
Architectures and Formal Representationsfor Secure SystemsPeter G. NeumannComputer Science LaboratorySRI International EL-243Menlo Park CA 94025-3493Internet neumann@csl.sri.comTelephone 1-415-859-2375Fax 1-415-859-28442 October 1995Final ReportSRI Project 6401Deliverable A002Prepared for the Department of DefenseFort George G. Meade, Maryland 20755-6000under Contract MDA904-94-C-6160.Copyright c
Peter G. Neumann, 1995

Secure Systems Architecture and FormalismArchitectures and Formal Representations for Secure SystemsEXECUTIVE SUMMARYAs used in this report, the term formal methods encompasses mathematical and logical techniquesfor representing and analyzing computer systems, with the intent of increasing (1) the rigor withwhich a system can be de�ned, (2) the security and reliability that can be attained by systemdesign and implementation, and (3) the dependability with which the requirements can be met.This report considers the design and development of secure distributed systems and networks ofsuch systems, and the use of formal methods for representing and analyzing those systems andnetworks. The report takes a broad, system-oriented view of the overall problem of attainingsystems and networks that can enforce stringent security requirements with high assurance. Itconsiders the problem from a variety of perspectives, representing a chicken-and-the-egg situationregarding practical secure systems and formal methods: Which comes �rst?� How do we best achieve distributed-system architectures that can realistically result in cost-e�ective system developments and cost-e�ective operational systems?� How do we best apply formal methods that realistically facilitate the development of systemswith critical security requirements, and that provide increased levels of con�dence in thesecurity of the resulting systems?This report draws several conclusions.� Greater and more immediate practical bene�ts can be obtained if distributed system archi-tectures are conceptually somewhat di�erent from the more centralized views that have beenthe main focus in the past.� Greater practical bene�ts can be attained by applying formal methods selectively in waysthat are better adapted to the architectural choices.� These bene�ts can be realized most e�ectively if the architectures and the formal methodsgo hand-in-hand | compatibly and mutually supportive. Neither the architectures nor theuse of formal methods should totally dominate the other.For example, the choice of system and network architectures can have an enormous in
uence onhow e�ectively formal methods can be applied. Similarly, the ways in which formal methods areapplied can have an enormous e�ect on the bene�ts that can be attained. In particular, being ableto represent and reason about modular subsystems and their interactions (for example, throughserial compositions, parallel combinations, hierarchical layerings, and network connections) is anessential ingredient of both the architectures and the formal methods.Conventional commercial systems (that is, systems that are not multilevel secure) have generallygone through their life cycles under a �x-only-the-most-severe-bugs strategy, whereby patches arereleased only when absolutely necessary, and where serious security
aws generally remain ubiqui-tously. Customized systems seem to be even more prone to have vulnerabilities, perhaps becausei

Secure Systems Architecture and Formalismthey have received much less attention from friendly enthusiasts and would-be attackers. Overall,applications, systems, and network infrastructures are seriously at risk from both accidental andintentional causes.Cryptographic techniques may super�cially appear to be as strong as their key lengths, but theirimplementations may seriously compromise their e�ective strength. For example, using a two-character pass phrase to generate a 56-bit DES key is not going to result in an e�ective key lengthof 56 bits. Cryptographic implementations may also be compromised by their improper embeddinginto operating-system or network environments { for example, because the keys are exposed, or theunencrypted text can be accessed, or because the crypto can simply be bypassed.Experience with past and present operating systems, networking software, and applications is notreassuring, and extrapolations into the future are also not reassuring. Bugs get �xed, but new bugskeep emerging.Serious security vulnerabilities are continually being found (for example, see [159]), with recentwidely known examples including the following cases (to name just a few):� The demonstrated vulnerability of Netscape's security, subjected contemporaneously to ex-haustive attacks of its 40-bit crypto by a French student and by a British team� A second Netscape vulnerability involved the use of a randomization algorithm to createa crypto initialization o�set (seed) based on the calendar clock and additional static infor-mation, subjected to an algorithmic approach that made the attack dramatically less thanexhaustive (discovered by two Berkeley student \cypherpunks")� A third Netscape vulnerability, in the Navigator software, which would cause the server tocrash when presented with overly long numbers (discovered by the \cypherpunks")� The vulnerability of Citibank's funds-transfer protocols, subjected to penetration attacksby a Russian intruder and 5 coconspirators (in the United States, The Netherlands andIsrael), resulting from weak user authentication (reusable passwords), and resulting in 40unauthorized transfers totalling more than $10 million, although actual losses were minimal.(These activities occurred in 1994, but became publically known only on 19 August 1995;delays and total stonewalling in reporting such incidents seem to be typical when losses andpenetrations occur in �nancial systems.)� An attack on the law-enforcement access �eld in the �rst version of Clipper [21]Many additional vulnerabilities remain hidden, or known but not yet �xed. Consequently, otherattacks are possible today, and new attacks will continue to be possible in the future. With respectto security, the infrastructure is weak, the operating systems and networking protocols are weak,and new systems continue to have serious
aws.Multilevel-secure systems have traditionally relied on a centralized all-powerful kernel and a trustedcomputing base that together are supposed to enforce multilevel security. However, system pur-veyors have not been su�ciently eager to develop such systems; the evaluation process seems tohave hindered progress because of its complexity and the long delays involved in the process, andbecause the systems are generally moving targets that undergo continuing improvements. Overall,formal methods have had only limited success in being applied to the development of widely usedii

Secure Systems Architecture and Formalismcommercial systems. To combat these di�culties, we consider here parameterized modular archi-tectures from which secure systems and secure networks can be readily con�gured and deployed,whereby the components can be analyzed in isolation and their combinations then analyzed, andwhereby formal representations and analyses can become more useful in the real world.Even ignoring the obstacles presented by the evaluation process and the di�culties experienced inapplying formal methods to real systems, the system-development process has remained troglodytic.This is attributable to many causes, including the persistence of historically constrained architec-tures, historically limited personnel factors, and regressive system-development practices | whichin some cases have been almost devoid of any serious discipline or methodology, and which havebeen driven more by compatibility with the past than by visions of the future. Many other factorsare also relevant, including largely nontechnical issues such as perceived or real customer indif-ference, the lack of true national or even global disasters involving serious security breaches, andsome negative e�ects of U.S. export control policy that are perceived by the system developers. Atpresent, this combination of factors appears to be present considerable obstacles to both systemsecurity and the fruitful application of formal methods.We focus here on a set of common principles that apply equally well to the establishment of systemarchitectures and to the use of formal methods, and that can work to the advantage of both.We believe that this symbiotic approach can result in signi�cantly greater progress toward theachievement of realistically secure systems.The key aspects of the recommended uni�ed approach are as follows:� Modular, hierarchical, and distributed system structures can make architectures more imple-mentable in terms of o�-the-shelf components and at the same time can simplify the formalanalyses. Concepts of good system development practice (such as the so-called �eld of soft-ware engineering, particularly referring to abstraction, modularity, information hiding, andsome nontrivial aspects of object-oriented paradigms) can be pushed much more vigorouslythan they have in the past. (For example, these concepts are barely evident in existing setsof security criteria, poorly represented in university education and corporate training, andwidely ignored in many commercial systems.) Parameterized components and parameterizedinterconnections can increase the ease with which such systems can be con�gured and putto productive use. Trustworthy servers are essential to this approach. In addition, some cre-ative high-integrity strategies for accommodating modular implementations of cryptographyare desirable, especially if they can improve the likelihood that good crypto can be availabledomestically without creating a disincentive to vendors that inhibits them from producingbetter domestic systems because of export-control problems that hinder their competition inthe international marketplace.� Formal methods have the highest payo�s when applied to the most critical system attributes.However, any localized properties should be related to properties of the overall architecture.As one example, security of networks and distributed systems should be relatable to the se-curity and other properties of their components. As another example, fault tolerance andreliability are essential for the assurance of security, and critical properties relating to thoseattributes should also be addressed. Real-time and performance properties may also be criti-cal, and should be included, as appropriate. The manner in which components are con�guredand interconnected should be rigorously represented, and the most critical properties of themost critical components should be evaluated. The formal methods should apply coherentlyiii

Secure Systems Architecture and Formalismbut not necessarily uniformly throughout the development cycle, at various layers of abstrac-tion (high, intermediate, and low), across distributed systems and networks | without beingoverly dedicated to particular implementation alternatives. These methods should apply tothe combination of system components, and permit analyses of the combined systems in termsof the properties of the components. The intent of the appendix to the original draft TrustedNetwork Interface document [150] (the Red Book) should be reconsidered and new criteriaestablished that represent the real complexities of distributed systems and networks, and thatprovide a basis for applying formal methods thereto. Because di�erent formal methods arelikely to be used in di�erent contexts, these di�erent methods should interoperate seamlessly(or at least without too much di�culty). The greatest payo�s tend to come up front, fromhaving appropriate requirements and sound designs, although some involvement of formalmethods in the implementation process can also be very valuable | if the requirements areappropriate and the design is sound.Our intended audience is somewhat broad. The report is intended to be useful to its sponsoringorganization, of which the Special Projects O�ce is engaged in carrying on both internally andfunding externally research and development, whereas InfoSec groups are attempting to encouragethe development of highly secure systems and networks. It is also intended for other governmentorganizations engaged in funding research or procuring critical systems. The report is additionallyintended to be useful to would-be users of formal methods | namely, system developers and cus-tomers with critical requirements | as well as researchers �nding new ways to apply old techniquesin formal methods, pursuing new directions, and developing tools that embody those methods andfacilitate moving in those directions. It can serve as an introduction to the literature for those whoare not well versed in past work, and as a review for those who are long-time participants in theapplication of formal methods to real systems.The report suggests that some fundamental changes in approach can have signi�cant bene�ts inthe attainment of dependably secure systems, particularly with regard to how system and networkarchitectures are conceived and how formal methods are applied. Major advances in the formalmethods themselves are not generally required, although improvements in the ease of use of thecorresponding tools would be helpful. In addition, integration of those methods and tools is needed,particularly as it relates to the ability to handle modular combinations of subsystems for security,and to accommodate other requirements that may be necessary for adequate security | such asfault tolerance in the infrastructure, real-time performance | or that might compromise security| such as emergency overrides.To achieve the suggested bene�ts, some real changes in conceptual thinking are required; it isnot su�cient just to pay lipservice to the principles discussed herein. It is easy for developers orinstitutions to say that these principles are indeed what they have been trying to follow all along.It is another thing to actually follow them.The bottom line involves the need for discipline in how systems are conceived, designed, developed,modeled, analyzed, and used. That discipline should be applied to the architecture, to the develop-ment practice, and to any uses of formal methods. The best strategy is one in which the disciplineis applied consistently throughout, and where the formal methods and the architectures serve tohelp each other.
iv

Secure Systems Architecture and FormalismContentsGlossary x1 Introduction 11.1 Goals of the Project . 11.2 Background . 2Part One: ARCHITECTURE 42 The Role of Structure in Enhancing Security 42.1 Complexity . 42.2 Architecturally Interesting Systems . 52.3 Multilevel Security and Integrity . 72.4 Multilevel Availability . 72.5 Software-Engineering Techniques . 82.6 Structural Encapsulation . 92.7 Dependence and System Decomposition . 112.8 Compromisibility and Noncompromisibility . 162.9 Designing for Multilevel Security . 193 Three Representative Structured Architectures 193.1 Multics . 203.2 PSOS: Layered, Capability-Based, Object-Oriented 203.3 SeaView: An MLS DBMS without MLS trustworthiness 234 Distributed-System Architectures 254.1 Structural Concepts in Distributed Systems . 254.2 Security Requirements . 264.3 Preventing Misuse, Compromise, and Tampering . 275 Minimizing Trustedness Within Multilevel-Secure Systems 285.1 The RISSC Philosophy . 305.2 Advantages of the RISSC Philosophy . 315.3 Alternative RISSC Architectures . 325.4 Realities of Multilevel Security . 32v

Secure Systems Architecture and Formalism5.5 Potentials of MLS RISSC Systems . 335.6 Potentials of non-MLS RISSC Systems . 345.7 RISSC Applied to Crypto Implementations . 35Part Two: FORMAL METHODS 376 Formal Methods Applicable to Secure-System Architectures 376.1 Goals of Formal Methods in System and Network Architecture 376.2 SRI's Computer Science Laboratory: HDM, EHDM, and PVS 396.3 BAN Logic and Related Reasoning about Crypto Protocols 426.4 Other Approaches Relating to Security . 427 Formal Methods Applied to Secure Distributed Systems 427.1 General Properties of Distributed Systems . 437.2 Finer-Grained Properties of Distributed Systems . 458 Property Transformations Under Composition and Layering 478.1 Properties . 478.2 Transformations in MLS systems . 498.3 Transformations of SeaView Properties . 508.4 Transformations Within a Byzantine Clock Subsystem 508.5 Transformations Under Gateway Interposition . 518.6 Transformations Within a Cryptographic Protocol 528.7 Commonalities Among Di�erent Types of Transformations 539 Formal and Semiformal Methods Useful in Other Disciplines 53Part Three: FORMALIZING RISSC ARCHITECTURES 5610 Implications of the RISSC Philosophy on Formal Methods 5610.1 Implications on the System Development Process . 5610.2 Implications on System Analysis . 5711 Appropriate RISSC Architectures 5711.1 Properties of RISSC Architectures . 5911.2 RISSC Relevance to Security Criteria . 61vi

Secure Systems Architecture and Formalism11.3 Illustrative RISSC Properties: Modular Crypto . 6411.4 RISSC Crypto-Based Authentication Properties . 6811.5 RISSC Key-Escrowed Crypto Properties . 6911.6 RISSC Crypto Auditing Properties . 6911.7 RISSC Crypto Infrastructure Properties . 6911.8 Analyzing Crypto Implementations in the Large . 69Part Four: CONCLUSIONS 7012 Conclusions and Recommendations 7012.1 General Conclusions . 7012.2 Recommendations for Applying Formal Methods to Architectures 7312.3 Near-Term Recommendations . 7512.4 Long-Term Recommendations . 7612.5 Final Remarks . 77Epilogue | A Quote from Edsger W. Dijkstra 78APPENDICES 79A Summary of Architectural Families 79A.1 Multilevel-Secure Network Interfacing . 83A.2 Multilevel-Secure Network Interfacing with Storage Crypto 85A.3 Multilevel-Secure Network Interfacing with MLS File Servers 86A.4 Compartmented-Mode End-User Systems . 86A.5 Multilevel-Secure End-User Systems with Storage Crypto 87A.6 Multilevel-Secure End-User Systems without Storage Crypto 87A.7 Conventional Single-User Single-Level Systems . 87A.8 Conventional Multiple-User Single-Level Systems . 88A.9 Low-End Conventional Systems . 88A.10 Stand-alone End-User Systems . 88A.11 Comparison of the Architecture Families . 89B Tamperproo�ng NIDES 90B.1 Tamperproo�ng via Subsystem Encapsulation . 90vii

Secure Systems Architecture and FormalismB.2 Protection Against Reverse Engineering . 91B.3 Illustration of the Realization of These Goals . 91B.4 Tamperproo�ng NIDES via Subsystem Encapsulation 92B.5 Addressing the NIDES Security Goals . 92B.6 Protecting NIDES from Tampering . 93B.7 Protecting NIDES from Reverse Engineering . 96B.8 Coverage of the NIDES Security Goals . 97B.9 Formal Methods Implications of NIDES . 97C Architectural Implications of Covert Channels 99C.1 Introduction . 99C.2 Background . 101C.3 Tolerating Covert Channels . 103C.4 Allocating Device Resources . 111C.5 Allocating Software Resources . 116C.6 Architectural Implications . 117C.7 Conclusions . 119D Contributions to the Early Veri�cation Workshops 121D.1 VERkshop I . 121D.2 VERkshop II . 123D.3 VERkshop III . 124References 127

viii

Secure Systems Architecture and FormalismList of Tables1 Summary of Clark{Wilson integrity properties . 92 Software-engineering principles and their potential e�ects 103 Conventional system architectures . 104 A constructive hierarchy . 125 Illustrative compromises . 186 PSOS abstraction hierarchy . 217 PSOS generic hierarchy . 228 PSOS properties . 229 SeaView design hierarchy . 2310 SeaView model hierarchy . 2411 Property dependence . 4612 Relevance of RISSC families [[1]] and [[2]] to security criteria 6213 Relevance of RISSC family [[3]] to security criteria 6314 Dependencies among crypto-related properties . 6715 Architectural families . 8416 Proposed NIDES user roles . 9317 Relationship of proposed enhancements and security goals 98

ix

Secure Systems Architecture and FormalismGlossaryThe following terms and abbreviations are used in this report:Authentication The process of validating whether an object (user, agent, �le, etc.) is indeedauthentic, based on some cryptographically or hashcoding-based authentifying information(see cryptobinding, below). The term authentication is also used more generally (particularly,by others) to include the process of cryptobinding as well. Here, authentication involvesprimarily the validation of the cryptobinding. See Section 5.7.BAN logic A belief logic for reasoning about cryptographic protocols. See Section 6.3.Byzantine systems Systems that function properly despite arbitrary misbehavior on the part ofsome maximum number of component subsystems. See Sections 2.7 and 8.4.Clark-Wilson integrity properties A collection of application-layer integrity properties relatedto well-formed transactions. See Section 2.5.Composition The simplest form of composition involves serial hookups without feedback. Gener-alized forms of composition involve subsystems with mutual feedback, hierarchical layering inwhich a collection of modules collectively form a particular layer, and networked connections.See Section 8.Compromisibility The possibility of being penetrated, bypassed, subverted, or otherwise sub-jected to attacks that cause violations of security policy. See Section 2.8.Con�dentiality An attribute of security implying that knowledge of information (for example,a hardware design, software source code, or stored or transmitted data) cannot be acquiredwithout appropriate authorization.Covert channel Flaws in the security of a system that permit the derivation of information thatcannot otherwise be obtained | that is, information that is not directly readable. Appendix Cconsiders only covert channels in multilevel-secure systems, although covert channels may alsoexist in non-MLS systems.Cryptobinding The process of creating an object that can later be authenticated. See Section 5.7.Dependence A logical relation implying (in varying ways) that the behavior of a function or thesatisfaction of property is determined at least in part by other functions or properties. SeeSection 2.7.DBMS Database management system. See Section 3.3.DSM Distributed, Single-level-user-processor, Multilevel-secure, applied to multicomputer sys-tems. See Sections 5.1 and C.6.Emergence A characteristic of a property that is is not meaningful with respect to lower layers orto individual components at a particular layer, but that is meaningful with respect to a higherlayer or with respect to the composition of components at the given layer. See Section 8.1.x

Secure Systems Architecture and FormalismEncapsulation The protection of an implementation from compromise. For example, the intent ofcrypto may be compromised (for example, by exposure of keys or of unencrypted information)if the crypto is not properly encapsulated. See Section 2.6.Escrow binding The binding between keys that are escrowed and keys that are actually used inescrowed-key encryption. See Section 5.7.Formal methods Mathematical and logical techniques for representing and analyzing computersystems, potentially resulting in much greater rigor, security, and dependability than other-wise attainable. See Parts Two and Three of this report.IDES Intrusion Detection Expert System. See Appendix B.Integrity A property that an entity is in a proper state | that is, the entity is genuine, or thatthe entity has not been accidentally or intentionally altered. Integrity properties includeconsistency, correctness, and authenticity.ISPL Independent subsystem per level. See Section C.3.Liveness (Lamport) A property that implies that a system will eventually do something. SeeSection 8.1.MLA Multilevel availability. No entity can depend upon another entity that is not at least astrustworthy with respect to availability. See Section 2.4.MLI Multilevel integrity. No entity can depend upon another entity that is not at least as trust-worthy with respect to integrity. See Section 2.3.MLS Multilevel security. Information must never
ow from a more sensitive entity to a lesssensitive entity. See Sections 2.3 and 2.9.NIDES Next-generation Intrusion Detection Expert System, based on IDES. See Appendix B.Nonrepudiation (strictly speaking, nonrepudiatability, which is too cumbersome a term) Thecredibility with which a supposedly authenticated (id)entity cannot later be subjected to asuccessful claim that the authentication had been erroneous, spoofed, or otherwise mishan-dled. See Sections 7 and 11.3.PSOS A provably secure operating system that represents an early example of an object-orientedsystem hardware-software design, abstraction, layering, and formal speci�cation. See Sec-tion 3.2.RISSC Reduced Interfaces for Secure System Components, in which the security-critical inter-faces are sharply constrained | through careful design, pervasive use of separation of duties,encapsulation, and other structural properties, as well as consistent implementation. SeeSection 5.Safety (human) A property relating to a system's ability to protect human lives.Safety (Lamport) A property that implies that if the system eventually does something, itsbehavior will be as speci�ed. See Section 8.1.xi

Secure Systems Architecture and FormalismSeaView A multilevel-secure database management system with no trustedness for MLS requiredof the DBMS. See Section 3.3.Security Security attributes considered here include con�dentiality, integrity, availability, authen-tication, and accountability.TCB Trusted computing base. See Section 2.Trusted Depending on context, either something that must be trusted because it is critical, orsomething that is trusted, whether or not it is trustworthy. See Section 2.6.Trustworthiness The characteristic of having a measure of dependability with respect to thesatisfaction of the stated requirements, that is, worthy of being trusted. See Section 2.6.

xii

Secure Systems Architecture and Formalism1 IntroductionThis report summarizes the work of SRI Project 6401, which has considered the design and devel-opment of secure distributed systems and networks of such systems, and the use of formal methodsfor representing and analyzing those systems. Part of this work is a logical extension of the workbegun under SRI Project 6402 | the �nal report [158] for which considered the extent to whichassurance can be attained if cryptographic and cryptologic techniques are implemented in software,for each of various families of system architectures; however, that report did not attempt to elabo-rate on the speci�c techniques necessary to increase assurance of software implementations. It alsoconsidered only very narrowly the roles of cryptographic approaches to security, rather than themuch broader view of security addressed here.As used in this report, the term \formal methods" encompasses a wide variety of approachesthat apply mathematical and logical techniques to the representation and analysis of computerand communication systems, in this case with particular emphasis on security. The report does notattempt to provide a complete survey of everything relating to the union of the �elds of architecture,security, and formal methods. However, it does attempt to characterize the intersection of those�elds by examining the underlying principles and concepts, assessing the current state of the art,and making recommendations about how signi�cantly greater progress might be achieved.1.1 Goals of the ProjectThe goals of the project are as follows:1. To accelerate the learning curve with respect to secure distributed systems and the use offormal methods associated with those systems, for technically sophisticated individuals notfamiliar with the �eld and for newcomers to the �eld2. To enhance the ease with which meaningfully secure distributed systems can be readily con-�gured out of commercially available hardware, operating systems, and network components(to the maximum extent practical)3. To increase the ease with which formal methods can be applied to practical secure systems4. To enhance the ease with which secure-system products as well as distributed and networkedsystems can be readily evaluated5. To increase the impact that carefully developed system architectures can have on the future| for example, aiding the development community, simplifying the implementation process,easing the evaluation process, and facilitating the incorporation of important advances intonew systemsToward those ends, this report does the following:� Provides a historical context relating to secure-system architectures and formal methodsapplicable to those architectures, addressing the current state of the art, its limitations, theprimary di�culties encountered in the past, and an analysis of why those limitations anddi�culties arose and how they might be overcome in the future1

Secure Systems Architecture and Formalism� Examines a few representative secure-system architectures as illustrative of what has beendone in the past and what might be done in the future� Makes recommendations for speci�c families of system architectures that would be suitable forhighly distributed and widely networked systems capable of overcoming the past di�culties� Examines formal methods applicable to the representation and analysis of such architectures,and provides illustrations of how those methods might best be applied, for the evaluation andformal or informal analysis of models, designs, speci�cations, implementations, and con�gu-rations� Identi�es new directions for research and development relating to formal methods applicableto architectures for secure systems and networks, whose pursuit could substantively improvethe development, con�guration, and evaluation of readily available secure systems1.2 BackgroundThis study encompasses a range of topics, all of which are relevant to the design, development, andanalysis of systems with stringent security requirements.� System and network architectures. Many types of computer systems are considered here,representing a wide architectural spectrum. Several basic architectural families are exam-ined, including trusted computing bases (TCBs) with centralized security kernels, layeredTCBs, distributed systems with equivalent centralized kernels, and distributed systems withdistributed TCBs or with gateways and �rewalls. Of special interest from an architectural per-spective are multilevel-secure distributed systems that adhere to the Randell-Rushby [210] andProctor-Neumann concepts [192] | under which all end-user systems are single-level systems,and multilevel security is enforced by judicious use of multilevel-secure servers. That concepthas subsequently been generalized into families of RISSC architectures (Reduced Interfacesfor Secure System Components, Neumann-Gong, 1994 [163]), in which the security-criticalinterfaces are sharply constrained | through careful design, pervasive use of separation ofduties, encapsulation, and other structural properties, as well as consistent implementation.The RISSC concept is considered in Section 5.� Uses of cryptography. A recent SRI report [158] considers three basic types of applicationsof cryptography | for storage, for communication, and for integrity (including both au-thenticity and consistency). That report explores ten basic families of system architecturesemploying cryptographic techniques. It considers the relative merits of software and hard-ware implementations of the crypto. It also stresses the importance of integrating cryptointo system architectures, a topic that is of vital importance to the present study. In par-ticular, hierarchical structures, layering, and dependencies relating speci�cally to softwareimplementations of cryptographic algorithms and protocols are fundamental to the assurancenecessary for cryptographic implementations. Both that study and the present one examinethe extent to which cryptographic implementations, operating systems, �le servers, networkservers, and other components must be trustworthy to ensure that the overall systems andnetworks provide adequate security with adequate assurance.2

