidentiality. The authorized decryption process performed using
properly escrowed keys must be strongly protected against loss of confidentiality (for example,
through system failures or human misbehavior relating to the decryption processes, whether
accidental or intentional, or through other misuse).

e Pervasive auditing. All security-relevant crypto operations (for example, crypto module
alterations, key changes, configuration changes, escrow retrievals, and emergency overrides)
must be controlled, restricted to properly authenticated agents, and thoroughly audited. The
audit trails must be nontamperable. If any compromises occur, the audit trails must indicate
exactly what has happened.

e Infrastructure security. Infrastructure security refers to any underlying mechanisms and
operational procedures that are not necessarily directly crypto related, but whose misbehavior
could undermine some of the crypto properties. Infrastructure security implies the prevention
of such misbehavior. It may include operating system security, database security, network
security physical security, and appropriate human behavior. It may apply only to selected
components, such as network servers or authentication servers, some of which may themselves
require crypto (although typically not recursively). Auditing must also apply to security-
relevant operations in the infrastructure.

Of these properties, some are very difficult to formalize precisely, partly because they are (in-
tentionally) stated imprecisely, but more often because they are extrinsic properties — that is,
intrinsically unformalizable within the scope of other system properties or concepts. Examples of
extrinsic properties are statements about cryptanalytic complexity, such as the difficulty of factor-
ing a product of large primes, or whether any shortcuts exist to an exhaustive attack. Another
example is escrowed-key decrypt integrity, which relies in part on the honesty and integrity of es-
crow officials. Overall, the security of crypto-based systems may depend critically on the validity
of somewhat intangible properties as well as explicit technological properties. Some properties are
indeed formalizable, such as those relating to BAN-logic statements about who (actually or anthro-
pomorphically) knows what at what time in an authentication protocol, and who can do what to
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Table 14: Dependencies among crypto-related properties

‘ Property ‘ Acronym ‘ Depends on (among others)
Risk reduction RR CS, CE, CI, SKM, ANS, ISS, etc.
Crypto strength CS Algorithms, factoring
Crypto encapsulation CE ISS (encapsulating)
Source protection SP ANS, ISS (source sites)
Object protection oP ANS, ISS (object sites)
Crypto integrity CI ANS, ISS (physical/logical security)
Operational flexibility OF Operational practice
Crypto usability CU System/network architecture
Secure key management SKM ANS, CS, CE, CI, ISS (key handling)
Authentication nonspoofability ANS CS, CE, CI, ISS
Authentication nonrepudiatability ANR CS, CE, AUD, ISS
Escrowing process integrity EPI ANS, CI, Escrow schema, ISS
Escrowed-key confidentiality EKC ANS, ISS (especially procedures)
Escrowed-key nonbypassability EKN ANS, CI, Escrow schema, ISS
Escrowed decryption nonsubvertibility | EDN ANS, Escrow schema
Escrowed decryption confidentiality EDC ANS, CS, CE, EKC, AUD, ISS, people
Pervasive auditing AUD ANS, ISS, Escrow schema
Infrastructure security ISS Some crypto, some people!

whom. But again, the satisfaction of those properties may actually depend on extrinsic properties
that are not usually included in the formalization. Thus, we need to address a middle ground in
which certain properties are formalizable, but only in terms of explicitly stated assumptions about
other properties that may be either intrinsic or extrinsic. Examples of such underlying assumptions
relate to whether an underlying operating system has a flaw that would permit crypto compromise,
whether a public key can be factored within a particular time period, whether a key compromise
much later in time can result in a serious retroactive compromise, or whether a particular human
being is trustworthy. Furthermore, there may be additional factors relating only to the intended
use of a particular mechanism, such as the presence of superencryption whose intent is to defeat the
intent of the key-escrow process. It is very difficult to formalize intent and other socially motivated
factors. However, certain assumptions about them can be stated and used in subsequent analyses.

For ease of understanding, Table 14 lumps together properties that may actually arise at different
layers of abstraction in any particular implementation. This is an oversimplification that appears
to cause loops in the dependence ordering, although those loops do not actually exist in reality.
For example, in the large, the infrastructure may depend on crypto for its implementation, while
the integrity of the crypto depends on the infrastructure. More explicitly, crypto encapsulation
depends on certain aspects of the security of the infrastructure, whereas particular functions of the
infrastructure may depend on crypto encapsulation. However, a careful ordering of hierarchical
layers in terms of specific abstractions at particular layers avoids the existence of circular depen-
dencies. What is certainly represented in the table is the fact that most crypto-related functionality
depends on the security of its infrastructure.

67



Secure Systems Architecture and Formalism

There is always a temptation in formal analyses to concentrate on those attributes that are easily
formalizable, and to ignore those that are not. This situation resembles the story about the person
whose keys were lost in a field, but who is looking for them under the streetlight — because that is
where the light is. The challenge, of course, is to make all the relevant properties and assumptions
explicit, and to reason accordingly.

11.4 RISSC Crypto-Based Authentication Properties

Section 11.3 includes two basic properties relating to crypto-based authentication, namely, non-
spoofability (ANS) and nonrepudiatability (ANR). Table 14 summarizes some of the other proper-
ties on which those properties depend. Those relationships are now explored in greater detail.

Nonspoofability (ANS) depends on

e Crypto strength of the cryptobinding, including nonreversibility of hashing algorithms (such
as MD4 [197]) and cryptographic seals such as are used in RSA (Rivest-Shamir-Adleman)
authentication or DSS (the Digital Signature Standard) (CS)

e Crypto encapsulation, including the protection of the cryptobinding keys and protection of
any internal hashing and crypto implementations from spurious use (CE)

e Crypto integrity, particularly the ability to tamper with the authenticating code (or hardware)
that could give the appearance of authentication when in fact the cryptobinding information
is actually bogus (CI)

e Infrastructure security, including prevention of subversion of the cryptobinding and authen-
ticating processes through operating-system penetrations, and techniques such as nonces for
preventing replay attacks (ISS). This includes preventing forgeries, simulations of positive ac-
knowledgments from an authentication server, and users masquerading as other users. Infras-
tructure security is particularly important when cryptobinding is done on a shared end-user
system (which is avoided in the RISSC subfamilies [[1a]], [[1b]], and [[2a]]) or on a shared
authentication server.

Nonrepudiatability (ANR) depends on

e Crypto strength of the cryptobinding (CS), although this is somewhat less important for
nonrepudiatability than for nonspoofability

e Crypto encapsulation, including high-assurance demonstrations of the protection of the cryp-
tobinding keys and protection of any internal hashing and crypto implementations from spu-
rious use (CE)

e Avoidance of tampering with the audit-data collection and analysis that could mask a nonau-
thentication or to create the false impression of an authentication, and generally high assur-
ance that audit trails are noncompromisible (AUD)

e Infrastructure security, particularly in protecting against internal misuse that might result in
the appearance of spoofing when in fact no spoofing had occurred (ISS)

See also Kailar, Gligor, and Gong [102], for issues of dependence in crypto protocols.
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11.5 RISSC Key-Escrowed Crypto Properties

Section 11.3 includes five basic properties relating to escrowed-key encryption and decryption,
namely, escrowing process integrity (EPI), escrowed-key confidentiality (EKC), escrowed-key non-
bypassability (EKN), escrowed decryption nonsubvertibility (EDN), and escrowed decryption con-
fidentiality (EDC). Table 14 summarizes some of the other properties on which those properties
depend.

All five of these escrow-related properties rely on adequate infrastructure, including the the security
of the entire escrow process and nonspoofability of authentication throughout the escrowing process,
key storage, the supposedly authorized use of the escrowed keys, and subsequent to authorized
decryption using the escrowed keys. People involved in the escrow process must also be trustworthy,
including algorithm and protocol designers, chip designers and fabricators, escrow operators, and
authorized decrypting agents. In the case of the escrow process associated with Clipper, the split
key implies that multiple individuals or processes would have to be compromised during the process,
although the decrypted results might be vulnerable to single-party misuse. Modeling of the entire
process must make assumptions of trustworthiness explicit, including those relating to people.
The depends on relation rather than the depends upon relation is relevant whenever a multikey
cryptosystem is involved that can mask the unreliability or untrustworthiness of some number of
components (human or otherwise).

11.6 RISSC Crypto Auditing Properties

Section 11.3 includes a catch-all property relating to pervasive auditing. A detailed discussion of
the requirements for securing an auditing environment is given in Appendix B, with particular
attention to making that environment tamperproof. Much of that discussion is relevant here.

11.7 RISSC Crypto Infrastructure Properties

The crypto-related properties enumerated in Section 11.3 end with the security of the infrastructure,
which ultimately depends on the satisfaction of the requirements of Sections 4.2 and 11.1, among
others.

11.8 Analyzing Crypto Implementations in the Large

It remains an enormous challenge to completely model all of these dependencies involving crypto
implementations, within the computer-communication infrastructure and in the context of an entire
complex of systems and networks. In this report, we have merely sketched an outline of how that
might be carried out, in hopes that future efforts may pursue this challenge further. We believe
this challenge to be a very important one.
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Part Four: CONCLUSIONS

12 Conclusions and Recommendations

This report suggests that the attainment of significant security in realistic computer systems and
networks demands an approach that thoroughly integrates two elements:

1. Architecture. An extremely disciplined approach to architecture and system development is
desirable, making constructive use of existing system and network components wherever pos-
sible, encouraging the development of certain trusted subsystems that contribute to secure
infrastructures, and combining all components with constructively beneficial interconnections,
so that the resulting systems can be readily configured out of commercially available prod-
ucts and readily evaluated as combinations of subsystems rather than having to evaluate
entire systems. It is desirable to avoid hodge-podge or ad-hoc interconnections of nonsecure
components within nonsecure infrastructures.

2. Formal methods. Formal methods should be applied judiciously to the most critical system
aspects, where the benefits are greatest in terms of dependability, assurance, and performance.
However, they must be applied so that no seemingly unimportant aspects can compromise the
more critical aspects. The formal methods must be able to span the full range of mechanisms,
properties, and analyses necessary to evaluate the security of supposedly secure distributed
systems — including their operating systems, their networking software, and their network
media. Properties on which critical functionality depends should be represented in the for-
malizations, even if they are extrinsic and cannot be proven; at least, those properties can
then become explicit, and the manner in which they are depended on can be represented.
Dependencies on seemingly less critical functionality and properties should also be made ex-
plicit, so that all assumptions can be checked for validity — to ensure that their dependencies
are indeed noncritical (for example, in the sense of multilevel integrity where there must be
no dependence on less trustworthy entities).

We believe that this two-pronged approach can dramatically improve the security attainable. Many
of the constituent steps in this process already exist in the small. What is most needed is the
unification of all relevant techniques within an overall framework that permits reasoning about
entire systems and networks of systems in the large, in terms of their component subsystems, and
that also permits the process to be carried on iteratively into lower layers of abstraction.

12.1 General Conclusions

Certain government organizations (particularly the National Computer Security Center in the
United States and CESG in the United Kingdom) have long hoped that the research and de-
velopment communities would be able to employ formal methods as a cost-effective and practical
approach to the development of realistically secure computer systems. Formal methods have consid-
erable potential throughout the development cycle, with respect to requirements, specifications, and
implementations, in software, hardware, and microcode, for a wide range of systems and networks.
However, this potential has been very slow to reach fruition.
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e For the optimistic reader, this report concludes that there is still an enormous untapped
potential for formal methods in the development of systems and networks capable of satisfying
stringent security requirements. Whereas much of the prior work has been concerned with
properties of components and subsystems in the small, there are enormous benefits that
can result from being able to express and reason about system properties on a more global
basis, for example, reasoning about integrated systems based on properties of their constituent
subsystems. Furthermore, significant successes of formal methods reported in other disciplines
are encouraging as harbingers of what should be possible in applications of formal methods
to security.

e A pessimistic reader might counter with a comment that formal methods have thus far been
too difficult and too expensive to apply, even to components and small subsystems; why then
should we expect such techniques to be applied successfully to systems in the large?

One response to the pessimistic view is that the focus in the past has centered on low-layer properties
such as multilevel security of kernels, without sufficiently addressing all of the relevant properties
of trusted computing bases using those kernels. The TCSEC criteria have not encouraged represen-
tation and evaluation of application-specific properties, being concerned primarily with lower-layer
trusted computing bases. Another response is that formal methods must be applicable to higher-
layer properties as well as low-layer properties and their interrelationships, if those methods are to
be really useful. A further response is that the overemphasis on preservation of properties (such
as restrictiveness and strict-sense composability) has led to the neglect of work on the transfor-
mations of properties under generalized compositions. For example, what happens when different
components satisfying nonidentical properties are grouped in the same subsystem or networked
together?

The practical long-term viability of the use of formal methods for security will be determined in
part on these methods being applied successfully to real systems, in the near future. As noted in
Section 9, there are some genuine successes applied to real systems with stringent requirements for
reliability, fault tolerance, and safety. There are also a few rather more limited successes relating
to secure computer and communications systems, and some recently renewed interest in further
pursuing such applications. Some successes are urgently needed in which formal methods are
applied to real security-critical systems.

It is a conclusion of this report that there has been overemphasis in the past on Orange-book-like
kernel properties and on property-preserving transformations, and that new paradigms are essential
for much more pronounced successes in the future. In addition, the modeling of systems derived
from combinations of subsystems (simple composition, bilateral associations, hierarchical layering,
and networking) desperately need to be represented more explicitly in realistic security criteria. An
approach that reflects the intent of the appendix to the original unreleased draft version of Trusted
Network Interface document [150] (the Red Book) is needed, representing the real complexities of
developing distributed systems and networks, and providing a basis for applying formal methods
thereto.

Some of the conclusions reached in this report with respect to security echo those reached by
Rushby [209] in the context of reliability and safety in airborne systems. In particular, with respect
to both this report and Rushby’s, it appears that the following conclusions are in order:
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e Awoiding vulnerabilities. Formal methods are best applied when they dramatically improve
the process of detecting and eliminating significant system flaws and vulnerabilities. To this
end, it is appropriate to validate that certain critical requirements soundly represent their
intended purpose, and to demonstrate by formal (or even semiformal) reasoning that critical
properties are satisfied by particular components or subsystems with respect to their formal
specifications. It is also appropriate to examine critical aspects of the resulting system and
of the implementation process itself, seeking to derive or prove properties of the system in
terms of properties of its subsystems. The essence of this process is to provide cumulatively
increasing confidence in the system design and its implementation, by identifying inadequate
requirements and flawed designs, and overcoming them. Steps that do not add substantively
to this process are less important.

e (orrectness. It is unwise to overemphasize the process of trying to prove code correctness.
Code proofs are premature unless the requirements and the design are demonstrably sound.
Thus, efforts to increase the assurance with which system dependability can be attained by
the implementation should be deferred, at least until no further flaws can be found in the
requirements and the design. However, at that point, code proofs and other forms of analyzing
the implementation (see the second bulleted item in Section 12.4) can be very valuable —
especially if they are able to show the absence of nonspecified effects such as surreptitious
Trojan horses. On the other hand, there is an enormous potential for the use of formal
methods in hardware implementations — for example, in specifications, mask layouts, and
fabrication.

e Top-to-bottom analysis. Past efforts on proving a continuous refinement thread from top-level
requirements through the detailed design to the software and finally down to the hardware are
of considerable theoretical interest, particularly when applied to large and complex systems.
However, those efforts must be considered as overkill unless it can be demonstrated that all
the relevant critical paths can thus be encompassed and that no serious vulnerabilities can
exist in other threads. Then, the top-to-bottom analysis can be very compelling.

e Transformations. Greater emphasis is needed on the property transformations that result
from nontrivial compositions, hierarchical layerings, and interpositions of mediators such
as firewall systems and trusted guards. The transformational approach should also permit
parametric architectural representations, for example, what simplifications or complications
might result when a particular RISSC architecture undergoes a particular change in design,
such as making the file server multilevel secure instead of having multiple single-level file
servers. The effects should be formally derivable.

e Methodology. The choices of methodologies, specification languages, and programming lan-
guages are important to the success of a development effort and to the effective application of
formal methods. However, those choices are less critical if the architecture is poorly chosen
and if the properties to be satisfied are not appropriate — for example, seriously incomplete,
or too abstract, or too low-level. Thus, considerable effort must be devoted to establishing
an architecture that is amenable to the use of formal methods. However, there is also a
danger that premature choices of methodology and approach will lock the development into
a nonconstructive path. Thus, it is essential that all these factors be considered early in the
system development process.
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e Research and development. Consistent with the ability to apply formal methods to critical
aspects of complex and critical systems, research efforts must continue to explore the frontiers
of the technology, and development efforts must be carried out that employ formal methods
constructively as suggested in these conclusions. Some specific suggestions for future R&D
are given in Sections 12.2, 12.3, and 12.4.

There have been many advances in formal methods in the past twenty years. However, major suc-
cesses are still awaited in the fruitful application of these methods. We conclude that considerable
potential remains untapped for formal methods applied to security, and that we are now actually
much closer to realizing that potential. Many of the pieces of the puzzle — theory, methods, and
tools — are now in place. The combination of approaches suggested here could help, if the desired
paradigm shifts are taken and if the following recommendations are considered.