Secure Systems Architecture and Formalism� Evaluation criteria. The DoD Trusted Computer Security Evaluation Criteria (TCSEC) [151]and the TCSEC Trusted Network Interpretation (TNI) [150] are the historically applicablecriteria documents for evaluations of computers and their networks, but those criteria are in-complete when applied to secure distributed systems. The various newer criteria e�orts fromEurope and Canada and the proposed Federal Criteria and Common Criteria are somewhatless de�cient, but still incomplete. Various de�ciencies in the TCSEC, the European Informa-tion Technology Security Evaluation Criteria (ITSEC) [60], and the Canadian Trusted Com-puter Product Evaluation Criteria (CTCPEC) [34] have been discussed previously in [157].For the TCSEC, greater emphasis is needed (for example) on applications, system integrityand availability, trusted distribution below A1, trusted recovery below B3, Trojan horse avoid-ance, and generalized composition. Furthermore, some uni�cation of the di�erences betweenproduct evaluations and system evaluations is necessary to overcome the serious delays inevaluations.� Behavioral models. Multilevel security of Bell and LaPadula [12, 13], multilevel integrity ofBiba [19], and application-layer integrity of Clark-Wilson [42] are three examples of security-relevant models. They raise many issues of trust, trustworthiness, and dependence. However,such models are not su�ciently general and not complete enough to characterize all theessential properties of the various architectures that must be addressed.� Programming practice. The roles of sensible programming languages (perhaps C++, forexample) and sensible software-engineering techniques are very important. A poor choice ofprogramming language or improper use of a good programming language can lead to serioussecurity vulnerabilities. However, even a superior language can be misused.� Formal methods. Formal methods for expressing requirements, specifying designs, and demon-strating consistency between speci�cations and requirements are fundamental to the develop-ment of dependably secure systems. Varying degrees of rigor can be applied, and each maybe appropriate in certain circumstances. Speci�cation methods and formal proof methods ofinterest here include SRI's HDM, Ehdm, and PVS, Computational Logic Inc.'s (CLI) Gypsyand Rose, Odyssey Research's Romulus, the European Z (Zed), and many others. Criteriafor usefulness of speci�cation methods include understandability, readability, writability, andmodi�ability, as well as issues relating to the availability of a publication language and/ora speci�cation language. Formal veri�cation that code is consistent with its speci�cationis initially less critical to the integrity of the system development process, wherein greateremphasis is placed on formal methods for establishing and analyzing speci�cations (for exam-ple, design validation with respect to stated requirements). Ongoing e�orts at speci�cation ofsecurity-related systems are being pursued by Secure Computing Corporation (SCC), TrustedInformation Systems (TIS), the NSA evaluation group, DRA, the United Kingdom's CESG,and pursuits of Rushby's earlier work on separation kernels [203, 205]. In addition, there issigni�cant recent progress in using formal methods in applications for which there are strin-gent requirements for reliability, fault tolerance, and human safety. Some of those results arediscussed here, and related to what might comparably be done with respect to security.This report documents various secure-system architectures and examines the applicability of formalmethods to the analysis and representation of those and other architectures. The report containsextensive pointers to the literature, with recommendations regarding signi�cant material for furtherstudy. 3

Secure Systems Architecture and FormalismPart One: ARCHITECTURE2 The Role of Structure in Enhancing SecuritySection 2 illustrates the roles that system architecture and component structuring can play in systemand network applications that must satisfy critical requirements such as security, reliability, andhuman safety. These concepts are seen to have signi�cant implications on how e�ectively systemscan be designed, implemented, evaluated, maintained, and operated. They a�ect the entire systemlife cycle.These concepts also can have a major impact on the e�ectiveness with which formal methods canbe applied to real systems. It is di�cult to apply formal representations and formal analyses tovery complex systems in the absence of cleanly delineated system structures, which are themselvesfacilitated by certain concepts of good software-engineering practice | such as abstraction offunctionality at each external or internal interface, hierarchical layering, modular encapsulation,information hiding, separation of concerns (for example, duties or privileges), and the object-oriented paradigm (which embraces abstraction, encapsulation, polymorphism, and inheritance).This report revisits some of those concepts, in terms of what they o�er to security and formalmethods.These concepts all can contribute to security, safety, reliability, and overall system veri�ability, ifthey are used wisely. (For example, see [156, 154].) They can also be badly misused, especiallywhen treated as panaceas or magic bullets | as in the recent craze to label everything withthe \object-oriented" buzzterm. In general, there are no easy answers regarding system design,implementation, speci�cation, design validation, and formal program veri�cation. However, eachof the techniques described here can add signi�cantly to the structural integrity and the securityof a system or network complex.2.1 ComplexityOne of the main tasks in creating a system architecture is to avoid unnecessary complexity. Analysisof the architecture can be greatly simpli�ed by stripping away low-level details and obtaining anaccurate high-level understanding. Considering that people tend toward oversimpli�cation, AlbertEinstein's familiar statement is important here: \Everything should be made as simple as possible,but no simpler."Complexity is in the eye of the beholder. A system may seem complex to someone who does notunderstand it, and simple to someone who does. System designers and analysts often look for easyanswers to di�cult problems, beginning with system conceptualization and continuing through thedevelopment, use, and evolution of their systems, and culminating in the dismantling or replacementof those systems. But there usually are no easy answers.1Many of the techniques addressed here (system structuring, software engineering, abstraction, de-1For a document devoted to complexity and what can be done about it, see the ACM publication, ManagingComplexity and Modeling Reality: Strategic Issues and an Action Agenda, D. Frailey (ed.), 1991, which includes,among other articles, Neumann's \Managing Complexity in Critical Systems" and Peter Denning's \Can HumanReality be Modeled Reliably?". 4

Secure Systems Architecture and Formalismcomposition, composition, layering, and so on) can contribute directly to combatting complexity,and by doing so can also increase security. For example, speci�cations of abstractions (for require-ments or functionality) and their interrelationships are common sources of security
aws. Formalmethods are particularly valuable in detecting incompleteness and other errors in speci�cations, asdiscussed in Section 6.2.2 Architecturally Interesting SystemsMultics [171] was perhaps the �rst operating system to make extensive use of structure withinthe operating system itself, as well as providing protection mechanisms that permitted multipleapplication layers to be separated from the operating-system layers. The concentric interprocessdomains permitted the iterative implementation of policy-mechanism separation. The multilayereddirectory hierarchy enabled sensible directory structuring. The virtual memory implementationdemanded separation of symbolic and physical addressing, where all real objects in memory areaccessed by means of symbolically named virtual objects. Multics is considered in further detail inSection 3.1.The hierarchically layered T.H.E. operating system [55] demonstrated that a strict hierarchicallocking strategy could avoid deadly embraces between layers (although occasional deadlocks stilloccurred for many years within layers). This concept is important in preventing denials of serviceas well as ensuring high system availability.Dijkstra [54, 56] and Parnas [174, 176, 177, 180, 185] each contributed signi�cantly to the construc-tive structural decomposition of systems, and Parnas [44, 175, 178, 179, 181, 182, 183, 184, 186]provided de�nitive advances toward the formal speci�cations and analysis of real and complexsystems, from the early 1970s to the present.The concepts of abstraction and hierarchical layering, along with the work of Dijkstra and Parnas,were very in
uential in two SRI system e�orts from the 1970s. These two e�orts were the so-calledProvably Secure Operating System (PSOS) [62, 161] and the Software-Implemented Fault-TolerantSystem (SIFT) [141, 147, 250], both of which were speci�ed according to the SRI HierarchicalDevelopment Methodology (HDM) (Section 6.2). The object-oriented hierarchically layered PSOSdesign is considered further in Section 3.2. The SIFT design and prototype implementation rep-resented a seven-processor
y-by-wire avionics computer system that was resistant to hardwarefaults; in the presence of faults, it was self-diagnosing and self-recon�guring.The PSOS design was the immediate ancestor of the sequence of developments beginning with theHoneywell Secure Ada Target (SAT), which then led to the Honeywell/Secure Computing Tech-nology Corporation (SCTC)/Secure Computing Corporation (SCC) LOgical Coprocessor Kernel(LOCK) [39, 40, 65, 82, 83, 84, 85, 215] and the notion of trusted pipelines [23] | in which eachstage in a pipeline can have its own security policy. PSOS is in several senses an early systemadhering to the philosophy of Reduced Interfaces for Secure System Components (RISSC). PSOSis considered in further detail in Section 3.A rather di�erent lineage that also adheres to the RISSC philosophy begins with the Rushby-Randell Newcastle Distributed Secure System DSS [210], which involved a collection of single-levelUnix2 systems linked via trusted network interface units (TNIUs). A descendent of DSS is nowalso commercially available (DRA) in the United Kingdom. The Gemini GEMSOS and Trusted2All product and company names mentioned in this report are trademarks of their respective holders.5

Secure Systems Architecture and FormalismNetwork Processor (GTNP) multilevel-security gateway e�orts also bear considerable kinship withMultics and PSOS, and with the RISSC concept. Both LOCK and GTNP are operational systemswith potential usefulness in B3/A1-rated applications.A TCSEC-orthodox system lineage [151] includes end-user systems with multilevel-secure kernelsand associated trusted computing bases (TCBs), such as the kernelized Unix system KSOS [16, 133],the MITRE [221] and UCLA Secure Unix kernels, and the kernelized virtual-machine system KVMfor IBM's VM [72, 214]. Rushby's separation kernels [203, 205] represents a minimalized lower-layerversion of that approach, in which certain isolation properties are enforced, and on which otherproperties such as multilevel security can be implemented.Unix has led to many variants, such as CMU's Mach, TMach, TIS's DTMach (see [164] for ananalysis of secure reliable distributed systems), Synergy, and Secure Computing Corporation'sDTOS.Synergy [216] is also of considerable interest (although it has very little available documentation).Synergy follows some of the careful abstraction, layering, and policy-mechanism separation foundin PSOS. Its layered architecture incorporates, from the lowest layer upward, (0) an extended Machmicrokernel, (1) a policy-enforcing security server, (2) a collection of functional servers (for �les,devices, names, authentication, networking, keys, crypto, and audit), (3) operating system servers,and (4) applications, trusted or otherwise.DTOS uni�es the PSOS/LOCK object-oriented multiple-policy lineage with Unix-style operatingsystems based on a Mach kernel, and provides Mach compatibility as well. Security policies areimplemented in a security-policy server, which is external to the Mach kernel | thus making it easierto support multiple policies. DTOS provides �ne-granularity access control, and experimentallysupports both a LOCK-style type-enforcement policy and a Chinese Wall policy.Blacker [64, 249] provides a historically interesting approach to networked systems with end-to-endencryption, although its architecture is unwieldy by modern standards.3More recent e�orts such as the Digital Distributed System Security Architecture [68] (DDSSA)and Kerberos [14, 155, 236] are fundamental steps toward modern secure distributed systems,employing Needham-Schroeder-like certi�cates [152, 153, 172] for trusted authentication. (DDSSAis somewhat more secure than Kerberos, although both are susceptible to operating-system attacks.)See [223] for a summary of these and related protocols.End-to-end encryption for electronic mail is provided by various forms of Privacy Enhanced Mail(PEM [108, 109, 110, 121]), including PGP [66, 224, 256]. In each case, the security depends on theoperating system or other platform on which the mail software exists. More general applicationsof crypto are considered by Schneier [223].Many other references could be cited for historical interest and for further approaches. For addi-tional early references on security kernels, see [5, 219, 220]. Earlier references on security guardsinclude [17, 35, 45, 78]. For futher background on secure distributed systems, see [8, 36, 58, 67,194, 203, 211, 244], and for useful further works on distributed systems see [148, 149, 239, 240, 241].For additional references on capability-based architectures, see [103, 104, 193].In this report, we have not attempted to analyze e�orts that are still in
ux. However, anyone3The Blacker design experience has generally been restricted; a paper on the underlying trade-o�s [249] won thebest-paper award at the 1988 IEEE Security and Privacy Symposium, but could not be published in the proceedingsuntil 1992. 6

Secure Systems Architecture and Formalismseriously interested in pursuing the concepts discussed in this report should attempt to evaluatethose other e�orts in the light of the concepts discussed herein.2.3 Multilevel Security and IntegrityIntuitively, the basic multilevel-security (MLS) property is that information must never
ow froma more sensitive entity (for example, �le, database (DB), system, or user terminal) to a less sen-sitive entity. Multilevel integrity (MLI) is a strict mathematical dual of multilevel security. Weoversimplify slightly for the moment, and elaborate on these two properties as follows.� MLS. For reading, the multilevel-security
ow property implies that the security level of therecipient must be at least as high as the security level of the object being read, for otherwisethere would be a downward
ow of information. For writing, the
ow property implies that thesecurity level of the information source must be at most the security level of the destination,for otherwise there would be a downward
ow of information.� MLI. Intuitively, the basic MLI property is that no entity (for example, process, program,or data) can depend upon another entity whose integrity level is not at least as trustworthywith respect to integrity.The MLS/MLI a�cianado is accustomed to lattice policies in which levels and categories are as-sociated with each entity or user, and where
ow and dependence are de�ned in terms of latticeinclusion. However, that re�nement is not necessary for an understanding of the concepts here, andis obtained (if properties are stated appropriately) simply by replacing the linear relations with cor-responding lattice set-inclusion relations | for example, replacing � by � (sometimes pronounced\dominates").2.4 Multilevel AvailabilityIn many systems, there is a need for priorities relating to the allocation of scarce resources. Fur-thermore, when operating under emergency situations, it may be necessary to alter the priorities orthe way in which they are interpreted. Neumann et al. [164] have proposed a concept of multilevelavailability (MLA) that is somewhat analogous to MLS and MLI. Each resource has associatedwith it a range of priorities within which it may operate, and each client is allocated (dynamicallyor statically, according to circumstances) a priority instance; the allocated priority could dependon the client's identity or role, the intended operation, the objects on which the operation is acting,and the destination of the results, although it could be assigned a preallocated value, as is thecase with statically allocated MLS labels. The precedences de�ned by the priorities would then beenforced by a multilevel-availability TCB or server.A mandatory multilevel-availability policy could also be viewed intuitively as a special kind ofmandatory multilevel integrity: with respect to levels of trustedness for availability, there shall beno dependence on components that are less trustworthy with respect to availability. Note thattrustedness for availability and trustedness for integrity need not be equivalent. A high-integritycomponent could attempt to guarantee correct results, but might not be able to control how long thetask might take; indeed, the task might never complete (in the case of the ultimate denial of service7

Secure Systems Architecture and Formalismfor that component). If multilevel availability labels can be mapped onto integrity labels, then theMLA labels would become super
uous (particularly if the mapping is one-to-one); otherwise, theywould be independently meaningful. However, in the case of independently chosen labels for MLS,MLI, and MLA, it is necessary to ensure that the three sets of labels are not mutually in con
ict,to the extent that an intended operation might be impossible to perform. Discretionary availabilitypolicies might also be de�ned in addition to the mandatory MLA policy. However, for presentpurposes, we consider only the priority structuring that would result from a simple mandatorymultilevel availability policy in which there is no reliance on less available resources, with thepossibility of trusted exceptions similar to what is necessary to make MLS and MLI realisticallyworkable.Multilevel availability can be used to ensure that high-priority clients have su�cient precedenceover lower-priority clients. In this way, lower-priority clients can be prevented from causing denialsof services that a�ect higher-priority clients.2.5 Software-Engineering TechniquesThe software-engineering concepts noted at the beginning of Section 2 are fundamental to thedevelopment of well-structured computer and communication systems. We next consider the Clark{Wilson integrity properties, restated in Table 1 in terms more familiar to software engineers thanthe original representation. (This table is derived from [159].)Of particular relevance are abstract data types and their proper encapsulation, atomic transactions,and various forms of consistency. It becomes clear that good software-engineering practice cancontribute directly to the enforcement of the Clark{Wilson properties and to other generalizedforms of system integrity.Unless a Clark{Wilson type of application is implemented directly on hardware with no underly-ing operating system, the sound enforcement of the Clark{Wilson properties will typically dependupon lower-layer (e.g., operating system) integrity properties. Sound implementation is consideredby Karger [104] using a secure capability architecture (SCAP [105]), and by Lee [114] and Shock-ley [228] employing an underlying trusted computing base that uses the notion of `partially trustedsubjects' and that enforces both multilevel security (MLS) and multilevel integrity [19] (MLI).A useful report analyzing Clark{Wilson integrity is found in [4].Table 2 summarizes the ways in which software engineering can potentially contribute to the ar-chitecture of sound systems, including the prevention and detection of the characteristic misusetechniques, and the avoidance of or recovery from unreliability modes (through reliability andfault-tolerance mechanisms). In the table, a plus sign indicates a positive contribution, whereasa minus sign indicates a negative e�ect; parentheses indicate that the contribution (positive ornegative) is a second-order e�ect or a potential e�ect. (This table is derived from [159].)The table illustrates in overview that good software engineering can contribute signi�cantly tosystem security and integrity, as well as to system reliability and human safety, with respect tothe underlying systems and to the applications. However, the mere presence of a technique is notsu�cient. All these techniques are frequently touted as magical answers, which they certainly arenot. Each can be badly misused.
8

Secure Systems Architecture and FormalismTable 1: Summary of Clark{Wilson integrity propertiesCW Clark{Wilson Integrity Propertiesrule for Enforcement (E) and Certi�cation (C)CW-E1 Encapsulation of abstract data typesCW-E2 User authorizationCW-E3 User authenticationCW-E4 Nondiscretionary controlsCW-C1 External data consistencyCW-C2 Transformation (internal) consistencyCW-C3 Separation of privilege and least privilegeCW-C4 Complete nontamperable auditingCW-C5 Atomic input validation2.6 Structural EncapsulationTable 3 illustrates the potential e�ects of hardware, software, environmental, and other problemsin conventionally designed systems and networks, in which widespread disasters may be triggeredat any layer | for example, as a result of security breaches or system malfunctions. For simplicity,only three layers are shown, denoted as 0, 1, and 2, which might typically correspond to an operatingsystem, an application environment, and user environments, respectively. The 1980 4-hour collapseof the entire ARPAnet and the 1990 11-hour collapse of AT&T long-distance services are examplesof how seemingly minor local events can trigger widespread havoc. (See [159] for details.)In contrast to such an undi�erentiated and not wisely layered design, it is desirable to have anarchitecture that places the most critical functions in the lowest layers, and then builds upon thosefunctions. In such a structure, it is desirable that defensive design be able to ensure that failures atthe lowest layer are very unlikely and if they do occur, their e�ects can be contained; that failuresin the next higher layers are only locally serious; and that failures in the highest layers are usuallyinconsequential. An example is provided by the original ring structure of Multics, in which Ring 0failures might crash the system, Ring 1 failures might crash the user process but not the system,and Ring 2 failures might abort the user command without damaging the user process. Morerecent examples are provided by architectures based on a kernel that enforces multilevel security,with a trusted computing base that encapsulates subsystems that must be trusted to violate thestrict-sense multilevel security of the kernel and applications implemented on top of the TCB.In the present context, trust may imply something other than just having to be trusted withrespect to multilevel security; it might typically imply trustedness for certain security and reliabilityproperties, for example, or more generally any properties that must be maintained | such as Clark-Wilson consistency.In the view of the TCSEC Orange Book [151], there is an ambiguity in the de�nition of trusted,with one or both of two meanings: (1) a system can be trusted because it is believed to satisfycertain requirements (for example, for reliability or security); (2) a system must be trusted becausedeleterious consequences could result if it fails to satisfy its requirements. Whether the system isactually trustworthy is another matter. In this report, calling a system or component trustworthy9

Secure Systems Architecture and Formalism
Table 2: Software-engineering principles and their potential e�ectsProperties to be ensuredSecure System System Identity, Auditing Applicationdata integrity reliability, authenti- propertiesPrinciples availability cationModular decomposition + + + [+] + +Modular composition [+] [+] [+] + +Strict isolation + + + + + [+]Abstraction, encapsula-tion, information hiding + + + + + +Hierarchical layering + + + + + +Type safety + + + + [+] +Object orientation + + + + + +Parameterization [+] + [+] [+] [+] [+]Inheritance + + + + + +Separation of duties + + [+] + + +Least privilege + + + + + +Virtualized location + + + + [+] +Virtualized networking + + + +{ [+{] +Virtualized concurrency + + + +Virtualized replication + + + +Virtualized recovery + + + [+] +Fault tolerance [+{] + + [+] +Legend:Secure data includes data con�dentiality and data integrity+ = a primary contribution{ = a potential negative implication[] = a second-order or potential e�ect

Table 3: Conventional system architecturesLayer Typical hierarchy E�ects on the system2 Higher-layer functions Global disaster possible from failure,penetration, or accidental misuse1 Middle-layer functions Global disaster possible from failure,penetration, or accidental misuse0 Low-layer functions Global disaster possible from failure,penetration, or accidental misuse10

Secure Systems Architecture and Formalismimplies that its trustworthiness can or must be demonstrated in some convincing way; we tend toavoid ambiguous uses of the term trusted.Table 4 illustrates such a conceptual hierarchy in which defensive measures are taken appropriateto each layer. In particular, at the lowest and potentially most vulnerable layer, the security andfault-tolerance measures are most stringent, in an e�ort to prevent widespread e�ects. At higherlayers, such measures may be less necessary, because the design structure ensures that such e�ectscannot occur. This conceptual hierarchy applies equally to isolated systems, distributed systems,and networked systems where the networking must itself be robust | reliable and su�cientlysecure. The signi�cant point is that the \kernel" at any layer must be trustworthy with respect towhatever requirements are necessary, and that the functionality at one layer becomes the logical\kernel" for the next higher layer.This structural encapsulation of criticality works very nicely for multilevel security and certainother security properties. In this way, secure systems can be composed out of components withsome assurance that the higher layers cannot circumvent or compromise the properties enforced bythe lower layers, and also cannot modify the lower-layer functionality | for example, by introducinga Trojan horse. (In this report, we use the term compromise in the negative sense of subverting.See Section 2.8, which elaborates on the notions of compromisibility and noncompromisibility.)Structural separation also works to a considerable extent for reliability, where mechanisms thatare more reliable can be developed using less reliable components. In addition, it is relevant tolife-critical applications, although in such environments there is always a potential danger that thehighest-layer functionality may be su�ciently untrustworthy that it can result in loss of life despitethe integrity of the lower-layer functionality. However, the goal of structural encapsulation in afunctional hierarchy is to isolate the lower layers from tampering and other forms of compromise.(Tampering implies modi�cation; compromise implies subversion, but does not necessarily implymodi�cation | although it includes tampering as a special case.)Structural encapsulation is also relevant in distributed systems in which the physical and logi-cal separation of components can be used to advantage by enforcing certain additional controls,such as remote access controls and authentication of both users and components. In this case,the encapsulation is relevant horizontally (among comparable subsystems) and vertically (betweenhierarchically layered subsystems).Encapsulation is particularly important with respect to the uses of cryptography, as discussedin [158]. Whether a crypto implementation is in hardware or in software is often less importantthan how the crypto is encapsulated. For example, a
aw in the algorithm exists in both cases; a
awin the embedding of the crypto into an operating system or hardware chip may be compromisiblein either case; the presence of unencrypted forms that are not suitably protected can be a risk ineither case. The major advantage of a carefully encapsulated hardware implementation (includingtamperproo�ng and internal keys that never emerge from the hardware) arises in connection withauthentication that can be done completely in hardware, as in the case of the Fortezza chip (n�eeTessera). However, even such a completely encapsulated authentication chip must be protectedagainst spoo�ng attacks that might simply bypass the chip or replay its positive acknowledgments.2.7 Dependence and System DecompositionThe notion of dependence is a fundamental structuring concept. Parnas [176] has examined a varietyof types of dependence relations, among which the relation depends upon for its correctness11

Secure Systems Architecture and FormalismTable 4: A constructive hierarchyLayer Hierarchy E�ects of hardware, software, and other problems2 Noncritical Disasters unlikely to be caused by noncriticalfunctions, (e.g., untrusted) software, due to sharply de�nedisolated design isolation; assurance needed for correctnessof certain functions and application properties1 Somewhat- Disasters sharply limited by layercritical separation and limited trust in this layerfunctions0 Most- Disasters possible but unlikely if systemscritical are partitioned sensibly, with hardware faultfunctions tolerance, reliable software, rigorous authentication;must be simple enough to be analyzed thoroughlyis particularly relevant to many systems. This relation (which we abbreviate here as dependsupon) can be used to induce an ordering on the components of a system, on subsystems, or ondi�erent networked systems. In some cases the ordering is purely hierarchical, in the sense thatthe components are linearly ordered or perhaps lattice ordered. In those cases in which the linearordering re
ects the levels of abstraction, we speak of the system as being hierarchically layered byits vertical dependencies; that is, the objects of a particular level of abstraction depend upon onlylower layers. In other cases, there may be an ordering of di�erent subsystems with comparablelevels of abstraction, as in the case of a network of more-or-less coequal systems. In these cases,we can still determine the presence of horizontal dependencies. In other cases, some dependenciesmay be mutual (as in A depends upon B and B depends upon A), in which case no hierarchicalordering can exist unless those mutually dependent components are collapsed into a single layer,with just one component. In the worst case, when the totality of all dependencies is considered,an entire system may necessarily collapse into a single layer, implying that there is no possiblesubstructure based on the depends upon relation. That is, the iterative closure of all dependenciesamong subsystems results in a single system that contains precisely the set of all subsystems.Largely unsubstructured systems are typical of the situation depicted in Table 3.In general, in many system architectures, mutual dependence is a very bad practice | particularlyif a depended-upon component is less trustworthy than the components that depend upon it. Ina simplistic sense (which we do not insist on here), dependence on another component is accept-able only if that other component is at least as trustworthy, with respect to meeting its expectedrequirements. This simplistic sense is roughly equivalent to Biba's notion of strict multilevel in-tegrity [19], in which dependence on less trustworthy entities is not permitted | at least not whentrustworthiness and trustedness are equated. (Biba assigns multilevel integrity labels to subjectsand objects, and enforces a strict lattice ordering that is a precise formal dual of the Bell andLaPadula multilevel security lattice.)The notion of dependence used in this report is more general than that found in the strict hierarchi-cal layerings induced by the depends upon relation. Indeed, the generalization used here includesthe simple case in which the lower-layer (depended-upon) functionality is at least as trustworthy,12

Secure Systems Architecture and Formalismbut it also includes the more complex case in which the upper layer is able to tolerate untrustwor-thiness in lower-layer functionality. This generalized concept also extends to dependence on othersubsystems at a comparable layer of abstraction. Furthermore, it also applies to properties at onelayer depending on properties at lower layers.As examples, here are three design techniques that permit such generalized dependence:� Error-correcting codes, in which reliable communications or storage representations can beobtained by adding suitable redundancy, despite the presence of unreliable media� Fault tolerance, whereby a system can continue to perform correctly despite the occurrenceof certain types of simultaneous faults� Byzantine algorithms, in which correct behavior can be achieved despite arbitrary misbehaviorof a certain number of faulty or malicious componentsThese techniques are discussed subsequently.In addition to encouraging a well-structured system design decomposition, this generalized notionof dependence can also increase the soundness of the system if the design and implementation aresuch that the depended-upon layers cannot be compromised from above (see Section 2.8) | forexample, through security penetrations or accidental misbehavior. Although no pun is intended,consistent use of dependence in structuring a system can have bene�cial e�ects in increasing thedependability of the resulting system.The Biba notion of strict lattice-ordered nondependence is much too restrictive in many systemcontexts. Particularly in distributed systems, in which certain components may have unknowntrustworthiness, it becomes di�cult to structure functional dependence based on trustworthiness.In those cases, explicitly trusted mechanisms may desirably be invoked to mediate between trustedcomponents and questionable components. Con�dentiality, integrity, and prevention of denials ofservice are all relevant security issues. The gamut of safety issues must also be addressed, andfault-tolerance techniques or Byzantine algorithms may be required in certain cases. Thus, we seekhere a structural framework in which reliable and trustworthy systems can be developed even if theymust rely on less reliable and less trustworthy subsystems. This generalized dependence relationis denoted here simply as depends on, rather than the strict-sense Parnas relation, depends upon[for its correctness]. Not only is the prepositional simpli�cation from upon to on consistentwith modern English-language usage, it also is meant to suggest a broader sense of dependence.(The depends on relation is close to, but not identical to, Parnas's uses relation, and seems worthyof being identi�ed on its own.)It is useful to distinguish between design principles and implementation principles. Modular de-composition, hierarchical layering, fault tolerance and other constructive uses of redundancy, andseparation of duties are examples of design principles that can pervasively a�ect the design of asystem.Decomposition can take on several forms. Vertical decomposition recognizes di�erent layers ofabstraction and separates them from one another. Horizontal decomposition (modularization)is useful at any particular design layer, identifying functionally distinct components. It can beimplemented in many ways, through coordination from higher layers, local message passing, ornetworked interconnections. Re�nement provides a less obvious form of temporal decomposition13

Secure Systems Architecture and Formalismin which the representation of a particular function, module, layer, or system interface undergoessuccessive de�nitude | for example, evolving from a requirements speci�cation to a functionalspeci�cation to an implementation, and perhaps with additional functionality being added alongthe way.Jim Horning (at Digital's Systems Research Center in Palo Alto) o�ered me the following guidancerelating to system decomposition:Decomposition into smaller pieces is a fundamental approach to mastering complexity.The trick is to decompose a system in such a way that the globally important decisionscan be made at the abstract level, and the pieces can be implemented separately withcon�dence that they will collectively achieve the intended result. (Much of the art ofsystem design is captured by the bumper sticker \Think globally, act locally.")Various implementation principles are also desirable to ensure that the design principles are prop-erly enforced by an actual system implementation; for example, the intent of structural designproperties must be preserved throughout the implementation. The distinction between design andimplementation is especially important in attempts to protect against both accidental system mis-behavior and intentional system misuse. For example, redundancy techniques are generally thoughtto be aimed at limiting accidental problems (for example, hardware fault modes), while separationof duties is generally thought to be aimed at controlling intentional compromises. The two conceptsare in fact related, and each approach is applicable to both types of problems; the two concepts cancomplement each other. Unfortunately, shortsighted views of the design and its implementationgenerally result in inadequate solutions, and it is often in the design and implementation of thesystem structure that
aws are introduced.To motivate the generalized depends on relation, we consider various speci�c e�orts to developreliable components out of less reliable building blocks, elaborating on the three bulleted designtechniques on the previous page.� Error-correcting codes with parameters (n;N; d) typically permit up to e random bit errorsto be corrected out of a block length of n bits, where d = 2e + 1 is the minimum Hammingdistance of a code containing N distinct code words. (The Hamming distance [86] between twoequal-length binary code words is the number of bit positions in which the code words di�er.)Codes have also been developed for arithmetic processes, for byte-oriented representations,and for certain classes of dependent errors. These codes provide a basic example of howreliability can be gained through the constructive use of redundancy [187, 195].� An early paper by von Neumann demonstrated that reliable components could be built outof unreliable components [248], as long as the probability of failure is not precisely one-half.A contemporaneous work by Moore and Shannon [143] demonstrated essentially the sameresult for switching circuits built out of what were then a�ectionately referred to as crummyrelays. These papers provided early examples of fault-tolerant designs.� Even more stringent requirements are met by fault-tolerant and Byzantine algorithms [113,222], although those requirements span a wide range. A typical fault-tolerant storage com-ponent could provide correct retrieval of a �le despite the outage of an entire �le server, byusing duplicate servers. A typical fault-tolerant system could ensure correct and undegraded14

Secure Systems Architecture and Formalismoperation despite the failure of any one processor, and ensure degraded but fail-safe perfor-mance after the concurrent failure of a second processor, under suitable assumptions relatingto tolerated failure modes. A typical Byzantine algorithm goes even further; for example, itcould permit correct operation despite the arbitrary and completely unpredictable behavior(maliciously or accidentally) of up to f out of its n components, with no assumptions regard-ing failure modes. A Byzantine clock subsystem that can perform correctly despite arbitrarymisbehavior within up to f of its constituent 3f+1 clocks [113, 213] is discussed in Section 8.To reiterate, we observe that, within this conception of layered abstraction, a reliable subsystemimplemented out of less reliable components depends on the underlying abstractions, but doesnot necessarily depend upon them for its correctness. Similarly, the properties at one layerdepend on the lower-layer properties, and in principle should be derivable from the lower-layerproperties and the functionality at the given layer. (For example, see the mapping techniquesdescribed by Robinson and Levitt [199].)Closely related to Byzantine algorithms that provide fault-tolerance and misuse protection aresome of the multikey crypto algorithms. For example, Micali [142] demonstrates the possibilities ofrequiring a con
uence of n key-holders to enable decryption or signing (for authenticity or integrity).Desmedt, Frankel, and Yung [52] have generalized that approach, whereby the crypto can functionproperly despite the presence of at most f Byzantine agents (for example, faulty, malicious, orsimply not available) out of a total of n agents, whereby at least n� f agents must be functioningproperly.Similarly, a trustworthy secure subsystem implemented out of less trustworthy components dependson the underlying abstractions, but does not necessarily depend upon them for its correctness.An example analogous to Byzantine algorithms is provided by the fragmented key-escrow schemeof Reiter and Birman [196], whereby at most f out of n escrow agents can be untrustworthy (mali-ciously or accidentally) or unavailable | that is, the contributing participation of at least n�f outof n di�erent escrow agents is required to enable successful decryption. Another example is providedby encryption, which converts an untrustworthy communications medium into a medium that doesnot have to be trusted for con�dentiality or integrity. A further example involves an inherently
awed subsystem that is used by a higher layer, but for which the higher-layer encapsulation is ableto completely mask its
aws, rendering those
aws unexploitable from the encapsulated interfaceand also ensuring that the higher-layer interface is nonbypassable | that is, that the
awed sub-system cannot be called on directly without going through the intermediation of the higher-layerinterface.The Desmedt-Frankel-Yung and Reiter-Birman approaches both provide examples of a separationof duties that incorporate a Byzantine-like resilience; each has architectural implications as well asanalytic implications. Overall, we wish to encourage approaches in which trustworthiness can beincreased through use of trustworthy mechanisms, despite the possible presence of untrustworthycomponents.Section 8 considers the process of composing a system out of its subsystems and deriving theresulting system properties from its subsystem properties. This concept is of vital importance indistributed systems and networks of such systems.
15

Secure Systems Architecture and Formalism2.8 Compromisibility and NoncompromisibilityTo illustrate the importance of dependence on properties of underlying abstractions, consider thenecessity of depending on a life-critical system for the protection of human safety. In such asystem, safety ultimately depends upon the con�dentiality, integrity, and availability of both thesystem and its data. It also may depend upon component and system reliability, and on real-timeperformance. Furthermore, it usually depends upon the correctness of much of the applicationcode. In the sense that each layer in a hierarchical system design depends upon the propertiesof the lower layers, the way in which trusted computing bases are layered becomes important fordeveloping dependably safe systems | particularly in those cases in which the depends on relationcan be used more appropriately instead of depends upon to accommodate an implementation basedon less trustworthy components.The same dependence situation is true of secure systems, in which each layer in the hierarchy(for example, consisting of a kernel, a trusted computing base for primitive security, databases,application software, and user software) must enforce some set of security properties. The propertiesmay di�er from layer to layer, and various trustworthy mechanisms may exist at each layer, butthe properties at a particular layer are generally derived from lower-layer properties.In the security context, there are many notions of compromise. For example, compromise mightentail accessing supposedly restricted data, inserting unvalidated code into a trusted environment,altering existing user data or operating-system parameters, causing a denial of service, �nding anescape from a highly restricted menu interface, or installing or modifying a rule in a rulebase thatresults in subversion of an expert system.There is an important distinction between having to depend on lower-layer functionality (whetherit is trustworthy or not) and having some meaningful assurance that the lower-layer functional-ity is actually noncompromisible under a wide range of actual threats. Noncompromisibility isparticularly important with respect to security, safety, and reliability.Potentially, a supposedly sound system could be rendered unsound in any of three basic situations:� Compromise from above (intuitively, outside)� Compromise from within (intuitively, inside)� Compromise from below (intuitively, underneath)Each of these situations could be caused intentionally, but could also happen accidentally. (Fordescriptive simplicity, a user may be a person, a process, an agent, a subsystem, another system,or any other computer-related entity.)� Compromise from above. Compromise from above is typically performed from an access pointthat is nominally external to the component being compromised, and is typically perpetratedby a completely unprivileged user, or by a privileged user gaining access to perpetrate a furthercompromise. In general, no authorization is required, possibly because of an exploitable
awin the standard interface.� Compromise from within. Compromise from within is typically performed by a user who hassomehow gained access (with or without authorization) to the internals of a component, such16

Secure Systems Architecture and Formalismas privileged maintenance access to a database management system, a network controller, oran automatic teller machine. It could be perpetrated by an authorized user who is misusingprivileges, or by a penetrator. Compromises from within include all the compromises possiblefrom above, plus certain additional compromises. In addition, compromises from above maysubsequently enable compromises from within.� Compromise from below. Compromise from below is typically performed by a user who hassomehow gained access (with or without authorization) to layers of abstraction underlyinga particular component that is being compromised, which can then be undermined withoutattacking the component itself. Compromise from below may result from malicious action oraccidental failure of an underlying mechanism on which the particular component depends.Examples include (1) obtaining the unencrypted form of an encrypted message by readinga temporary �le in storage, (2) �nding an occurrence of a particular word in a restricteddatabase to which access is not permitted by scanning the disk on which that database isstored, and (3) editing an enqueued mail message after it is released by a user but beforeit is actually sent out by the mailer. Compromises from below include all the compromisespossible from above or within, plus certain additional compromises. In addition, compromisesfrom above or within may subsequently enable compromises from below.The distinctions among these three modes tend to disappear in systems that are not well structured,in which inside and outside are indistinguishable (as in systems with only one protection state), orin which above and below are merged (as in
at systems that have no concept of hierarchy).Certain attack modes may occur in any of these forms of compromise. Examples of Trojan-horseperpetrations are as follows:� Compromise from above: a letter bomb (e.g., electronic mail) that when read or interpretedcan result in unanticipated executions, or a spoo�ng attack that piggybacks on a line orreplays a message� Compromise from within: a surreptitious code patch that maintains a hidden trickle �le ofsensitive information within the program data� Compromise from below: a wiretap implanted inside a telephone switch, or Ken Thompson'snow-classical object-code modi�cation of the C compiler that permitted a trapdoor routineto be planted in the login [242] (whereby it becomes clear that system security also dependsupon the compiler)Table 5 summarizes some properties whose nonsatisfaction could potentially compromise systembehavior, by compromising con�dentiality, integrity, availability, real-time performance, or correct-ness of the application code, either accidentally or intentionally. To illustrate such compromises,Table 5 also indicates possible compromises | whether they involve modi�cation (tampering) ornot | that can occur from above, from within, or from below, for each representative layer of ab-straction. The distinctions are not always precise: a penetrator may compromise from above, butonce having penetrated, is then in position to compromise from below or from within. Thus, onetype of compromise may be used to enable another. For this reason, the table characterizes onlythe primary modes of compromise. For example, a user entering through a resource access control17

Secure Systems Architecture and FormalismTable 5: Illustrative compromisesLayer of Compromise Compromise Compromiseabstraction from above from within from belowEnvironment Acts of God Lightning Chernobyl-likeEarthquakes disastersUser Masqueraders Accidental mistakes System outage orIntentional misuse service denialApplication Penetrations of Programming errors Application (e.g., DBMS)application integrity in application code undermined withinoperating systems (OSs)Operating Penetrations of OS by Flawed OS software OS undermined fromsystem unauthorized users Trojan-horsed OS within hardware:Tampering by faults exceedingprivileged users fault tolerance;hardware sabotageHardware Electromagnetic and Bad hardware design/ Power failuresother interference implementationHardware Trojan horsesUnrecoverable faultspackage such as RACF or CA-TopSecret, or through a superuser mechanism, and gaining appar-ently legitimate access to the underlying operating system may then be able to undermine bothoperating-system integrity (compromise from within) and database integrity (compromise from be-low if through the operating system), even though the original compromise is from above. Similarly,a software implementation of an encryption algorithm or of a cryptological check sum used as anintegrity seal can be compromised by someone gaining access to the unencrypted information inmemory or to the encryption mechanism itself, at a lower layer of abstraction. A user exploitingan Internet Protocol router vulnerability may initially be able to compromise a system from withinthe logical layer of its networking software, but subsequently may create further compromises fromabove or below.From the table, we observe that a system may be inherently compromisible, in a variety of ways.The purpose of system design is generally not to make the system completely noncompromisible,but rather to provide some assurance that the most likely and most devastating compromises areproperly addressed by the design, and | if compromises do occur | to be able to determine thecauses and e�ects, to limit the negative consequences, and to take appropriate actions. Thus, itis desirable to provide underlying mechanisms that are inherently di�cult to compromise, and tobuild consistently on those mechanism. On the other hand, in the presence of underlying mech-anisms that are inherently compromisible, it may still be possible to use Byzantine-like strategiesto make the higher-layer mechanisms less compromisible. However,
aws that permit compromiseof the underlying layers are inherently risky unless the e�ects of such compromises can be strictlycontained. 18

Secure Systems Architecture and Formalism2.9 Designing for Multilevel SecurityThe foregoing sections suggest that when designing a system or network of systems to enforcemultilevel security throughout, care should be taken to minimize the trustworthiness required atthe highest layers, to simplify the trustworthiness that must be required at the lowest layers, and toensure that no untrusted higher layer can compromise a lower layer. For example, in a local networkof workstations with highly distributed administration and control, it is inherently dangerous fora system design to have to place trust in every workstation to enforce multilevel security andother properties. However, conventional multilevel-secure architectures are generally based on theassumption that all the end-user system components enforce multilevel security, that is, every userworkstation must conform to the appropriate Orange-Book B-level criteria.The work of Proctor and Neumann [192]4 and the subsequent generalization by Neumann andGong [163] propose an alternative family of architectures, each member of which is consistent withthe structural desiderata noted above; those architectures have in common the complete avoidanceof multilevel-secure end-user systems. That work is reconsidered in Section 5.Appropriate use of system structure can contribute in many ways to system development.� Systems that can be composed out of carefully analyzed (e.g., proven) components can leadto improved security and reliability, and simpler analysis of the overall system. Reducing theportions of systems and networks that have to be trusted with respect to various measures oftrustworthiness tends to enhance design integrity, reduce the extent of implementation
aws,facilitate system operation and maintenance, and simplify system evaluation.The structural integrity of a system design must be preserved throughout implementation andoperation, across distributed systems and networks and otherwise composed systems.Similar comments apply to systems that must enforce related mandatory policies such as multilevelintegrity (Section 2.3) and multilevel availability (Section 2.4), subject to the facility for certaintrusted exceptions.The notion that hierarchically designed systems must necessarily be ine�cient is a myth, althoughpoorly conceived structure can of course be detrimental. Overall, the constructive use of appropriatedesign structures is an undervalued technique in the quest for systems with increased security.3 Three Representative Structured ArchitecturesSection 3 considers three historically interesting architectural designs: Multics, a pioneering oper-ating system from the 1960s; PSOS, the design of a highly layered capability-based object-orientedoperating system from the 1970s; and SeaView, a database management system (DBMS) environ-ment implemented on a multilevel-secure kernel from the 1980s. Each of these systems in turnrepresents signi�cant advances in the use of architectural structure to enhance security. Thesethree systems are chosen here because each represents what was at the time a relatively pureself-consistent set of innovations, from which many other systems have subsequently borrowedhybridized subsets of concepts.Distributed-system architectures are deferred until Section 4.4That work began under a study of distributed-system security [164], performed for Rome Laboratory.19

Secure Systems Architecture and Formalism3.1 MulticsOf particular interest from various historical perspectives is the extent to which architectural struc-ture played a role in the development of Multics, which was a joint e�ort among MIT, Bell Tele-phone Laboratories and Honeywell (initially General Electric). The Multics hardware design beganaround 1963, and the software e�ort began in earnest in 1965. The original Multics design repre-sented several very signi�cant innovations. The �le system introduced multitiered tree-structureddirectories [49], with symbolic �le names that were dynamically bound to run-time instances of realstorage objects, symbolic �le-name links that acted as aliases, and a dynamically speci�able searchstrategy that determined the order in which directories were searched for a particular �le name.The use of local and tree-structured symbolic �le names enforced strict information hiding of thecorresponding dynamically linked hardware-recognizable segment numbers [48], where the speci�cobjects were determined according to a dynamic search strategy. The processor hardware sup-ported a two-dimensional segmented virtual memory and dynamic paging within each segment |with each virtual-memory segment being independently protectable.5 The hardware-implementedring mechanism [79, 171] permitted the implementation of nested protection domains with di�erentprivileges operating within a single process, and provided the ability to switch rapidly from onedomain to another, with appropriate argument validation. The associated stack discipline alsoadded a layer of structural domain isolation with carefully controlled interprocess communication.The use of a higher-level programming language (Multics used the very �rst implementation ofPL/I, done by Doug McIlroy and Bob Morris) added to the structural integrity of the developmentprocess, by enforcing system-wide data declarations, stack disciplines, and linkage conventions. Italso facilitated the virtualization of the processors, whereby Multics was capable of shared-memorymultiple-processor execution. Each of these hierarchical structuring concepts added somethingsigni�cant to the security attainable and to the ease of developing new subsystems. Relative towhat was going on elsewhere in the mid-1960s, Multics represents a remarkably innovative approach.In the early 1970s, a subsequent restructuring of the innermost Multics system rings permittedthe retro�tting of kernel-enforced multilevel security [225] into the standard commercially availablesystem.3.2 PSOS: Layered, Capability-Based, Object-OrientedThe Provably Secure Operating System [62, 161]6 was designed by SRI over the period from 1973 to1977, with a relatively minor revision of the 1977 report in 1980, and a subsequent implementationfeasibility study that continued into the early 1980s. In retrospect, PSOS represents what to ourknowledge is the �rst object-oriented operating-system design (although the concepts of inheritanceand polymorphism were only in their infancy at the time and were not yet so named). Table 6summarizes the layered hierarchical design of PSOS, in which the abstraction at each layer actsas the object manager for the type of objects that it creates or is otherwise responsible for; eachobject manager completely encapsulates its implementation. Some of the abstractions are present5An additional structural separation was provided by the input-output coprocessor (the GIOC), which permittedinterrupts to be �elded independently of the main processors and various processing to be done in parallel with thegeneral-purpose CPUs. However, the early design did not adequately protect main memory from the GIOC, whichhad global permission and could perform reading and writing in terms of absolute addresses, bypassing the securityprovided by the operating system. This weakness was later recti�ed.6An obsolete early paper [162] is of potential historically interest.20

Secure Systems Architecture and FormalismTable 6: PSOS abstraction hierarchyLayer PSOS Abstraction or Function16 user request interpreter *15 user environments and name spaces *14 user input-output *13 procedure records *12 user processes*, visible input-output*11 creation and deletion of user objects*10 directories (*)[c11]9 extended types (*)[c11]8 segmentation and windows (*)[c11]7 paging [8]6 system processes and input-output [12]5 primitive input/output [6]4 arithmetic, other basic operations *3 clocks [6]2 interrupts [6]1 registers (*), addressable memory [7]0 capabilities *Notes Interpretation* = functions visible at user interface(*) = partially visible at user interface[i] = module hidden by level i[c11] = creation/deletion hidden by level 11at multiple layers in the hierarchy. For example, the system-process module at layer 6 is logicallya part of the speci�cations at layers 7 through 11, but is replaced by a higher-layer user-processabstraction at layer 12. Similarly, the creation and deletion functions of layers 8, 9, and 10 arereplaced at layer 11 by similar but more abstract user-oriented functionality. (The masking oflower-layer functionality by higher layers is indicated by square brackets in Table 6.)A few functions appear as parts of all layers (indicated by asterisks in Table 6), as is the casewith the capability mechanism | which is the essence of PSOS. Capabilities are nonforgeablehardware-created tagged primitive objects (that is, they are not handled by the extended-typemechanism), and are the basis of accessing all higher-layer objects, each of which has an associatedtyped capability. The objects of any particular type are managed solely by the correspondingobject manager for that type. The table exhibits various important layers of objects such as pages,segments, type creation, hierarchically structured directories, processes, and named user objects.The design explicitly permits the creation and implementation of application-layer types, and theentire design is recursively extensible and open-ended. Thus, the Multics restriction of a small�nite number of domains does not apply.We observed at the time, but did not pursue in detail, that the basic architecture was amenable todistributed implementations, because the abstractions at each layer (for example, object-oriented21

Secure Systems Architecture and FormalismTable 7: PSOS generic hierarchyLayer PSOS generic hierarchy layer LayersF user abstractions 14-16E community abstractions 10-13D abstract object manager 9C virtual resources 6-8B physical resources 1-5A capabilities 0Table 8: PSOS propertiesLayer Illustrative PSOS Properties(Not all are primary security properties)17 Soundness of user type managers15 Search path
aw avoidance12 Process isolation, user input-output integrity,user authentication integrity11 No lost objects (i.e., without capabilities)9 Generic type safety8 Correct segment access, no storage residues6 Network and system input-output integrity,hardware interrupts properly masked4 Correctness of hardware instructions0 Capabilities nonforgeable, nonbypassable,nonalterable (MLS if desired at this layer)type managers) could be distributed | either implicitly (invisibly) or explicitly (requiring programor user awareness of remote locations). The notion of distributed objects is considered in Section 4.Table 7 gives a conceptual generic hierarchy that is an abstraction of the PSOS architecture. Thebasic PSOS architecture represented a single-level secure system. However, a multilayered designfor enforcing multilevel security was also included. In particular, it was noted that MLS could beincorporated into the virtual resources layers, or directly incorporated into the existing layers, withhardware that supports multilevel capabilities directly at the lowest layer. The latter alternative waschosen in Honeywell's PSOS-inspired Secure Ada Target, which was the precursor of SCTC/SCC'sLOgical Coprocessor Kernel, LOCK.Table 8 illustrates typical properties to be enforced and veri�ed at various layers. The integrityof the capability mechanism (intended to be implemented in hardware) is fundamental to PSOS,because that mechanism acts as a microkernel upon which all addressing is based. However, eachlayer contributes relevant additional security properties.
22

Secure Systems Architecture and FormalismTable 9: SeaView design hierarchyLayer SeaView TCBs and their functionalityUNTRUSTED:7 User applicationsTRUSTED FOR USER INTERFACE INTEGRITY:6 User interface, presentation view manager,conventional DBMS functionsTRUSTED FOR MSQL INTEGRITY:5 MSQL provides virtual multilevel relations and viewsTRUSTED FOR DB DAC, DB INTEGRITY:5 DBMS Resource Manager,Extended DB DAC and DB consistencyTRUSTED SINGLE-LEVEL RELATIONS:3-4 DAC in operating-system TCB, DAC on relationsOPERATING SYSTEM MLS TCB:1-2 Mandatory MLS in operating-system TCB0 Mandatory MLS in operating-system kernel segments3.3 SeaView: An MLS DBMS without MLS trustworthinessThe signi�cance of the multilevel-secure kernel approach is illustrated by SRI's SeaView archi-tecture [50, 125, 126, 128, 191] for a multilevel-secure database management system. SeaViewexplicitly uses multiple single-level databases to provide a multilevel-secure DBMS within whichno trustworthiness for multilevel security is required. The hierarchy is summarized in Table 9. Theabbreviation DAC is used for discretionary access controls.SeaView illustrates the presence of di�erent but mappable properties at each hierarchical layer.7The SeaView DBMS enforces a variety of database-relevant integrity properties [125], includingentity integrity, referential integrity, and polyinstantiation integrity,8, as well as other consistencyproperties. These properties are modeled formally in the SeaView work [125, 191]. Additionalnotions of system and data integrity relate to integrity of atomic transactions, supposedly identicalreplicated versions, and multiple versions possibly di�ering in recency.The SeaView design structure is summarized in Table 9. The SeaView architecture is based on anMLS kernel and an operating system TCB that enforces mandatory security on storage objects.The original prototype development used Gemini's GEMSOS OS-TCB, although GEMSOS wassubsequently replaced by the Sun Compartmented Mode Workstation.7Earlier recommendations for designing multilevel-secure DBMSs are found in [89, 24, 218]. TCB layering isconsidered in [217], and had previously been considered in a more limited form in the database context by [89, 81].8Polyinstantiation is a solution to the problem of avoiding inference channels arising in multilevel secure databases.For example, suppose a low-level subject attempts to create a data item that the subject is not allowed to know alreadyexists, because such an item has already been created by a high-level subject as a high-level object. The low-levelsubject cannot be given any negative response, because that would cause an adverse information
ow; consequently,everything must appear as if the low-level operation has succeeded (which it has!), by including the creation of apolyinstantiated instance of the item. 23