12.2 Recommendations for Applying Formal Methods to Architectures

Section 12.2 provides a collection of recommendations for the future, relating to the use of for-
mal methods applicable to system and network architectures intended to satisfy critical security
requirements.

e RISSC concepts. More emphasis should be placed on RISSC-like systems, for both multi-
level and single-level security applications. The attempt to get developers of secure computer
systems to produce commercially viable B2, B3, and Al systems has been rather dismal.
Adoption of the RISSC approach would permit the rapid development of multilevel-secure
system complexes using off-the-shelf single-level end-user systems, and would greatly increase
the ability to configure MLS systems to suit particular application needs, to evaluate those
systems, and to evolve them over time. This approach can also be very useful in develop-
ing single-level systems with dependence on demonstrably trustworthy network servers, file
servers, and authentication servers, somewhat independent of the specifics of the particular
end-user systems, vendors, operating systems, and application software. Overall, the RISSC
approach would increase the ease with which heterogeneous system complexes can be pro-
duced. Whether or not such an approach can simplify the formal analysis remains to be
demonstrated. We believe that, by removing much of the trustworthiness from end-user sys-
tems, the analysis will indeed be less intricate when all security-relevant factors are considered
— for single-level security as well as multilevel security. However, perhaps the biggest benefit
would be the ability to obtain commercial MLS operating environments as configurations of
off-the-shelf end-user systems.

e Properties, interrelationships, and combining effects. More emphasis should be devoted rather
pervasively to important properties (including, but by no means limited to, MLS) and to
complete systems (including distributed and networked systems), although efforts relating
to properties of their component modules are also important. Although more difficult to
handle, interrelations between security and other types of properties (such as fault tolerance,
real-time performance, and emergency overrides) should also be represented. A system may
not be adequately secure overall if its reliability is in doubt, or if its security properties can
be (or indeed must be) compromised under real-time stringencies or other emergencies such
as lost passwords or crypto keys. Furthermore, formal methods should be interoperable —
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for example, in the sense that techniques for module specification, network protocols, and
crypto should be able to be mixed together compatibly. Greatly improved understanding of
generalized composition of subsystems is required. Increased understanding is also necessary
with respect to the ways in which subsystem properties can be preserved or transformed
under generalized composition.

e Assumptions. More emphasis should be placed on making explicit all of the otherwise unstated
assumptions, functional dependencies, and property dependencies underlying any system to
be formally specified and analyzed. Assumptions of proper human behavior are essential, and
should be factored into the analysis of any critical system so that the dependencies on that
assumed behavior can show up as part of the reasoning process. Similarly, environmental
assumptions should be represented. Just as Byzantine techniques can be used to withstand
the misbehavior of arbitrarily faulty components, so is it desirable to use such techniques
advantageously to overcome undesired human and system behaviors. For example, multikey
crypto [52, 142] and error-correcting coding could be useful in this regard.

e Criteria. The TCSEC/ITSEC/CTCPEC efforts are all very useful iterations in a long process
of attempting to create useful security criteria. We recognize that any set of criteria is likely
to be incomplete, and also on one hand difficult to interpret or on the other hand overly
explicit and restrictive. Nevertheless, a successor to the Orange Book is urgently needed,
possibly including a major upgrading of the Red Book to address distributed systems and
networks more explicitly.

e Tools. More emphasis is needed on the realistic usability of formal methods and their sup-
porting tools. There are many potentially useful requirement languages and specification
languages, and supporting tools. However, further effort is needed to incorporate them into
better human-engineered development environments into which the mechanizations of formal
methods have been carefully integrated, and in which the human interfaces to the tools have
been driven by ease-of-use requirements. Different formalisms must interrelate, so that it is
possible to reason in the large about system and network properties such as operating system
security, crypto encapsulation, crypto strength, and network reliability. For real-time systems,
incorporation of temporal logics or other approaches to representing real-time issues would
also be desirable. Readable and easily understood tutorial documents such as [30, 212] are
essential for those who are able to use formal-methods environments. Carefully worked and
well-documented examples of formal methods applied to real systems are absolutely essential.

e Fducation, experience, and training. More emphasis should be placed on the education of stu-
dents and industry employees to help them appreciate the potential practical utility of formal
methods applied to real systems, as well as the theoretical beauty (for example, see [63]). For
this to be successful, teachers must have a better understanding of the fundamental issues of
discrete mathematics and logic, and those issues must permeate the instruction and training.

The unfortunate lack of an appropriate systems perspective represents a fundamental problem
at the present time in education and training efforts. Computer-science curricula are for the
most part sorely out of touch with the needs of developers of critical systems and complex
applications. Programming and formal methods are generally taught in the small, and the
students develop very little system sense. Good software engineering (as opposed to overly
simplistic panaceas) is rarely emphasized, and seems to be considered more or less irrelevant in
favor of a predilection toward programming in the small. Unfortunately, the practical needs of

74



Secure Systems Architecture and Formalism

system developers seem to be the tail trying to wag the dog.'® Our universities must embody
more diversities (or even multiversities), teaching much more than just C, Unix, Windows, and
HTML. The situation in industry is generally not much better than in universities, the result
being that complex systems and networks are often poorly conceived and poorly developed
by people with narrowing rather than broadening experiences. A greater appreciation of the
need for system perspectives should permeate education at all levels.

12.3 Near-Term Recommendations

The conclusions of Sections 12.1 and 12.2 include some recommendations for immediate action,
and others that are more appropriate in the long term. The former are considered here, the latter
in Section 12.4.

o [llustrative worked examples. It is very important to have more examples of how formal
methods can be applied to real systems, during the system development rather than post-
hoc retrofits. These examples should be carefully documented, thoroughly worked, and —
at least initially — applied up-front in the development process to real systems (commer-
cial or custom) — that is, applied primarily to requirements and specifications and to their
analyses. Some of these examples will naturally be able to extend to hierarchical mappings
among different layers and explicit representations of properties at different layers and explicit
representations of the dependencies on lower layers. Suggested examples might include the
following;:

— A Rushby-style separation kernel together with some applications that depend on it,
complete with all privileged exceptions, demonstrating clearly how the technology can
be applied, how the higher-layer properties depend on the kernel properties, and how
formal analysis can be effectively carried out for more than just the kernel

— Complete modeling and analysis of a crypto encapsulation (whether escrowed or not)
and pursuit of the concepts outlined in Section 11.3 — including making explicit all of
the assumptions on which the confidentiality and integrity of the crypto-based security
depend, and reasoning based on those assumptions

— The effort begun in [101] should be continued, in several directions — (1) refining the
existing representation of the MISSI security policy, (2) examining the consistency of
the detailed design with those requirements, and (3) possibly attempting some reasoning
about the implementation, but not necessarily code-consistency proofs (see the second
bulleted item in Section 12.4). Specification of the security requirements is clearly a
valuable activity. However, there appears to be good potential for getting further mileage
out of the effort already begun. An effort to track ongoing changes in the requirements,
design, and implementation could also be valuable.

In these efforts, we recommend that research people with intimate knowledge of the formal
methods and the tools be heavily involved, together with systems experts.

19There are of course some exceptions, such as efforts by Leveson at the University of Washington and by Knight,
Prey, and Wulf [111] at the University of Virginia. Although the Virginia undergraduate program devotes rela-
tively little attention to formal methods, it nevertheless attempts to provide a more rigorous treatment of software
engineering, completely integrated into the curriculum.
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e Model checking. Model checking has considerable potential. Efforts specifically oriented to
applying model checking to security are desirable. Careful examination of the relative benefits
and areas of applicability is needed.

e Integration of model checking. A somewhat longer-term but still near-term goal involves
incorporating model-checking tools compatibly into existing analysis tools, such as is being
pursued at SRI and the University of British Columbia (among others).

e Integration of various approaches. The integration of methodologies, specification languages,
formal methods, and their corresponding toolsets within a common framework would be of
considerable value to system developers desiring to use formal methods pervasively. For
developers of secure real-time systems, some sort of temporal logic should be included.

o Modularization and interoperability of different tools. At present, SRI, ORA, CLI, and many
others have tools for formal methods that operate in their own environments. It would be
very useful to have modularized components of these toolsets that could interoperate across
institutional boundaries.

12.4 Long-Term Recommendations

The conclusions of Sections 12.1 and 12.2 also suggest various actions with a longer-term perspec-
tive.

We suggest in this report that considerable gains can be achieved by taking a fresh view of secure-
system architectures and applying formal methods selectively, where the payoffs are greatest. We
also suggest that the choices of methodologies, formal methods, and languages are important, but
somewhat less so than the architectures and the emphasis on up-front uses of formal methods.
However, there is still much worthwhile research to be done, particularly where it can reduce the
risks of system developments, increase the chances of success, and reduce the cost and time required
for system development.

e Reasoning about generalized compositions. Significant effort should be devoted to a theory of
generalized compositions and the property transformations they induce. This work should en-
compass system and network configurations generally, the interconnections involved in RISSC
architectures, the interposition of trusted gateways, networking, and the necessary criteria to
facilitate evaluation of modular systems.

A particularly fruitful approach in this direction that seems to have considerable potential
is noted in Section 6.2, namely the merging of the work of Moriconi, Qian, and Riemen-
schneider [145, 146] with PVS, to greatly expand the ability to reason about complex system
designs.

e Reasoning about implementations. We are by no means opposed to proofs that an implemen-
tation is consistent with its specifications, despite earlier comments about the relatively bigger
apparent payoffs resulting from up-front uses of formal methods. Some emphasis should also
be placed on carrying out a formal-methods approach that extends into the code or microcode,
especially if those code proofs can be formally related to the specifications and shown to cover
the critical requirements under carefully specified assumptions. However, research should also
be carried out to explore other approaches to reasoning about implementations that fall short
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of full code proofs. For example, it should be possible to reason about program changes
and configuration control over implementations without having to reason about the programs
themselves. (A precedent for that exists with respect to reasoning about designs in earlier
work of Moriconi [144], which provides a framework for reasoning about design changes.) As
in the corresponding near-term efforts, we recommend that research people with intimate
knowledge of the formal methods and the tools be heavily involved together with systems
experts and programmers.

e More elaborate real examples. Further worked examples of formal methods applied to real
systems are needed, above and beyond the up-front examples suggested in Section 12.3. An
ambitious system might involve a stem-to-stern specification and analysis of a distributed
system, encompassing all of the necessary assumptions on the infrastructure and end-user
systems, including all relevant properties of the operating systems, servers, crypto encapsu-
lations, and people involved in operations (including people in the key-management loop and
key-escrow retrievals). However, such an effort should not be attempted all at once; rather,
it should use an incremental approach whereby the pieces can emerge separately and then
be combined. Again, these examples should be realistic, thoroughly documented, and well
motivated.

e Comparative studies. Comparative studies are needed to explore the explicit benefits that
can result from consistent use of formal methods throughout a system development. Similar
studies are also desirable to determine whether post-hoc uses of formal methods have any real
value — that is, where modeling and analysis are carried out after a system development is
well underway or even completed. These studies probably cannot be statistically meaningful,
because of the many variables involved and the continual production pressures during devel-
opment, but nevertheless some experiential learning is needed relating to the efficacy of using
formal methods in large and realistic systems.

12.5 Final Remarks

The potential benefits of formal methods remain undiminished. The need for formal methods in
the specification and analysis of critical systems and system components remains enormous. In
the light of past events — system flaws and detected vulnerabilities, system failures, experienced
penetrations, and flagrant system misuses — formal methods remain an essential part of the system
development and assurance process. Their systematic use at appropriate places throughout the
system life cycle can be far more productive than it has been in the past.
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EPILOGUE

Epilogue — A Quote from Edsger W. Dijkstra

Just as I was completing this report, I received the latest in the long-running series of informal
memos from Edsger W. Dijkstra, a long-time advocate of the importance of design structure [55]
and the value of designing correctly in the first place, before programming [56]. The following
excerpts serendipitously echo many of the main conclusions presented here, and provide a fitting
end to the main text of this report.

Being a better programmer means being able to design more effective and trustworthy
programs and knowing how to do that efficiently.

I see no meaningful difference between programming methodology and mathematical
methodology in general.

In a cruel twist of history, however, American society has chosen precisely the 20th
Century to become more a-mathematical... As a result, Program Design is prevented
from becoming a subdiscipline of Computing Science. There is considerable concern for
correctness, but almost all of it has been directed towards a posteriori program verifi-
cation because, again, that more readily appeals to the dream of complete automation.
But, of course, many — I included — regard a posteriori verification as putting the cart
before the horse because the whole procedure of programming first and verifying later
raises the burning question where the verifiable program comes from. If the latter has
been derived, verification is no more than checking the derivation. And in the mean
time, programming methodology — renamed “software engineering” — has become the
happy hunting-ground for the gurus and the quacks.

Excerpted from FEdsger W. Dijkstra, Why American Computing Science seems incur-
able, EWD 1209-0, Austin, Texas, 26 August 1995.
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APPENDICES

A Summary of Architectural Families

Appendix A is based on [158], with some changes and extensions. It summarizes a range of ar-
chitecture families. and provides a broad comparative view of what is really a multidimensional
architectural spectrum.

Of particular interest from the RISSC point of view are the cases [[la]] and [[2a]], as well as [[1b]]
(all three of which are considered in Section 11 and in Table 12 in Section 11.2). These cases are
the most assiduous in their adherence to the RISSC concept.

Because of their dependence on multilevel-secure file servers, cases [[3a] and [[3b] are somewhat less
RISSC-oriented, but are still important — particularly whenever high-assurance MLS file servers
are available. Family [[3]] is also considered in Section 11) and in Table 13 in Section 11.2.

For ease of description, we define an abstract notation for expressing configuration attributes. The
architectures considered here include end-user systems (User), file servers (F), network servers (Z),
network transmission media (X), and authentication functionality (A).

In a simple implementation, the various servers of each type could be collocated with the end-user
systems; however, to minimize the extent to which the end-user systems must be trusted, the servers
may preferably be on systems distinct from (most of) the end-user systems.

The notation used here is starkly simple, incomplete, and subject to wide ranges of differing re-
quirements within each attribute. There are typically many shades of gray within a decidedly
non-black-and-white multidimensional spectrum. However, although no attempt is made to cap-
ture notationally the relative degrees of trustworthiness within any give attribute, the notation
enables us to identify and contrast some of the basic options without having to delve into many
details that are less important to the challenge of attaining robust crypto in software.

An entire system or network of systems may support multilevel security (MLS) or only a single
level. However, there are many different architectural types that enforce MLS system-wide or
network-wide, as discussed here.

An end-user system may be a single-level single-user system (User-S1), a single-level multiuser
system (User-Sn), a multilevel-secure single-user system (User-M1), or a multilevel-secure multiuser
system (User-Mn).

Realistically, a single-user system as defined here could actually accommodate multiple simul-
taneous users, as long as those users are all mutually trustworthy and mutually trusting. That is,
they are equivalent users from a protection point of view, although they would presumably have
individual user identities and separate accountability. The essence of the single-user notion here is
simply that security does not rely critically on interuser isolation. For simplicity, we refer to such
systems as single-user systems, although the more cumbersome term “single-user-group systems”
might be more accurate in cases in which protection-equivalent users are allowed to coexist.

In a networked environment, authentication functionality may be centralized into a collection of
authentication servers or distributed among end-user operating systems. A commonality of all the
nondegenerate approaches is that some component of authentication must to some extent be trust-
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worthy (AT) rather than totally untrustworthy (AU). However, there are various authentication
attributes each of which may or may not be trustworthy, including, respectively, the following:

CT or CU for key confidentiality
IT or IU for key integrity

ST or SU for antispoofing

RT or RU for nonrepudiation

DT or DU for nondenial of service

The attribute CT is essential for most but not all the crypto uses discussed here; the attribute I'T is
often necessary as well. When no untrustworthy authentication attributes are explicitly specified,
AT is assumed to include at least some measures to address the authentication attributes CT, IT,
and ST. The other attributes of trustworthiness may or may not be important, according to the
nature of the application.

A file server may enforce multilevel security (FM) or may be single-level (F'S). In either case, the file
server may store files in either an encrypted form (FN, for eNcrypted) or an unencrypted form (FP,
for Plaintext). In those cases in which storage encryption is used, the cryption (that is, encryption
and decryption) may be provided by the client (FNc), by network servers (FNn), or by a file server
itself (FNs). Multiple forms of cryption may be used together, such as communication cryption
(ZT-FNn) on top of client-provided file cryption (FT-FNc).2 For simplicity, encrypted system-to-
system file transfers (for example, using the TP FTP protocol) are also represented by FNc or FNn
even though a file server is not involved.

Carrying out the cryption would typically be largely invisible to all components other than the one
that actually performs those functions.

Each file server may be trustworthy (FT) or untrustworthy (FU) with respect to each of several
requirements:

MT or MU for multilevel security

CT or CU for single-level confidentiality
IT or IU for file integrity

DT or DU for preventing denials of service

If no untrustworthy file server attributes are specified, FT is assumed to include some measures
to address each of these attributes, except for MT, which is always identified explicitly. Thus, the
configuration FP-FT-FM-MT-CT-IT-DU or simply FP-FT-FM-MT-DU would denote a multilevel-
secure file server storing unencrypted information, trustworthy with respect to enforcing multilevel
security, discretionary confidentiality, and integrity, but untrusted for preventing denials of service.
Similarly, FNc-FU-FS-CU-IU-DU or equivalently FNc-FU-FS would denote a single-level file server
storing encrypted information provided by the client, and untrusted for single-level confidentiality,
integrity, and nondenial of service. In such a case, the encryption provided by the client might
ensure single-level confidentiality and integrity with respect to the file server, irrespective of what
actions the file server might take.

20Multiple encryption causes a slight terminology problem that is easily resolved contextually. For example, consider
the combination of client-provided file encryption and network-server-provided network encryption. To the end-user
system, the client-provided encrypted form is encrypted text; to the network server, that encrypted form is plaintext.
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The distinction between the network transmission media (X) and the network servers (Z) is sig-
nificant. The servers may be trustworthy with respect to providing multilevel-security separation
(ZT-MT), while the communication media may be untrustworthy (XU-MU-CU-IU) precisely be-
cause of the use of crypto by the network servers. Cryption provided by trustworthy network servers
is denoted by ZN-ZT.

Network transmission media may be untrustworthy (XT) or untrustworthy (XU) with respect to
each of several requirements:

MT or MU for multilevel security

CT or CU for single-level confidentiality
IT or TU for message integrity

DT or DU for preventing denials of service

If no untrustworthy network attributes are specified, XT is assumed to include some measures to
address each of these transmission attributes except for MT, which is always identified explicitly.
However, a transmission configuration may be basically untrustworthy (XU) if the network servers
are suitably trustworthy and the network traffic is encrypted. In addition, some trustworthiness for
nondenial of service (DT) may be obtained by error detection, multiple routing, and retry, in the
absence of any other trustworthiness of the network media. A completely enclosed and protected
wireway is an example of a trustworthy medium.

Network servers may be untrustworthy (ZT) or untrustworthy (ZU) with respect to each of the
same requirements:

MT or MU for multilevel security

CT or CU for single-level confidentiality
IT or IU for message integrity

DT or DU for preventing denials of service

Whenever files and messages are not encrypted (and possibly even if they are encrypted), network
servers may provide their own cryption, invisible to all components except each other. Thus, we also
differentiate between network-server-provided cryption (ZN) and networking that adds no further
encryption (ZP). If no untrustworthy network-server attributes are specified, ZT is assumed to
include some measures to address each of these attributes except for MT, which is always identified
explicitly.