Secure Systems Architecture and FormalismTable 10: SeaView model hierarchyModel SeaView Model PropertiesDB-TCB Database TCB for views, multilevel (virtual)relations, discretionary access, labeling, dataconsistency, sanitization, reclassi�cation,constraints on transactions, polyinstantiation integrityOS-TCB MLS security for single-level base relationsThe OS-TCB is used to enforce mandatory security on single-level base relations for SeaView. Anextended database TCB (DB-TCB) enforces various other properties such as database integrityand database discretionary access controls (DB DAC) on multilevel user relations (which are in-visibly [virtually] mapped to single-level base relations), but is completely untrusted with respectto the enforcement of MLS. That is, the DB-TCB cannot compromise the MLS property, whoseenforcement is completely controlled by the underlying OS-TCB. However, the DB-TCB is trustedto enforce the otherd database properties such as integrity and database discretionary access. Thedatabase management system is the Oracle RDBMS. The database language is called MSQL, formultilevel-secure SQL, an extension of single-level SQL. Integrity of the MSQL interface is alsoenforced for the sanity of the users, although it is not essential to security.The MSQL processor is shown as a layer above the layer that is trusted for discretionary databasecon�dentiality and discretionary database integrity, although the prototype implementation of bothlayers is in the same GEMSOS ring (ring 5). With the original ring assignments among the eightGEMSOS rings, a trusted user application would have to be implemented in GEMSOS ring 7,along with its users. Thus, even in a relatively simple system such as SeaView, there would be someadvantages to a domain architecture that could provide further layering as well as separation withina layer such as in LOCK [23] or PSOS [62, 161], to support competing application environments.A ring or two could of course be freed up, for example, if rings 1 and 2 were collapsed into one ring,and rings 3 and 4 similarly, although the domain separation at the application layer might still bedesirable. Overall, the table thus illustrates the di�erent meanings of \trust" and \trustworthiness"at each hierarchical layer.The properties at the operating system TCB layer and at the database TCB layer are summarized inTable 10. There is a distinct model for each of the TCBs. The OS-TCB enforces MLS on operating-system objects, while the DB-TCB enforces database security and integrity on database objects.Layering raises a question not of composability of components with respect to a given property(e.g., MLS), but rather of whether the higher layer can compromise the lower layer, because theupper layer is enforcing di�erent properties on di�erent types of objects. SeaView represents asystem in which the kernel multilevel security properties and the database integrity properties areboth largely noncompromisible from above.9The SeaView model [50, 124, 125] does not explicitly address distributed data, and the near-termdesign focuses on a single database system [128]. A conceptual extension of the original design toa distributed implementation is considered in Section 4.1.9Tables 9 and 10 and their discussion are adapted from [156].24

Secure Systems Architecture and Formalism4 Distributed-System ArchitecturesIf each system in a collection of networked systems is itself structured fairly well | for example,in terms of object abstraction and compatible layering | then the structural concepts in thenetworking itself can add signi�cantly to the security attainable. It is desirable to identify separatelythe security of the constituent operating systems, the security of the networking software andhardware, and the security of the networks themselves (for example, through the use of encryption).However, the integration of this trichotomy is fundamental to the ability to develop sound networksof systems.4.1 Structural Concepts in Distributed SystemsFrom a security point of view, distributed systems must satisfy all the security requirements of astand-alone centralized system. In addition, distributed systems present many additional vulnera-bilities, such as weaknesses in the networks and other opportunities for attacks that are not usuallyconsidered in centralized systems. Consequently, much greater e�ort must be devoted to networkmedia con�dentiality and integrity, network software integrity, and pervasive authentication | ofusers, agents, and hosts. The partitioning of a distributed system into functionally distinct com-ponents can add greatly to the security of the overall system. In that way, servers | for example,network servers, �le servers, and authentication servers | can be special-purpose systems that arebetter protected against conceivable types of misuse, whether malicious or accidental.Many serious security
aws in networked systems have resulted from the lack of proper abstractionand encapsulation, and from the absence of both user and component authentication. In commu-nications across organizational hierarchies, generals tend to speak only with generals, and CEOstend to speak only with CEOs. A comparable protocol hierarchy is useful in distributed systemsand networks, if it restricts interactions to those among peers. For example, it is usually risky froma security point of view to permit arbitrary unauthenticated (and in some cases unknown) compu-tational entities to initiate or control highly trusted functions. Forcing communications to occurbetween comparable levels of trustworthiness and abstraction tends to diminish those risks con-siderably. Encapsulation of functionality within local boundaries is another important structuralconcept, permitting execution only within trusted and carefully controlled enclaves.Two examples of the ease with which a well-structured conventional secure-system architecture canbe transformed into a secure distributed architecture are given by considering PSOS and SeaView.� With respect to the PSOS design, secure distribution could be implemented at any of severallayers. For example, the capability mechanism could have been extended to support capabil-ities that were globally unique across multiple processors and multiple systems. The pagingmechanism could have been extended to permit dynamic access to remotely stored segments.The directory hierarchy could have been extended to provide globally unique symbolic namesacross multiple �le systems. The user-object layer could have been extended to support glob-ally identi�able distributed objects. Each of these approaches has some advantages and somedisadvantages, and the appropriate choices are dictated by the trustworthiness of the varioussystem platforms.� With respect to the SeaView design, it is conceptually simple to permit multilevel-secureTCB-to-TCB communications from one SeaView platform to another, thus retaining the in-25

Secure Systems Architecture and Formalismtegrity of the SeaView architecture with MLS-untrusted database management functionality.This could be achieved either explicitly (with the DBMS being aware of remote physicalwhereabouts of database objects) or implicitly (with the underlying TCBs keeping track ofremote locations). However, in either case, the multilevel-security separation would be en-forced solely by the underlying TCBs.If the distribution is done implicitly (that is, virtualized), so that it is largely hidden by the relevantinterface, then properties that are satis�ed by the original nondistributed design can be transformedstraightforwardly into equivalent properties in the distributed design.Structural contributions to distributed systems are considered further in [164].4.2 Security RequirementsWe begin with a few intuitively motivated high-level structural security requirements, each of whichimplies lower-level functional requirements. The functional requirements are intended to be appli-cable to each of the subsystems | for example, �le servers, authentication servers, and networkservers. They in turn imply more detailed, �ner-grained, requirements, which are considered inSection 7 | which also considers the implications of these requirements on applying formal meth-ods to secure distributed systems.The Overarching Security Requirement� Goal 1: Overall system security. The entire system environment must have adequatesecurity in the large, relating to the preservation of con�dentiality, integrity, availability,authentication, accountability, and other security-related attributes. There must be no ex-ploitable weak links in the overall system, the components, or the infrastructure.Structurally Oriented Security Requirements� Goal 2: End-user-system security. Each end-user system must have su�cient integrityto prevent its being compromised locally or remotely. Local data must be free from misuseby others. Any communications or interactions with the rest of the system environment mustbe free from loss of con�dentiality and integrity. All users must be properly authenticated.� Goal 3: System-infrastructure and server security. All servers (for example, network,�le, and authentication servers) and other components of the infrastructure must protectthe stored data, crypto and authentication keys, and transmitted audit data from browsing,alteration, deletion, and spoo�ng. All server operations must be properly authenticated.� Goal 4: Network-media security. All network media must provide adequate protectionagainst loss of con�dentiality, loss of integrity, and denials of service. All network operationsmust be properly authenticated. (Whenever the media are untrustworthy, the infrastructuremust compensate by means of encryption, fault tolerance, and other defensive techniques.)Functional Requirements 26

Secure Systems Architecture and Formalism� Goal 5: System integrity. The system and each of its component subsystems must beable to prevent or withstand intentional or accidental tampering. All subsystem componentsmust be legitimate, and checked for authenticity, to hinder Trojan horses and other formsof tampering. Some subsystem con�dentiality requirements are necessary to provide systemintegrity | for example, relating to sensitive algorithms and parameters used in con�guration,authentication, and encryption (keys).� Goal 6: Data con�dentiality. Within systems and across networks, user data and internaldata must be protected from loss of con�dentiality (such as unauthorized or unintendeddisclosure).� Goal 7: Data integrity. Within systems and across networks, user data and internal datamust be protected from loss of integrity (such as unauthorized or unintended modi�cation).� Goal 8: Nondenial of service. System and user resources must be protected from inten-tional or accidental denials of service.� Goal 9: Authentication integrity. Users, systems, subsystems, and other computationalentities must have their identities unambiguously validated, with adequate certainty, based onsound associations of authentifying information with the entities in question (that is, basedon their cryptobindings, discussed in Section 5.7. (There are occasional exceptions in whichanonymity can be permitted.)� Goal 10: Nonrepudiation. Authentication of (id)entities must be of su�cient credibilitythat a supposedly authenticated (id)entity cannot with any credibility later support a claimthat the authentication had been erroneous or spoofed.� Goal 11: Accountability. Monitoring, audit-trail analysis, and other accountability func-tions must be protected from misuse (including undesired bypassing, reading, modi�cation,and denials of service). These functions must also not be able to interfere with the opera-tions being monitored, via back-channel e�ects. All relevant operations must be monitored.All secondary subsystems that monitor behavior of the primary systems must protect themonitored data from misuse. The monitoring subsystems must not be able to interfere orotherwise adversely a�ect the operations of the primary monitoring systems. Similarly, pas-sive subsystems whose purpose is to provide accountability for system operations must alsobe protected and isolated.4.3 Preventing Misuse, Compromise, and TamperingWe next consider the protection of a system or subsystem environment | and how it can preventcompromises such as some of those illustrated in Table 5, whether the environment is a distributedsystem, a network, or a stand-alone encapsulated application.The �rst line of defense involves ensuring that the security-critical system and network componentsare legitimate. If components have been tampered with, all other defenses may already have beencompromised. Measures such as cryptographic checksums and tamperproof hardware encapsulationmay be helpful, both statically and dynamically.The second line of defense involves identi�cation and authentication | of users, agents, subsystems,systems, network components, and other entities. Without authentication, access controls are27

Secure Systems Architecture and Formalismalmost meaningless, and monitoring is unable to gather enough evidence. Sensitive functionalitythat requires no authentication (such as a freely exported network �le system) is inherently riskful.However, authentication may be compromisible unless the system components are tamper-resistant.The next line of defense involves authorization, with selective access controls based on identities,or roles, or other attributes. Without authorization, system use and misuse cannot be controlled.Sensitive functionality that requires no authorization (such as a freely exported network �le system)is inherently riskful. However, authorization is almost meaningless in the absence of nontrivialauthentication.Structural encapsulation (Section 2.6) throughout the system design provides an approach thatcan help to prevent misuse. It aids in preventing compromise from above, by sealing o� the in-ternals from the external accesses. In combination with authentication and authorization, it alsoaids in preventing compromises from within by blocking access to the internals. In the same way,it can aid in preventing compromises from below, again in combination with authentication andauthorization, by blocking access to the underlying mechanisms. Because
aws in any structuralencapsulation might enable compromises, it is essential that security-relevant functionality be prop-erly encapsulated.Thus, it is vital that authentication, authorization, and structural encapsulation be used consis-tently throughout a system or network environment. It is additionally essential that the protectionmechanisms and encapsulation speci�ed in a system design must be strictly enforced by the im-plementation. However, additional measures are also necessary, relating to the integrity of theimplementation, particularly those that hinder would-be attackers and malicious insiders.Tampering may result from penetrations that led to code patches, data modi�cations, or othersubversions. It may be preceded by browsing or reverse engineering that unveils certain details thatcan be used in subsequent tampering attacks. Either case may be critical in any particular operatingenvironment. The threats may arise from authorized users and from unauthorized outsiders.Compromises that do not require modi�cation must also be prevented. Once again, structuralencapsulation is essential, together with information hiding, authentication, and authorization.The following section provides some of the basic security requirements that characterize defensesagainst compromise.5 Minimizing Trustedness Within Multilevel-Secure SystemsSection 5 considers the problems involved in developing and using systems and networks that mustoperate under the constraints of multilevel security, and how the RISSC concept can contribute.Section 5.1 considers the RISSC philosophy. Section 5.2 examines the advantages that can result.Section 5.3 discusses some RISSC architectures. Sections 5.4, 5.5, and 5.6 elaborate on variouspractical considerations. Section 5.7 considers the application of the RISSC approach to implemen-tations of crypto.The original PSOS architecture considered two possibilities: either providing trusted multilevel-secure object managers at higher layers, or alternatively embedding multilevel-security enforcementinto the hardware capability mechanism at the lowest layer. Although the assurance of the higher-layer approach of such an implementation would thus depend upon the lower layers, the intentwas that if the lower layers were largely in hardware and proven to be correct, then the multilevel28

Secure Systems Architecture and Formalismsecurity would have high assurance. The assurance of the lowest-layer approach would be moredirectly in line with the RISSC philosophy, because the MLS enforcement would be primitive to theentire system. However, if the lower layers are implemented in trustworthy hardware, the RISSCapproach with respect to the software would be equally well served in both cases.The SeaView architecture relies on the presence of a multilevel-security kernel and a low-leveltrusted computing base | that is, it corresponds to the Orange Book paradigm in which there isa trusted computing base that enforces multilevel security, but where the database managementsystem is explicitly not a part of the trusted computing base for multilevel security.Here, we consider an alternative approach to that represented by the monolithic kernel and TCBof the TCSEC Orange Book. In this approach there are no multilevel-secure end-user systems;multilevel security is assured by means of multilevel servers.A basic need exists for commercially available computer systems that can be securely networked.Conventional (single-level) systems and networks have not been adequately ful�lling this need,because of weak operating systems and weak networking software. However, some improvementsare occurring.Primarily in classi�ed environments, there are serious needs for systems and networks that per-vasively enforce multilevel security. However, there have been serious problems in developing,evaluating, and continually modifying these systems. Relatively few high-end MLS systems existtoday that are consistent with the established criteria, and those criteria are themselves incom-plete with respect to networking and distributed systems. Evaluation and reevaluation have beenenormous stumbling blocks to the availability of MLS systems.We characterize here a class of multilevel-secure systems in which multilevel security can be achievedwithout having to rely on MLS end-user systems. Instead, we rely upon single-level end-user systemsand a few trusted multilevel servers and network components.Ideally, multilevel-secure application environments should be con�gurable as interconnections ofreadily available commercial hardware, software, and networks. Unfortunately, the ability to con-struct a multilevel-secure system from existing components and networks is hindered by severalserious obstacles.� There is a dearth of suitably secure commercial operating systems, applications, and networkcomponents, especially with respect to multilevel security. Even in single-level systems, com-mercial o�erings have serious security vulnerabilities. In addition, most existing systems lackadequately secure interconnectability and interoperability. Each vendor has taken its ownapproach, relatively independent of the others | although a few common e�orts (such asOSF) may ultimately emerge.� There is very little real understanding as to how security can be attained by integrating acollection of components, and even less understanding as to what assurance that securitymight provide.� Vendors are discouraged from o�ering secure systems because signi�cant time and e�ort arerequired to develop a system capable of meeting the TCSEC evaluation criteria and to mar-shall it through the evaluation process. Moreover, because of evaluation delays, an evaluatedproduct is typically no longer the current version of the system, which necessitates repeatedreevaluation. For high-assurance systems, the di�culties of using formal methods add further29

Secure Systems Architecture and Formalismcomplexity to both development and evaluation. Export controls, lack of awareness, and lackof customer demands tend to provide further discouragement.Because of these obstacles, and the resulting lack of viable high-assurance multilevel systems,less secure systems are commonly used to store highly sensitive data | despite considerable risk.(A compendium of vulnerabilities, threats, risks, and illustrative cases related to computer andcommunication systems is given in [159].)Many of the hopes that appeared attainable by the security community in the 1980s have not yetbeen adequately ful�lled. We believe this shortfall is due to a variety of causes. For example, cus-tomer demand for MLS systems has been limited to the DoD sector. The evaluation criteria haveemphasized architectural approaches that rely on monolithic, nondistributed multilevel-securitykernels and trusted computing bases, with much less emphasis on end-to-end security as in elec-tronic mail, digital commerce, and other applications heavily dependent on secure networking. FewR&D e�orts have dealt comprehensively with real systems, particularly where formal methods areconcerned. Inherent di�culties in dealing with formal methods have also contributed. U.S. exportcontrols on crypto and high-end operating systems have also provided a damper in the eyes ofsystem vendors. All these factors seem to have considerably increased the complexity of systemdevelopment and evaluation, disenchanted the system developers, and retarded progress.We propose an approach that is aimed at minimizing these obstacles while still attaining multilevelsecurity, with high assurance, and providing more functionality than is achievable with traditionalapproaches.5.1 The RISSC PhilosophyIn an earlier paper [192] (reproduced here in Appendix C), Proctor and Neumann characterizedan architectural family of multilevel-secure networked systems in which the use of multilevel-secureend-user systems can be avoided altogether, with reliance instead on multilevel-secure networkinterface devices and possibly other multilevel servers. The primary consequence of this type ofarchitecture is that the existing infrastructure of single-level end-user systems can immediatelybe incorporated. A secondary consequence of such an architecture is that user-exploitable covertchannels can be eliminated altogether.10This report extends the Proctor-Neumann concept. We advocate the construction of multilevelsystems using only a few carefully controlled multilevel components. We explicitly address theissue of what portions of the overall system must be trusted with respect to multilevel security, andconclude that this approach greatly reduces the need for trust. The RISSC concept is also appli-cable to single-level systems, whereby the security-dependent functionality has been appropriatelyisolated and constrained. (See Section 5.6.)The 1992 paper by Proctor and Neumann [192] refers to DSM | an acronym for Distributed,Single-level-user-processor, Multilevel-secure | systems. This report generalizes the DSM ap-proach, and refers to the RISSC philosophy | where RISSC (as noted above) is an acronym forReduced Interfaces for Secure System Components. The RISSC philosophy is similar in concept to10A covert channel is an out-of-band means of communication through which it is possible to signal information| for example, based on the occurrence of exception conditions triggered by resource exhaustions. For example,see [61, 189, 94, 251, 80] for analysis of covert channels, and [106] for avoiding them.30

Secure Systems Architecture and Formalismthe RISC philosophy (Reduced Instruction Set Computer), in seeking simplicity of mechanism. TheRISSC philosophy strives to localize the security-critical functionality within components that arenot directly accessible to users. The RISSC philosophy is conducive to multilevel-secure systemsthat can be con�gured quickly and economically out of conventional single-level end-user systems,without losing any essential functionality. It is primarily an architectural concept, but it also reliesheavily on sensible design e�orts, good software-engineering practice, good system implementa-tion, and good analysis. It is particularly amenable to formal speci�cation and formal analysis, asdiscussed in Section 6.DSM architectures are one example of systems satisfying the RISSC approach, and are themselvesa logical successor to an earlier e�ort by Rushby and Randell, the Newcastle Distributed SecureSystem (DSS) [210]. In the Newcastle DSS, trusted network interface units are added to standardoperating systems that are untrusted with respect to multilevel security. Rushby's notion of aseparation kernel (e.g., [203, 205]) is another instance of RISSC. The RISSC philosophy is com-patible with client-server architectures in which the servers are suitably trusted but the clients arenot, and therefore it can take advantage of existing work on Kerberos [14, 236] and the DigitalDistributed System Security Architecture [68] | although even stronger network authenticationwill be desirable in the future.5.2 Advantages of the RISSC PhilosophyMany potential advantages are o�ered by RISSC. Systems can be fully functional and multilevelsecure. Because an end-user workstation can e�ciently read information at its level and below fromnetwork servers, a user can integrate data from a variety of classi�cations. Advisory labels can beprovided in single-level end-user systems, as is the case in existing low-assurance compartmented-mode workstations (CMWs). Because end-user systems are single-level, they can have full com-mercial functionality, rather than having to be ported to the environment of a Trusted ComputingBase. This means that standard conventional, commercial-o�-the-shelf (COTS) software and ex-isting applications can be used without change for end-user systems.System security and integrity can be increased because the reliance on the security of end-useroperating systems is minimized. No ordinary users have direct access to the multilevel-securecomponents. Tampering with end-user systems cannot compromise multilevel security.The evaluation e�ort for the entire system with respect to multilevel security is reduced to eval-uating the multilevel components and their interactions with the rest of the system. It is largelyindependent of the internals of the single-level components. Thus, the evaluation e�ort can focus onthe network interfaces and servers. It is easier to identify and monitor any residual covert channelsthat arise because of the multilevel networking.The reevaluation e�ort is also vastly reduced. Once an overall system has been evaluated andcerti�ed, upgraded versions of component end-user operating systems can be installed without anyreevaluation for multilevel security, just as there was no such evaluation in the �rst place.Thus, the RISSC philosophy has the potential for greatly increasing the ease of developing, evalu-ating, and procuring multilevel-secure systems when contrasted with what is experienced with thepresent TCSEC B-level evaluation process today.
31

Secure Systems Architecture and Formalism5.3 Alternative RISSC ArchitecturesIn a precursor to this study, several architectural families were outlined that represent instances theRISSC concept. To provide a framework for considering a variety of architectural types, the familiesenumerated in [158] are summarized in Appendix A, with some modi�cations and extensions. (Thisreport therefore supersedes that earlier categorization.)The families of primary interest here are those that have explicit relevance to the RISSC concept.For example, the subfamilies [[1a]], [[2a]], and [[3a]]11 all have single-level single-end-user worksta-tions and multilevel-secure network servers. Within those families, there are two basic alternatives| one ([[1a]] in Section A.1 and [[2a]] in Section A.2) with single-level �le servers and the other([[3a]] in Section A.3) with multilevel-secure �le servers; the systems of family [[1]] have �les storedunencrypted, while those of family [[2]] have �les stored encrypted. In a very rough sense (consid-ered in Appendix A), these various alternatives can be considered as equivalent implementations ofthe same conceptual design; trustworthiness is located somewhat di�erently, but the functionalitythat must be trusted is roughly comparable.To a lesser extent, several architectures that support multiple coexisting but competitive end users([[1b]], [[2c]], [[2d]], and [[3b]]) also have RISSC-like attributes, although the non-MLS securityperimeters are larger in those cases. In particular, greater reliance must be placed on the localend-user operating systems, because of the presence of potentially competing users. However, inother respects the security considerations are similar to the noncompetitive-user situation.Several of these subfamilies are considered in greater detail in Section 11.5.4 Realities of Multilevel SecurityWe next consider some of the practical implications of system architecture, �rst with respect toconventional multilevel-secure system designs and then with respect to RISSC architectures.Multilevel security has not been considered with uniform favor by the rest of the world outside ofthe U.S. DoD | and in some cases, not even within the DoD. Air Force Lt. Gen. Carl O'Berry(U.S. Air Force deputy chief of sta� for command, control, communications, and computers) wasquoted12 as saying that multilevel security is \a brain-dead idea based on the assumption that youcan take responsibility for information security o� the shoulders of man and put it in a machine."Also, he asserted that DoD has spent \billions upon billions" of dollars in trying to get MLS systemsaccredited, but he doesn't believe the process has served DoD well. His view is reported to be that\InfoSec should focus on data transmission, user authentication, and risk assessment of transmitteddata."There are several reasons why e�orts to make multilevel-secure systems more widely available havenot been more successful.� Architectures adhering rigidly to the TCSEC kernel-TCB philosophy are inherently in
exible.� The MLS requirements are only a small part of what is desirable in commercial systems. TheTCSEC MLS requirements have been overendowed | both in the development process and11Double square brackets are used to identify classes of architecture family members. See Appendix A for thenotation that is used.12Article by Paul Constance, Government Computer News, 14 April 1995, p. 3.32

Secure Systems Architecture and Formalismas a focus of the research community | at the expense of real user needs.� Customer demand has not been su�cient to justify the development e�ort and associatedcosts of MLS systems as mainline commercial o�erings. There is considerable reluctanceinertia acting against multilevel security.� MLS systems are di�cult to evaluate, particularly at B2 and above, and the evaluation processhas great di�culty keeping up with incremental system changes.The fact remains that multilevel security is important for DoD use, and possibly useful for non-DoDuse as well (for example, see [123]). Thus, we need to consider alternative MLS architectures thatcan overcome the di�culties enumerated here.5.5 Potentials of MLS RISSC SystemsIf a RISSC system has no multilevel-secure end-user systems, the existing TCSEC criteria for B-level systems are not directly su�cient to constrain the multilevel security of the overall system |although the principles underlying the TCSEC [151] and the TNI [150] are valid when an entirenetwork of systems is considered as a single system. Clearly, the C2 requirements must be extendedto include some aspects of trusted system distribution and trusted paths (for example); however,those extended C2 requirements would then be appropriate for the user systems out of which suchRISSC systems could be built. We believe that the TNI B-level criteria will be directly applicableto (but also incomplete for) the trusted multilevel-secure network software that is at the heartof the RISSC concept, although those criteria will need to be extended (just as they need to beextended to accommodate distributed systems anyway).Each RISSC trusted server is essentially a trusted computing base. However, because it has no endusers per se, it can be much simpler than that required for a multilevel-secure end-user operatingsystem. For example, �le servers can be isolated as systems whose only direct users are systemagents. The trusted network interface is the primary component mediating between each end-usersystem and other systems, but its role is reduced to that of a �lter, gateway, or �rewall (in softwareand/or hardware), according to the functionality required. The TNI must ensure that importedand exported data entities are at appropriate levels commensurate with the source and destination,and that channel switching is done consistently with the multilevel constraints. Authentication andkey management help assure the integrity of the networking.In the RISSC concept, trust for enforcing multilevel security resides solely in the multilevel servers,and not in any end-user systems. Nevertheless, there are certain functionalities in the end-usersystems that must be noncircumventable, such as the protection of any stored encryption keys andthe integrity of the authentication process, in part through hardware or software encapsulation. Achallenge of any speci�c architecture is to minimize that need for trust.The RISSC philosophy encompasses various options, the choices among which involve considera-tion of the intended application environment. The strict DSM approach avoids end-user-createdcovert channels altogether at the cost of separate system components for each security level andcompartment, as analyzed in [164, 192]. This approach may be appropriate for certain applicationsbut not for others. On the other hand, hybrid strategies may be able to provide better performancein certain selected cases in which the exploitation of covert channels can be prevented or else mon-itored by other techniques. Other trade-o�s are also possible within the RISSC philosophy | for33

Secure Systems Architecture and Formalismexample, whether there are multilevel-secure servers or multilevel media. There are also trade-o�sbetween multiple single-level servers or multilevel servers | for example, for name servers.If the strict-sense DSM architecture is used, or if compartmented-mode workstation end-user nodescan be avoided, the covert channels can be reduced. However, in certain RISSC environments,CMWs could be used without introducing covert channels. That could be the case in a SeaViewenvironment [128] (noted in Section 3.3) in which a security o�cer needs to see both a Top Secretview and a Secret view of the same data query | for example, in attempting to ensure that lessclassi�ed cover stories are sensible and consistent.As an example of the e�ectiveness of the RISSC concept in the context of an application subsystem,consider SeaView. By placing an o�-the-shelf database management system (Oracle) on top of amultilevel-secure trusted computing base, and completely encapsulating the TCB to prohibit allexternal accesses to the TCB interface, a multilevel-secure DBMS can be implemented in whichthere is no need to trust the database software with respect to multilevel security. Analysis showsthat the assurance with which multilevel security can be provided by SeaView is the same as thatprovided by the TCB. (See [191].)Furthermore, it is possible to develop an overall distributed-system/network concept in whichcertain security
aws in the component operating systems can be tolerated, while still achievingsecurity in the large. This is somewhat analogous to the design of fault-tolerant and Byzantinesubsystems. In addition, we believe it is possible to support various operating-system interfaceswithin the RISSC concept, such as Unix, POSIX, and Mach, as long as the networking interfacescan be suitably trustworthy.5.6 Potentials of non-MLS RISSC SystemsThe RISSC concept is of course also valuable in conventional single-level systems and in hybridsingle-level systems that enforce compartmented separation within the single level.13 In the presentcontext, we consider single-level compartmented systems to be a special case of single-level systemsrather than a degenerate case of multilevel-secure systems, because the absence of multilevel re-quirements for �les and network interfaces can signi�cantly simplify the architecture | particularlywhen ultra-high assurance (e.g., A1) is not required. (This special-case association also makes senselinguistically, because those hybrid systems are, strictly speaking, not multilevel secure.) However,in practice, if high assurance is necessary, it is clearly better to dumb down a multilevel-secure sys-tem to a single level than it is to add compartments to a conventional system | primarily becausemany of the additional requirements would not be met.In single-level systems, the RISSC concept is an architectural concept as well as an embodiment ofgood software-engineering practice. It requires strict modularization and encapsulation of security-critical functionality in such a way that the interfaces to that functionality can be completelycontrolled. It also requires that the interconnections among di�erent modules cannot compromisesecurity, through replays, spoo�ng, or other attacks. The RISSC concept is advantageous whetheror not the systems are distributed. However, it is particularly relevant to distributed systems, inwhich the notion of isolating functionality within trusted servers (see Section 5.3) can contribute13As an example of such a hybrid system, the Internal Revenue Service is contemplating the use of single-levelcompartmented servers throughout its Tax Systems Modernization program, with �ne-grain access controls, in ane�ort to minimize undesirable browsing and insider misuse.34

Secure Systems Architecture and Formalismsigni�cantly to single-level systems as well as multilevel-secure systems. Indeed, most of the archi-tectural issues in Section 5.3 apply directly to single-level systems, compartmented or otherwise;the trusted servers still need to be trustworthy in some respects, even if they are not trusted formaintaining multilevel-security separation.We note in passing that Jagannathan's GLU ([97, 96]) could be used to help partition processingthat has natural parallelism. GLU consists of a methodology and preprogramming language. Itfacilitates dynamic virtual multiprocessing,
exible system con�guration that can adapt to whateverhardware is available, dynamically alterable fault tolerance, and distributed computation, whileplacing very little burden on the programmer. GLU statements are preprocessed into C, whichafter compilation can result in virtualized parallel tasks being dynamically allocated to whateverreal resources are available. Appropriate choice of GLU statements could be used to enhance theRISSC nature of the implementation by partitioning functionality according to security constraints.5.7 RISSC Applied to Crypto ImplementationsOne of the trickiest aspects of computer system architectures involves the encapsulation of cryptoin such a way that the security provided by the crypto cannot be compromised | despite thepresence of not-entirely-trustworthy system components. The potential risks are quite numerous.In the following text, a careful distinction is made between the process of creating an object that canlater be authenticated and the subsequent process of validating that the object is indeed authentic.The former process is generically referred to here as a cryptobinding, and the latter process is referredto as authentication. In other contexts in which this distinction is not important, \authentication"more conventionally includes both the cryptobinding and the validation of the cryptobinding.In general, the cryptobinding function needs to have a su�ciently strong cryptographic basis thatit can be nonsubvertible under malicious attack. (Although in principle the binding could benoncryptographic, as in the case of a cyclic redundancy checksum, we nevertheless refer to thegeneric function of creating the binding as cryptobinding.)� Loss of con�dentiality | for example, due to key compromise that makes the crypto inef-fective, cryptanalysis that breaks the crypto, or bypasses of the crypto that undermine thecrypto without requiring key compromise or cryptanalysis (as in penetrations of underlyingoperating systems)� Loss of integrity | for example, due to changes in cryptotext or in the cryptobound infor-mation that is subsequently expected to be decrypted or authenticated� Denials of service | for example, due to intentional or accidental losses of integrity� Loss of authenticity | for example, due to spoo�ng of the cryptobinding process (for ex-ample, creating a bogus digital signature or integrity seal), disabling the process of checkingauthenticity, or conducting a replay attack� Repudiation | that is, a claim that seemingly legitimate cryptobinding had actually beenerroneous, spoofed, or otherwise compromised� Loss of key-escrow con�dentiality | for example, due to breaches of the key-escrow process35

Secure Systems Architecture and Formalism� Loss of key-escrow integrity | for example, avoiding key escrow altogether, breaking theescrow binding between keys escrowed and keys actually used, using crypto implementationsfor which the keys do not need to be escrowed, law-enforcement access-�eld attacks� Loss of audit con�dentiality | for example, undesired accesses to an encrypted audit trail� Loss of audit integrity | for example, accidental or intentional modi�cation of an encryptedaudit trailThe modularity implied by the RISSC concept can aid considerably in avoiding these risks | ifthe modules are su�ciently noncompromisible.A particular additional challenge is provided by the desire for high-assurance implementations thatcan use modular crypto. At present, United States export-control restrictions seriously discouragethe use of modular crypto, sometimes misleadingly known as crypto-with-a-hole (although the holeis in the surrounding system, not in the crypto).The RISSC concept can provide considerable assistance in ensuring that modular crypto cannotbe subverted, bypassed, or removed for other purposes, if it is possible to encapsulate the cryptowithin trustworthy subsystems. This can be achieved by isolating the crypto into separate modules(whether they are implemented in hardware or in software). Some of the opposition to modularcrypto implicit in the export controls may be diminished if assurances can be provided that themodular crypto cannot be removed, replaced, tampered with, bypassed, or otherwise compromised.One way of accomplishing that goal is to provide a trustworthy cryptographic/cryptologic meansof ensuring that a given module is precisely in every respect one of a legitimate set of previouslyauthorized modules | for example, by applying serious cryptographic integrity checks within trust-worthy components. In this way, it would be possible for a vendor to provide multiple versionsof a computer operating system or application software, with di�erent crypto implementationsthat could be adapted to the nature of the application and that could conform with any externalrestrictions such as export controls.At present, system developers are reluctant to provide multiple versions of software systems, becauseof perceived di�culties in production and maintenance. Such an approach would sharply diminishthe di�culties involved.14Similarly, encapsulation within the RISSC concept could also enhance the assurance with whichcertain usage restrictions could be accommodated | for example, requiring the presence of non-subvertible key escrow on a crypto implementation.In all crypto implementations and, more generally, in all system implementations, the risks mustbe rigorously analyzed from a total systems point of view | including hardware platforms, op-erating systems, application software, networking software, network media, supposedly untrustedcomponents that in fact are able to acquire unanticipated privileges, and supposedly trustworthycomponents that are not trustworthy, as well as external attacks such as masquerading and spoof-ing. Crypto algorithms, protocols, and implementations are particularly fertile topics for formalanalysis of security. This concept is considered further in Section 11.3.14For example, two versions of RC-4 are used in the �rst commercial version of Netscape, one with long keys (128bits) and the other with shorter keys (40 bits). As an interesting implementation quirk, the 40-bit version is achievedby passing 88 bits of the 128-bit key along with the message, but without changing the implementation. However,40-bit crypto is becoming unacceptable in commercial applications, as evidenced by recent cracking of 40-bit RC-4within Netscape. 36

Secure Systems Architecture and FormalismPart Two: FORMAL METHODS6 Formal Methods Applicable to Secure-System ArchitecturesSection 6 considers the applicability of formal methods to architectures for secure systems.Much of the work to date in applications of formal methods has emphasized the speci�cationof relatively low-level functionality. A useful cross-section of the early history of formal methodsapplied to computer systems can be found in the proceedings of the �rst three veri�cation workshops(VERkshops), the �rst two of which [165, 166] were coorganized by Peter Neumann and SteveWalker (April 1980 and April 1981), and the third [117] was coorganized by Karl Levitt, SteveCrocker, and Dan Craigen (February 1985). Because the proceedings of these VERkshops are notwidely available, and because of their historical importance to the evolution of formal methodsapplied to security, we include a list of the VERKshop contributions in Appendix D.Although there is some work on properties of systems in the large, and on the speci�cation ofcomplex systems (as in HDM/Ehdm and the CLI work), much of the e�ort in the past has beendevoted to properties of algorithms and components in the small.The present study is much more concerned with speci�cations and properties of systems in thelarge, with the fundamental belief that there is enormous potential to be obtained from the com-position of systems and networks out of system building blocks | especially if that functionalitycan be related to its components and their properties in a formal manner. Thus, we stress hier-archical structures, vertical abstractions, horizontal compositions of distributed components, andcon�guration management.6.1 Goals of Formal Methods in System and Network ArchitectureThe need to apply formal methods to the architectures of supposedly secure systems and networkssuggests the following set of desirable goals. These goals are generally commonly perceived goalsthat have been either implicit or explicit for many years, although many of them are still noteasily achieved. Thus, we believe that it is useful to articulate these goals coherently within theglobal distributed-system scope of this report. The recommendations in Section 12 consider whatis needed to satisy these goals more fully.� Formalisms should be readily understandable by appropriate people (designers, system im-plementers, interface users who are developing higher layers, system maintainers, and docu-menters) at a level of detail appropriate to their individual needs. That is, designers shouldbe able to write speci�cations that are su�ciently detailed and unambiguous to permit soundimplementation by programmers and hardware fabricators who have not been a part of thedesign process; those speci�cations should also be viewable at varying layers of abstraction| for example, by someone explicitly wishing to suppress certain types of detail, or alter-natively, someone wishing to have particular upper-layer constructs explicitly expanded interms of lower-layer functionality.� Formalisms should be realistically applicable to complex and practical systems, including op-erating systems, special-purpose systems such as database management systems, �rewalls and37

Secure Systems Architecture and Formalismother types of gateways, network controllers, �le servers, encryption control units, cryptologicprotocols, and critical application environments. Furthermore, such formalisms should alsobe applicable to the speci�cation and analysis of distributed systems and networks formedfrom compositions of components, whereby the analysis of the overall system can be basedon properties derived from the analysis of the components. Formalisms should provide theability to handle complexity in its totality | for example, re
ecting all possible exceptionsand other abnormal conditions. The formalisms should scale well, from simple systems tohighly interconnected complex systems. Di�cult concepts as well as simple ones should becapable of being clearly explicated.� Formalisms should contribute signi�cantly to the entire system life cycle | for example,enhancing the requirement formulation, analyses of the requirements, the design process,analyses of the design, the implementation, analyses of the implementation, and the man-agement of the entire development. The bene�ts of these contributions might include tightermanagement of the development process, sharply reduced production costs, fewer schedulingdelays, and improved satisfaction of the stated requirements | with greater reliability andgreater assurance of proper system behavior.� The formalisms should be particularly helpful at the initial stages of the development cycle.In general, many system
aws occur during the design phase rather than during implementa-tion; the cost of repairing serious design
aws after a system has been �elded is often ordersof magnitude greater than the comparable cost for repairing code
aws. As a consequence,the greatest payo�s from formal analysis are typically found up-front: formalizing require-ments, and analyzing the adequacy, completeness, and self-consistency of those requirements;attempting to demonstrate the consistency of speci�cations with requirements, and identi-fying design
aws; carrying out explorations of incremental design alternatives, and beingable to iterate on the successive analysis of improved designs. All these attributes are highlydesirable.� Formalisms should be applicable at di�erent layers of abstraction and di�erent types of ab-straction, from hardware to operating systems to database management systems to appli-cation software, and throughout distributed systems. Formalisms should facilitate vertical(hierarchical) abstraction, relating each layer to its neighboring layers (either less abstract ormore abstract). They should also facilitate horizontal abstraction, allowing for consistent co-existence among di�erent interoperating distributed-system and networked components, andfor the transversal of any gateways or other network subsystems.� Formalisms should be able to facilitate rigorous analyses, interrelating with one another when-ever di�erent formalisms are used or must be used in di�erent contexts. For example, a partic-ular system analysis might employ a requirements language, a module speci�cation languagefor operating-system and application functionalities, mathematical techniques for analyzingthe strength of cryptographic algorithms, and BAN logic 6.3 for reasoning about cryptologicprotocols. It should be possible for di�erent analyses to be logically linked, interrelating re-quirements analyses, design proofs and other speci�cation analyses, and implementation prooftechniques for determining the consistency of code (or hardware) with its speci�cations. Theformalisms used should be substantively interoperable | in the sense that reasoning aboutproperties at one layer or component must be able to draw on assumptions, properties, andinferences about other formalisms of depended-on functionality. Thus, expressions in one38

Secure Systems Architecture and Formalismformalism should be transformable or otherwise representable in other formalisms, whereverappropriate. In addition, properties of fault tolerance and real-time performance should beable to accommodated, as relevant to security.� Formalisms should be able to facilitate analytic and synthetic transformations, involving bothvertical and horizontal abstraction. For example, analysis of a composition of the speci�ca-tions of multiple modules into a single module speci�cation should be formally straightfor-ward. The same is true for decomposition of a subsystem into separate modules, for example,so that a component can be used separately elsewhere. Similarly, the resulting behavioralproperties resulting from composition or decomposition should be formally derivable, whetherthe properties in question are invariant or transformed into other properties.� Formalisms at certain higher levels of abstraction should be relatively independent of speci�cprogramming languages and language constructs, but at lower levels should be capable ofexplicitly and completely representing programming-language constructs, hardware instruc-tions, and microcode.� Formalisms should be broader and richer than just those relating to a few speci�c securityproperties at a particular layer of abstraction. As appropriate to a particular application,other relevant requirements should be addressed, such as application-layer properties relatingto interface completeness, ease of use, overall system reliability and fault tolerance, and systemsafety.Some of the past work is applicable to computer systems in general, although distributed systemshave been slighted until recently. Other work is speci�c to particular types of formalisms, such asthe BAN logic [29] for crypto protocols. Overall, it is clear that no single approach is su�cient forspecifying and reasoning about distributed systems in the large, and that multiple formalisms mustbe used. An important open question is how to choose the di�erent formalisms that are necessaryfor a particular application and to integrate them e�ectively.6.2 SRI's Computer Science Laboratory: HDM, EHDM, and PVSThe SRI Hierarchical Development Methodology (HDM) (see [161, 199, 201, 231], plus an earlierreference [200] for historical interest) was an early e�ort to unify formal methods within a singleframework that would be applicable to real systems, in hardware and software. HDM embodied a�rst-order SPECI�cation and Assertion Language (SPECIAL) [233] for specifying modules at eachhierarchical layer, and an abstract Intermediate-Level Programming Language (ILPL) [161] whosepseudoprograms represented explicit mappings between hierarchical layers | acting as abstractimplementations for each layer written in terms of lower-layer functionality. In addition to hier-archically layered abstractions, HDM encompassed staged development and module re�nements,extending from requirements to abstract design to abstract implementation to actual implementa-tion. In concept, HDM also supported analysis techniques associated with each development stage| namely, requirements analysis, design proofs, abstract code proofs, and real code veri�cation.The HDM e�ort began in 1973 under the PSOS project, in which it was used extensively. HDM isno longer supported, but it pioneered several important concepts.HDM tools included a syntactic speci�cation checker and the Boyer-Moore Theorem Prover [26,39

Secure Systems Architecture and Formalism27]15 | which was used for both design proofs that speci�cations are consistent with their formallystated requirements and for implementation proofs that code is consistent with its speci�cation.For example, for any given module speci�cation, the Feiertag
ow-analysis tool [61] identi�ed allpotential information
ows through that module and then formulated putative theorems whosesatisfaction would imply no adverse multilevel-security
ow; the Boyer-Moore theorem prover wasthen invoked to determine whether or not the putative theorems were indeed valid. If they werevalid, the
ows satis�ed the multilevel-security properties; if they were not valid,
aws in thespeci�cation or the design were identi�ed, including covert storage channels. (Actually, only afraction of the logical abilities of the Boyer-Moore theorem prover were required, and a simpler toolcould have su�ced.) As with most veri�cation work, the bene�ts arise largely in the identi�cationof
aws rather in the demonstration that everything is perfect. This approach was applied toseveral multilevel-security projects, including the kernelized Unix system KSOS [133, 16]. Out of34 kernel functions in the initial KSOS kernel design, 16 were shown to have some sort of securityproblem, many of which could be and were �xed; however, some of the covert storage channels thatwere identi�ed were not removed.One of the important advances of HDM was its ability to take a group of modules speci�ed inSPECIAL, and arrange them either hierarchically or coexisting at a given layer, and then relatethose modules to one another using the abstract programming language ILPL [199]. It was alsopossible to constrain precisely which higher layers could have access to which functions at lowerlayers. In this way a particular functionality could be accessed only up to a particular layer, andits functionality could then be replaced by a more abstract equivalent. This type of accessibilityconstraint is demonstrated by the square-bracketed level numbers in Table 6 | an example ofwhich is given by the system processes at level 6 and user processes at level 12.SRI's Ehdm [204] and its higher-order speci�cation language [234, 235, 245, 246, 247] provides afacility for hierarchical layering comparable to that in HDM. Ehdm provides a stronger subtypemechanism than HDM, and also introduced module parameterization. It also had an improvedapproach to the axiomatization of theories and subtheories, and their interrelations. The Ehdme�ort began in 1981, under a project that was primarily concerned with investigating the feasibilityof implementing PSOS.16SRI's Prototype Veri�cation System, PVS, is the intended successor to the veri�cation tools usedin Ehdm. Its speci�cation language has a still richer type and subtype facility than that of Ehdm(including dependent types). Model checking (see Section 9) is compatibly being included in version2. At present, PVS (in version 1 and in the soon-to-be-released version 2) does not yet provide sup-port for hierarchical design validation and program veri�cation that are found in Ehdm, althougha new approach to that capability is planned for PVS version 3, along with an extension of theEhdm facility for interpretation of models and theories. On the other hand, the PVS veri�cationenvironment does support interactive proofs | which Ehdm's prover does not. Furthermore, thespeci�cations, proofs, and proof process of PVS appear to be signi�cantly more comprehensibleand easy to develop than is the case for Ehdm.All three of these environments (HDM, Ehdm, and PVS) provide tight coupling between the15See Donald MacKenzie's 1995 Annals article [129] for an excellent review of the history and sociological role oftheorem proving, with 185 references.16Ehdm was originally so named because it began as an \Enhanced Hierarchical Development Methodology." Thatacronym expansion is no longer relevant, and it is now named simply Ehdm; its speci�cation language began life asRevised SPECIAL [233]. 40

Secure Systems Architecture and Formalismspeci�cations and the veri�cation systems, and permit early formal analysis of speci�cations aswell as formal code proofs. Since 1973, this sequence of SRI e�orts has been explicitly aimedat spanning the entire system-development cycle, with particular emphasis on e�ective up-frontanalysis, applicability to large and complex systems, and long-term evolvability. A broad spectrumof techniques is incorporated, including syntactic speci�cation checking, strong type checking, someability to provide local executability of speci�cations, model checking, and various other forms ofsemantic analysis such as forward incremental closure (reachability with respect to descendents)and backward incremental closure (reachability with respect to ancestors).A quote from Owre et al. [173] is appropriate to put these approaches in perspective:It is not easy to directly compare Ehdm and PVS with other approaches to formalmethods, such as those embodied in Z and VDM notations, or the Boyer-Moore theoremprover, since they are based on very di�erent foundations. The HOL system is based onsimilar foundations to Ehdm and PVS, but its language, proof-checker, and environmentare much more austere than those of our systems. Over several years of experimentation,we have found that our speci�cation languages have permitted concise and perspicuoustreatments of all the examples we have tried, and that the PVS theorem prover, inparticular, is a more productive instrument than others we have used.In the short term, some of the considerable advantages of PVS exist as a result of PVS's temporar-ily eschewing the abilities of HDM/Ehdm with respect to hierarchical layering; the comparativeappropriateness of PVS and Ehdm must be considered speci�cally with respect to system-widearchitectural applications in the large. In the long term, PVS is expected to be more appropriatein almost all cases.The PSOS speci�cation [161] gives an extensive example of how HDM can be used to providedetailed speci�cations for a fairly complex hierarchically layered centralized operating system, inhardware and software. Various examples of the use of Ehdm and PVS are given in [173]. Althoughthese examples are relatively small, Ehdm is at least as appropriate for large and complex systemsas HDM was. Ehdm satis�es all the goals enumerated in Section 6.1 to a considerable extent.The reader interested in pursuing PVS further should consider an elementary tutorial by Butler [30]and a less elementary tutorial by Rushby and Stringer-Calvert [212].Another SRI Computer Science Laboratory e�ort, due to Moriconi, Qian, and Riemenschnei-der [145, 146], is also relevant to specifying the relationships among hierarchical abstractions. TheMQR approach provides a method for the stepwise re�nement of an abstract architecture into a(relatively) correct lower-layer architecture. Once a particular re�nement pattern has been provedcorrect, instances of that pattern can then be used directly without further proof. Re�nementscan themselves be syntactically composed. At present, this approach is not integrated with Ehdmor PVS, although it appears that such a union could be very useful | in proving a priori thatre�nements are correct and in then relating the re�ned architectures to their implementations. Inthis way, the MQR approach could be used to reason about the security of an architecture in thelarge, and PVS could be used to demonstrate the required properties of the components.The SRI Computer Science Laboratory WorldWideWeb pages (http://www.csl.sri.com/) providefurther background and access to on-line reports.41

Secure Systems Architecture and Formalism6.3 BAN Logic and Related Reasoning about Crypto ProtocolsE�orts to formalize reasoning about cryptologic protocols include the Burrows, Abadi and Need-ham's BAN logic [29] and its augmentations (see Wenbo Mao [132]) | with some importantintermediate work by Gong, Needham and Yahalom [75], Abadi, and van Oostrup, among others.All the work to date is lacking in one respect or another, for example, being based on unprovableassumptions of key secrecy, or su�ering from incompletenesses in the logic. (For example, see Gligoret al. [70, 237].) In addition, prudent practice for cryptographic protocols such as that suggested byAbadi and Needham [3] must be enforced. In any event, some sort of logic is essential for reasoningabout cryptographic protocols and how they interrelate with the systems that encapsulate them.The use of formal techniques for cryptographic protocols is revisited in Section 8.6.6.4 Other Approaches Relating to SecurityWe do not attempt here to provide comprehensive coverage of all of the various methodologies andsupporting tools. However, it is worth noting that there are many di�erent approaches, each ofwhich has its own merits. We regret that we have not been able to track all recent developmentsin other approaches.Computational Logic Inc. has been pursuing its speci�cation-programming languages Gypsy andRose, with formal methods applied to security and other application areas for almost as long as SRI.The Boyer-Moore theorem-proving tools are now an integral part of the CLI environment. Relevantreferences include documents on Gypsy [76, 77, 230], its
ow analyzer [138], a code generator [253],and applications [18, 78, 88].The CLI WorldWideWeb pages (http://www.cli.com/) provide further background and copies ofon-line reports.Odyssey Research Corporation's Romulus and Penelope provide similar capabilities. For example,formal methods have been applied to the Theta security kernel [168, 169, 170, 226].Odyssey's WorldWideWeb pages (http://www.oracorp.com/) were still under construction whenthis report was completed.A very signi�cant recent e�ort to formalize security requirements is given by Johnson et al. [101],in which detailed formal speci�cations are provided for the MISSI security policy. This e�ortembodies many of the recommendations made here, including a layering of policy elements and anarchitecturally comprehensive approach that encompasses authentication and other infrastructurefuncationality as well as conventional multilevel security.7 Formal Methods Applied to Secure Distributed SystemsSection 4.2 summarizes high-level requirements for distributed-system security. These requirementsare now reinterpreted in Section 7.1. The implications of attempting to apply formal methods tothe elaboration of those requirements are then considered in Section 10.
42

Secure Systems Architecture and Formalism7.1 General Properties of Distributed SystemsAll the requirements outlined in Section 4.2 are directly applicable to distributed systems and toRISSC systems in particular. We reinterpret them here with greater speci�city, and consider howto approach them formally. Our intent is to characterize the desired properties within the scopeof this report. As is the case in Section 6.1 for satisfying the stated goals, the recommendations inSection 12 consider what is needed to reason about these properties more comprehensively.1. Overall system security. To specify and reason about the security of a distributed systemas a whole, all the necessary requirements must be stated explicitly and related to the behaviorof the functions of corresponding visible interfaces. Those interfaces may be at the applicationlayer for a totally dedicated system, at the database layer for a database application, at theoperating-system layer for an open-system network of systems, or at a combination of layersin those cases in which interfaces at multiple layers can be simultaneously visible. It mustbe possible to relate the visible-layer interface requirement speci�cations to the lower-layerspeci�cations and corresponding lower-layer properties (whether visible or hidden), such asthose properties discussed in the subsequent bulleted items. Thus, for example, the formalismsmust facilitate abstraction re�nement and mappings among di�erent layers of abstraction.Di�erent formalisms may be appropriate for di�erent functions and di�erent properties atdi�erent layers; these formalisms must be capable of interrelating, and should satisfy thebulleted items in Section 6.1.2. End-user-system security. The TCSECOrange Book B-level criteria are heavily concernedwith multilevel security; it is important to be able to demonstrate that the kernel and TCB donot violate the multilevel-security requirements even in highly distributed implementations.Ideally, to demonstrate that, it should not be necessary to demonstrate the satisfaction ofall sorts of properties apparently unrelated to multilevel security. However, in a conventionalTCB architecture, there are many other properties beyond MLS with respect to which eachcomponent system must be trusted. On the other hand, in a RISSC architecture, it may beeasier to demonstrate multilevel security without having to specify completely each individualend-user system | on the grounds that the end-user system cannot compromise multilevelsecurity. Nevertheless, in the conventional architecture or in a RISSC architecture, it is muchtoo simplistic to be interested only in the MLS property when vulnerabilities can exist thatpermit MLS compromise without a
aw in the MLS mechanisms themselves. Thus, the beliefthat demonstrating MLS-ness of a mechanism in isolation is su�cient is both simplistic anddangerous. For example, suppose the cryptobinding provided by an end-user system can becompromised so that one user can masquerade as another user who is authorized at a highersecurity level, or that the authentication itself can be subverted. It follows immediately thatsecurity of the overall system may depend upon the integrity of the end-user systems notbeing compromised, even in a RISSC architecture. Alternatively, in the presence of a trustedauthentication server, the design may permit the end-user system to be untrusted with respectto authentication. In either case, the security of the overall system must be characterized anddemonstrated, and in both cases that security depends on strong authentication in additionto enforcement of MLS.3. System-infrastructure and server security. Traditional formal methods apply to serverswith respect to demonstrating multilevel security properties; they are also suitable for other43