A distinction is made between network-provided file storage cryption (FNn) and network-provided
message cryption (ZN). In the former case, cryption is performed only at the client side of the
network, and files are stored in that encrypted form; in the latter case, cryption is performed at
each end of the network, and storage would not be encrypted unless otherwise provided by (FNc)
or (FNs) functionality.

A distinction is normally made between local networks and nonlocal networks. However, in the
present context that distinction may or may not be meaningful. Clearly, wide-area network traffic
would normally be encrypted in any sensible networking environment. However, if local-net traffic
is within a physically secure (and, if desired, properly shielded) environment and all the local-net
taps are occupied by trustworthy systems and individuals, then protection of the local network may
be avoided.
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Once again, we must understand that there are many shades of trustworthiness. Each of the above
‘T’ attributes can be thought of as either an ideal to be striven for, or else as whatever can be
pragmatically attained.

The art of secure systems and secure networking is essentially one of placing appropriate controls
and protections in those facilities where they are needed. There is a sense in which an equiva-
lence exists among various seemingly different architectural views. For example, whether the main
class of RISSC systems has single-level file servers or multilevel-secure file servers is perhaps an
implementation detail; a formal transformation can be constructed under which the two families
of architectures are essentially equivalent. Furthermore, a TCSEC kernel-TCB-application—user
layering represents one way of achieving security domains; a layered capability architecture such
as the original PSOS design [62, 161] is another; a networking of unsecure systems using trusted
gateways is still another. In the last case, whether the gateways are internal or external is more or
less incidental. Each of these approaches attempts to provide suitable domain isolation.

The configuration AU,ZP-ZU,XP-XU is more or less today’s sorry network state of the art. What is
needed for trustworthy distributed systems is a configuration such as AT,ZN-ZT, where XT-CT-IT-
DT is effectively a by-product of the network-provided cryption, or possibly AT,ZP-ZT,XP-XU-DT,
where client-provided file cryption (FNc¢) can facilitate trustworthy XT-CT-IT networking without
requiring trustworthiness for confidentiality and integrity on the part of the network servers.

The architectural families of systems that might contain crypto implemented in software fall into
two basic types, multilevel and single-level secure. Each family has its own potential risks and
hardware—software trade-offs. The architectural families enumerated here should be considered
as representative points in a multidimensional spectrum of architectures, with end-user systems,
authentication, networking, and file servers as different dimensions, and with security levels (mul-
tilevel vs. single-level) and the number of cohabiting users as parameters. Those dimensions and
parameters may seem superficially independent (which would result in a large number of families);
however, only certain combinations are sensible, which helps to reduce the discussion to somewhat
sensible proportions.

e Multilevel security. In the first group of families (Sections A.1 through A.6), the overall
systems or networks of systems are capable of enforcing multilevel security. Among the
six basic families and variants, the first three baseline architectures considered below (Sec-
tions A.1 through A.3) have end-user systems that are all single-level rather than multi-
level, but in which the overall system still enforces multilevel security. The other three
families use multilevel-secure end-user systems. The fourth family (Section A.4) has end-
user compartmented-mode workstations, while the others (Sections A.5 through Section A.6)
have multilevel-secure multiple-end-user systems, with or without crypto storage, respectively.
Among those six families, the first two use only single-level file servers, while the remaining
four use multilevel-secure file servers. The second and fifth have client-provided file cryption,
while the others do not.

e Conventional systems. In the second group of families (Sections A.7 through A.10), the overall
systems do not enforce multilevel security, and everything (e.g., files and networking) operates
at a single level throughout. The local operating systems may be for personal computers or
for high-end single-level minicomputer or mainframe systems lashed together with single-level
secure servers. The systems may be single-user (Section A.7) or multiple-user (Section A.8).
The file servers may or may not use encrypted storage, as indicated. To provide a reductio ad
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absurdum, Section A.9 includes the low-end systems that one might obtain from off-the-shelf
software with minimal concern for security, and Section A.10 considers stand-alone systems
with no networking whatsoever.

The first column of Table 15 summarizes the architectural families discussed in the following sec-
tions. Section A.11 contrasts the different families and discusses the remaining columns of the
table.

Although arbitrary crypto schemes can be used, we assume for simplicity that the illustrative ar-
chitecture families include software implementations of a symmetric algorithm such as the Digital
Encryption Standard (DES) [167] or Rivest’s RSA-Data-Security-proprietary RC-4 for communi-
cation security, as well as software implementations of public-key crypto used for authentication
and key distribution. The public-key schemes might involve RSA [198] or Diffie-Hellman [53], and
might in addition employ one of the fair-crypto or multikey algorithms [22, 52, 142, 227] discussed
in the appendix to [158], as appropriate for any particular application.

In our discussion, we generally ignore arguments relating to the strength of the crypto itself,
because the strength can always be improved — for example, by using different algorithms, different
implementations, longer keys, or multiple passes. We consider here primarily the extent to which
the crypto and — as needed — its key escrowing can be securely embedded into the architectures.

The emphasis in Sections A.1 through A.9 is on the basic architectural configurations and the
relative crypto trustworthiness that can be attained with each configuration. (As noted above, the
first six sections consider environments that enforce multilevel security; the remainder do not.)

A.1 Multilevel-Secure Network Interfacing

e MLS,User-S1,AT,ZN-ZT-MT,XU,FP-FS-MU-CT [[la]]

The first baseline architecture family includes single-level single-end-user systems with a multiplicity
of file servers, each of which is a single-level file server for some particular level (and compartment).
In [[1a]] the network traffic is encrypted by the trustworthy network servers, and thus the transmis-
sion media need not be trustworthy with respect to confidentiality (or for integrity, if encryption
is used appropriately).

The network interfaces must be trusted not to violate the multilevel security constraints, that
is, they must not allow information to be accessible from a lower security level or incompatible
compartment. However, the file servers and the network media need not be trusted to maintain
multilevel separation or to protect keying information.

The analysis of Proctor and Neumann [192] applies in this case. That is, multilevel security can
be implemented efficiently with off-the-shelf single-level end-user systems. The network servers can
ensure multilevel-security separation, and the interuser covert-channel bandwidth can be essentially
zero. Read-down can be implemented efficiently, while read-up and write-down are prevented. Some
defense against denial-of-service attacks can be provided by the presence of multiple file servers and
multiple communication paths, especially for particularly critical levels and categories.

[[1b]] is a variant of [[1a]] that also has single-level end-user systems. However, in [[1b]] each end-
user system may have multiple users, that is, potentially competitive users. Network-provided
cryption and multilevel separation enforced by the network servers avoid end-user-system concerns
for file security.
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Table 15: Architectural families

Architectural Families

Multilevel-secure overall systems Weak links | Security
MLS network interfacing:

la. MLS,User-S1,AT,ZN-ZT-MT,XU,FP-FS-MU-CT AT ,S1,ZT Very good potential

1b. MLS,User-Sn,AT,ZN-ZT-MT,XU,FP-FS-MU-CT AT, Sn,FT Sn-C2 too weak
MLS network interfacing with storage crypto:

2a. MLS,User-S1,AT,ZN-ZT-MT,XU,FNc-FS-MU-CT AT ,S1,ZT Excellent potential

2b. MLS,User-S1,AT,ZP-ZT-MT,XU,FNc-FS-MU-CT AT.S1,72T Very good potential

2¢. MLS,User-Sn,AT,ZN-ZT-MT,XU,FNc-FS-MU-CT AT ,Sn,ZT Sn-C2 inadequate

2d. MLS,User-Sn,AT,ZP-ZT-MT,XU,FNc¢-FS-MU-CT AT.Sn,ZT Sn-C2 inadequate
MLS network interfacing with MLS file servers:

3a. MLS,User-S1,AT,ZN-ZT-MT XU ,FP-FT-FM-MT AT.ZTFT Needs FT-B3+

3b. MLS,User-Sn,AT,ZN-ZT-MT,XU,FP-FT-FM-MT AT.ZTFT Needs FT-B3+, C24++ Sn
Compartmented-mode end-user systems:

4a. MLS,User-M1-B1,AT,ZN-ZT-MT,XU,FP-FT-FM-MT | AT, ZT,FT B1 too weak

4b. MLS,User-Mn-B1,AT,ZN-ZT-MT ,XU,FP-FT-FM-MT | AT,Mn,FT B1 too weak
MLS end-user systems with storage crypto:

5a. MLS,User-Mn-B3,AT,ZN-ZT-MT,XU,FNc-FT-FM-MU | AT, Mn,FT Needs Mn-B3+

5b. MLS,User-Mn-B3.AT,ZP-ZT-MT,XU,FNc-FT-FM-MU | AT,Mn,ZT Needs Mn-B3+
MLS end-user systems without storage crypto:

6. MLS,User-Mn-B3,AT,ZN-ZT-MT,XU,FP-FT-FM-MT AT Mn,FT Needs FT-B3+

Single-level overall systems Weak links | Security
Conventional single-user, single-level systems:

7a. User-S1,AT,ZN-ZT,XU,FNc-FU AT S1 Pretty good

7b. User-S1,AT,ZN-ZT ,XU,FP-FT-CT-IT-DU AT, S1,FT FT-C2 too weak
Conventional multiple-user, single-level systems:

8a. User-Sn,AT,ZN-ZT XU, FN-FT-CT-IT-DU AT ,Sn,ZT Sn-C2 too weak

8b. User-Sn,AT,ZN-ZT ,XU,FP-FT-CT-IT-DU AT.Sn,ZT Sn-C2 too weak
Low-end conventional systems:

9a. User-S1,AU,ZP-ZU XU,FP Everywhere | Forget it!

9b. User-Sn,AU,ZP-ZU.,XU,FP Everywhere | Forget it!
Stand-alone end-user systems:

10a. User-S1 stand-alone, with or without FNc S1 Physical

10b. User-Sn stand-alone, with or without FNc Sn Physical

MLS systems [[1a]] and [[2a,b]] are those that are most RISSC oriented.
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A well-known instance of [[1b]] is provided by the Newcastle Distributed Secure System [211] in
which Trusted Network Interface Units (TNIUs) are the primary enforcers of the multilevel-security
property by restricting file access accordingly. (A TNIU is also expected to be a Trustworthy
Network Interface Unit!)

In [[1b]], each local shared end-user system does not need to enforce multilevel separation, because
everything on each system is at the same level. A weakness of such architectures is that because the
local systems may not even be locally secure, there is a risk of information leakage or of integrity
violations between users. However, the risk of key leakage or tampering can be reduced whenever
the TNIUs can completely and securely encapsulate the network crypto.

In both [[1a]] and [[1b]], the network servers are essentially trusted gateways that mediate all
inbound and outbound traffic. They enable secure communication paths, but may also securely
enable other services such as FTP and TELNET. (For a detailed presentation of firewall gateways,
see [41] — which is in part relevant throughout this section whenever trusted network servers are
included.) Network crypto can be completely encapsulated within the network servers, which must
be trustworthy.

A.2 Multilevel-Secure Network Interfacing with Storage Crypto

e MLS,User-S1,AT,ZN-ZT-MT,XU,FNc-FU-FS [[2a]]
e MLS,User-S1,AT,ZP-ZT-MT,XU,FNc-FU-FS [[2b]]

Baseline architecture [[2]] includes single-level single-end-user systems and a multiplicity of file
servers, each of which is a single-level server for some particular level (and compartment) — as in
configurations [[1a]] and [[1b]]. However, here information is stored in an encrypted form, where
cryption is provided by the client (FNc). (Cryption could alternatively be provided by the network
server.)

Two basic variants within this family are considered here, with and without encrypted networking
([[2a]] and [[2b]], respectively). On one hand, the network encryption (ZN) in [[2a]] might be
considered superfluous in the presence of the client-provided file cryption (FNc); on the other
hand, there are many other reasons for encrypting network traffic — such as protecting keying and
control information, and minimizing traffic analysis. In particular, [[2b]] is not desirable whenever
the network traffic is not purely file based, although remote sessions (for example, using the Internet
Protocol telnet) would presumably be encrypted (ZN-Nn), in which case [[2b]] would be partially
transformed into [[2a]]. Configuration [[2b] is similar to [[1a]] except that it has storage crypto
instead of network crypto; configuration [[2a]] has both, and may be preferable.

The network interfaces must be trusted not to violate the multilevel security constraints, that
is, they must not allow information to be accessible from a lower security level or incompatible
compartment. However, because information is encrypted and decrypted only by the client (for
both files and authentication), the file servers and the network media need not be trusted to
maintain multilevel separation or to protect keying information. Nevertheless, sharing of a key
between two users is a critical operation, which implies that the network software and file system
software on each end-user system must not leak keying information. Diffie-Hellman key exchange
can be used to provide virtual key sharing without actually having to transmit the shared key,
while avoiding having to trust the network servers to manage the shared keys.
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The analysis of [192] also applies to variants [[2a]] and [[2b]]. The absence of end-user covert channels
is particularly significant in the context of software crypto implementations, because leakage of
keying information through a covert channel could be very serious, even with very low covert-
channel bandwidth. Some defense against denial-of-service attacks can be provided by the presence
of multiple file servers and multiple communication paths, especially for particularly critical levels
and categories.

In both of these two variants, compromises of the local single-level end-user operating systems must
not be permitted to compromise the local cryptographic keys, the authority-granting capabilities,
or the authenticity-ensuring certificates. The presence of single-end-user systems helps to minimize
the user-competitive aspects of local operating-system usage.

Multiple-end-user systems may be considered as another alternative within this family, although
they tend to entail higher risks:

e MLS,User-Sn,AT,ZN-ZT-MT,XU,FN¢-FU-FS [[2¢]]
e MLS,User-Sn,AT,ZP-ZT-MT,XU,FNc-FU-FS [[2d]]

Configurations [[2c|] and [[2d]] exist with and without network encryption, respectively, similar to
the corresponding pair of single-user systems [[2a]] and [[2b]]. However, in [[2c]] and ]]2d]], the
trustworthiness of the operating systems that are not required to enforce multilevel security then
becomes a vital issue with respect to key storage, as do the competitive aspects of multiuser network
interfaces, processes, and user files. These multiuser alternatives are not generally recommended
with any of today’s C2 systems, and are likely not to be particularly attractive in the future — unless
multilevel-security separation systemwide is by itself sufficient in the absence of assured interuser
(discretionary) security on each end-user system. On the other hand, because discretionary access
controls are typically vulnerable to misuse by insiders and penetrators, such a situation may indeed
be adequate.

A.3 Multilevel-Secure Network Interfacing with MLS File Servers

e MLS,User-S1,AT,ZN-ZT-MT,XU,FP-FT-FM-MT [[3]]

Baseline architecture family [[3]] has single-user single-level end-user systems, as in alternatives
[[2a]] and [[2b]], but does not use storage crypto. However, in this case at least some of the
file servers may store multilevel-secure information, and any that do so must be trustworthy in
enforcing MLS separation (in contrast to the first two architecture families). As a consequence,
even though the end-user systems operate as single-level systems with respect to their users, the
end-user system authentication must be sufficiently trustworthy to prevent those end-user systems
from masquerading as systems authorized at higher security levels. All network communications
would be encrypted invisibly by the network servers.

A.4 Compartmented-Mode End-User Systems

e MLS,User-M1-B1,AT,ZN-ZT-MT,XU,FP-FT-FM-MT [[4a]]
e MLS,User-Mn-B1,AT,ZN-ZT-MT,XU,FP-FT-FM-MT [[4b]]

Today’s compartmented-mode workstations minimally satisfy the TCSEC B1 criteria, but are not
likely to be adequate for environments with a user community that is not completely trustworthy.
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(Full MLS requirements as in B3 or A1l systems are found in [[6]].)

A.5 Multilevel-Secure End-User Systems with Storage Crypto

e MLS,User-Mn-B3,AT,ZN-ZT-MT,XU,FNc-FT-FM-MT [[5a]]
o MLS, User-Mn-B3,AT,ZP-ZT-MT,XU,FNc-FT-FM-MT [[5b]]

Family [[5]] has multilevel-secure end-user systems and client-provided storage crypto. Two cases
are considered, a more conservatively designed version with network encryption [[5a]] and another
without network encryption [[5b]]. Although it might seem that network cryption is superfluous
in [[5a]], the situation is similar to that in [[2a]] — in which additional benefits result from the
combination of FNc and ZN.

The presence of unencrypted data on a shared end-user system requires an advanced system archi-
tecture to prevent local loss of confidentiality and integrity. In particular, leakage of key information
could result in one user’s being able to decrypt another user’s files.

A.6 Multilevel-Secure End-User Systems without Storage Crypto

e MLS,User-Mn-B3,AT,ZN-ZT-MT XU, FP-FT-FM-MT [[6]]

Family [[6]] has network cryption but not client-provided storage cryption. (File servers could
choose to store the network-encrypted form rather than decrypting it, when the destination is a
file server as opposed to another end-user system.)

Again, the presence of unencrypted data on a shared end-user system requires an advanced system
architecture to prevent local loss of confidentiality and integrity by direct access.

Family [[6]] is a paradigmatic architecture according to the conceptual view of multilevel-secure
networked systems based on the B3 TCSEC criteria embodied in the Orange Book [151] and the Red
Book [150]. However, it suffers from the wide dispersion of the need for trustworthy components.
In addition, the B3/A1 criteria are incomplete in many respects, and need to be augmented.
(For example, see [157] for a summary of some of the missing criteria elements.) Nevertheless,
with TCSEC B3/A1 systems, secure networking, trustworthy file servers, and a trustworthy user
community, this family could in principle soundly support crypto in software.

A.7 Conventional Single-User Single-Level Systems

e User-S1,AT,ZN-ZT ,XU,FNc-FU [[7a]] with storage crypto
e User-S1,AT,ZN-ZT XU, FP-FT-CT-IT-DU [[7b]] without storage crypto

The first family of conventional systems includes operating systems that permit only a single user
(or group of equivalent users, as defined above) of each end-user system and that provide nontrivial
networked interuser separation and file system security.

If there is never more than one authorized user (or equivalent group) for the lifetime (or less time,
under certain specific circumstances) of a particular end-user system, and if the user authentication
and physical security are strong enough to shut out all would-be external intruders, then the
revealing of shared keys for communications and authentication can become much less of a concern,
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as does the revealing of nonshared keys for storage crypto. Ironically, in such a case, despite
the considerable lack of security of the local end-user system, key hiding becomes less critical —
although we must still recognize the problems presented by hardware maintenance.