Secure Systems Architecture and Formalismproperties essential to overall system security, such as the security of �le servers, authen-tication servers, and network servers. Thus, con�dentiality, integrity, and authenticationproperties must be characterized and ensured. Of particular concern is the management ofthe networking and distributed-system intercommunications, which are particularly vulnera-ble. The con�dentiality and integrity of all crypto key management and networking cryptomust also be ensured, with respect to the networking | irrespective of whether the softwareand hardware are located in network servers or (in non-RISSC architectures) in end-usersystems. As discussed in Section 6.3, a collection of well-integrated formalisms for analyzingnetwork protocols is very much needed; the BAN logic and subsequent extensions provide aprototypical basis for such formalisms.4. Network media security. Network security itself (that is, media protection to ensureagainst loss of con�dentiality, loss of integrity, and to some extent denials of service) wouldpresumably rely on the use of excellent cryptographic techniques. If that is the case, thenthe network media need not be trusted to maintain con�dentiality and integrity of commu-nications, and presumably some alternative routing could minimize denials of service. Thus,the extent to which formal representations might be applicable to the analysis of networkcommunications is related to the quality of the crypto and its key management. In a sensibleRISSC implementation, the media themselves would be largely untrusted, and no analysiswould be needed | except possibly for reliability and denials of service.5. System integrity. Subsystem integrity relies on authentication, access controls, and manyother subsystem attributes. Tamperproo�ng is particularly important. (See Section 4.3.)Formal requirements must embody and constrain structural encapsulation, nonbypassability,and nonalterability (for example, via some sort of cryptographic integrity check). They mustalso address responses to any detected alterations. For example, the use of cryptographicallybased integrity seals to ensure the presence of legitimate software modules would requireformalisms to represent the security of the underlying operating-system mechanisms thatmight embody the sealing and seal checking, and something like the BAN logic to reasonabout the cryptographic processes.6. Data con�dentiality. Multilevel-secure systems can draw on the previous e�orts to modelMLS properties, to specify functionality that must satisfy those properties, and to verify thatthose properties are satis�ed systemically. Additionally, formal methods can be applied toaccess controls (such as in [1]), changes to permissions, and transfers of authority.7. Data integrity. Cryptographic or other forms of integrity checks can be modeled. If dataintegrity is handled similarly to system integrity (item 5, above), comparable methods wouldapply. However, whenever data is signi�cantly more ephemeral in nature in comparison withthe system software and hardware (which tend to remain unchanged for long periods of time),then di�erent techniques might have to be used.8. Nondenial of service. Traditionally, the prevention or mitigation of service denials has beenless amenable to formal methods, although some existing research is applicable [69, 254].9. Authentication integrity. The BAN logic [29] and its successors can be used to model andanalyze authentication protocols (such as are used in Kerberos [14, 155, 236] and the DigitalDistributed Secure System Architecture [68], and other strategies for distributed authentica-tion | for example, [122, 252]). 44

Secure Systems Architecture and Formalism10. Nonrepudiation. Nonrepudiation requires strong cryptobindings and nontamperable au-thentication, plus system security that would prevent or at least detect spoo�ng activitieswithin end-user operating systems and servers (including authentication servers, �le servers,and network servers). Ensuring nonrepudiatability requires more than just local reasoningabout authentication protocols.11. Accountability. Accountability as an end in itself seems to have been widely ignored by for-mal methodologists. It is a derived property rather than a primitive property. For example,the con�dentiality of the audit-trail data depends on the security of the infrastructure; sim-ilarly, the nonbypassability of audit-trail data collection process depends on the integrity ofthe systems being monitored and on the integrity of the monitoring subsystems. The integrityof the audit-trail analysis depends on the nontamperability of the analysis subsystem. Theintegrity of the systems being monitored depends on interfaces between the target systemsand the analysis subsystems.A collection of typical properties that must be enforced is considered further in Appendix B, in thecontext of a monitoring system.7.2 Finer-Grained Properties of Distributed SystemsThe eleven properties of distributed systems given in Section 7.1 are stated as rather broad char-acteristic requirements. Table 11 illustrates some of the primary ways in which these propertiesdepend on other properties of distributed system architectures. The properties are numbered inthe table as enumerated above | although a �ner-grain distinction is made among the systeminfrastructure components (i), the end-user systems (e), and the network media (n). For simplicity,all the infrastructure components (for example, �le servers, authentication servers, and networksubsystems such as network servers, trusted interface units, gateways, and �rewalls) are lumped to-gether in the table, although there are clearly di�erences among the di�erent types of infrastructurecomponents. However, we make a distinction between the networking subsystems (in software andhardware) and the network media. The network media accommodate the transmission of informa-tion, which is presumably encrypted whenever the use of an untrustworthy medium is deemed toorisky; the networking subsystems ensure that encryption and decryption are performed in a trust-worthy and nonsubvertible fashion. (As seen from the table, the network media and the networkingsubsystems depend on very di�erent properties.)Table 11 exhibits a collection of property dependencies that is considerably more complex thanthe simplistic view of an application depending upon an MLS TCB to enforce application-layermultilevel security (as in SeaView, in which the DBMS need not be trusted to enforce multilevelsecurity). The table's depiction of dependencies is more realistic than the usual simplistic view(but by no means complete), and suggests that a major challenge of formal methods is to representwhat really happens rather than to give an approximate and highly abstract oversimpli�cation.Nevertheless, abstract representations are very useful, as long as they do not diverge from reality.
45

Secure Systems Architecture and FormalismTable 11: Property dependenceGoal Security Properties Depended-upon subgoalOVERALL1 Overall system security: 2,3,4,MLS, access controls, etc. 5,6,7,8,9,10,11 (i,e,n in each case)STRUCTURAL2 End-user system security 3,4,5e,6e,7e,8e,9e,10e,11e,5i,6i,7i,8i,9i,10i,11i,5n,6n,7n,8n,9n,10n,11n3 Infrastructure security 4,5i,6i,7i,8i,9i,10i,11i,5n,6n,7n,8n,9n,10n,11n4 Network media security 5n,6n,7n,8n,9n,10n,11nFUNCTIONAL (within each infrastructure component)5i System integrity 6i,7i,9i, 5n,6n,7n, reliability, fault-tolerance6i Data con�dentiality 9i,6n7i Data integrity 9i,7n8i Nondenial of service 5i,7i,9i,5n,7n,9n, hardware availability9i Authentication integrity Authentication mechanism, keys10i Nonrepudiation 9i, algorithm strength, key protection11i Accountability 9iFUNCTIONAL (within each end-user system)5e System integrity 5i,6i,7i,8i,9i,10i,11i,6e,7e,8e,9e,reliability, fault-tolerance6e Data con�dentiality 6i,9i,9e, local encryption7e Data integrity 7i,9i,9e, local encryption8e Nondenial of service 5i,6i,7i,9i,5e,6e,7e,9e, hardware availability9e Authentication integrity 9i (authentication server)10e Nonrepudiation 9i, and perhaps 9e (but ideally not!)11e Accountability 9i,9eFUNCTIONAL (over network media)5n Media integrity No dependence if tra�c well encrypted;otherwise, dependent on media behavior,malfeasors, and the environment6n Data con�dentiality No dependence if tra�c well encrypted;otherwise, similar to media integrity, plusstrength of encryption and key management,7n Data integrity Strength of encryption and key management,error-detecting and -correcting codes8n Nondenial of service Alternate routing, redundancy, retries;depends on media being within tolerances9n Authentication integrity [Nonspoo�ng depends on infrastructure]10n Nonrepudiation [Also depends on the infrastructure]11n Accountability Network tra�c monitoring46

Secure Systems Architecture and Formalism8 Property Transformations Under Composition and LayeringSection 8 considers some fundamental types of system and subsystem properties, and how thoseproperties are a�ected by subsystem composition and hierarchical layering. In general, subsystemproperties may undergo transformations as a result of composition or layering of subsystems, andproperties of the resulting systems may be formally derived from the underlying properties. Ourintent here is to make explicit the properties, the transformations they undergo, and the processof deriving composite properties | and to address all the assumptions on which formal reasoningmust depend.8.1 PropertiesIn the past, much emphasis has been placed on properties that remain invariant under simple no-feedback subsystem composition [2, 131, 134, 135, 136, 137, 139, 202, 206, 238, 255], in which theoutputs of one subsystem become the inputs to the next subsystem.Here we take a more general view that properties may be transformed under less simple composi-tions. Under the notion of generalized composition, we include aggregation of collections of moduleswithin particular layers, hierarchical layering of modules in the presence of privilege mechanisms,and interactions among components | in both centralized and distributed systems. We also in-clude e�ects of call-and-return semantics, feedback, and bilateral module structures in distributedsystems. In certain cases, a transformation may represent an identity | namely, when particularproperties are preserved by the composition. With this generalized approach, the compositionsthat preserve properties become an important special case of the approach in which properties aretransformed, and to which case the existing body of research on composition invariants applies.Basically, this notion of generalized composition is a tricky business. For example, suppose that wehave two A1 systems that are connected via an unprotected local network. If passwords are ableto
ow unencrypted over the network, and are able to be read en route by would-be misusers, thenthe fact that two A1 systems are involved becomes almost irrelevant with respect to the assurancerelating to the security of the composition. Similarly, if we layer a supposedly secure operatingsystem on top of a fault-tolerant hardware platform, we might hope that we have attained a secure,reliable system. However, certain fault modes that exceed the given fault tolerance may result in aserious loss of security.Lamport considers two types of properties, safety and liveness. A liveness property implies thata system will eventually do something; a safety property implies that if the system eventuallydoes something, its behavior will be as speci�ed. Adequate behavior typically implies that certainLamport-style safety properties and certain liveness properties be satis�ed. (In this report, we use\safety" to imply human safety rather than Lamport-style safety, and explicitly qualify the latterterm.)Several concepts that are normally undi�erentiated in their relation to composition have beentreated individually in a recent doctoral thesis by Heather Hinton [90]. Hinton distinguishes among�ve types of Lamport-style safety properties: faithfulness, provenance, authenticity, integrity, andcon�dentiality. She also identi�es four types of progress properties (a form of liveness): accessibility,eventual progress, termination, and eventual output. Faithfulness implies consistent repeatabilityin the behavior of any particular component. Provenance implies that the identity of an origi-47

Secure Systems Architecture and Formalismnating system, program, or agent is known and well de�ned. Authenticity implies the absence ofmasquerading and the genuineness of a resource or action | for example, that the provenance isreally genuine. Integrity and con�dentiality essentially are as de�ned here. Accessibility impliesthat inputs are eventually accepted for processing. Eventual progress implies that some forwardprogress will eventually be made. Termination implies that the progress will ultimately conclude.Eventual output implies that the results of the progress will eventually be released.This classi�cation is useful in understanding the e�ects of subsystem composition. Some types ofproperties are domain independent (namely, faithfulness, provenance, authenticity, and the progressproperties), whereas the others are domain dependent (integrity and con�dentiality). With respectto Hinton's de�nition of composability (which is somewhat di�erent from that of Sutherland [238]),the domain-independent properties are composable, whereas the domain-dependent properties arenot always composable | depending on whether or not the composition permits feedback. Withoutfeedback, the domain-independent properties are composable; with feedback, those properties arecontingently composable, that is, they remain true for a particular component locally, but may notbe true for interconnections of that component with other components having the same property.Of particular interest here is the concept of an emergent property | namely, a property that is notmeaningful with respect to lower layers or to individual components at a particular layer, but thatis meaningful with respect to a higher layer or with respect to the composition of components at thegiven layer.17 Hinton shows that the composition of domain-independent composable propertiesdoes not result in emergent properties, whereas the composition of domain-dependent composableproperties may result in emergent properties. This concept is important because it reinforces thenecessity of addressing domain-dependent properties.To understand the intrinsic nature of emergent properties, consider the class of application-layersafety properties. Ultimately, user safety depends not only on the implementation of the applicationlayer, but also on lower-layer functionality. For example, it depends on the reliability of hardware,operating systems, and database management systems (if any). It also depends on the abilityof those lower layers to withstand malicious or accidental misuse, because any subversion couldpotentially result in a loss of safety. Whereas it is theoretically possible to expand the highest-layerproperties in terms of all the subtended properties, it is in practice absurd to do so. It wouldviolate the tenets of software engineering (such as abstraction) as well as common sense. Thus, westress the importance of a speci�cation approach in which abstractions at any particular layer arespeci�ed in terms of their own relevant constructs, and where the mappings between layers are usedto bridge the gaps in abstraction between layers | in terms of both speci�cations and properties tobe satis�ed, in the style of Robinson and Levitt [199]. As a consequence, many of the higher-layerproperties are either emergent or partially emergent. On the other hand, a module speci�ed atone layer may also appear identically at higher layers, as illustrated by the asterisks and squarebrackets in the PSOS hierarchy shown in Table 6. In cases where identical functionality appearsat di�erent layers, the corresponding higher-layer properties are not emergent.In dealing with hierarchical layering and compositions, abstraction is really the fundamental con-cept. However, Einstein's statement noted in Section 2.1 must be observed. Abstractions must besu�ciently complete, consistent, and truthful to describe everything that is essential to permit the17Emergent properties are an old concept | in cellular biology and other disciplines. More recently, Leveson [116]considers emergent properties in the context of software safety, making the case that safety is itself an emergentproperty that is not meaningful at lower layers. Jim Horning privately suggested that resonance is an emergentproperty in a circuit composed of resistors, capacitors, and inductors.48

Secure Systems Architecture and Formalismgaps among di�erent abstractions to be bridged and to enable reasoning about properties to bebased on realistic assumptions. Parnas makes the distinction between abstractions and falsehoods.Abstractions are incomplete descriptions that intentionally simplify reality. Ideally, they must betruthful (as far as they go). On the other hand, descriptions that permit incorrect behavior tooccur are dangerous, and must be avoided. There is a serious risk of errors of omission resultingfrom incomplete descriptions that introduce falsehoods.8.2 Transformations in MLS systemsViewed somewhat simplistically, the canonical kernel-TCB decomposition espoused by the TCSECleads to a kernel that enforces the strict MLS property but that also must permit certain privilegedoperations that may (and can) actually violate the strict-sense MLS properties (for example, noadverse
ow with respect to security levels and no bypasses of the kernel interface); the TCBthen attempts to ensure that the privileged operations cannot be misused from the TCB interface,which must itself be nonbypassable and must properly encapsulate the kernel. An example of sucha violation of the kernel MLS property occurs when it is necessary to perform trusted downgrading,sanitization, or abstracting. Thus, the set of kernel properties that must be satis�ed is not identicalto the set of TCB properties, and the TCB objects are not necessarily identical to the kernelobjects. Whether or not the abstract objects are the same at each layer, the trusted exceptionsthat potentially violate strict MLS must be completely modeled and analyzed, and the relationshipbetween the TCB and the rest of the system must be suitably constrained.An early e�ort to model privileged TCB operations was reported in 1985 by Benzel and Tavilla [15]for the Honeywell Secure Communications Processor (SCOMP), using Gypsy to specify and analyzethe TCB. The kernel enforced multilevel security [229], but permitted some privileged overrides.The trusted mechanisms were represented by three TCB policies, as follows:� Privilege Policy, relating to the invocation of privileged kernel functions, the privileged mod-i�cation of certain kernel attributes, and the explicit overriding of the kernel properties (inparticularly, enabling writing down in violation of Bell and LaPadula).� Integrity Policy, in particular the Biba policy of preventing low-integrity entities from con-taminating higher-integrity entities, with respect to objects perceived by the TCB. Note thatin SCOMP, MLI was enforced by the TCB and not by the kernel.� Functional Correctness Policy, with respect to certain highly critical but unprivileged TCBfunctions that must operate correctly. Critical functions included correct (noncompromisible)labeling of security levels and Trojan-horseless system editors.Each of these policies represents an emergent property that is not relevant to the underlying securitykernel. The strict MLS property of a security kernel (even including any privileged-exceptionmechanisms) is typically considered as the primary kernel property of interest. However, thetrusted computing base must also be analyzed thoroughly, and that requires the representationand mappings of emergent properties above and beyond the kernel MLS property, as noted inSection 8.1.As described in [15], the formal design proofs carried out with Gypsy found one multilevel-security
ow violation and one covert channel. This example clearly illustrates that there is much more49

Secure Systems Architecture and Formalismthan strict MLS that must be considered, and that the TCB and kernel each has its own set ofproperties to be enforced and maintained. This example, along with SeaView and PSOS, show howthe properties of one layer can be analyzed based on the speci�cations and properties of the lowerlayers.Also of interest in this context is an e�ort undertaken for the LOCK system, to show the relationshipbetween properties at one layer and properties at the next layer [215].8.3 Transformations of SeaView PropertiesThe transformational approach is further illustrated by considering the SeaView properties notedin Table 10. The OS-TCB layer enforces multilevel security on operating-system virtual memoryobjects, while the DB-TCB layer enforces a variety of database properties on database objects.Although the multilevel-security property is in a vague sense preserved by ascending from theOS-TCB to the DB-TCB, a formal representation of the properties at each layer must re
ect thefact that the objects at each layer are actually quite di�erent, and therefore that the propertyrepresentations are di�erent. Indeed, the objects at the di�erent layers must be di�erent, in theinterest of type consistency. Furthermore, there are numerous other database properties at theupper layer that can be derived from the properties of the lower layer and the speci�cation of theupper-layer functionality. Besides, the exception conditions are di�erent at each layer, and at eachlayer they are expressed in terms of their own abstract objects. Whereas it is possible in an abstractsense to polymorphically have the same property hold at both layers, the complete representationmust include the di�erent interface semantics as well as the relevant di�erent exception conditions.Thus, it makes sense to consider how properties of the upper-layer speci�cations can be consideredas transformations of the lower-layer properties.Referring to Table 10, the relevant DB-TCB property relating to MLS requires that, for any givengranularity of database access (e.g., queries or updates on multirelation joins, single-relation views,relations, or elements), the security level of the requester must be commensurate with the securitylevel applicable to the requested data. In addition, many of the upper-layer properties are emergent,and dependent on lower-layer properties that are not noted in the table, for example, relating tothe correctness or fault-masking abilities of the lower layer. Thus, to reason about the upper-layerproperties, a more complete set of lower-layer properties must be present. Perhaps this addeddi�culty is why so much emphasis has historically been placed on simple properties such as strictMLS and on simple compositions, rather than on more complex properties and on less simplecompositions and layerings.8.4 Transformations Within a Byzantine Clock SubsystemByzantine protocols also present an opportunity for a transformational view. Consider a Byzantineclock subsystem [113] that is built out of 3f + 1 ordinary clocks, for which the Byzantine clocksubsystem provides the correct time despite the arbitrary misbehavior of any f constituent clocks(each of which, for example, might maliciously or accidentally provide substantively di�erent read-ings to its neighboring clocks at any particular time). Here the Byzantine clock subsystem dependson the constituent clocks, but does not depend upon the correctness of all the constituent clocks;furthermore, the properties of the individual clocks can be used to derive (that is, to prove) theproperties of the resulting Byzantine clock, based on the details of the particular Byzantine clock50

Secure Systems Architecture and Formalismalgorithm and its implementation, and on the details of the logic for masking misbehavior. Thenature of the transformations from components to subsystem is similar to a simple hierarchicallayering, although the resulting subsystem properties can be derived despite a total lack of assump-tions about the behavior of at most f misbehaving components. This is somewhat di�erent fromthe more conventional layering, in which explicit formalization of relevant properties of lower-layerfunctionality is required to derive the desired properties of the upper layer.Further discussion of a three-layered model consisting of (1) clock synchronization [207], (2) Byzan-tine agreement [118, 119], and (3) diagnosis and removal of faulty components is considered byLincoln et al. [120] | who also provide formal veri�cations for a variety of hybrid algorithms [119]that can greatly increase the coverage of misbehaving components. This three-layered integrationof separate models and proofs is of considerable practical interest, as well as representing innovativeuses of formal methods.8.5 Transformations Under Gateway InterpositionA di�erent kind of example is provided by a gateway that controls all tra�c entering or leavinga given site (that is, the inputs and outputs of potentially all functionality logically inside thegateway). For example, a gateway might act as� a �lter that permits certain communications subject to speci�c authorizations (inbound, oroutbound, or both)� a �rewall that blocks all communications (inbound and outbound)� a �redoor that operates only in emergency situations (inbound, or outbound, or both)Each of these cases might involve di�ering constraints on inbound and outbound tra�c, and ondi�erent types of communications.Gateways to the Internet represent a popular example of the need for a trustworthy subsystem.Three types of desirable properties are suggested (in addition to the properties normally expectedby the systems on whose behalf the gateway is operating):� Maintenance of the con�dentiality of information within the given site, with respect to infor-mation traversing the gateway from the given site to the rest of the Internet. Thus, there mustbe no possibilities of information con�dentiality being compromised through the gateway.� Maintenance of the system integrity of the given site, with respect to tra�c traversing thegateway from the rest of the Internet to the given site. Thus, modi�cations of internal sitesystems (including the insertion of Trojan horses and other nasty software) must be preventedby the gateway.� Prevention of denials of service within the given site, caused from the rest of the Internet.In each of these three cases, the gateway has been described as protecting or governing what islogically inside the gateway. Alternatively, by re
ection, a gateway could conceptually act on behalfof both the inside and the outside, for any of the three types of properties | for example, in the51

Secure Systems Architecture and Formalismcase of a bidirectional �lter. (In that case, it might seem super�cially that a bidirectional �ltercould be split into two unidirectional �lters; however, it may be desirable for the �lter to have astate memory that can enable it to relate what has gone out to what has come in and vice versa| in which case the �lter may more easily be considered as either a single bidirectional �lter, oras two unidirectional �lters with controlled communications.)The �rst two of these gateway properties have the appearance of properties that must be preservedby the gateway, with respect to outward information
ow and inward information
ow, respectively.However, the gateway must also be able to enforce transformed versions of those properties, andin some cases stronger versions | for example, relating to additional authentication, monitoring,and traceability that may not be present in the internal systems that the gateway is protecting.Furthermore, the third property relating to the prevention of denials of service within the gatewayand within the internal systems could be absent or only vestigially present in the internal systems.Thus, the third property is emergent (in the sense of Section 8), whereas the �rst two propertiesalso have some emergent aspects. Thus, the relationships among properties to be satis�ed by thegateway and the properties to be satis�ed by the internal systems can bene�cially be addressed byconsidering the transformations that each property undergoes.8.6 Transformations Within a Cryptographic ProtocolSituations in which information and associated properties are transformed from step to step withina cryptographic protocol can be modeled by a logic such as the BAN logic [29] (Section 6.3), whichassists in reasoning about trustedness and trustworthiness in cryptographic protocols.As information undergoes transformations, so do properties pertaining to the information.� Crypto for con�dentiality implies a transformation from an unencrypted form to an encryptedform and a transformation from an encrypted form to an unencrypted form. Properties per-taining to the use of such crypto include nonbypassability of the encryption process, nonex-posure of the keys, and algorithmic strength. For example, what happens to these propertiesoverall? Furthermore, there may be vulnerabilities if intermediate stages of a particular im-plementation are accessible, as in the case of a software-implemented triple DES.� Crypto for user or peer authentication implies a transformation from identity informationto cryptobinding information, and a transformation on the cryptobinding information thatauthenticates the original identity. Properties that may themselves be transformed underthese information transformations involve (for example) authenticity, nonspoofability, andnonrepudiatability. For example, these attributes typically depend on the integrity of theunderlying operating system and on the protection of crypto keys.� Crypto for entity integrity implies a transformation from (for example) a message to its cryp-tobinding information and another transformation from the message and its cryptobindinginformation to a binary decision that veri�es entity integrity. Properties that may be assessedinvolve (for example) integrity, nonspoofability, and nonrepudiatability.Con�dentiality, integrity, authenticity, nonspoofability, and nonrepudiatability are all dynamicproperties that can be compromised during system use.52

Secure Systems Architecture and Formalism8.7 Commonalities Among Di�erent Types of TransformationsThe foregoing sections exhibit various forms of composition and layering, above and beyond thetraditional simple serial connection in which outputs from one component become inputs to another(with no reverse path in the automata sense) or invocation (with some sort of call-and-returnsemantics). These forms are summarized as follows.� 8.2. Multilevel security: Layering of a trustworthy mechanism on top of a privilege mechanism� 8.3. SeaView: Layering of an untrusted mechanism on top of a trusted mechanism� 8.4. Byzantium: Layering of a trustworthy mechanism on top of untrusted mechanisms� 8.5. Trustworthy gateways such as �rewalls: Interposition of a trustworthy mechanism be-tween two mechanisms of indeterminate trustworthiness, to control the
ow of tra�c (in oneor both directions)� 8.6a. Crypto for con�dentiality: Interposition of a trustworthy mechanism between twomechanisms of indeterminate trustworthiness, to protect the intermediate medium and oneor both of the two end mechanisms from being compromised while information is in anuntrustworthy transmission or storage medium� 8.6b. Crypto for entity authentication: Inclusion of a trustworthy mechanism for crypto-binding to determine an authentication signature, and a possibly somewhat less trustworthymechanism for checking the authenticity of the cryptobinding� 8.6c. Crypto for entity integrity: Inclusion of a trustworthy mechanism for applying anintegrity signature, and a possibly somewhat less trustworthy mechanism for checking itsintegrity9 Formal and Semiformal Methods Useful in Other DisciplinesSection 9 summarizes only brie
y a few relevant e�orts outside of the security area that should bestudied further for their potential applicability to security.A session organized and chaired by P.G. Neumann for the 1995 National Information SystemSecurity Conference considers recent progress relating to reliability, fault tolerance, safety, andsecurity applications, and how progress in other disciplines might be applied to secure systems andcommunications. Position statements from Neumann [160], R.W. Butler [31], R. Kurshan [112],and W. Legato [115] are included in the 1995 NISSC proceedings.Butler has sponsored extensive work at the NASA Langley Research Center, aimed at applyingformal methods to life-critical subsystems in aerospace applications | much of which is summa-rized in [32]. In various relevant R&D and technology-transfer projects, formal methods have beenapplied to architectural-level fault tolerance, clock synchronization, interactive consistency andByzantine agreement, design of special-purpose hardware devices and units, asynchronous com-munication protocols, design and veri�cation of ASICs (application-speci�c integrated circuits |custom-designed hardware for speci�c problem domains such as signal processing), decision tables,railroad-signalling systems, and analysis of both the Space Shuttle software and aircraft navigation53