A.8 Conventional Multiple-User Single-Level Systems

e User-Sn,AT,ZN-ZT XU, FN-FT-CT-IT-DU [[8a]] with storage crypto (FN = FNc¢ or FNn or
FNs)

e User-Sn,AT,ZN-ZT XU ,FP-FT-CT-IT-DU [[8b]] without storage crypto

Conventional systems of family [[8]] include operating systems similar to those in [[7]], but which
permit multiple users on the same end-user system and also take some care to provide nontrivial
interuser separation and file system security. Multiple use may be either simultaneous (as in the
case of the Sun-OS and other multiprogrammed Unix workstations) or only one at a time, as in the
case of Novell’s NetWare 4.0 running on top of an MS-DOS personal computer. The basic question
here is whether crypto applications (storage, communications, and authentication) can be securely
implemented even when the operating systems are vulnerable.

User-specific crypto keys must be protected against attack by other authorized users. Encrypting
those keys with master keys is in general iteratively unsatisfactory, as noted in [158]. System-specific
keys may be vulnerable to spoofing attacks by other users.

A.9 Low-End Conventional Systems

e User-S1,AU,ZP-ZU,XP-XU,FP-FU [[9a]]

e User-Sn,AU,ZP-ZU XP-XU,FP-FU [[9b]]
To contrast further the systems already discussed, we conclude this discussion with two cases of what
might be termed comic relief, the run-of-the-mill state of the art typifying (somewhat exaggeratedly)
today’s low-end systems. The subfamily [[9a]] includes a collection of rather primitive systems that
may or may not allow single-user multiprogramming but that do not permit multiplexing of any
end-user system among even nonsimultaneous users. Very little discussion is necessary, except to
note that this is essentially what one gets if one’s head is in the sand.

A.10 Stand-alone End-User Systems

e User-S1 stand-alone, with or without FNc [[10a]]
e User-Sn stand-alone, with or without FNc [[10b]]

No enumeration of system configurations would be complete without including a stand-alone system
with no networking whatsoever (except possibly for the system’s own private file server, which
logically can be considered to be part of the stand-alone system). Although there is consequently
no need for communication crypto, crypto is meaningful here for both storage and authentication.
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A.11 Comparison of the Architecture Families

Table 15 (highlighting the various architectural families considered in Sections A.1 through A.10)
summarizes what functionality must be trustworthy and gives a rough basis for comparing these
families. The second column of the table summarizes the weak links for each of the families, while
the third column provides some comments applicable to implementations of the given architectural
family.

In each case, the authentication server must be sufficiently trustworthy, whether it is redundantly
distributed or in part collocated with the end-user systems. Confidentiality and integrity are both
vital. However, if the authentication server enforces the use of nonreusable tokens with encryption
of suitably embedded identifiers and timestamps or nonces, many of the conventional vulnerabilities
(for example, capture of passwords, or replay attacks with deficient certificates) can be avoided. (For
example, see [68, 73, 74].) Typically, some of the authentication functionality would be centralized
in several authentication servers, while complementary functionality would be distributed in each
of the end-user systems.

In several of the family members (for example, [[1a,2a,2b,3,4a]]), each end-user system is restricted
to be a single-user system, as defined above.

In three families ([[1,2,5]]), the file servers do not need to be trusted for multilevel-security separa-
tion, although in [[5]] a particular file server may be capable of handling files at multiple security
levels (which is not the case in [[1]] and [[2]]). In several cases ([[1a,2,5,7a]]), the file servers do
not need to be trusted for single-level file confidentiality or integrity, if the client-provided cryp-
tion is used appropriately; in other cases, the file servers must be trustworthy — with respect to
single-level interuser separation in [[1b]] and multilevel-security separation in [[3,4,6]].

Client-provided cryption may be appropriate whenever the network servers and file servers are po-
tentially less trustworthy than the end-user systems. Similarly, network encryption may be suitable
whenever the network servers are sufficiently trustworthy. File-server-provided file encryption is
useful mainly when the storage media themselves may be vulnerable to attack.

A primary motivation for storage crypto is to provide greater assurance that media capture or
software subversions do not compromise storage security. Decisions on whether to use storage
crypto are more or less independent of other architectural concerns — unless for other reasons
network crypto is explicitly to be avoided. On the other hand, there are problems involved in trying
to use the network-encrypted format for storage media as well, because typically some decryption
must take place for headers and identifiers, or else some of the network traffic must be in the clear.
In either case, traffic analysis becomes a problem, and thus it may be advantageous to have both
storage crypto and network crypto.
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B Tamperproofing NIDES

Appendix B considers a specific distributed-system networked environment in which user behavior
is monitored by a separate analytic system that seeks to detect and analyze potentially anomalous
behavior. A set of tamperproofing principles is considered, and a particular illustration of the
adherence to these tamperproofing principles is given, in terms of SRI’s Next-Generation IDES
(NIDES) [6, 7, 98], the successor to SRI’s Intrusion-Detection Expert System (IDES) [51, 99, 127].2!
The IDES/NIDES effort began in the mid 1980s.

B.1 Tamperproofing via Subsystem Encapsulation

Various requirements are considered here. To make them somewhat specific, we apply them directly
to a NIDES-like situation in which an analysis system monitors the behavior of the target system(s).
In this case, the target systems must not depend on any of the functionality in the analysis system,
although the analysis system clearly depends on the target system(s) for its data.

e Goal 1: Target-system integrity. The environment of the analysis system must not be
permitted to have any adverse effects on the integrity of the target systems. The normal flow
of information is from the target systems to the analysis system. Any reverse information
flow (including control flow, exception conditions, and indirect interactions) from the analytic
system to the target system must be authenticated and validated. The analysis system should
continually validate the status of all target systems to detect involuntary shutdown.

e Goal 2: Target-system confidentiality of transmitted data. The environment must
protect any sensitive audit data on the target systems, before and during its transmission to
the analysis system. This suggests that encryption should be used if the transmission path
cannot otherwise be secured.

e Goal 3: Analysis-system data security. The target systems and the analysis system
must protect the transmitted audit data from browsing, alteration, deletion, and spoofing.

e Goal 4: Analysis-system integrity. The analysis system must be protected from modifi-
cation of its procedures and system data.

e Goal 5: Analysis-system availability. The analysis system must be protected from
malicious denials of service.

e Goal 6: Rulebase protection. The analysis-system rulebase must be protected from
undesired reading, unauthorized modification, and reverse engineering.

e Goal 7: Analysis-system user access. Access to the analysis system and its data must be
restricted through user authentication within a tightly controlled set of authorized personnel.

e Goal 8: Analysis-system user accountability. User activities must be logged and ana-
lyzed in sufficient detail for the detection, by security officers and administrators, of malicious
misuses of the analysis system and its data, and of intrusions by unauthorized personnel.

21IDES was perhaps an overly narrowly chosen name, because from the beginning IDES included included a
statistical component as well as an expert system.
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B.2 Protection Against Reverse Engineering

It may be desirable to protect sensitive knowledge about what is being monitored (for exam-
ple, potential exploitation of little-known system vulnerabilities) from unauthorized reading or
modification.?? This desire for antitampering suggests the identification of more specific goals
relating to those noted in Section B.1. (The relationships among those goals are indicated.)

e Goal 9: Encapsulation and hiding of sensitive information — for example, the
rulebase and the statistical measures that are used in the analysis. Goal 9 requires
the satisfaction of Goals 2 and 3.

e Goal 10: Separation of roles among users and processes of the analysis system.
Omnipotent superuser roles must be avoided in the analysis system, just as elsewhere.

e Goal 11: Interprocess and server authentication. The internal components of the
analysis system must be authenticated with respect to one another. (Goal 7 relates to users,
whereas Goal 11 relates to subsystem components.)

e Goal 12: Self-monitoring of accesses to the analysis system itself. Goal 12 re-
quires the satisfaction of Goal 8, but also requires the logging of certain actions taken by the
subsystem components themselves.

B.3 Illustration of the Realization of These Goals

To illustrate these tamperproofing goals, we consider here an encapsulated environment that demon-
strates the needs for additional protection, namely, an analytic system that performs anomaly and
misuse detection based on inputs from audit trails, network traffic, and other sources.

In particular, we consider SRI’s NIDES environment, which monitors a collection of target systems
(for example, Sun Unix systems), but runs on a separate execution platform. NIDES runs on a
platform that is not a target system. (We assume that target-system security is whatever it is.)
Section B.4 refines the security goals specifically for NIDES.

NIDES is itself a sensitive application and has security requirements in addition to those of the
systems whose use is being monitored [51].

Malicious tampering with the audit data or with the analysis system itself could lead to intrusions
going undetected. If an intruder can read the NIDES rulebase, then the penetrated site and other
sites using a substantially similar rulebase could be jeopardized, especially if such knowledge is
shared within the intruder community.

As is any computer system, NIDES is potentially subject to attack. For example, an attacker may
try to break the security officer’s account, try to cause a core dump, or try to exploit potential
weaknesses in the design and implementation. Once NIDES is compromised, the attacker may
disable the system.

The NIDES rulebase represents explicit scenarios that are indicative of potential system misuse.
An attacker who obtains the rulebase may be able to devise attack strategies to defeat the rules,

22This is sometimes known as the “knowledge paradox” — in which the availability of a tool for analyzing vulner-
abilities itself permits the identification and knowledge of those vulnerabilities by would-be attackers. This paradox
resurfaced again recently when Dan Farmer’s SATAN tool was released.
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and thus evade detection. Therefore, it is vital to protect the rulebase from disclosure to intruders
and from unauthorized modification.

B.4 Tamperproofing NIDES via Subsystem Encapsulation

Section B.4 restates the generic goals of tamperproofing of Section B.1 in the specific context of
NIDES.

e Goal 1: Target-system integrity. NIDES must not have adverse effects on the integrity
of the target systems. NIDES should authenticate interactions with target systems. NIDES
should continually validate the status of all analysis systems to detect involuntary shutdown.

e Goal 2: Target-system data confidentiality. It is the responsibility of the target systems
to ensure the confidentiality of audit data as it is collected and in transit to NIDES. Apart
from agreement on crypto keys, protocols from transmission, and performance effects on both
the target systems and the analysis systems, this goal is largely independent of NIDES.

e Goal 3: Audit data security. NIDES must protect the audit data transmitted from the
target systems to NIDES, from browsing, alteration, deletion, or spoofing.

e Goal 4: System integrity. NIDES must be protected from modification of its procedures
and system data.

e Goal 5: Availability. NIDES must be protected from malicious denials of service.

e Goal 6: Rulebase protection. The NIDES rulebase must be protected from undesired
reading and reverse engineering and from unauthorized modification.

e Goal 7: User access. Access to NIDES and its data must be restricted through user
authentication within a tightly controlled set of authorized personnel.

e Goal 8: User accountability. User activities must be logged and analyzed in sufficient
detail for the detection, by security officers and administrators, of malicious misuses of NIDES
and its data, and of intrusions by unauthorized personnel.

B.5 Addressing the NIDES Security Goals

To address the goals stated in Section B.1, and amplified in Section B.4, NIDES must be protected
at least as well as a TCSEC [151] C2 system, and better than a C2 system with respect to certain
criteria elements such as authentication.

Various techniques can contribute to addressing these goals. A combination of physical, logical,
and operational security controls can be used. For the proposed work, we consider only the logical
controls with the highest payoff, and the least developed risk, although we assume the presence of
both physical and operational controls. We concentrate here on techniques to reduce the risk of
tampering with NIDES operation and techniques that make reverse engineering difficult.?

22 Debra Anderson participated in the formulation of the enhancements described in Sections B.6 and B.7.
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Table 16: Proposed NIDES user roles
User Roles
Functionality Administrator | Security Officer | Experimenter

Assignment of roles to privileged users

Review of system configuration logs

NIDES start-up and entry of usage password

Configuration of alert reporting

Configuration of alert filtering

Configuration of target hosts

Initiation/termination of real-time analysis

Real-time result data review

Audit record data review

Entry of encryption keys for rulebase reconfig

Configuration of NIDES real-time analysis

Creation and configuration of test instances

Execution of test runs

Test result data review . °
Legend: e = functionality accessible to specified user role

B.6 Protecting NIDES from Tampering

e Separation of roles. NIDES user roles and their corresponding privileges must be made
distinct by separately grouping routine security officer functions, security administrator func-
tions, and experimentation functions. The current NIDES privileged user functionality must
be enhanced to provide a role-separating facility that can be configured only by a NIDES
system administrator. A particular user may be authorized to serve in several roles. For
example, roles within NIDES could be divided as shown in Table 16, in which a bullet (e)
indicates that the particular functionality would be accessible to the specified user role.

e Interprocess and server authentication. Via authentication in the TPC nameserver,
we must ensure that the communication channels used by all NIDES host processes are not
compromised by the insertion of bogus processes or data. The following nameserver checks
would be added:

1. Only processes known to belong to NIDES and running on the NIDES host would be
allowed to register.

2. Registration of processes with the NIDES ipc_nameserver would be verified. Processes
registering with the ipc_nameserver must use an accepted password to be registered.

3. Addresses for all known/registered processes would be verified during all ipc_nameserver
transactions.

4. Requested client/server connections would be verified for appropriateness before the
connection is allowed.

e Detection of and protection against denials of service. To minimize the opportunities
for denials of service, it would be desirable to make the following checks:
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1. The NIDES Alert PopUp window can be used to deny service to other NIDES functions
when the system is flooded with alerts. We might modify the window so that it will not
require acknowledgment of each alert reported prior to executing any other NIDES func-
tions. We would also enhance the window to provide a scrollable listing that summarizes
recent alert activity.

2. NIDES should monitor, and report radical increases in, the volume of audit data pro-
duced by each active target host.

3. A new timeout mechanism can allow the NIDES Server processes to accept new Client
process requests if the current Client request is not completed within a specific period
of time.

e Target system integrity /availability enhancements. We recommend that the following
functions be added to the NIDES target host interfaces to improve target host integrity and
availability:

1. Each agen program (agen runs on the target systems and converts the indigenous audit
trails into the standard internal NIDES format) should produce periodic “heartbeat”
messages to arpool (the program that runs on NIDES and merges all audit-trail in-
formation into a single stream) to detect outages of the link from the target system to
NIDES.

2. The security of agen should be increased by providing each agen a password, at start-up,
that would be used by arpool to verify that the agen process has been properly started
by NIDES and has not been tampered with.

3. Using a closed-loop verification test, agen would periodically check the integrity of the
audit trail data that it converts. The closed-loop test would entail agen generating an
audit event, and then verifying that the event appears properly in the audit trail.

4. agen would periodically check the Ethernet interface status to ensure that it is not
allowing network packet snooping (i.e., when the Ethernet is set to promiscuous mode
operation).

5. agen would periodically check audit trail file modes for changes to file permissions.

6. agen would periodically check audit configuration files for changes.

e arpool target host authentication. The arpool process would be enhanced to allow only
target hosts that have been activated by NIDES and authenticated to connect. Any suspicious
connection attempts would be denied and reported.

e Smokescreen detection. The resolver is intended to eliminate false positives and redundant
alerts that might be generated by the rulebase or the statistical component. However, an
intruder might deliberately flood NIDES with alerts so that his malicious deed is buried
in the smoke. The NIDES resolver could be extended to detect and circumvent certain
smokescreen activities that attempt to mask illicit activities, by noting unusually high volumes
of audit data, suppressing redundant or very similar closely spaced alerts, and providing
explicit cautionary messages for the security officer. When an attempted smokescreen is
recognized by the resolver, an alert would be reported giving information about the suspected
smokescreen.
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e Logging of NIDES user actions. A NIDES action log would be implemented to audit
all security-relevant NIDES user actions, including all attempted or successful configuration
changes. This NIDES action log would be readable only by the NIDES security administrator
role.

e NIDES process integrity/security. Processes associated with the NIDES host would be
enhanced to ensure NIDES security and integrity as follows:

1. nagen process. Monitoring of the NIDES hosts by NIDES itself can, for certain gran-
ularities of audit data reporting, enter a positive feedback loop where the processing of
a single NIDES audit record generates multiple NIDES audit records. For this reason,
the use of agen on a NIDES host has been strongly discouraged.

While a manageable situation could, in principle, be achieved with an appropriate audit
system configuration, the efficiency and reliability of NIDES could easily be degraded by
audit configuration changes, either intentional (malicious) or unintentional (careless).
A specialized agen process, nagen, would be developed that is designed explicitly to
monitor the activity on the NIDES hosts and filter out, if present, extraneous and
voluminous data that does not directly affect the integrity of NIDES. In this way, nagen
would prevent NIDES from “flooding itself” with audit records. The nagen process
would include these capabilities:

— Filtering of a small set of relevant audit events from the NIDES host audit trail

— Collection of data on network activity — in particular, attempts to access network
services on the NIDES hosts from the network (e.g., telnet, ftp, rlogin).

— A specialized rulebase that addresses NIDES vulnerabilities using nagen-provided
data (for example, execution of ptrace on known NIDES processes or access of
memory devices on the NIDES host)

2. Alert reporting integrity. NIDES alert reporting can be compromised when the
perpetrator of the alert is a NIDES user. In addition, since deactivation of sendmail on
the NIDES host is recommended, a reliable mechanism for transfer of E-mail alerts is
necessary.

— A specialized reporting mechanism for alerts involving a compromise of NIDES
security (e.g., cases where the perpetrator may be a NIDES user)

— An enhanced E-mail alert reporting mechanism to route all E-mail alerts through a
specific mail host

3. NIDES user authentication. NIDES users would be verified through the following:

— Enhanced NIDES start-up procedures requiring the user to enter a one-time pass-
word that would be used for NIDES-related authentications during the current
NIDES execution

— A NIDES modification allowing NIDES logins only from the NIDES host, not from
any other systems

— A requirement for users who are authorized to perform rulebase configuration func-
tions to enter in the rulebase encryption key before performing any rulebase config-
uration functions in NIDES

4. TCP/IP services. The integrity of the NIDES analysis host, software, and data must
be maintained. Network access to the NIDES host should be completely disabled or at
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least severely restricted except for communication between the agen processes on the
individual target hosts and the arpool process.

Additional system administration guidelines would be provided on which TCP/IP ser-
vices should be allowed/configured on the NIDES host via TCP wrappers. Guidelines
for the disabling (or restriction) of network protocols and services such as telnet, ftp,
rlogin, sendmail would also be provided.

NIDES would automatically review the status of TCP/IP connections (e.g., vianetstat),
analyzing changes in the status for suspicious behavior.

B.7 Protecting NIDES from Reverse Engineering

e Protecting the rulebase from reverse engineering. The most vulnerable area in NIDES
with respect to reverse engineering is the rulebase. In NIDES, each rule is specified using a
rulebase language, and is translated into machine-generated C code. These machine-generated
rules are then compiled into object code that can be loaded into the operational rulebased
system at run time.

Various techniques can contribute to making it difficult to reverse engineer the NIDES rule-
base:

1. Protection of the NIDES rulebase source code. In NIDES installations the rule-
base source code and configuration files are highly sensitive. The NIDES rule sources
and their corresponding C source code should be maintained on a system separate from
NIDES. A rule source encryption mechanism would be provided that would decrypt rules
only during compilation. The rule-build script would be enhanced to prompt the user
for the encryption key, decrypt the rule source, compile it, and then re-encrypt it.

2. Protection of the NIDES rulebase from unauthorized modification. Activa-
tion/deactivation of the rules in the rulebase is safeguarded by the techniques enumerated
in Section B.6, specifically use of the one-time password for each NIDES invocation and
entry of the rulebase encryption key when rulebase configuration is initiated. Preven-
tion of unauthorized users writing and installing rules into the NIDES rulebase would be
addressed in two ways — the rulebase development directories would be accessible only
to the NIDES system administrator and all rules would be developed using an encryp-
tion key, as mentioned earlier. Thus, any rule created with an improper encryption key
cannot be decrypted by NIDES; when this occurs, the error would be reported and the
rule files involved should be verified by the NIDES system administrator and probably
removed.

3. Protection of rule object code and rulebase configuration files. NIDES rule
binaries and the rulebase configuration file, rb_config, would be stored in an encrypted
form when they are on disk, and would be decrypted at run time as needed — if the
correct key has been entered at NIDES start-up. This can be accomplished without
inhibiting access to object files for rules during system execution. The rule-buildingscript
would also be enhanced to encrypt the rule object files immediately after compilation. A
rule object file would be decrypted when the rule is needed by NIDES, and re-encrypted
when the rule object file is no longer needed. This approach would add a slight delay to
the NIDES start-up processing and rulebase reconfiguration.
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e Protecting NIDES software from reverse engineering. The NIDES processes would
be enhance in the following ways to deter reverse-engineering attempts:

1. Prevention of dumping. Core dumping would be disabled systemwide. All signals
that could cause a core dump and prevent the writing of the core file would be trapped.

2. Use of ptrace and /dev/mem. In the NIDES nagen rulebase, rules would be included to
detect reverse-engineering attempts using the ptrace system call or reading /dev/mem.

B.8 Coverage of the NIDES Security Goals

Table 17 lists the proposed enhancements and shows which of the goals given in Section B.4 are
at least partially addressed by each enhancement. A solid bullet () indicates that the feature is
primary in addressing the goal. An open bullet (o) indicates a secondary contribution.

These techniques would not make it impossible for NIDES to be compromised. However, they
would greatly reduce the risk and increase the likelihood that such compromise will be detected.

B.9 Formal Methods Implications of NIDES

NIDES is a system that is normally intended to run separately from the systems whose activities it
monitors, with no Internet or dial-up access, and with dedicated connectivity to the target systems
that it monitors. As such, NIDES security can be considered somewhat independently of the
security of the target systems — except for the possibility of compromises of the audit data on the
target systems being monitored, before that data ever reaches NIDES.

From a RISSC architecture point of view, making the NIDES architecture largely separable from
the target systems, and severely constraining the interface between the target systems and the data
collection and analysis systems, alleviates many of the security problems commonly found in more
highly accessible systems. However, numerous concerns remain as to the security of an environment
such as the NIDES platform itself — as addressed here.

From a formal methods point of view, the goal is to apply formal methods where the payoff is
greatest. In this case, if it were deemed important to provide high assurance for the NIDES antita-
mpering properties noted in Section B.6, Goals 3, 4, and 7 would probably be of greatest interest,
with 6 and 8 also appropriate for analysis. The formalization of these goals would very similar
to typical operating-system properties, although with considerable emphasis on system integrity
(which is important anyway). The security issues involved in protecting against reverse engineering
also do not require any fundamentally new formalizations. The three rulebase properties and the
two system properties enumerated in Section B.7 are essentially just system security properties.
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Table 17: Relationship of proposed enhancements and security goals

NIDES Requirement
1 2 3 4 5 6 7
Target | Audit
System | Data | Integrity | Avail. | Rules | Access | Users
Antitampering
User Roles o o o . °
IPC
Allowed set . .
Registration . °
Verification . .
Restrictions . .
Nondenial
Alert PopUp . °
Audit data .
Server timeout, o
Target Hosts
Heartbeat ° ° °
Authentication . .
Data verify . . .
Network checks ° .
Audit files ° .
Audit config . .
arpool
Target connect ) . °
Smokescreen ° ° .
Logging . . . .
NIDES Host
nagen
audit data filter ° .
data collection
special rulebase
Alert reporting
Insider alerts
E-mail reports . °
User authentication
Session password o .
Local execution . o
Encryption key . .
TCP/IP services . o o o
Antireversing
Rulebase
Rule source integrity . . °
Unauthorized mods
Object/config integrity
NIDES
No core dumps °
ptrace & /dev/mem .

Legend:
e = primary contribution to requirement fulfillment
o = secondary contribution to requirement fulfillment
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C Architectural Implications of Covert Channels

For convenience of the reader, the following article by Proctor and Neumann [192] is reprised from
the 15th National Computer Security Conference, October 1992. (References are incorporated
within the main body of references to this report.) That paper examines Distributed, Single-level-
user-processor, Multilevel-secure (DSM) architectures, with particular attention to the elimination
of end-user covert channels, and provides the basis for the Reduced Interfaces for Secure System
Components (RISSC) architectures considered here. The covert-channel issues considered in the
paper are actually secondary to the issues of (1) being able to readily configure multilevel-secure
systems out of easily available end-user system components, and (2) being able to readily evaluate
those systems as compositions and layerings of their components.

Architectural Implications of Covert Channels
Norman E. Proctor and Peter G. Neumann

Computer Science Laboratory
SRI International, Menlo Park CA 94025

Abstract This paper?? presents an analysis of covert channels that challenges several popular
assumptions and suggests fundamental changes in multilevel architectures. Many applications
could benefit from a practical multilevel implementation but should not tolerate any compromise
of multilevel security, not even through covert channels of low bandwidth. With the present state of
the art, the applications either risk compromise or forgo the benefits of multilevel systems because
multilevel systems without covert channels are grossly impractical. We believe that the presence
of covert channels should no longer be taken for granted in multilevel systems.

Many covert channels are inherent in the strategies that multilevel systems use to allocate resources
among their various levels. Alternative strategies would produce some sacrifice of efficiency but
no inherent covert channels. Even these strategies are insufficient for general-purpose processor
designs that are both practical and multilevel secure.

The implications for multilevel system architectures are far-reaching. Systems with multilevel pro-
cessors seem to be inherently either impractical or unsecure. Research and development efforts
directed toward developing multilevel processors for use in building multilevel systems should be
redirected toward developing multilevel disk drives and multilevel network interface units for use
with use only single-level processors in building multilevel distributed operating systems and multi-
level distributed database management systems. We find that distributed systems are much easier
to make both practical and secure than are nondistributed systems. The appropriate distributed
architectures are, however, radically different from those of current prototype developments.

C.1 Introduction

This introduction describes covert channels and their exploitation. The next section gives some
background on covert channel research and relevant standards. After that, we identify the circum-

24 Copyright 1992, Norman E. Proctor and Peter G. Neumann. Presented at the 15th National Computer Security
Conference, Baltimore, 13-16 October 1992, this paper is based on work performed under Contract F30602-90-C-0038
from the U.S. Air Force Rome Laboratory, Computer Systems Branch, Griffiss Air Force Base, NY 13441 [164].
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stances in which covert channels need not be avoided when designing a system for an installation.
First, we consider various reasons why covert channels might be tolerable in a multilevel system.
Then, because covert channels are relevant primarily in multilevel systems, we consider when alter-
natives to multilevel systems are appropriate for an installation. This seems to leave a large class
of installations that would want multilevel systems free of covert channels.

We next turn our attention to various reasons why multilevel systems have covert channels and con-
sider how the needs of applications can be met without producing covert channels. We consider in
particular how a multilevel system can allocate resources among levels without covert channels that
compromise security and without inefficiencies that leave the system impractical. We describe the
problems with dynamic allocation and identify three alternative strategies for secure and practical
resource allocation: static allocation, delayed allocation, and manual allocation.

We describe some practical approaches to multilevel allocation for various devices, including mul-
tilevel disk drives, and explain why allocating software resources among levels is so troublesome.
Finally, we present the implications for multilevel system architectures and suggest new directions
for research and development.

To the Reader

Earlier versions of this paper were misinterpreted by some very knowledgeable readers, leading
us to clarify the exposition. Nevertheless, we warn readers familiar with the problems of covert
channels in multilevel systems that, because we are questioning some popular assumptions about
covert channels, what you already know about covert channels may cause you to misunderstand
our main points. Thus, please forgive our belaboring certain central issues and slighting other
fascinating topics that seemed less central to the discussion.

Covert Channels

Covert channels are flaws in the multilevel security of a system.?” A malicious user can exploit
a covert channel to receive data that is classified beyond the user’s clearance. Although a covert
channel is a communication channel, it is generally not intended to be one and may require some
sophistication to exploit. It may take considerable processing to send one bit of data through the
channel; error control coding is needed to signal reliably through a noisy covert channel. Exploita-
tion may require the help of two Trojan horses. One runs at a high level and feeds high data into
the channel, and the other Trojan horse runs at a lower level and reconstructs the high data for the
malicious user from the signals received through the covert channel. The low Trojan horse is not
needed if the high one can send a straightforward signal that can be directly interpreted. Also, as
we explain later, malicious users can exploit some special kinds of covert channels directly without
using any Trojan horses at all.

A covert channel is typically a side effect of the proper functioning of software in the trusted
computing base (TCB) of a multilevel system. Trojan horses are untrusted programs that malicious
users have written or otherwise introduced into the system. A Trojan horse introduced at a low
level can usually execute at any higher levels.?

A malicious user with a high clearance does not need to use covert channels to compromise high
data. The mandatory access controls would permit reading the high data directly. Ordinary reading

25Gimilar flaws in other aspects of security are sometimes called covert channels, too, but a covert channel in this
section is always a communication channel in violation of the intended multilevel policy of the system.

261f a program could run only at the level where it was installed, it would be harder for a malicious user with a
low clearance to introduce the high-level Trojan horse. It would also be inconvenient to install legitimate software.
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is certainly an easier way to receive the data if the discretionary access controls permit ordinary
reading. If not, it is easier for a Trojan horse to copy the data into another place where the
discretionary controls do permit the malicious user to read it than to exploit a covert channel to
transmit the data.

The levels that concern us here are not necessarily hierarchical confidentiality levels. They may
instead be partially ordered combinations of hierarchical levels with sets of compartments. We
assume that a level might have some compartments. This means that two different levels may
be comparable or incomparable. If comparable, one level is higher and the other is lower. If
incomparable, neither level is higher or lower. A higher level denotes greater intended secrecy or
confidentiality.?”

Noise in Covert Channels

The bandwidth of a covert channel is the rate at which information or data passes through it. A
noisy channel intentionally or accidentally corrupts the data signal with errors so that the informa-
tion rate is slower than the data rate. A very noisy channel with an apparent bandwidth of one bit
of data per second might actually leak only one millionth of a bit of usable information per second.
Such a low bandwidth is beneath the notice of some. A malicious user who might have received
the classified answer to a yes-or-no question almost immediately if the channel had no noise would
expect to wait almost twelve days for the answer. Of course, the channel still compromises security
even though extremely high noise makes for an extremely low effective bandwidth.

Noise in a covert channel may also make its information probabilistic. For example, consider a
slower covert channel with a bandwidth of a thousandth of a data bit per second where each bit
received has a seventy-five percent chance of being the same as what was sent and a twenty-five
percent chance of being wrong. A malicious user exploiting the channel must receive the answer
to a yes-or-no question many times before believing whichever answer was received more often.
The expected wait for each answer is about seventeen minutes, but it takes around five hours
for confidence in the answer to reach ninety-nine percent. Here again, compromise of security is
postponed but not prevented.

C.2 Background

Various approaches exist for detecting and analyzing covert storage channels [61, 189] and for
avoiding some of them [106]. For covert timing channels, additional approaches exist for detection,
analysis, and avoidance [94, 251]. Some approaches attempt to address both types of covert chan-
nels [80]. The notions of restrictiveness and composability [137] seek to preserve the absence of
covert channels under composition, assuming their absence in the underlying components.

In section C.7 we discuss some new directions for multilevel system designs that avoid all covert
channels. The architectures themselves are not new, of course. Others have considered similar
architectures for somewhat different reasons [188, 210].

Much of the research and development in covert channels for practical systems has been devoted to

2"For simplicity, we assume that levels are for confidentiality although they could instead be for integrity or for both
integrity and confidentiality. The levels for mandatory integrity are duals of confidentiality levels; covert channels
can compromise mandatory integrity in a direct parallel to their compromise of mandatory confidentiality. For
example, a Trojan horse running at a low integrity level might covertly contaminate high integrity data where overt
contamination was prevented by multilevel integrity.
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reducing bandwidths to what some consider to be slow rates. Sometimes delays are introduced to
lower bandwidth, and sometimes noise is added to lower the usable bandwidth. These approaches
merely ensure that malicious users exploiting the channels do not enjoy the same quick response
times to their queries as legitimate users enjoy. The assumption may be that if it takes hours or days
for an answer to a simple illicit question, malicious users will ignore the covert channel and prefer
more traditional methods of compromise, such as blackmailing or bribing cleared users. Although
we do recognize some situations where covert channels are tolerable, we believe the reason is rarely
because of low bandwidths. For most installations, we believe that all covert channels should be
completely avoided, not simply made small. A clever, malicious user can generally compromise
classified information with even the narrowest covert channel.

Other research in covert channels for practical systems has addressed the elimination of some specific
varieties of channels. The other varieties, typically including all timing channels, are permitted in a
multilevel system because the developers could not find a way to eliminate them without rendering
the system impractical for its legitimate functions. The assumption may be that any channel that
is too hard for a developer to eliminate must also be too hard for a malicious user to exploit, but
this assumption is so clearly fallacious that it is never explicit.

A cynical interpretation of this willingness to tolerate residual channels is that, because many users
have simply accepted systems with covert channels despite the potential for security violations,
developers treat a multilevel security policy as an ideal to approach, not as a requirement to meet.
A more generous interpretation is that the developers intend to eliminate more and more kinds
of covert channels with each new generation of multilevel designs hoping that someday they can
actually design a system with no covert channels. We wish they would go straight for systems free
of covert channels, and we believe the goal can be reached.

Standards

The U.S. Defense Department standards in the Trusted Computer System Evaluation Criteria [151],
also known as the Orange Book, place restrictions on covert channels in secure systems. Systems
evaluated at classes C1 and C2 would have no covert channels simply because they would always
be run at a single level. There are no restrictions on covert channels in a class Bl system, even
though the system would probably have plenty of them.

For a class B2 system, an attempt must be made to identify the covert storage channels, measure
their bandwidths, and identify events associated with exploitation of the channels. The design must
avoid all storage channels with bandwidths over one bit per second, and the audit must be able to
record the exploitation events for any storage channels with bandwidths over one tenth of a bit per
second. There are no restrictions on covert timing channels. In a class B3 system, the criteria for
covert channels are extended to the timing channels.

In a class Al system, the attempt to identify covert channels must use formal methods, but the
criteria are otherwise the same as for class B3. The requirement of formal methods does imply that
the informal methods acceptable for classes B2 and B3 may miss some covert channels. Among the
channels that formal methods themselves tend to miss are the timing channels.

The criteria for covert channels in other security standards are similar to the Orange Book criteria.
Although no standards require avoiding all covert channels, considerable theoretical work has been
done on hypothetical systems free of covert channels. This is in part because absolute multilevel
security would be better than multilevel security with potential compromise through covert chan-
nels. Another reason is surely that absolute security is far easier to express in a mathematical
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model than is compromised security.

We feel that the tolerance of covert channels in security standards is unnecessary and therefore
inappropriate for most multilevel systems. In fairness, when the Orange Book was written, covert
channels were believed to be inevitable. This belief remains widespread today. We do not accept
the inevitability of covert channels in practical multilevel systems, and we fear that the current
tolerance of covert channels is itself a major threat to classified information. The Orange Book and
other standards are meant to promote the development of secure systems. The standards should
not be used as excuses for developing systems with unnecessary flaws.

C.3 Tolerating Covert Channels

A malicious user who is cleared for certain classified data can always compromise the secrecy of
the data. The problem with covert channels is that a malicious user with the help of one or more
Trojan horse programs can exploit a covert channel to compromise data classified beyond the user’s
clearance. Installations without malicious users or without Trojan horses can tolerate whatever
covert channels a multilevel system might have because the channels would not be exploited.

No Malicious Users

Of course, at any installation with more than one user, one can never be certain that no users are
malicious, but a system-high installation might reasonably ignore its covert channels as if there were
none. Because running system-high requires that all users be cleared for every level, the security
officers of the installation would not expect users to exploit covert channels. To compromise any
data in the system, a malicious user does not need a covert channel. Covert channels are tolerable
in system-high installations because they do not increase the system vulnerability.

No Trojan Horses

The security officers of some installations will assume that they have no Trojan horses. They
may be right only because conventional compromise remains easier than exploiting Trojan horses
when malicious users have limited technical skills. Few malicious hackers have access to multilevel
systems, and few multilevel systems are exposed to malicious hackers. But security officers cannot
know whether their installations are among the unfortunate systems.

An installation cannot reasonably be assumed free of Trojan horses unless appropriately trained
people rigorously check all the programs that run on the system to be sure that none harbor Trojan
horses. All new applications and all changes to existing applications must be reviewed. Rigorous
reviews are so expensive and time-consuming that the software on the system must be fairly stable.
Also, the system must not have any compilers, command interpreters, or similar programs able to
create code and bypass the review procedures. Because no Trojan horses are available to exploit
them, most covert channels are tolerable in an installation that can afford to ensure that all software
is trusted not to contain a Trojan horse. Such a multilevel installation, if any exists, is probably
dedicated to one modest-size application program running on a bare processor.