Secure Systems Architecture and Formalismsoftware. Some of this work uses approaches and tools developed by organizations known for pastsecurity work, notably SRI Computer Science Laboratory (SRI's PVS for specifying the instructionset and microarchitecture of the AAMP5 microprocessor, Ehdm for the Reliable Computing Plat-form and for clock synchronization | see [173]), Odyssey Research Associates (modeling railwayswitching control for Union Switch and Signal, using TBell for decision tables, and the develop-ment of Romulus, and using Penelope for a Boeing 777 component), to cite just a few recent e�orts.See [32, 33] for further references, and [92] for the proceedings of the most recent Langley FormalMethods Workshop. Also, see [37, 38] for two NASA guidebooks on the use of formal methods inNASA applications.John Rushby provides a comprehensive general view of the ways in which formal methods areapplicable to airborne systems [209], and to safety more generally [208]. Many of his conclusionsrelative to safety are also applicable here. (See Section 12.1.)David Parnas and Nancy Leveson have each used extensive formal analytic techniques to modelcontrol-system properties, for example, related to the Ontario Hydro nuclear-power shutdown sys-tem. Parnas's techniques for formalizing documentation and applying them to state tables appearsto be quite applicable to security applications. For the FAA's aircraft collision-avoidance systems,Leveson has also provided formal requirements that have been adopted as the o�cial requirements.Her techniques for fault-tree analysis and hazard analysis are somewhat specialized, but represen-tative of a kind of analysis that might be useful in security applications. Leveson's recent book onSafeware [116] provides extensive background on these techniques. Some of Parnas's recent workis summarized in [179].Model checking is becoming recognized as a useful middle ground between two extremes: higher-order logics that require complicated veri�cation, and informal description languages that permitlittle or no formal analysis. Model checking uses �nite-state representations (such as binary decisiondiagrams) and enables a decidable analysis (explicit or implicit) of the state space to determine thesatisfaction of certain properties. It is applicable to hardware and software. Typical approachesinvolve exhaustive or heuristically motivated searches through the entire state space.Edmund Clarke and Kenneth McMillan (SMV [43, 140]) at Carnegie Mellon University, RobertKurshan (COSPAN [87]) and G.J. Holzmann (SPIN [93]) at AT&T Bell Laboratories, David Dillat Stanford (Mur� [57]), and others have used model checking in various applications, involvingcommunications protocols, cache-coherence algorithms, hardware designs, and asynchronous sys-tems. For additional references, see [9, 11, 25, 28]. Model checking is easily automated, and isadept at �nding design
aws | which are explicitly represented in the analysis rather than merelysuggested. Model checking does not seem to scale well for very large systems, but is ideal foranalyzing relatively small state spaces. It would appear to be most useful if it could be used incombination with hierarchical and compositional formal methods, and with theorem proving and/orproof checking. However, this integration of di�erent approaches has not yet been accomplishedother than partially and experimentally.The European community is very fond of formal description languages (FDLs) such as Z (Zed),VDM, Estelle (Extended Finite State Machine Language), Lotos (Language Of Temporal Or-dering Speci�cation), and SDL (Speci�cation and Description Language). See Spivey [232] andPotter et al. [190] for de�nitions of Z and [243] for a detailed overviews of Estelle, Lotos, andSDL. Each of these languages is logically based on �nite-state machines. Estelle uses Pascal datatypes; Lotos and SDL use algebraic speci�cations of abstract data types. Of these languages, Es-54

Secure Systems Architecture and Formalismtelle appears best able to accommodate hierarchical layering of speci�cations. One of the mainuses of the last three of these languages is for protocol speci�cation and veri�cation; for example,see [100] for an application of Estelle. The establishment of each language was heavily driven bydesires for language standardization, but each is amenable to some formal analysis. Each of theseapproaches has its own strengths and areas of applicability.Z has been used in a variety of applications, including speci�cation of a safety-critical controlsystem [95] and a speci�cation of part of IBM's CICS operating system component. Variousexamples of the use of the other three FDLs are given in [243].Bicarregui and Ritchie give a comparison between the speci�cations in VDM and B of a communi-cations protocol previously speci�ed in CCS [20].Numerous algebraic (as opposed to state-based) speci�cation languages also can be considered,such as OBJ [71] using equational logic, and CSP [91] using Communicating Sequential Processes.Historically, algebraic techniques have generally been less applicable to representing and reasoningabout large and complex systems, and have not been used much for secure systems.Various temporal logics exist that are suitable for specifying real-time algorithms. However, theyhave usually not been applied to security problems or to specifying large systems.A useful summary of the use of formal methods in a variety of real-system industrial applicationsis given by Craigen at al. [47], based on an earlier report [46].

55

Secure Systems Architecture and FormalismPart Three: FORMALIZING RISSC ARCHITECTURES10 Implications of the RISSC Philosophy on Formal MethodsSection 10 considers the e�ects that RISSC architectures have on system speci�cation and analysis.We examine whether the use of formal methods in the design and implementation of RISSC systemscan be simpler than the corresponding uses in more conventional distributed-system and centralizedarchitectures. In particular, we consider the implications of subsystem dependence and propertydependence on the corresponding statements and proofs of properties.In principle, the reduced-interface notion of the RISSC philosophy should simplify the task ofapplying formal methods to complex distributed systems. In general, in a given design (or worseyet, in its implementation), it is di�cult to disentangle interrelationships among properties unlessthe corresponding design and implementation entities to which those properties refer are themselvessuitably decoupled. Thus, the primary challenge is one of decoupling a design into relativelyseparable components, according to the RISSC philosophy; from that decoupling, a simpli�cationof the speci�cation and analysis can follow.The dependencies of Table 11 are seemingly more elaborate than those made explicit in publishedformal analyses. However, this apparent complexity must not be construed as an indication thatthings are any more complicated than they have always been. Reality is often more complex thanwe would like it to be, and the table merely illustrates that (1) the satisfaction of a particularabstract property typically depends on the satisfaction of other properties, in a way that is usuallynot made explicit, and (2) many detailed properties and the ways in which they interrelate havetended to be sublimated in the past.10.1 Implications on the System Development ProcessConventional distributed systems are typically plagued by a variety of shortcomings that a�ectsystem development and analysis, such as the following:� Overly powerful global mechanisms (such as the Unix superuser facility) violate the principleof least privilege. (There are various e�orts to separate the superuser functionality intoprivileged subdomains | such as Badger et al. [10], who describe a partitioning of the Unixsuperuser functionality into 27 di�erent privilege classes.)� Unprotected external and internal interfaces such as .rhosts, rsh, and rlogin mechanismsmay be easily penetrated. Pervasive interconnectivities that are largely unchecked are alsorisky (such as the use of root within mechanisms that in actuality do not require privilegesbut are given them primarily to simplify implementation).� Unforeseen interactions may exist among seemingly isolated or single-purpose subsystems(such as global dependence on a single nonredundant authentication server, depended uponfor a variety of functions above and beyond just authentication).� Unvalidated executables may be hidden within apparently benign information | for example,PostScript �les or Microsoft icons containing Trojan horses, or E-mail letter bombs that get56

Secure Systems Architecture and Formalisminterpreted by mail-reader programs.Vulnerabilities such as these present an open invitation to Trojan horses and other forms of misuse.The RISSC approach seeks to minimize these harmful e�ects, by decoupling the subsystems andlocalizing e�ects to within subsystems, wherever possible | especially with respect to security,but also with respect to system reliability and fault tolerance. In a narrower sense, that is sortof what the TCSEC TCB-kernel approach attempted to do in the small. The signi�cance ofthe RISSC approach is that it attempts to extend the intent of the TCSEC, in the large | tohighly distributed systems and networks, to reliability issues, and to a broader sense of security.Abstraction, modularization, structural encapsulation, separation of concerns, allocation of leastprivilege, minimization of dependencies, and other similar techniques are completely consistent withthe RISSC philosophy, and can signi�cantly enhance security, as noted in Sections 2, 4.1, and 5.These concepts also lend themselves naturally to easier application of formal methods.10.2 Implications on System AnalysisRISSC techniques can contribute notably to the security inherent in a system design, perhapsmost signi�cantly by forcing a structure on the design that in turn can simplify speci�cation andimplementation, and can help to avoid many of the more common system vulnerabilities thattypically result from poor design (such as those enumerated in [159]). Assuming that a design hasadhered to the RISSC philosophy, the analysis of that design and of its implementation can alsobe greatly simpli�ed.Interactions among seemingly isolated subsystems must be made explicit, and potentially harmfulinteractions must either be demonstrably avoided, or else masked by higher layers. In addition, thee�ects of would-be Trojan horses and design
aws must be prevented, masked, or at least identi�edand isolated. A pitfall with all system speci�cation techniques is that a component may do exactlywhat it is expected to do, but may additionally do something else that is not explicitly prohibited|such as occurs in surreptitious Trojan-horse activities. Thus, it is advisable to have both positivespeci�cations as to what must occur, and negative constraints as to what must not occur | inwhatever form is suitable, for example, requirements or speci�cations. However, because it is verydi�cult to enumerate exhaustively all the bad things that should not happen, explicit requirementsthat constrain bad e�ects are important, particularly if those bad e�ects can arise from weaknessesresulting from the structure of the overall architecture.11 Appropriate RISSC ArchitecturesSection 11 selects several representative subfamilies from three basic families of multilevel-securearchitectures enumerated in Appendix A. These subfamilies are more or less adherents of theRISSC concept, and have varying ease of amenability to formal methods.The �rst family [[1]] of system architectures in Section A.1 contains two subfamilies [[1a]] and [[1b]],denoted as follows:� [[1a]] MLS,User-S1,AT,ZN-ZT-MT,XU,FP-FS-MU-CT� [[1b]] MLS,User-Sn,AT,ZN-ZT-MT,XU,FP-FS-MU-CT57

Secure Systems Architecture and FormalismThe second family [[2]] includes one subfamily that is of particular interest, namely, [[2a]] | whichis a slight variant of [[1a]]:� [[2a]] MLS,User-S1,AT,ZN-ZT-MT,XU,FNc-FS-MU-CTThe architectures of [[1a]], [[1b]], and [[2a]] have only single-level �le servers, and are useful examplesof the RISSC concept. Another subfamily [[3a]] allows the presence of multilevel-secure �le servers,and is therefore somewhat less RISSC oriented, but still appropriate for discussion:� [[3a]] MLS,User-S1,AT,ZN-ZT-MT,XU,FP-FT-FM-MTThe notation used to represent these cases is that used in Appendix A. For each of the selectedRISSC-oriented architecture subfamilies, multilevel-secure systems (MLS) are composed of single-level end-user systems (User-S), trustworthy authentication servers (AT), trustworthy networkingthat enforces multilevel security (ZN-ZT-MT), untrusted network communication media (XU), andsemitrusted �le servers. Neither [[1a]] nor [[1b]] nor [[3a]] adds any encryption for �le storage (FP),while [[2a]] is identical to [[1a]] except that �les are encrypted by the end-user system and storedby the �le servers in the resulting encrypted form. Each of [[1a], [[1b], and [[2a]] has �le serversthat are trusted to support discretionary access controls for shared �le access, but that do notneed to enforce multilevel security (FS-MU-CT); that is, each �le server is a single-level server(FS). Family [[3a]] has multilevel-secure servers. Variants [[1a]], [[2a]], and [[3a]] have single-userend-user systems (User-S1); variant [[1b]] has end-user systems any of which may have competitiveusers (User-Sn).Because these architectural subfamilies are closely related to each other, they are considered to-gether in Section 11.1.This report has devoted some e�ort to multilevel-secure system complexes. It suggests that theRISSC concept is bene�cial in simplifying the problems of getting vendors to provide multilevelsecurity without having to do massive redesign of their primary product lines, while at the sametime simplifying some of the uses of formal methods as applied to those systems.On the other hand, Section 5.6 considers the usefulness of the RISSC concept even in the context ofconventional single-level applications in which no multilevel security is required. The architecturalsubfamily [[7a]] also represents a RISSC-oriented architecture that has most of the bene�ts of [[2a]]| except that it does not support multilevel security:� [[7a]] User-S1,AT,ZN-ZT,XU,FNc-FUMuch of the discussion of [[2a]] applies to [[7a]] as well.The choice of architecture ultimately depends on what components can sensibly be trusted. If end-user systems are not trustworthy, placing more security in the servers is important. If �le serversand network connections are particularly trustworthy in the environments in which they operate,encryption may be unnecessary for storing �les on the �le servers. If �le servers cannot be secure,then end-user encryption is desirable, along with multiple storage sites to avoid denial-of-serviceattacks. If end-user systems are really trustworthy, then multiuser end-user systems are feasible. Ifit is absolutely essential that each end-user system be multilevel secure, then trustworthiness mustbe much greater. Whether or not the resulting analysis is simpli�ed depends on which architectureis chosen.
58

Secure Systems Architecture and Formalism11.1 Properties of RISSC ArchitecturesWe characterize here the security-relevant properties that must be satis�ed in each case. Theseproperties provide an instantiation of the generalized properties of Section 7.1. Properties aretreated as a group wherever they are identical for multiple cases, and di�erences are explicitlynoted (namely, those relating to end-user-systems, �le encryption, and �le servers). The termtrustworthy is used in the general sense, not just in the narrow sense of MLS; we attempt to bevery explicit as to what functionality must be trustworthy.� Overall system security (MLS). Every system complex of each subfamily must enforcemultilevel security with respect to all end users and all accessible objects (irrespective of theMLS-trustworthiness of the end-user systems). In addition, all other relevant security criteria(including but not limited to the applicable elements of the TCSEC and its successors) mustbe satis�ed, as required.� Overall network security (MLS). Any networking of each subfamily must enforce mul-tilevel security with respect to all end users and all accessible objects (irrespective of theMLS-trustworthiness of the end-user systems), as well as other relevant security criteria.� End-user-system security for [[1a]], [[2a]], and [[3a]] (User-S1) and [[1b]] (User-Sn).The common requirements among the subfamilies are as follows. Each end-user workstation isa single-level system. Consequently, there are no local multilevel-security requirements. Theend-user systems must be trustworthy with respect to user authentication (nonspoofable),whether there is only one user or a collection of potentially competitive users. The end-usersystems must be free of maliciously implanted Trojan horses that could compromise user-system integrity. Their network interface software must not permit unintended leakage of(single-level) outbound information or insertion of extraneous inbound information (data andexecutables). The audit-trail collection must be nonbypassable.{ Noncompetitive end-user systems [[1a]], [[2a]], and [[3a]] (User-S1). Single-user end-user systems do not require individualized access controls, although they stillcan bene�t from controls that isolate users from the operating system and other utilitysoftware.{ Competitive end-user systems [[1b]] (User-Sn). Competitive-user end-user sys-tems must additionally provide local separation of users, in terms of discretionary accesscontrol and user process isolation.� Authentication-server security (AT). Normal user-to-system authentication (that is, au-thenticating the user to the system) and the reverse-direction system-to-user authentication(as in the TCSEC trusted path that authenticates the system to the user) could in principlebe distributed and replicated into each of the end-user systems, whereas system-by-system(e.g., server-by-server) authentication cannot. However, such distribution of responsibilitywould imply a level of authentication-trustworthiness that would often not be commensuratewith the trustworthiness of the available end-user systems | which themselves might betoo easily compromisible. Furthermore, the bilateral authentication is an example of mutualsuspicion, where the lack of integrity on both sides is a potential vulnerability. Thus, it issensible to remove from the end-user systems as much trustworthiness as possible for end-userauthentication. 59

Secure Systems Architecture and FormalismThe use of trustworthy authentication servers can avoid the need to trust the end-user systemsfor user-to-system authentication, although it is still desirable to have end-user systems beable to trust the authentication servers and other servers via server-to-user authentication.The avoidance of trust in the end-user systems is perhaps more important in [[1b]] than in[[1a]], [[2a]], and [[3a]], but can also be important in [[1a]] and [[2a]] environments wheneverphysical security cannot be trusted. The authentication servers must be secure against bothremote and internal attacks, and their authentication process must be nonspoofable (includingprotection against replay attacks). Although the authentication servers do not need to betrusted to enforce multilevel separation with respect to user objects, they may still need someknowledge about the association of maximum clearance levels with users and with systems.They must also be concerned with inference channels and possibilities for tra�c analysis thatmay exist because of the presence of the authentication servers. If this is perceived as aproblem, it is possible to have separate authentication servers for the most sensitive levels.Alternatively, distributed authentication can be employed, using multikey encryption schemessuch as Micali [52, 142], whereby dependence on a single authority can be avoided.� Network-server security (ZN-ZT-MT). In each of these RISSC subfamilies, network in-terfacing cannot be distributed and replicated into each of the end-user systems | becausethe network servers must ultimately be enforcers of multilevel security, and the end-user sys-tems cannot be trusted for multilevel security. The usual MLS properties must be satis�edby all tra�c passing through the network servers, and those servers must not be bypassableor compromisible. The network servers are also responsible for encryption and decryptionof any sensitive communications, especially whenever those functions are not provided end-to-end by the end-user systems. In addition, cryptographic checksums and error-detectingand error-correcting coding would presumably be provided by the network servers to increaseintegrity, reliability, and availability. File access is mediated by the combination of the au-thentication servers and the network servers, which prevent violation of multilevel security.Encryption and decryption of �les for transmission can be provided either by the end-usersystems (particularly in [[1a]] and [[2a]]) or | whenever the paths between end-user systemsand network servers are suitably trustworthy | by the network servers).In architecture family [[1]], the single-level �le servers are not required to provide any �leencryption, although they could decrypt encrypted transmissions of �les from the networkservers. In [[2a]], the network servers may not need to provide additional crypto for �les,because the end-user systems already do so. In [[3a]], encryption by the network servers isdesirable.� Communication security (XU). The communication media can be untrusted for con�-dentiality (CU), and also for integrity (IU) if the network servers provide integrity checksand error-correcting coding. Some additional protection may be desired for defense againstdenials of service (DT), such as alternative routing among en-route network controllers.� File-server security (FP-FS-MU-CT in [[1a]] and [[1b]], FNc-FS-MU-CT in [[2a]]).In each of these subfamilies, the single-level �le servers store information only at a single level(and, if desired, compartment). The common requirement is that the �le servers must isolatethe �les for one user from the �les for another user. That is, the �le servers must deliverthe unimpaired �les to the proper end-user system. In [[1b]], it is then the responsibility ofthe end-user system to ensure appropriate separation among competing users on each end-60

Secure Systems Architecture and Formalismuser system. Because there is no multilevel security per se (and labels, if they exist, wouldpresumably be for advisory purposes only), only discretionary access controls are required inthe �le servers, with read, write, execute, and any other appropriate privileges, as desired.Whenever �les may be shared among di�erent users, the access-control permissions mustreside in the �le servers.File encryption and decryption are not required in [[1]]. File encryption is provided by theend-user systems in [[2a]], which architecture (as noted above) is identical to [[1a]] exceptthat the user client provides the encryption before �les are transmitted to the �le server. Inthis case, discretionary access controls include the typical read-write permissions, but accessalso requires possession of the appropriate �le-storage keys. Consequently, controlled sharingof stored-encrypted �les also requires controlled key distribution.18� File-server security (FP-FM-MT-FT in [[3a]]). In this subfamily, the multilevel-secure�le servers must enforce multilevel-security separation, with su�ciently high assurance com-mensurate with the overall security requirements. This adds considerably greater trustworthi-ness requirements and necessitates that the �le servers must be strongly noncompromisible.With respect to enforcing multilevel security, there are various trade-o�s between having totrust primarily the network servers (as in [[1]] and [[2]]) and also having to trust the �leservers as well (as in [[3]]).Other architectures can be subjected to similar analyses. In addition, hybrid architectures canbe considered, with combinations of components and interconnections from several families orsubfamilies. The main purpose of this section is to demonstrate the types of properties that mustrealistically be made explicit.Of the four cases shown, [[1a]] and [[2a]] most strongly adhere to the RISSC concept, with [[1b]]less strictly compliant, and [[3a]] also less | but for di�erent reasons. Nevertheless, all fourcases are of considerable interest from the point of view of incorporation into readily con�gurablecommercial systems, and have great potential in terms of their implications on the application offormal methods, as noted in Sections 10.1 and 10.2. Similar comments apply to the single-levelsystems of subfamily [[7a]].11.2 RISSC Relevance to Security CriteriaTable 12 exhibits the various TCSEC criteria elements [151] and indicates how relevant they are foreach of these di�erent system components of each of the RISSC-oriented architecture subfamilies,[[1a]], [[1b]], and [[2a]]. The TCSEC criteria elements are used here for illustrative purposes,because they are familiar. One extra item is added, augmenting covert-channel analysis with a newrequirement for defense against non-MLS tra�c analysis, such as provided by OPSEC (OperationalSecurity) techniques. Other, more recent, criteria could be used, but would have very similarmanifestations in the table.In the table, a solid bullet (�) indicates that the particular component contributes signi�cantly tothe satisfaction of the given criteria element. An open bullet (�) indicates a secondary contribution.18Although it is conceptually possible that access controls could be replaced altogether by using di�erent keys forencrypting the same objects with di�erent access permissions, this is not a good idea, for a variety of reasons.61

Secure Systems Architecture and Formalism
Table 12: Relevance of RISSC families [[1]] and [[2]] to security criteriaArchitectural Components[[1a]] [[1b]] [[2a]] AT ZN-ZT- XU FS-Criteria elements User-S1 User-Sn User-S1 MT MU-CTTCSEC Security Policy:Discretionary access control � � � �Object reuse � �[[1]] onlyLabels:Label integrity � � � �Exportation (3 criteria) �Labeling human-read output � � �Mandatory access controls �Subject sensitivity labels � � �Device labels �TCSEC Accountability:Identi�cation/authentication �Audit � � � � � �Trusted path � � � � � �TCSEC Assurance:System architecture � � � �System integrity � � � � � �Security testing � � � � � �Design spec/veri�cation � � �MLS covert-channel analysis �Non-MLS tra�c analysis �Trusted facility management � � � �Con�guration management � � � �Trusted recovery � � � � � �Trusted distribution � � � � � �Legend:� = primary contribution to criterion ful�llment� = secondary contribution to criterion ful�llment

62

Secure Systems Architecture and Formalism
Table 13: Relevance of RISSC family [[3]] to security criteriaArchitectural Components[[3a]] [[3b]] AT ZN-ZT- XU FP-FM-Criteria elements User-S1 User-S1 MT MT-FTTCSEC Security Policy:Discretionary access control � � �Object reuse � �Labels:Label integrity � � � �Exportation (3 criteria) � �Labeling human-read output � � �Mandatory access controls � �Subject sensitivity labels � � �Device labels � �TCSEC Accountability:Identi�cation/authentication �Audit � � � � �Trusted path � � � � �TCSEC Assurance:System architecture � � � �System integrity � � � � �Security testing � � � � �Design spec/veri�cation � � �MLS covert-channel analysis �Non-MLS tra�c analysis �Trusted facility management � � � �Con�guration management � � � �Trusted recovery � � � � �Trusted distribution � � � � �Legend:� = primary contribution to criterion ful�llment� = secondary contribution to criterion ful�llment

63

Secure Systems Architecture and FormalismFamily [[3]] is considered in Table 13. Because of the requirement that potentially all the �leservers may need to enforce multilevel security, the architectures of family [[3]] are somewhat lessin tune with the RISSC philosophy, although still vastly moreso than the more TCSEC-orientedsystems in which all end-user systems may be multilevel secure. The analysis for [[3a]] is similarto those of [[1a]] and [[2a]]. Table 13 clearly demonstrates the criteria-related critical dependenceon multilevel separation for the �le servers. However, this is not an obstacle if such �le servers areroutinely available. For comparison, Table 13 also includes subfamily [[3b]], which bears the sameresemblance to [[3a]] as [[1b]] bears to [[1a]], namely it allows competitive users on the end-usersystems:� [[3b]] MLS,User-Sn,AT,ZN-ZT-MT,XU,FP-FT-FM-MT11.3 Illustrative RISSC Properties: Modular CryptoAs an illustration of desirable properties relating to the RISSC architectures of Section 11.1, considerthe design and implementation of systems with modular crypto discussed in Section 5.7, and therisks that must be avoided. In these RISSC architectures, crypto contributes to the satisfaction ofseveral security criteria elements of Table 12, notably, discretionary access controls in [[1b]], objectreuse in [[1a]] and [[1b]] (it is not a problem in [[2a]] or [[7a]]), cryptobinding and authentication,and trusted paths from end-user systems to servers and vice versa. It also can help to reduce covertchannels and non-MLS tra�c analysis of network media transmissions.The risks to be avoided include, for example (among those noted in Section 5.7), key capture, replayof encrypted commands, key tampering to cause denials of service, and unauthorized replacementof an implementation of escrowed-key crypto with an implementation that undermines the escrowprocess.The following list enumerates a collection of illustrative properties that may be desirable for certaincrypto implementations, or on which the strength of such implementations depends. Satisfaction ofsome of these properties is desirable in facilitating countermeasures to the various risks, to whateverextent is desired. However, none of the given properties is absolute, and each must be tailoredsomewhat to various relevant assumptions and implementation circumstances (such as hardwareversus software implementation, and whether the operating environment is an open one or a closedone). Some properties are system properties relating to how the crypto is encapsulated or used,while others pertain speci�cally to the crypto algorithms or protocols, or to their implementation.The properties are grouped functionally. The �rst property is a generic catch-all that relates to riskreduction; it depends on many of the succeeding properties. The next three groups of propertiesrelate to crypto implementations, cryptobinding and authentication, and key escrow. Pervasiveauditing is lumped together as a single property, even though it is distributed throughout andassociated with most security-relevant functions. The last property involves the security of theunderlying infrastructure, which is itself a broad category that encompasses operating systems,database management, networking, with any or all the usual attributes such as con�dentiality,integrity, and availability (and in some cases invoking certain crypto mechanisms). This ordering isfollowed in Table 14, which summarizes these properties; Table 14 also indicates for each propertythe other properties on which the given property depends. In the case of infrastructure security,speci�c aspects are noted as applicable.� Risk reduction. All the potential risks summarized in Section 5.7 must be addressed | for64