Malicious users can exploit some special covert channels to compromise certain kinds of classified
data without employing Trojan horses. Typically, the data might indicate how busy the system
currently is at various levels. If the data were only nominally classified, its leakage would not be
serious, but release of such data at lower levels could constitute a real compromise of some systems.
These special covert channels are, of course, intolerable even when an installation is known to be
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free of Trojan horses.
Low Bandwidth

It may also be the case that leaks through covert channels are tolerable at some installations, pro-
vided the leaks are slow enough. The Orange Book suggests that covert channels with bandwidths
under one bit per second are “acceptable in most application environments.” This acceptability
may simply be a concession to the sorry state of the art where some covert channels are sure to be
present in any multilevel system and where merely identifying all the covert channels is generally
infeasible.

It is difficult to believe that many security officers worry about how quickly data is compromised
instead of worrying about whether it is compromised. Surely most worry about both problems.
Nevertheless, a sufficiently low bandwidth could reasonably make covert channels tolerable at in-
stallations with special situations. Where all classified data is tactical data with ephemeral classi-
fications, slow covert channels are tolerable if data would no longer be classified by the time it had
been released. If leaking the answer to one crucial yes-or-no question is enough to compromise the
system, either the classification of that answer must last only a split second or all covert channels
must have extremely low bandwidth.

Similarly, at installations where a price tag can be placed on all classified data, some covert channels
are tolerable because no Trojan horses to exploit the channels would be cost-effective or because
any alternative without covert channels would be too expensive. If covert channel bandwidths are
important in performing the cost-benefit analysis, some covert channels may be tolerable because
of their low bandwidths. Where data is classified to protect national security, assigning prices is
foolish and perhaps illegal.

Lack of Alternatives

Many installations tolerate covert channels simply because every multilevel system under consid-
eration has some and because those in charge feel they need multilevel systems. Fortunately,
these difficulties can be overcome. We believe that there can be multilevel systems without covert
channels and that there are often suitable alternatives to multilevel systems. The accreditors of
automated systems for multilevel applications should not have to tolerate covert channels.

Alternatives to Multilevel Systems

Not all applications have to run on multilevel systems. We mention first two unattractive options
that must sometimes be taken. One is not to implement the application at all, and the other
is to implement it with manual procedures only. The remaining alternatives are all automated
implementations. The potential benefits of automation include convenience, accuracy, speed, and
lower costs. These benefits have permitted the implementation of many applications that were
infeasible before the advent of computers.

When an application involves only one level of data or when all users are cleared for every level of
data, the best alternatives are a single-level system or a system-high system, respectively. But the
applications that interest us here have some data classified at levels beyond the clearances of some
users of the automated system. A single-level or system-high system cannot accommodate these
applications, but a multilevel system is not the only alternative left. Another possibility is a system
with an independent subsystem per level (ISPL). ISPL systems tend to be inefficient, but at least
they are intrinsically free of covert channels. We present the ISPL architecture mostly because it
is useful later for comparisons with more attractive alternatives.
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In an ISPL system, there is a separate subsystem for any level where the system as a whole could
have some data. Data is stored on the subsystem for the level matching the classification of the
data. Additional upgraded copies of the data might be stored on some other subsystems at higher
levels. A user has access to a subsystem only if its level is dominated by the user’s clearance.

The subsystems are electronically independent. Each subsystem has its own hardware, and the
hardware for the subsystem at one level is not connected to any hardware for subsystems at other
levels. The subsystems are not completely independent, however. They are parts of a whole system
with multiple levels because users sometimes refer to data on a lower subsystem in order to modify
data on a higher subsystem. Users might also manually reenter data from a low subsystem into a
high one, or operators might transfer data storage media to higher subsystems.

Like single-level systems, ISPL systems are inherently free of covert channels. Multilevel security is
compromised only when people fail to follow proper procedures. The automated parts of the system
cannot themselves reveal data to a user not cleared for it. However, trying to overcome some of the
limitations of an ISPL system may lead to complex procedures, and the complexity brings serious
dangers that accidental compromise would become frequent and that malicious compromise would
become easy to arrange.

Because the subsystems are independent of each other, none of the coordination among subsystems
can be automated. This tends to diminish all the potential benefits of automation. Unless the
required coordination among subsystems is minor, an ISPL system may well be too inconvenient,
inaccurate, slow, or expensive for an application. An integrated multilevel system may then be the
only practical option. Unfortunately, multilevel systems typically have many covert channels.

Some Reasons for Covert Channels

Our aim is to avoid all covert channels in multilevel systems. Present experience, however, is that
any practical multilevel system contains many covert channels, despite the attempts of developers
to eliminate them. It has been so difficult to avoid covert channels because several highly desirable
functions of a multilevel system seem to produce covert channels as a side effect. Fortunately, the
essential multilevel functions can be implemented without building covert channels into the system.

The differences in functional capabilities between ISPL systems and multilevel systems highlight the
major sources of covert channels in multilevel systems. In an ISPL system, which cannot have covert
channels, the absence of connections among the independent subsystems for each level prevents
the system from doing all that a multilevel system can do. Among the services requiring some
manual assistance in an ISPL system are reading consistent data from lower levels, downgrading
overclassified data, writing up reliably, and maintaining consistency among the values of data
items at different levels. A multilevel system needs no manual assistance with these services, but
the implementation techniques generally introduce covert channels.

Reading Down

An automated system might allow one process to change data that another process is currently
reading. Then, the value the reading process receives could reflect neither the value before the
change nor the value after the change, but some useless mixture of the two values. Such mixed
results from reading are unacceptable in most applications. The usual technique to prevent the
problem is for the reading process to lock the data before reading it. The lock is not granted if
any other process is currently writing the data, but once the lock is granted, no other process is
permitted to write the data until the reading process releases the lock.
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In a multilevel system with support for reading down, this technique produces a covert channel.
Lower-level processes can detect when a higher process reads down to lower data because the
higher process holds a lock that prevents the lower processes from writing the lower-level data.
Data cannot be locked for reading down without producing a covert channel.

Different techniques free of covert channels can ensure that high processes do not read inconsistent
data [59, 107, 130]. The most popular technique is for the high process to check whether any lower
process may have written the data between the time when the high process started to read the data
and the time when it stopped reading the data. If so, the read is potentially inconsistent, and the
high process repeats the entire read again until it is sure that no lower process wrote the data while
it was being read. For some applications, there is a serious risk with this technique that a high
process that tries to read a lengthy and volatile data item may keep trying to read the item for a
long time without ever succeeding. Other techniques may be appropriate for those applications.

Downgrading

All downgrading is inherently an exploitation of a covert channel. When the downgrading is
legitimate, one could say that the channel is not really “covert,” but the intended downgrade of
overclassified data is often accompanied by some incidental and unacknowledged downgrading of
other data. A Trojan horse might exploit the channel by manipulating the other data. It may
also be possible for a Trojan horse to hide other data in the overclassified data. Multilevel system
designs cannot provide legitimate automated downgrading and still avoid all covert channels.

Writing Up

When a user working at a low level upgrades low data to a higher level, the data is said to be
written up.?® To make the writing reliable, the low user might be notified whether sufficient
resources at the higher level are currently available to support the writing up. This notification
produces an exploitable covert channel. Suppressing the notification makes writing up unreliable;
the user or program that wants to upgrade data never knows whether the writing up worked or
not. Applications that need writing up typically need reliable writing up, not hit-or-miss writing
up. Reliable writing up can be achieved without covert channels by reserving sufficient resources
at higher levels to accommodate all potential requests to write up. This is not easy to implement,
and reserving the high resources may constitute a serious loss of efficiency. A practical multilevel
system apparently cannot provide reliable writing up without covert channels.

Consistency Across Levels

When an application requires consistent values in two data items, a change to one may force a
change to the other to keep them consistent, or alternatively, a change to one may be forbidden
until after the other is changed to a consistent value. This can be problematic in a multilevel
system when the two data items are classified at different levels [59]. If the levels are comparable,
one approach is secure and the other produces a covert channel. Which is which depends on whether
the data item changed is at the lower or higher level. Neither approach is secure if the levels are
incomparable due to differing compartment sets.

Fortunately, one result of a rational classification of data is that any criterion of consistency applies
to data items that are all at the same level. A data item would never have to be consistent with
data items at any other levels. A requirement for consistency with a higher item implies that a
user cleared to read the lower item can infer something about the higher item, which must have

281f the user were working at the higher level, the upgrade is from reading down, not writing up.
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a consistent value. The existence of the inference suggests either that the lower data should be
classified at the higher level or that the higher data should be classified at the lower level. If data
were classified rationally, users cleared just for lower data could not infer anything about higher
data.

In practice, however, classification is not purely rational, and some applications really may need
consistency across levels. This can be achieved without covert channels, provided that reliable
writing up is properly implemented and the levels involved are all comparable. The likely cost is
gross inefficiency from keeping the writing up reliable and some inconvenience because users must
always change the lowest items first. Data consistency across levels, freedom from covert channels,
and practicality seem to be incompatible in a multilevel system.

Resource Allocation among Levels

We turn next to another distinction between ISPL systems and multilevel systems, their different
abilities to allocate resources among levels. In an ISPL system, the allocation for a level is the
hardware in the subsystem for the level. In order to change the allocation for a level, some piece
of equipment must be replaced, and reallocating resources from one level to another is likely to
involve bringing down two subsystems for a while. In a multilevel system, reallocating resources
is more convenient. Resources can often be allocated to whichever level can make the best use of
them at the time. This can greatly increase the efficiency of the system. With a multilevel system
instead of an ISPL system, the users can get more service from the same hardware or equivalent
service from less hardware.

Reading down, downgrading, writing up, and data consistency across levels, as we explained before,
are not just functional distinctions between ISPL systems and multilevel systems, but also common
reasons for covert channels in multilevel systems. Similarly, resource allocation is a common reason
why multilevel systems have covert channels, as well as being a functional difference from ISPL
systems.

Because a system often has many kinds of resources, resource allocation may be the reason for
most of the covert channels in a multilevel system. Among the space resources to be allocated are
physical memory, entries in operating system tables software, storage on disk, and bandwidth in
a network connection. The allocable time resources include processor time (CPU time), service
time from the operating system, disk access time, and access time to other multilevel devices such
as terminals, printers, tape drives, and network interface units. Resource allocation is a primary
function of operating systems, but multilevel networks, database management systems, and even
applications have resources of their own to allocate among levels.

We consider four general strategies for resource allocation among levels: static allocation, dynamic
allocation, delayed allocation, and manual allocation. Dynamic allocation is the most efficient but
inherently produces covert channels. The other three strategies are free of covert channels but can
be inefficient to the point of complete impracticality when used for the wrong resources. Static
allocation is the simplest strategy and the least efficient. It is usually as inefficient as an ISPL
system. Delayed allocation and manual allocation are more efficient, sometimes approaching the
efficiency of dynamic allocation. Delayed allocation is better suited to some resources, manual
allocation is better for other resources, and a combination of both may be better than either one
in some cases. We use the allocation of processor time as the main example to illustrate the four
strategies.

Static Allocation
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With static allocation, a fixed portion of a resource is allocated to each level that shares the resource.
One level cannot borrow from another level even when the first level could use more than its share
and the other level has idle capacity.

If processor time is statically allocated, the share of time allocated to a level is generally determined
through the initial system configuration. The configuration might assign time slots to each level.
The schedule would consist of a sequence of time slots that is repeated for as long as the processor
runs. The share for a level is the length of its time slot in the sequence or, if the level has several
slots, their combined length. Only processes at the proper level run during the time slot for a level.
The level gives up the processor at the end of its time slot even if some processes at that level still
want processing time. On the other hand, during the time slot for a level, the processor is left idle
whenever every process at the level is waiting for I/O or whenever there are no current processes
at the level. This means that the processor may be idle during the time slot for one level when
there are processes at another level that could have been serviced.

Dynamic Allocation

At the cost of producing a covert channel, dynamic allocation avoids such wasting of resources.
Resources are allocated among levels based on the current needs at each level. The simplest
algorithms allow one level to borrow freely as needed from other levels. More complicated dynamic
allocation algorithms place some limits on how much can be shared or how frequently reallocation
can occur.

If processor time is dynamically allocated, the current loads might freely determine the share of
processor time for a level, or the system may adjust shares within configured limits. When the
higher levels are busy, processes at lower levels cannot get as much processing time as when the
higher levels are idle. Because lower processes can detect whether higher levels are relatively idle
or relatively busy, there is an exploitable covert channel.

For example, a high Trojan horse could send a “one” bit during a particular period by requesting
so much processor time that the processor would seem especially busy to the low Trojan horse
receiving the signal. To send a “zero” bit instead, the high Trojan horse would refrain from
requesting processor time so that the low Trojan horse would find the processor relatively idle.
Irregular patterns of legitimate activity probably make the channel noisy, and the noise reduces
the effective bandwidth of the channel. But the channel is not eliminated. Some bandwidth would
still be available for leaking information to users who are not cleared to see it.

The covert channel from dynamic allocation is exploited by exhausting the resource. Processor
time like any resource is finite, but in some cases, processor time is effectively inexhaustible. If the
heaviest possible load on the processor would not consume all the available time, there is always
time available whenever a level wants some. This eliminates the covert channel, but it makes
dynamic and static allocation equally inefficient. Ensuring that processing time is always available
with dynamic allocation would ensure that time is always available with static allocation, too. The
same amount of processing time would go idle either way.?

29In some circumstances, dynamic allocation might always give enough time even though static allocation of the
same total capacity did not always give enough. This may occur if the limits on the load yield a maximum combined
load for all levels that is less than the sum of the maximum loads for individual levels. The most likely reason for
such a pattern of loads is that some other dynamically allocated resources are exhausted. The allocation routines
for the other resources would then have exploitable covert channels even though the allocation routine for processor
time did not.
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Delayed Allocation

Allocating resources to one level may entail denying the same resources to other levels that request
them later. A dynamic allocation strategy that could support instant reclamation of resources need
not have a covert channel. Each level would have a basic allocation, but when a lower level was not
using all of its basic allocation, a higher level wanting more than its own allocation could borrow
from the unused portion of the lower level allocation. If the lower level later became busy enough
to want some of the borrowed allocation back, enough would be instantly reclaimed for the lower
level.

Similarly, if an intermediate level wanted more than its allocation, it could also borrow from the
lower level. When a higher level had already borrowed from the lower level, that would not influence
how much the intermediate level could borrow. If necessary, resources that were borrowed for the
higher level would be instantly reclaimed and reallocated to the intermediate level.

A higher level could not borrow resources from a lower level while the lower level was using them
or while any intermediate level was already borrowing them. Also, a lower level could never borrow
from a higher level although it would sometimes reclaim its own basic allocation from the higher
level or usurp the resources of a still lower level that the higher level happened to be borrowing.3’

When a process at a level is given resources, it might be told whether they come from the basic
allocation for its own level, and if not, it could be told from which lower level it is borrowing them.
It must not be informed whether the resources were reclaimed from a higher level. There is no
covert channel because the borrowings of higher levels do not affect the resource amounts available
for a lower level.

When requests for resources are satisfied, the resources are allocated with the same speed whether
the resources are currently free or currently being borrowed at a higher level. If free resources
might be allocated instantaneously, then borrowed resources must be reallocable to a lower level
instantaneously, too. Because instantaneous reallocation is not feasible for most resources, instan-
taneous allocation of free resources usually cannot be provided either. If borrowed resources can
be reallocated only slowly, free resources must be allocated just as slowly. The delayed allocation
strategy is named for the sometimes substantial delays the strategy can introduce in the allocation
of resources.

For a delayed allocation of processor time in a system with only comparable levels, throughput
could be maximized by making a basic allocation of all the processor time to the lowest level. Each
level would seem to have available to it all the time that lower levels were not already using. At the
end of each time slice, the processor would be allocated to the lowest level with a process ready to
run.>' An interrupt for the currently allocated level could be serviced promptly, but an interrupt

30When a system involves incomparable levels, the rules for borrowing are more complex. Incomparable levels
cannot borrow from each other, nor can they compete to borrow from another level lower than them. One way
to avoid competition among incomparable levels is to allow only some of the higher levels to borrow from a lower
level. The system configuration would select which higher levels can borrow from a level. The levels selected to have
borrowing privileges for a resource at a lower level must be mutually comparable. For any two incomparable levels,
the selections for a lower resource might contain one or the other of the two incomparable levels, or perhaps neither,
but certainly not both. Because any level not selected could not borrow the lower resource at all, it would never
compete for the resource with another incomparable level that was selected.

3L All levels except the lowest level are borrowing their time from the basic allocation to the lowest level. Because
two incomparable levels cannot compete for the same resource, a system with incomparable levels needs some changes
to the algorithm. The simplest variation is to specify a repeating sequence of time slices. The slices in the sequence
need not all be the same length of time, but for each cycle through the time slices, each slice must be the same length
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for another level would not be serviced until the next time slice when no lower tasks were pending.
With all time slices being of equal duration, this delay in servicing interrupts conceals whether
the processor was idle when the interrupt occurred or was busy servicing a higher level. The
delay clearly wastes some processor time in order to avoid the covert channel found with dynamic
allocation.

Because a lower level would not be prevented from consuming all the time and shutting out all
higher levels, some installations may prefer instead to give each level a basic allocation in order
to guarantee some time for each level. This fairness comes at the cost of lower overall efficiency.
Whenever multiple levels compete for a shared resource, any strategy to prevent denial of service
to high levels will either require more resources or produce a covert channel, entailing compromise
of multilevel security.

The advantage of dynamic allocation is its more efficient use of processor time than with static
allocation. In fortunate circumstances, delayed allocation is essentially as efficient as dynamic
allocation. But in ordinary circumstances, the delays introduced to conceal processor loads at
higher levels make delayed allocation less efficient than dynamic allocation. And in unfortunate
circumstances, delayed allocation could be even less efficient than static allocation.

Manual Allocation

A contributing factor in producing a covert channel with dynamic allocation is that the allocation is
changed automatically based on data from untrusted software. Changes in the allocation based on
trustworthy data do not necessarily produce a covert channel. The operators of a multilevel system
could sometimes switch the system manually among a variety of different multilevel allocations
appropriate for different situations. The operators would choose an allocation based on their
expectations of the upcoming resource needs at each level. They must be careful to use information
from outside the system, not simply the current loads at each level. Those loads may reflect the
influence of Trojan horses instead of legitimate activity.

More automated variants of manual allocation are also possible. Some information within the
system could be used for automatic changes in the allocations of resources among levels. The
information that is safe to use is information that users or operators input manually and that
comes through trusted paths to ensure freedom from the influence of any untrusted software. On
a multilevel system, safe inputs may include user logins, user logouts, user requests to change to a
new level, and possibly some other inputs through an operator console.

These inputs must follow trusted paths from the user or operator to the TCB. There is no covert
channel because Trojan horses are incapable of spoofing what a user does through a trusted path.
That is precisely what makes a path qualify as a trusted path. Because Trojan horses cannot
produce any of the manual inputs that determine how allocations are updated in the manual
allocation strategy, they cannot influence the changes in allocation to any level. It is crucial that
the only information used to adjust the allocations is information the operating system receives
directly from users through trusted paths.

Manual allocation of processor time can be reasonably efficient in a multilevel system used primarily
for online processing. If the user inputs for logging in, logging out, and changing level all come via
a trusted path, the allocation of processor time for a level can be proportional to the number of

as it was in the first cycle. All the time slices would still be in the basic allocation for the lowest level, but different
sets of borrowing levels should be selected for different time slices in the sequence to ensure that each incomparable
level has chances to borrow processor time.
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user sessions currently logged in at a particular level. This is often a fair measure of the expected
load at that level. No time would go to levels with no current user sessions. When all current
sessions are at one level, that level would be allocated all the processor time. Allocations would be
subject to change each time a user logged in or out or changed from one level to another.

The ratio of the number of current user sessions at a level to the total number of current sessions
is a secure basis for manual allocation only on a system where the total number of users logged in
is unclassified. If users with low clearances must not know how many users are logged in at higher
levels, then the ratio determining the allocation for a level should instead compare the current
sessions at the level to the sessions at or below the level. Manual allocation based on this ratio
would be somewhat less efficient.

Efficiency might be enhanced by taking into account some other information about current user
sessions that the trusted paths have validated. The user’s name, the time of day, and, if the system
is distributed, the processor supporting the user session could be used to anticipate different loads
from different sessions and calculate allocations based on those expectations. The weights for the
calculations should come from tables the operators have prepared in advance, not from the current
demands of the sessions.

In a multilevel system where online processing predominates but there is some background or batch
processing, this approach should be modified so that some time is allocated to levels that may have
offline processing. Otherwise, offline processing at a level would cease whenever there happened to
be no current user sessions at the level.

Reallocation based solely on manual inputs would not be as efficient as dynamic allocation based
on all available information. It should still be more efficient than a static allocation that never
changes. Manual allocation, like delayed allocation, is less efficient than dynamic allocation. Both
allocation strategies are compromises between dynamic allocation and static allocation.

Manual and delayed allocation can be combined. The same kinds of inputs as the manual strategy
uses to update allocations can be used to update the basic allocations for the delayed strategy.
The hybrid allocation strategy improves the efficiency of delayed allocation, and with resources for
which delayed allocation is appropriate, the hybrid strategy is more efficient than manual allocation,
too. The hybrid strategy cannot outperform the best dynamic allocation algorithm, nor is it likely
even to be equally efficient. However, the covert channels of dynamic allocation are absent from
a combination of manual and delayed allocation, just as they are with static allocation, simple
delayed allocation, and simple manual allocation.

C.4 Allocating Device Resources

We call a device multilevel if it ever stores or transmits data for more than one level. At one
extreme, the device may always handle hundreds of levels, or at the other extreme, it may handle
one level on some days and another level on the other days.

As a first example of a multilevel device, we consider a multilevel terminal. It is inconvenient for
a user to move to a different terminal in order to work at a different level or for the user to have
as many terminals on one desk as there are levels of work to do. With one multilevel terminal,
terminal access time could be allocated to whichever level the user currently wants. Multilevel
terminals would cost more than single-level terminals, but the convenience may justify the added
cost. And if one multilevel terminal fully replaces several other terminals, there may even be a cost

111



Appendix C Architectural Implications

savings.

The multilevel terminal would need some special manual inputs for selecting the level where the
user wants to allocate the terminal access time. A reset button, a dial or switch for indicating a
level, and a ready button would be enough. When the user presses the reset button, the terminal
clears its screen and any volatile memory, locks the keyboard, and unlocks the level dial. Then,
the user can set the dial to the new level. When the user presses the ready button, the terminal
locks the dial, selects the single-level communication line at the level corresponding to the setting
of the dial, and unlocks the keyboard.

When the terminal is installed, the security administrators should make sure that the dial settings
correctly label the processors that can be accessed through the corresponding single-level lines.
The terminal must also be protected from sabotage, of course. We caution against making the
multilevel terminal too sophisticated. A multilevel workstation is far less likely to be implemented
free of covert channels than is a basic multilevel terminal. Pushing the reset button must remove
all traces of whatever had been done before.

A similar approach would work for a multilevel printer or multilevel tape drive. The reset button of
a printer must clear all physical traces of what was printed at the previous level. The justification
for a multilevel printer or tape drive is probably lower cost or greater convenience again.

Trusted Network Interfaces

A network of multilevel lines is more convenient for operators to install and maintain than are
separate networks of single-level lines for a variety of levels. The convenience may justify the cost
of the trusted network interface (TNI) units to connect each single-level communication line to a
multilevel line. Especially in a wide-area network, the savings from having fewer cables may also
offset the cost of TNI units.

If a multilevel line is a radio-frequency cable, each level can be statically allocated its own frequency
band. A TNI unit would tune to a band based on its control settings. Whoever installs or maintains
a unit connecting a multilevel line to a single-level line must check that the control settings of the
unit agree with the level of the single-level line.

TNI units should be connected to the communication lines of single-level processors and devices
so that they can communicate over the multilevel network lines. Rather than having TNI units
connected to the various single-level lines for a multilevel device such as the terminal described
earlier, one TNI unit could be embedded in the multilevel device so that one multilevel line could
replace all its single-level lines. The terminal would retune its frequency based on the current dial
setting when the user pushed the ready button. Embedding a TNI unit is also an option for a
multilevel printer or multilevel tape drive.

A network of multilevel lines with TNI units wherever processors and devices connect to the network
is functionally equivalent to separate single-level networks. A single-level processor could commu-
nicate with other single-level processors and devices only if they are at the same level. It could
communicate with the multilevel devices we described only when they were currently allocated to
the same level, too.

More complex TNI units might support multiple single-level lines or support an allocation strategy
for the multilevel lines more efficient than static allocation of frequency bands to levels. We suspect
the added efficiency would not offset the problems of the extra complexity: a higher cost per unit
and reduced assurance of multilevel security.
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Cryptographic methods can supplement such TNI units but are never a substitute. If network
lines are vulnerable, encryption can help preserve the confidentiality and integrity of messages
transmitted over the network. However, if the network does not carefully allocate resources based
on the levels of the decrypted messages, there are covert channels. Users communicating at low
levels could detect heavier and lighter loads on the network from activity at higher levels, possibly
due to Trojan horses. Encrypting messages does nothing to eliminate this covert channel.

Multilevel Disk Drives

Any multilevel application requires some support for reading down. Reading down can be imple-
mented with multilevel processors, multilevel disk drives, some other multilevel storage media, or
a combination. Disks are more generally useful for reading down than are other storage devices.
Also, we believe that multilevel disk drives are much easier to build free of covert channels than are
multilevel processors. We are not certain that multilevel drives really can be implemented without
covert channels as nobody has yet tried, but we sketch a design that seems feasible.

The design uses manual allocation of the storage space on the disk and uses a combination of
delayed and manual allocation for the access time to the disk drive. The interface for the operator
has a reset button, a restore button, an accept button, and various browsing buttons to control
a display panel. The interface to the rest of the multilevel system is through separate single-level
lines for each level the drive supports.3?

A special single-level line connects the disk drive to a single-level processor with a configuration
table that the operator maintains. The table shows (1) the levels of the other single-level lines, (2)
which levels are higher or lower than other levels,® (3) what level of data is to be stored in each
sector of the disk, (4) how long each period in the access time schedule lasts, (5) which level is the
basic level for each time period in the schedule, (6) which higher levels may borrow time during
each time period,® and (7) what position the disk arm is to be in at the end of each time period.

When a configuration table takes effect, the allocation of storage space to a level is the sectors that
the configuration assigns to that level. The allocation strategy for access time is a hybrid of delayed
and manual allocation. The effective configuration gives the parameters for delayed allocation. The
basic allocation of access time to a level is the time periods where that level is the basic level.

While the disk drive is providing its regular reading and writing services, the drive rejects any
requests to change its internal configuration table. When the operator pushes the reset button,
the disk drive locks all the buttons, stops regular reading and writing services, and waits to receive
a new configuration table through its special line. The operator working on the processor where
configuration tables are maintained should request a change to the new configuration. If the disk
drive finds the new configuration unacceptable, it shows an error code in its display panel and
unlocks the reset and restore buttons. The operator has a choice of fixing and resubmitting the
new configuration or restoring the old configuration.

If the drive would accept the new configuration, it unlocks all buttons and prompts the operator
to double check the changes. The operator uses the browsing buttons to check all parts of the
new configuration and perhaps also the old configuration to be sure that the configuration the disk
drive received is exactly as intended. This precaution means that the single-level processor where

32 As before, the single-level lines could be replaced with an embedded TNI unit and a multilevel line.

33The level of the special line should be lower than the levels of the other lines.

341f the disk supports some incomparable levels, the borrowing levels for a time period must be chosen to be
mutually comparable.
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the table is maintained and the path connecting the processor and disk drive do not have to be
completely trusted.

If the configuration does not look right, the operator pushes the restore button. The disk drive
locks the restore and accept buttons, discards the new configuration, and resumes regular service
with the old configuration. If the operator pushes the accept button instead, the restore and accept
buttons are still locked, but it is the old configuration that is discarded and the new configuration
that is used to resume regular services. Also, before resuming regular reading and writing services
with a new configuration, the drive clears any disk sectors then allocated to levels lower than
before.?® During regular services, the reset and browsing buttons remain unlocked.

While the disk drive serves a level, it accepts inputs and returns outputs through the communication
line for the level. The other communication lines are ignored. The drive honors any requests to
read or write sectors at the current level. To support reading down, the drive also honors requests
to read sectors at lower levels.

Within the disk drive itself, there is a scheduler that determines which level to serve and for how
long. The scheduler cycles through the schedule of time periods in the current configuration. At
the beginning of a time period, it serves the basic level for the period. When appropriate, the
scheduler may change level before the period ends and allocate whatever remains of the period
to the lowest level that can borrow time in the period. It may also change level more times and
allocate the remainder of the period to the next highest borrowing level.® If the highest borrowing
level for the period is reached, the level stays the same until the start of the next period — when it
becomes the basic level for that period.

The scheduler in the disk drive changes to the next highest borrowing level when the current level
has no more disk accesses to make. If the current level is already the highest borrowing level, the
drive waits idly until the period ends or more requests are received at the highest level. The drive
does not change level if there would not be enough time to establish the new higher level and still
position the disk arm as the configuration requires before the period ends. Similarly, as the period
draws to its end, the disk drive rejects any access request that could not be completed in time to
position the disk arm properly afterward.

The covert channel that would be produced by a dynamic allocation of access time is not found
in this design. The allocations of storage space on the disk and the parameters used for delayed
allocation of access time change only when the configuration changes, and that is only when the
operator pushes the appropriate buttons. While the configuration remains unchanged, the perfor-
mance of a disk drive in one time period has no effect on its performance in later time periods.
Within a time period, the service to a level depends just on the requests from that level and lower
levels. The higher borrowing levels receive no service until the lower levels voluntarily release their
claims on the time period.

The sometimes long delays while a multilevel disk drive is inaccessible from a level make the drive
inappropriate for the I/O of many ordinary processes. We suggest that most data be kept on
single-level disks and accessed there primarily. Multilevel disks would hold only replicas of data

35 Any sector allocated to a level incomparable to its old level is also cleared. If the level of a sector is left unchanged,
its contents are kept. The contents are also kept in a sector whose level increases. In such a sector, the contents are
effectively upgraded to the higher level.

36Because levels that may borrow time within a period are chosen to be mutually comparable even when the drive
supports incomparable levels, the next highest borrowing level is uniquely defined until the highest borrowing level
is reached.
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that is sometimes read down. The following scenario explains how this might work.
A Scenario with Upgraded Replicas

An ordinary process running on a single-level processor at some low level writes to a file stored on
a single-level disk at the low level. When the process releases its write lock, a new value of the file
is available for other processes at the low level to read from the same disk. But if the file header
indicates the file is replicated, the replicas do not yet have the new value.

A replica management (RM) process on the same processor sends the updates to RM processes for
any other disks that the file header indicates keep replicas at the low level. Although some of these
RM processes may run on other processors, all run on single-level processors at the low level. The
RM processes update the replicas on their disks to reflect the new value of the file. Multiple copies
at the low level increases the availability of the file to users throughout the system. If its disk is
multilevel, an RM process also records the new time stamp of the updated replica in a special disk
segment for the low level.

Periodically, each process of another kind, the upgraded replica management (URM) processes,
reads down on a multilevel disk in the time stamp segments for any levels lower than the level of
the processor where the URM process runs. For each file with an upgraded replica at the high level
of its processor, the URM process checks whether the time stamp of the lower replica has changed
since last checked. If so, the URM process reads the updated lower replica of the file. It is again
reading down on the multilevel disk.

The URM process sends the updates to the appropriate RM processes at the high level. As before,
the RM processes write the new value of the file into the replicas on their disks at the high level.
If any of these disks are multilevel, that may trigger another round of propagating the updates to
replicas at still higher levels.

The new value of the file becomes available to ordinary processes running on single-level processors
at a variety of levels. A process running on a processor at one of those levels can read any replica
of the file found on a single-level disk at the same level.?”

In the scenario above, all processes can run on single-level processors. Ordinary processes can do
all their reading and writing on single-level disks. The only processes that must access multilevel
disks are the replica management (RM) and updated replica management (URM) processes. An
RM process reads and writes time stamp segments and replicas at its own level, and the URM
processes read down to lower time stamp segments and lower replicas.>®

The inefficiencies of the allocation strategy for access time to the multilevel disk drives may hinder
the upgrading of new or changed files. To update the upgraded replicas at the same time as
the changes are made in the file itself would require reliable writing up, not just reading down.
Because a covert-channel-free system is not expected to have reliable writing up, there will be some
lag between the writing of a file and the updating of the upgraded replicas. The choice of an
allocation strategy for the multilevel disk drives would affect only how long that lag can be. It does
not affect any other processing. In particular, the I/O of ordinary processes and the propagation of
replicas within a level are unaffected. They can benefit from all the efficiencies of high-performance,
single-level disks.

37If the single-level disk is remote from the process, processes on other processors at the same level would help
with the reading.

38 A disk controller process on the same processor as the RM or URM process might mediate its reading and writing
of the multilevel disk.
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C.5 Allocating Software Resources

While discussing multilevel devices, we have ignored multilevel processors and assumed that the
multilevel devices would have to communicate with single-level processors. We now consider some
of the resources of a multilevel processor. A multilevel processor has a trusted computing base
(TCB), typically consisting of a kernel and some trusted processes. The software for the kernel
and most trusted processes runs multilevel. The resources of that software are allocated among the
various levels that the software serves.

As with hardware resources, dynamically allocating these resources on the basis of current demand
creates an exploitable covert channel. Because the resources are limited, a low process employing
the services of the multilevel software can detect how much has been allocated to higher levels,
and a high process can send signals by modulating its demands on the multilevel software services.
Static, delayed, or manual allocation, on the other hand, would produce no covert channels. Static
allocation is feasible for most TCB software resources but is relatively inefficient. Manual allocation
is often feasible and more efficient. Delayed allocation is also more efficient but would be too difficult
to implement correctly for many software resources.

Kernel Resources

The innermost layers of a trusted operating system for a multilevel processor are called a trusted
executive or kernel. The layers that concern us include the layer presenting the abstraction of
processes and all lower layers. These are the layers that do not run as processes. The kernel is
inherently multilevel, and many of its resources are also multilevel. The execution time of the
kernel is allocated among the levels. An allocation of processor time to a level includes the time the
kernel spends serving that level, not just the execution time of single-level processes at the level.
The storage resources of the multilevel kernel in a multilevel processor include most of the system
data space. At any given moment, some of these resources would be fully allocated to the same
level as is the processor time. Other storage resources might be partially allocated among levels.

It is extremely difficult to avoid every covert channel in the allocation of kernel time and storage
in a multilevel processor. Some kernel resources can easily be allocated among levels using a static
or manual allocation strategy, but it is unlikely that all resources of a practical multilevel kernel
would be so safely allocated, especially in the lowest layers of the kernel.

A multilevel processor embedded in a special-purpose device such as a disk drive, printer, terminal,
or network interface unit should need such a simple executive that safe allocation of all resources
can be achieved without sacrificing practicality. The executive probably would not even support
real processes.

A more general-purpose multilevel processor supporting user processes, however, seems doomed
to have some covert channels at least within its kernel. The service time and data spaces for the
lowest kernel layers could not avoid load-influenced dynamic allocation. The covert channels might
all have small bandwidths or high noise, but they would still be there for malicious users to exploit,
however slowly. Even some special-purpose multilevel processors, such as file servers, may be too
sophisticated to be reliably free of covert channels.

To date, no designers have even come close to producing a covert-channel-free kernel for a multilevel
operating system. In a typical design for a multilevel kernel, many low-bandwidth covert channels
are not even identified.

Trusted Process Resources
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Secure allocation among levels is somewhat easier for the resources of multilevel trusted processes
than for kernel resources. This may be largely irrelevant, however, because multilevel processes
exist only on multilevel processors with more sophisticated kernels. Because the kernels already
would have introduced some covert channels, the effort to avoid all covert channels in the trusted
processes may be futile. The result would still be a TCB with some covert channels.

As with the kernel, the allocation of the execution time of a trusted process to a level must be
considered part of the allocation of processor time to the level. Static allocation of trusted process
time is simpler, but the efficiencies of manual allocation might justify the extra complexity.

The virtual address space of a trusted process in a multilevel processor gives it storage resources
that can be allocated among the levels that the process serves. Some variables in the address
space would be fully allocated at any moment to the same level as the process time. Other storage
resources, especially structures such as tables, lists, and buffers, might be partially allocated among
levels based on a static allocation, or perhaps a manual allocation. Dynamic allocation based on
current demand would create a covert channel, of course.

Memory management for the address spaces of trusted processes differs from the memory manage-
ment for single-level process address spaces. Because the storage resources of a trusted multilevel
process are allocated among multiple levels, it is not safe to handle them like those of untrusted
single-level processes. The level of an untrusted process labels its whole address space, but the
labeling of trusted process storage is not so simple.

The data of a trusted process must always be clearly labeled when it is stored in physical memory,
when it is communicated over the memory bus, when it is kept on a paging disk, or when it is
sent over communication lines between the processor and the paging disk. Otherwise, it becomes
impossible to maintain control over the allocations among levels for various resources, including
space in physical memory, access time to the memory bus, storage space on the paging disk, access
time to the paging disk, and access time to the lines connecting the processor and the disk. Without
explicit labels on trusted process data at all times, current demands would influence the allocation
of those resources. Their allocation strategies would degenerate into some variety of dynamic
allocation with covert channels and compromise of multilevel security.

C.6 Architectural Implications

Avoiding all covert channels in multilevel processors would require static, delayed, or manual allo-
cation of all the following resources: processor time, space in physical memory, service time from
the memory bus, kernel service time, service time from all multilevel processes, and all storage
within the address spaces of the kernel and the multilevel processes. We doubt that this can be
achieved in a practical, general-purpose processor. Perhaps the simplest strategy, static allocation,
would be possible, but then the multilevel processor is not significantly more efficient than a set of
single-level processors. It would be better to replace it with single-level processors and have real
assurance of freedom from covert channels in processors. We suggest that multilevel systems not
have any multilevel processors.

Having no multilevel processors certainly helps to minimize the TCB for mandatory security. This
is especially appropriate for the high-assurance systems at the Orange Book classes B3 and Al.
Because of the rapid drop in prices for processors and memories and the relatively wide selection
of secure single-level processors, limiting a multilevel system to single-level processors may impose
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little or no penalty in efficiency. We believe the best architecture for most multilevel applications is
a Distributed, Single-level-processor, Multilevel-secure (DSM) system. Even if a multilevel applica-
tion does not need a distributed architecture for any other reason, we feel it should be distributed
in order to be multilevel secure.

The network in a DSM system must not introduce covert channels. A simple option is a separate
network for each level to connect the single-level processors at that level. A potentially less costly
network has multilevel lines connecting all the processors and has the trusted network interface
(TNI) units sketched earlier ensuring covert-channel-free allocation of the lines. The two options
are functionally equivalent. The difference is in the number and capacity of the lines and in the
hardware at the interface between the processors and the network.

Multilevel System Benefits in DSM Systems

Each processor of a DSM systems handles just one level, as in an ISPL system. An important
question is whether a DSM system is as limited in its functionality as an ISPL system.

Downgrading, writing up reliably, and maintaining data consistency across levels cannot be fully
automated as they can be in systems with multilevel processors and covert channels, but they can
at least be more automated than in an ISPL system. Many, perhaps most, multilevel applications
require none of these functions, but some do need one or more of them. Manual contributions
to reliable writing up or to data consistency are inconvenient, but the only practical alternatives
compromise multilevel security. Downgrading is so fraught with risk that it is reasonable to insist
that some critical step be performed manually. The inconvenience is worthwhile.

Reading down is the essence of multilevel processing. Users perceive a system as multilevel if they
have a choice of levels at which to work and if they can refer to the data at lower levels while creating
or updating data at the current working level. Reading down and ordinary single-level services are
sufficient for most multilevel applications. DSM systems need not have the same problems with
reading down as ISPL systems do. Reading down can be supported with multilevel disk drives
similar to those described earlier. However, most disk drives in a practical DSM system should
probably still each service a single level.

Some multilevel hardware in DSM systems can also escape the limitations on resource allocation in
ISPL systems. Cost and convenience arguments justify static allocation of multilevel network lines
and manual allocation of such resources as terminals, tape drives, and printers.

Partitioning Levels

In the classification scheme of the U.S. Department of Defense, there are four hierarchical levels:
unclassified, confidential, secret, and top secret. A level at which data is classified might also be one
of the four hierarchical levels plus a set of nonhierarchical compartments. Many other classification
schemes are similar. A user’s clearance is the highest level of data the user may see. The clearance
is the hierarchical level to which the user is cleared plus any compartments for which the user is
cleared.

As noted above, it is best to run a multilevel application as system high if every user has the same
clearance, covering all data levels in the application, no matter how many. However, a DSM system
is appropriate when some users have different clearances and data is classified over a range of levels.
Normally, a DSM system has different processors for each different data level. This is practical for
many multilevel applications, ones with data at only two levels or at only a few levels. Some other
applications, though, involving various nonhierarchical compartments use dozens or even hundreds
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of data levels. Processor prices may be falling, but a DSM system with at least one single-level
processor for each of hundreds of levels would be impractical. However, a DSM solution may still
be reasonable, provided that the number of different user clearances is fairly small, even though
the number of different data levels is large.

We describe a DSM system with many data levels, many users, and a handful of different user
clearances. A few users, perhaps just the system administrators, might be cleared for all levels, but
most would have limited clearances. Probably, those clearances differ in their sets of compartments.
The data levels are partitioned based on the overlaps and differences between pairs of clearances.
Each partition contains one or more data levels; each data level belongs in one partition; and each
clearance includes one or more complete partitions. In the best case, there are exactly as many
partitions as clearances, but usually there would be more partitions.??

The processors are allocated, not to a single level, but rather to a single partition. A processor may
handle data at every level within its partition and may communicate with any other processors
sharing the same partition. It should have functionality similar to that required for class B1 in the
Orange Book.

A user of a single-partition processor could be anybody whose clearance includes the partition.
Because of how the levels are partitioned, the user’s clearance will include all or none of the levels
in the partition. This is why multilevel security is not compromised even though we expect the
processor to have plenty of covert channels. The channels are tolerable because their exploitation
could leak information only between levels in the same partition. A malicious user cleared for one
level in a partition would not bother to exploit a covert channel in order to access another level in
the partition because the user’s clearance must include the other level, too.

Because covert channels can still leak within a partition, printed output from a partitioned DSM
system can safely be released without review only if the label that the system generated is the
highest level of the partition. Users can release output with other labels after manually confirming
the labels.

C.7 Conclusions

Until feasible techniques are found to develop a covert-channel-free TCB for a practical multilevel
processor, most multilevel systems should be DSM systems with some multilevel disks and perhaps
other multilevel devices, but with no general-purpose, multilevel processors. The current research
and development efforts on multilevel systems seem to focus on operating systems for multilevel
processors, database management systems for multilevel processors, multilevel networks among
multilevel processors, and distributed operating systems with multilevel processors. These sys-
tems are suitable only for installations that really must tolerate compromises of multilevel security
through covert channels.

Promising directions for new efforts to serve secure installations include the development of mul-
tilevel disk drives and trusted network interfaces without covert channels. Other efforts should
examine how single-level processors can use the multilevel disks and networks to build basic DSM
systems that provide reading down in addition to the regular services of single-level distributed

31n the worst case, n mutually incomparable clearances form 2" — 1 partitions. Probably, the levels in most of
those partitions would never be used to classify any data in the system and so would never need resources. Partitions
with no resource needs can be ignored.
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systems. Further efforts should enhance the basic DSM systems to build more sophisticated DSM
systems or multilevel database management systems.

Because these implications for multilevel system architectures represent such a radical shift from
the predominant direction of research and development, we encourage readers to dispute our con-
clusions. Optimists may wish to explain why most installations should tolerate covert channels or
how a practical, general-purpose, multilevel processor can be developed with no covert channels.
Pessimists may wish to explain why multilevel disk drives or trusted network interfaces cannot be
developed without covert channels or why they could not be used to build practical DSM systems.
We feel that avoiding all covert channels makes good sense for multilevel systems, that the current
dismal state of the art is sufficient evidence of the unsuitability of architectures with multilevel pro-
cessors, and that it is worth a serious effort to build a prototype of a covert-channel-free, multilevel
system that has multilevel disk drives and single-level processors instead of multilevel processors.
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D Contributions to the Early Verification Workshops

Following are the lists of contributions for each of the first three verification workshops. The
page number, author(s), and title are given for each item in the indicated issue of the ACM
SIGSOFT Software Engineering Notes. This material is of considerable historical interest and
importance, especially because the early work and the experience gained therefrom seem to be too
easily forgotten.

D.1 VERkshop I

VERkshop I was held at SRI, Menlo Park, California, 21-23 April 1980 [165].

Summary statements
5 Don Good, Verification environments
5 Bob Boyer, Theorem provers
6 Karl Levitt, Methodology and specifications
6 Susan Gerhart, Verifying systems and networks
7 Jon Millen, Formal models and security
7 Peter Neumann, Conclusions
Contributions

8 Stephen T. Walker, Department of Defense, Thoughts on the impact of verification technology
on trusted computer systems

9 V.G. Cerf, W.E. Carlson, L.E. Druffel, ARPA, ARPA interests in applications of program veri-
fication

9 Karl N. Levitt, Peter G. Neumann, SRI, An overview of SRI work in verification
11 Gregory A. Haynes, Texas Instruments, Position paper on program verification

12 Dan Craigen, David Bonyun, I.P. Sharp Associates, Ottawa, Canada, Two projects in program
verification

13 Richard M. Cohen, The University of Texas at Austin, A review of the Gypsy verification
environment

13 Steven German, Friedrich von Henke, David Luckham, Derek Oppen, Wolfgang Polak, Stanford
Al Program verification at Stanford

16 Bob Boyer, J Moore, SRI, The Fortran verification system
17 Mark Moriconi, SRI, Toward incremental and language-independent program verification sys-

tems
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18
21
22

23
24
26
27

28
29
33

33

34
36

36

38
38

40

41

42
42
43

44
46

Stephen D. Crocker, USC-ISI, Toward practical verification systems
David Thompson, USC/ISI, User interfaces, user models, and user habitability

Donald I. Good, The University of Texas at Austin, The problem with program verification is
computer science

J Moore, SRI, A statement of position
Avra Cohn, Edinburgh/ISI, Remarks on machine proof
Bob Boyer, J Moore, SRI, A theorem-prover for recursive functions

David R. Musser, Computer Science, GE Research & Development Center, The unique termi-
nation method of program verification

V.R. Pratt, MIT, Modeling as a paradigm for verification
Joseph Goguen, SRI, Thoughts on specification, design and verification

Jim Keeton-Williams, The MITRE Corporation, Needed: verifiable guidelines on how to design
a methodology

John Scheid, System Development Corporation, INA JO: SDC’s formal development method-
ology

Susan Owicki (Stanford), Leslie Lamport (SRI), Concurrent program verification

Gregor v.Bochmann, Stanford and Univ. Montreal, On the construction of submodule specifi-
cations

Dick Kemmerer, Bruce Walker, Gerald Popek, UCLA, Retrospective: verification experiences
with the UCLA operating system kernel

S.L. Gerhart, USC/ISI, Applications of Affirm to protocol specification and verification

Donald I. Good, Michael K. Smith, The University of Texas at Austin, A verified distributed
system

R.A. Kemmerer, M. Schaefer, System Development Corporation, Applications of SDC’s formal
development methodology

W.E. Boebert, Honeywell Sys&Res Center, and Univ. Minnesota, Formal verification of em-
bedded software

Midge Corasick, The MITRE Corporation, MITRE computer security verification activities
Jonathan K. Millen, The MITRE Corporation, Verification of security properties

Stanley R. Ames, Jr., James G. Keeton-Williams, The MITRE Corporation, Ezcerpts from
Demonstrating security for trusted applications on a security kernel base

R.J. Feiertag, SYTEK Inc., Automated proof of multilevel security

Carl Landwehr, NRL, Assertions for verification of multilevel-secure military message systems
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D.2 VERKkshop 11

VERKshop IT was held at NIST, Gaithersburg, MD, 21-23 April 1981 [166].

2 Peter G. Neumann, Retrospective introduction to VERkshop II

3 Stephen T. Walker, Introductory comments

3 Vinton G. Cerf, A view of verification technology

4 Donald I. Good, Toward building verified, secure systems

8 Ben DiVito, A mechanical verification of the alternating bit protocol

13

16
24
24
25
27
35
38
41
43
45
50
55
55
57
58
60
61

63

Michael K. Smith, Ann E. Siebert, Benedetto L. DiVito, Donald I. Good, A verified encrypted
packet interface

Susan L. Gerhart, IST AFFIRM summary

Susan L. Gerhart, Research avenues verification is not pursuing, but maybe should be
Susan L. Gerhart, ISI high-level theories

D.C. Luckham, F.W. von Henke, Program verification at Stanford

Karl N. Levitt, Peter G. Neumann, recent SRI work in verification

J Moore, SRI experience in writing VCG systems

J.A. Goguen, More thoughts on specification and verification

Richard A. Kemmerer, Status report on SDC’s formal development methodology

J.R. Landauer, Applications of FDM to KVM and COS/NFE

R. Feiertag, T. Berson, An avenue for exploitation and development of verification technology
Jim Keeton-Williams, Anne-Marie G. Disceolo, A practical verification system

J.K. Millen, Recent verification work at MITRE

Gregory A. Haynes, Program verification at Texas Instruments

Joseph J. Tardo, Verification: inside/outside views

Robert Constable, VERking in constructive set theory

David Bonyun, An untitled Canada goose

Clark Weissman, Verification targets: birds to shoot at

Marv Schaefer, Egrets and regrets
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D.3 VERKkshop III

VERkshop III was held at Pajaro Dunes, Watsonville, California, 18-21 February 1985 [117].

ii K.N. Levitt, S.D. Crocker, D. Craigen, VERkshop III introduction

iv Attendees

vi Questionnaire

Section I: Verification Systems

1 D. Craigen, D. Good, Overview of Verification Systems

2 D.R. Musser, Aids to hierarchical structuring and reusing theorems in AFFIRM-8t

5 M.K. Smith, R.M. Cohen, Gypsy verification environment: status

7 L. Marcus, S.D. Crocker, J.R. Landauer, SDVS: a system for verifying microcode correctness
15 S.D. Crocker, engineering requirements for production quality

17 S.T. Eckmann, R.A. Kemmerer, INATEST: an interactive environment for testing formal spec-
ifications

19 D.M. Berry, An INA JO proof manager for the formal development method

26 D. Putnam, The VERUS design verification system

28 O.-J. Dahl, A. Owe, A presentation of the specification and verification project “ABEL”
33 D. Craigen, M. Saaltink, An EVES update

35 S.K. Abdali, R. London, Exploiting workstations and displays in verification systems
37 S.L. Gerhart, Prolog technology as a basis for verification systems

41 P.M. Melliar-Smith, J. Rushby, The enhanced HDM system for the specification and verification
of secure systems

44 J. Williams, C. Applebaum, The practical verification system project

48 D.I. Good, R.S. Boyer, J S. Moore, A second generation verification environment
49 J. Williams, Components of verification technology

51 R.M. Hookway, Verifying Ada programs

Section II: Theorem Proving

53 D. Cooper, Overview of theorem proving

55 N. Dershowitz, D. Plaisted, Conditional rewriting

60 N. Dershowitz, Rewriting and verification
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61 B.T. Smith, Position paper

63 D. Kapur, P. Marendran, An equational approach to theorem proving in first-order predicate
calculus

67 D. Kapur, G. Sivakumar, RRL: Theorem proving environment based on rewriting techniques
69 S. Owre, The Sytek theorem prover

70 W. Wilson, S. Owre, Programmable heuristics for theorem provers

72 R.S. Boyer, M. Kaufmann, A prototype theorem-prover for a higher-order functional language
Section III: Foundations

75 R.A. Kemmerer, Overview of foundations

76 J.I. Glasgow, G.H. Macewen, LUCID: a specification language for distributed systems

80 D. Craigen, Some thoughts arising from a language design effort

82 M. Saaltink, Relational semantics

84 F.W. von Henke, Reasoning with Hoare sentences

85 J. McLean, Two dogmas of program specification

87 L.G. Monk, Old-fashioned logic for verification

90 D. Putnam, Separating methodology and specification constructs

92 M.R. Nixon, Enhancing FDM for the expression of concurrency requirements

Section I'V: Applications

95 K.N. Levitt, A. Whitehurst, Overview of applications

97 R.A. Whitehurst, The need for an integrated design, implementation, verification and testing
methodology

101 B. DiVito, Towards a definition of “beyond A1” verification

102 J.M. Wing, Beyond functional behavior: combining methods to specify different classes of
properties of large systems

104 J. McHugh, K. Nyberg, Ada verification using existing tools
107 C. Landwehr, Does program verification help? how much?

108 T.C. Vickers Benzel, Verification technology and the Al criteria
110 D. Davis, Resource abstraction and validation

111 C. Landwehr, Some lessons from formalizing a security model

113 T. Taylor, VERkshop position paper
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116 N. Proctor, The restricted access processor — an example of formal verification

119 W.E. Boebert, R.Y. Kain, W.D. Young, The extended access matrix model of computer
security

126 R. Macdonald, Verifying a real systems design — some of the problems
129 R. Stokes, Some formal method activities in UK industry

131: Section V. Completed Responses to the Verification Questionnaire, with contributions from
Terry Benzel (MITRE), Norm Proctor (Sytek), Matt Kaufmann (Burroughs), P.M. Melliar-
Smith (SRI), Robert S. Boyer and J Strother Moore (SRI, 4 entries, one with Milton W.
Green; The University of Texas at Austin, 2 entries)
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Bibliography

We include here some of the primary references relevant to system architectures and formal methods
with applications to secure systems and networks. All of these references are cited in context within
the report. A reader interested in a particular subset of the references should see the relevant
sections of the text. Many additional references are of course contained within the cited works.
The determined reader is encouraged to follow areas of particular interest, and chase down the
references that unfold.

Of particular historical interest are the VERkshop proceedings identified in Appendix D. In ad-
dition, the works of Parnas, Dijkstra, and Hoare are important for methodology. The body of
literature is growing rapidly. Some of these cited works will be of less interest in another decade
— except to the historians. However, we have attempted to focus on fundamental concepts and
principles, and many of the references thereto should remain valid for a long time to come — at
least to those interested in the historical evolution of the field.
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