Secure Systems Architecture and Formalismexample, must be minimized or determined to be acceptable risks.� Crypto strength. Any cryptographic algorithm (or hashing function, in the case of authen-tication) must be su�ciently strong to resist cryptanalytic attacks and brute-force exhaustion(commensurate with the perceived risks of compromise).� Crypto encapsulation. Any cryptologic implementation must be resistant to subversion,tampering, or other form of compromise, including attacks on its encapsulating environment(for example, operating system, application software, network server, or hardware) and its keymanagement. This property relies critically on the security of the underlying infrastructure.� Source protection. A proprietary or classi�ed crypto module must have its source codeprotected or isolated, so that it cannot be reimplemented easily in similar or di�erent operatingenvironments. This property is primarily for closed-world applications, such as SKIPJACK.� Object protection. A proprietary or classi�ed crypto module must have its object codeor hardware implementation protected, so that it cannot easily be reverse engineered. Im-plementation could require stealthy encapsulation or tamper-resistant hardware enchipment.This property is primarily for closed-world applications, of which Clipper and Capstone areexamples.� Crypto integrity. A crypto module must be di�cult to replace, tamper, bypass, spoof,or otherwise compromise. (However, replacement may be possible under certain carefullycontrolled circumstances, with proper authorization. See the next item.) In addition, eachcrypto-relevant module must be authenticated as being the desired module | for example,to prevent substitution of a trapdoored module or a Trojan horse that makes surreptitioususes of the unencrypted information or the keys.� Operational
exibility. Whether embedded in a larger subsystem or modularly pluggable,a crypto module must be amenable to installation, initialization, and operation by authorizedpersons or agents. It must be replaceable or con�gurable only by authorized agents, interms of its source code, object code, or hardware components, under speci�cally designatedcircumstances (for example, at installation or system recompilation), as permitted.� Crypto usability. Crypto implementations and the very existence of crypto should beessentially invisible within their encapsulation, primarily for ease of use. In particular, keymanagement should be of low visibility.� Secure key management. Crypto keying information must be protected with great care.Establishing keys through key exchange or key agreement must be largely hidden, irrespectiveof its complexity, subjected to stringent controls, and at the same time very di�cult tointercept, spoof, or jam.� Authentication nonspoofability. Crypto used for cryptobinding, authentication, and in-tegrity checking must be nonspoofable (for example, it should hinder reverse engineeringof a hash algorithm or a digital signature, masquerading, forging, using replay attacks, orsimulating a positive acknowledgment from an authentication server).� Authentication nonrepudiatability. Crypto used for cryptobinding, authentication, andintegrity checking must be nonrepudiatable, with whatever degree of certainty is required.65

Secure Systems Architecture and Formalism� Escrowing process integrity. If key escrow is required, all established keys must be prop-erly escrowed (under a suitable de�nition of \properly"). This is a special case of cryptointegrity.� Escrowed-key con�dentiality. Escrowed keys must be strongly protected against loss ofcon�dentiality (for example, through system failures or human misbehavior, whether acci-dental or intentional, or misuse of the court-authorized escrowed-key decryption process).� Escrowed-key nonbypassability. The validity of an escrowed key must not be supersededor overridden by the use of a key that is not properly escrowed. For example, the keys thatare escrowed must be the keys that are actually used. (Note that this property does notpreclude superencryption.)� Escrowed-key decryption nonsubvertibility. Alterations in transmitted or stored in-formation (as in the attacks on the Clipper law-enforcement access �elds described by MattBlaze [21]) must not be able to subvert the validity of the decryption process with respect tothe properly escrowed keys.� Escrowed decryption con�dentiality. The authorized decryption process performed usingproperly escrowed keys must be strongly protected against loss of con�dentiality (for example,through system failures or human misbehavior relating to the decryption processes, whetheraccidental or intentional, or through other misuse).� Pervasive auditing. All security-relevant crypto operations (for example, crypto modulealterations, key changes, con�guration changes, escrow retrievals, and emergency overrides)must be controlled, restricted to properly authenticated agents, and thoroughly audited. Theaudit trails must be nontamperable. If any compromises occur, the audit trails must indicateexactly what has happened.� Infrastructure security. Infrastructure security refers to any underlying mechanisms andoperational procedures that are not necessarily directly crypto related, but whose misbehaviorcould undermine some of the crypto properties. Infrastructure security implies the preventionof such misbehavior. It may include operating system security, database security, networksecurity physical security, and appropriate human behavior. It may apply only to selectedcomponents, such as network servers or authentication servers, some of which may themselvesrequire crypto (although typically not recursively). Auditing must also apply to security-relevant operations in the infrastructure.Of these properties, some are very di�cult to formalize precisely, partly because they are (in-tentionally) stated imprecisely, but more often because they are extrinsic properties | that is,intrinsically unformalizable within the scope of other system properties or concepts. Examples ofextrinsic properties are statements about cryptanalytic complexity, such as the di�culty of factor-ing a product of large primes, or whether any shortcuts exist to an exhaustive attack. Anotherexample is escrowed-key decrypt integrity, which relies in part on the honesty and integrity of es-crow o�cials. Overall, the security of crypto-based systems may depend critically on the validityof somewhat intangible properties as well as explicit technological properties. Some properties areindeed formalizable, such as those relating to BAN-logic statements about who (actually or anthro-pomorphically) knows what at what time in an authentication protocol, and who can do what to66

Secure Systems Architecture and FormalismTable 14: Dependencies among crypto-related propertiesProperty Acronym Depends on (among others)Risk reduction RR CS, CE, CI, SKM, ANS, ISS, etc.Crypto strength CS Algorithms, factoringCrypto encapsulation CE ISS (encapsulating)Source protection SP ANS, ISS (source sites)Object protection OP ANS, ISS (object sites)Crypto integrity CI ANS, ISS (physical/logical security)Operational
exibility OF Operational practiceCrypto usability CU System/network architectureSecure key management SKM ANS, CS, CE, CI, ISS (key handling)Authentication nonspoofability ANS CS, CE, CI, ISSAuthentication nonrepudiatability ANR CS, CE, AUD, ISSEscrowing process integrity EPI ANS, CI, Escrow schema, ISSEscrowed-key con�dentiality EKC ANS, ISS (especially procedures)Escrowed-key nonbypassability EKN ANS, CI, Escrow schema, ISSEscrowed decryption nonsubvertibility EDN ANS, Escrow schemaEscrowed decryption con�dentiality EDC ANS, CS, CE, EKC, AUD, ISS, peoplePervasive auditing AUD ANS, ISS, Escrow schemaInfrastructure security ISS Some crypto, some people!whom. But again, the satisfaction of those properties may actually depend on extrinsic propertiesthat are not usually included in the formalization. Thus, we need to address a middle ground inwhich certain properties are formalizable, but only in terms of explicitly stated assumptions aboutother properties that may be either intrinsic or extrinsic. Examples of such underlying assumptionsrelate to whether an underlying operating system has a
aw that would permit crypto compromise,whether a public key can be factored within a particular time period, whether a key compromisemuch later in time can result in a serious retroactive compromise, or whether a particular humanbeing is trustworthy. Furthermore, there may be additional factors relating only to the intendeduse of a particular mechanism, such as the presence of superencryption whose intent is to defeat theintent of the key-escrow process. It is very di�cult to formalize intent and other socially motivatedfactors. However, certain assumptions about them can be stated and used in subsequent analyses.For ease of understanding, Table 14 lumps together properties that may actually arise at di�erentlayers of abstraction in any particular implementation. This is an oversimpli�cation that appearsto cause loops in the dependence ordering, although those loops do not actually exist in reality.For example, in the large, the infrastructure may depend on crypto for its implementation, whilethe integrity of the crypto depends on the infrastructure. More explicitly, crypto encapsulationdepends on certain aspects of the security of the infrastructure, whereas particular functions of theinfrastructure may depend on crypto encapsulation. However, a careful ordering of hierarchicallayers in terms of speci�c abstractions at particular layers avoids the existence of circular depen-dencies. What is certainly represented in the table is the fact that most crypto-related functionalitydepends on the security of its infrastructure. 67

Secure Systems Architecture and FormalismThere is always a temptation in formal analyses to concentrate on those attributes that are easilyformalizable, and to ignore those that are not. This situation resembles the story about the personwhose keys were lost in a �eld, but who is looking for them under the streetlight | because that iswhere the light is. The challenge, of course, is to make all the relevant properties and assumptionsexplicit, and to reason accordingly.11.4 RISSC Crypto-Based Authentication PropertiesSection 11.3 includes two basic properties relating to crypto-based authentication, namely, non-spoofability (ANS) and nonrepudiatability (ANR). Table 14 summarizes some of the other proper-ties on which those properties depend. Those relationships are now explored in greater detail.Nonspoofability (ANS) depends on� Crypto strength of the cryptobinding, including nonreversibility of hashing algorithms (suchas MD4 [197]) and cryptographic seals such as are used in RSA (Rivest-Shamir-Adleman)authentication or DSS (the Digital Signature Standard) (CS)� Crypto encapsulation, including the protection of the cryptobinding keys and protection ofany internal hashing and crypto implementations from spurious use (CE)� Crypto integrity, particularly the ability to tamper with the authenticating code (or hardware)that could give the appearance of authentication when in fact the cryptobinding informationis actually bogus (CI)� Infrastructure security, including prevention of subversion of the cryptobinding and authen-ticating processes through operating-system penetrations, and techniques such as nonces forpreventing replay attacks (ISS). This includes preventing forgeries, simulations of positive ac-knowledgments from an authentication server, and users masquerading as other users. Infras-tructure security is particularly important when cryptobinding is done on a shared end-usersystem (which is avoided in the RISSC subfamilies [[1a]], [[1b]], and [[2a]]) or on a sharedauthentication server.Nonrepudiatability (ANR) depends on� Crypto strength of the cryptobinding (CS), although this is somewhat less important fornonrepudiatability than for nonspoofability� Crypto encapsulation, including high-assurance demonstrations of the protection of the cryp-tobinding keys and protection of any internal hashing and crypto implementations from spu-rious use (CE)� Avoidance of tampering with the audit-data collection and analysis that could mask a nonau-thentication or to create the false impression of an authentication, and generally high assur-ance that audit trails are noncompromisible (AUD)� Infrastructure security, particularly in protecting against internal misuse that might result inthe appearance of spoo�ng when in fact no spoo�ng had occurred (ISS)See also Kailar, Gligor, and Gong [102], for issues of dependence in crypto protocols.68

Secure Systems Architecture and Formalism11.5 RISSC Key-Escrowed Crypto PropertiesSection 11.3 includes �ve basic properties relating to escrowed-key encryption and decryption,namely, escrowing process integrity (EPI), escrowed-key con�dentiality (EKC), escrowed-key non-bypassability (EKN), escrowed decryption nonsubvertibility (EDN), and escrowed decryption con-�dentiality (EDC). Table 14 summarizes some of the other properties on which those propertiesdepend.All �ve of these escrow-related properties rely on adequate infrastructure, including the the securityof the entire escrow process and nonspoofability of authentication throughout the escrowing process,key storage, the supposedly authorized use of the escrowed keys, and subsequent to authorizeddecryption using the escrowed keys. People involved in the escrow process must also be trustworthy,including algorithm and protocol designers, chip designers and fabricators, escrow operators, andauthorized decrypting agents. In the case of the escrow process associated with Clipper, the splitkey implies that multiple individuals or processes would have to be compromised during the process,although the decrypted results might be vulnerable to single-party misuse. Modeling of the entireprocess must make assumptions of trustworthiness explicit, including those relating to people.The depends on relation rather than the depends upon relation is relevant whenever a multikeycryptosystem is involved that can mask the unreliability or untrustworthiness of some number ofcomponents (human or otherwise).11.6 RISSC Crypto Auditing PropertiesSection 11.3 includes a catch-all property relating to pervasive auditing. A detailed discussion ofthe requirements for securing an auditing environment is given in Appendix B, with particularattention to making that environment tamperproof. Much of that discussion is relevant here.11.7 RISSC Crypto Infrastructure PropertiesThe crypto-related properties enumerated in Section 11.3 end with the security of the infrastructure,which ultimately depends on the satisfaction of the requirements of Sections 4.2 and 11.1, amongothers.11.8 Analyzing Crypto Implementations in the LargeIt remains an enormous challenge to completely model all of these dependencies involving cryptoimplementations, within the computer-communication infrastructure and in the context of an entirecomplex of systems and networks. In this report, we have merely sketched an outline of how thatmight be carried out, in hopes that future e�orts may pursue this challenge further. We believethis challenge to be a very important one.
69

Secure Systems Architecture and FormalismPart Four: CONCLUSIONS12 Conclusions and RecommendationsThis report suggests that the attainment of signi�cant security in realistic computer systems andnetworks demands an approach that thoroughly integrates two elements:1. Architecture. An extremely disciplined approach to architecture and system development isdesirable, making constructive use of existing system and network components wherever pos-sible, encouraging the development of certain trusted subsystems that contribute to secureinfrastructures, and combining all components with constructively bene�cial interconnections,so that the resulting systems can be readily con�gured out of commercially available prod-ucts and readily evaluated as combinations of subsystems rather than having to evaluateentire systems. It is desirable to avoid hodge-podge or ad-hoc interconnections of nonsecurecomponents within nonsecure infrastructures.2. Formal methods. Formal methods should be applied judiciously to the most critical systemaspects, where the bene�ts are greatest in terms of dependability, assurance, and performance.However, they must be applied so that no seemingly unimportant aspects can compromise themore critical aspects. The formal methods must be able to span the full range of mechanisms,properties, and analyses necessary to evaluate the security of supposedly secure distributedsystems | including their operating systems, their networking software, and their networkmedia. Properties on which critical functionality depends should be represented in the for-malizations, even if they are extrinsic and cannot be proven; at least, those properties canthen become explicit, and the manner in which they are depended on can be represented.Dependencies on seemingly less critical functionality and properties should also be made ex-plicit, so that all assumptions can be checked for validity | to ensure that their dependenciesare indeed noncritical (for example, in the sense of multilevel integrity where there must beno dependence on less trustworthy entities).We believe that this two-pronged approach can dramatically improve the security attainable. Manyof the constituent steps in this process already exist in the small. What is most needed is theuni�cation of all relevant techniques within an overall framework that permits reasoning aboutentire systems and networks of systems in the large, in terms of their component subsystems, andthat also permits the process to be carried on iteratively into lower layers of abstraction.12.1 General ConclusionsCertain government organizations (particularly the National Computer Security Center in theUnited States and CESG in the United Kingdom) have long hoped that the research and de-velopment communities would be able to employ formal methods as a cost-e�ective and practicalapproach to the development of realistically secure computer systems. Formal methods have consid-erable potential throughout the development cycle, with respect to requirements, speci�cations, andimplementations, in software, hardware, and microcode, for a wide range of systems and networks.However, this potential has been very slow to reach fruition.70

Secure Systems Architecture and Formalism� For the optimistic reader, this report concludes that there is still an enormous untappedpotential for formal methods in the development of systems and networks capable of satisfyingstringent security requirements. Whereas much of the prior work has been concerned withproperties of components and subsystems in the small, there are enormous bene�ts thatcan result from being able to express and reason about system properties on a more globalbasis, for example, reasoning about integrated systems based on properties of their constituentsubsystems. Furthermore, signi�cant successes of formal methods reported in other disciplinesare encouraging as harbingers of what should be possible in applications of formal methodsto security.� A pessimistic reader might counter with a comment that formal methods have thus far beentoo di�cult and too expensive to apply, even to components and small subsystems; why thenshould we expect such techniques to be applied successfully to systems in the large?One response to the pessimistic view is that the focus in the past has centered on low-layer propertiessuch as multilevel security of kernels, without su�ciently addressing all of the relevant propertiesof trusted computing bases using those kernels. The TCSEC criteria have not encouraged represen-tation and evaluation of application-speci�c properties, being concerned primarily with lower-layertrusted computing bases. Another response is that formal methods must be applicable to higher-layer properties as well as low-layer properties and their interrelationships, if those methods are tobe really useful. A further response is that the overemphasis on preservation of properties (suchas restrictiveness and strict-sense composability) has led to the neglect of work on the transfor-mations of properties under generalized compositions. For example, what happens when di�erentcomponents satisfying nonidentical properties are grouped in the same subsystem or networkedtogether?The practical long-term viability of the use of formal methods for security will be determined inpart on these methods being applied successfully to real systems, in the near future. As noted inSection 9, there are some genuine successes applied to real systems with stringent requirements forreliability, fault tolerance, and safety. There are also a few rather more limited successes relatingto secure computer and communications systems, and some recently renewed interest in furtherpursuing such applications. Some successes are urgently needed in which formal methods areapplied to real security-critical systems.It is a conclusion of this report that there has been overemphasis in the past on Orange-book-likekernel properties and on property-preserving transformations, and that new paradigms are essentialfor much more pronounced successes in the future. In addition, the modeling of systems derivedfrom combinations of subsystems (simple composition, bilateral associations, hierarchical layering,and networking) desperately need to be represented more explicitly in realistic security criteria. Anapproach that re
ects the intent of the appendix to the original unreleased draft version of TrustedNetwork Interface document [150] (the Red Book) is needed, representing the real complexities ofdeveloping distributed systems and networks, and providing a basis for applying formal methodsthereto.Some of the conclusions reached in this report with respect to security echo those reached byRushby [209] in the context of reliability and safety in airborne systems. In particular, with respectto both this report and Rushby's, it appears that the following conclusions are in order:71

Secure Systems Architecture and Formalism� Avoiding vulnerabilities. Formal methods are best applied when they dramatically improvethe process of detecting and eliminating signi�cant system
aws and vulnerabilities. To thisend, it is appropriate to validate that certain critical requirements soundly represent theirintended purpose, and to demonstrate by formal (or even semiformal) reasoning that criticalproperties are satis�ed by particular components or subsystems with respect to their formalspeci�cations. It is also appropriate to examine critical aspects of the resulting system andof the implementation process itself, seeking to derive or prove properties of the system interms of properties of its subsystems. The essence of this process is to provide cumulativelyincreasing con�dence in the system design and its implementation, by identifying inadequaterequirements and
awed designs, and overcoming them. Steps that do not add substantivelyto this process are less important.� Correctness. It is unwise to overemphasize the process of trying to prove code correctness.Code proofs are premature unless the requirements and the design are demonstrably sound.Thus, e�orts to increase the assurance with which system dependability can be attained bythe implementation should be deferred, at least until no further
aws can be found in therequirements and the design. However, at that point, code proofs and other forms of analyzingthe implementation (see the second bulleted item in Section 12.4) can be very valuable |especially if they are able to show the absence of nonspeci�ed e�ects such as surreptitiousTrojan horses. On the other hand, there is an enormous potential for the use of formalmethods in hardware implementations | for example, in speci�cations, mask layouts, andfabrication.� Top-to-bottom analysis. Past e�orts on proving a continuous re�nement thread from top-levelrequirements through the detailed design to the software and �nally down to the hardware areof considerable theoretical interest, particularly when applied to large and complex systems.However, those e�orts must be considered as overkill unless it can be demonstrated that allthe relevant critical paths can thus be encompassed and that no serious vulnerabilities canexist in other threads. Then, the top-to-bottom analysis can be very compelling.� Transformations. Greater emphasis is needed on the property transformations that resultfrom nontrivial compositions, hierarchical layerings, and interpositions of mediators suchas �rewall systems and trusted guards. The transformational approach should also permitparametric architectural representations, for example, what simpli�cations or complicationsmight result when a particular RISSC architecture undergoes a particular change in design,such as making the �le server multilevel secure instead of having multiple single-level �leservers. The e�ects should be formally derivable.� Methodology. The choices of methodologies, speci�cation languages, and programming lan-guages are important to the success of a development e�ort and to the e�ective application offormal methods. However, those choices are less critical if the architecture is poorly chosenand if the properties to be satis�ed are not appropriate | for example, seriously incomplete,or too abstract, or too low-level. Thus, considerable e�ort must be devoted to establishingan architecture that is amenable to the use of formal methods. However, there is also adanger that premature choices of methodology and approach will lock the development intoa nonconstructive path. Thus, it is essential that all these factors be considered early in thesystem development process. 72

Secure Systems Architecture and Formalism� Research and development. Consistent with the ability to apply formal methods to criticalaspects of complex and critical systems, research e�orts must continue to explore the frontiersof the technology, and development e�orts must be carried out that employ formal methodsconstructively as suggested in these conclusions. Some speci�c suggestions for future R&Dare given in Sections 12.2, 12.3, and 12.4.There have been many advances in formal methods in the past twenty years. However, major suc-cesses are still awaited in the fruitful application of these methods. We conclude that considerablepotential remains untapped for formal methods applied to security, and that we are now actuallymuch closer to realizing that potential. Many of the pieces of the puzzle | theory, methods, andtools | are now in place. The combination of approaches suggested here could help, if the desiredparadigm shifts are taken and if the following recommendations are considered.12.2 Recommendations for Applying Formal Methods to ArchitecturesSection 12.2 provides a collection of recommendations for the future, relating to the use of for-mal methods applicable to system and network architectures intended to satisfy critical securityrequirements.� RISSC concepts. More emphasis should be placed on RISSC-like systems, for both multi-level and single-level security applications. The attempt to get developers of secure computersystems to produce commercially viable B2, B3, and A1 systems has been rather dismal.Adoption of the RISSC approach would permit the rapid development of multilevel-securesystem complexes using o�-the-shelf single-level end-user systems, and would greatly increasethe ability to con�gure MLS systems to suit particular application needs, to evaluate thosesystems, and to evolve them over time. This approach can also be very useful in develop-ing single-level systems with dependence on demonstrably trustworthy network servers, �leservers, and authentication servers, somewhat independent of the speci�cs of the particularend-user systems, vendors, operating systems, and application software. Overall, the RISSCapproach would increase the ease with which heterogeneous system complexes can be pro-duced. Whether or not such an approach can simplify the formal analysis remains to bedemonstrated. We believe that, by removing much of the trustworthiness from end-user sys-tems, the analysis will indeed be less intricate when all security-relevant factors are considered| for single-level security as well as multilevel security. However, perhaps the biggest bene�twould be the ability to obtain commercial MLS operating environments as con�gurations ofo�-the-shelf end-user systems.� Properties, interrelationships, and combining e�ects. More emphasis should be devoted ratherpervasively to important properties (including, but by no means limited to, MLS) and tocomplete systems (including distributed and networked systems), although e�orts relatingto properties of their component modules are also important. Although more di�cult tohandle, interrelations between security and other types of properties (such as fault tolerance,real-time performance, and emergency overrides) should also be represented. A system maynot be adequately secure overall if its reliability is in doubt, or if its security properties canbe (or indeed must be) compromised under real-time stringencies or other emergencies suchas lost passwords or crypto keys. Furthermore, formal methods should be interoperable |73

Secure Systems Architecture and Formalismfor example, in the sense that techniques for module speci�cation, network protocols, andcrypto should be able to be mixed together compatibly. Greatly improved understanding ofgeneralized composition of subsystems is required. Increased understanding is also necessarywith respect to the ways in which subsystem properties can be preserved or transformedunder generalized composition.� Assumptions. More emphasis should be placed on making explicit all of the otherwise unstatedassumptions, functional dependencies, and property dependencies underlying any system tobe formally speci�ed and analyzed. Assumptions of proper human behavior are essential, andshould be factored into the analysis of any critical system so that the dependencies on thatassumed behavior can show up as part of the reasoning process. Similarly, environmentalassumptions should be represented. Just as Byzantine techniques can be used to withstandthe misbehavior of arbitrarily faulty components, so is it desirable to use such techniquesadvantageously to overcome undesired human and system behaviors. For example, multikeycrypto [52, 142] and error-correcting coding could be useful in this regard.� Criteria. The TCSEC/ITSEC/CTCPEC e�orts are all very useful iterations in a long processof attempting to create useful security criteria. We recognize that any set of criteria is likelyto be incomplete, and also on one hand di�cult to interpret or on the other hand overlyexplicit and restrictive. Nevertheless, a successor to the Orange Book is urgently needed,possibly including a major upgrading of the Red Book to address distributed systems andnetworks more explicitly.� Tools. More emphasis is needed on the realistic usability of formal methods and their sup-porting tools. There are many potentially useful requirement languages and speci�cationlanguages, and supporting tools. However, further e�ort is needed to incorporate them intobetter human-engineered development environments into which the mechanizations of formalmethods have been carefully integrated, and in which the human interfaces to the tools havebeen driven by ease-of-use requirements. Di�erent formalisms must interrelate, so that it ispossible to reason in the large about system and network properties such as operating systemsecurity, crypto encapsulation, crypto strength, and network reliability. For real-time systems,incorporation of temporal logics or other approaches to representing real-time issues wouldalso be desirable. Readable and easily understood tutorial documents such as [30, 212] areessential for those who are able to use formal-methods environments. Carefully worked andwell-documented examples of formal methods applied to real systems are absolutely essential.� Education, experience, and training. More emphasis should be placed on the education of stu-dents and industry employees to help them appreciate the potential practical utility of formalmethods applied to real systems, as well as the theoretical beauty (for example, see [63]). Forthis to be successful, teachers must have a better understanding of the fundamental issues ofdiscrete mathematics and logic, and those issues must permeate the instruction and training.The unfortunate lack of an appropriate systems perspective represents a fundamental problemat the present time in education and training e�orts. Computer-science curricula are for themost part sorely out of touch with the needs of developers of critical systems and complexapplications. Programming and formal methods are generally taught in the small, and thestudents develop very little system sense. Good software engineering (as opposed to overlysimplistic panaceas) is rarely emphasized, and seems to be considered more or less irrelevant infavor of a predilection toward programming in the small. Unfortunately, the practical needs of74

Secure Systems Architecture and Formalismsystem developers seem to be the tail trying to wag the dog.19 Our universities must embodymore diversities (or even multiversities), teaching much more than just C, Unix, Windows, andHTML. The situation in industry is generally not much better than in universities, the resultbeing that complex systems and networks are often poorly conceived and poorly developedby people with narrowing rather than broadening experiences. A greater appreciation of theneed for system perspectives should permeate education at all levels.12.3 Near-Term RecommendationsThe conclusions of Sections 12.1 and 12.2 include some recommendations for immediate action,and others that are more appropriate in the long term. The former are considered here, the latterin Section 12.4.� Illustrative worked examples. It is very important to have more examples of how formalmethods can be applied to real systems, during the system development rather than post-hoc retro�ts. These examples should be carefully documented, thoroughly worked, and |at least initially | applied up-front in the development process to real systems (commer-cial or custom) | that is, applied primarily to requirements and speci�cations and to theiranalyses. Some of these examples will naturally be able to extend to hierarchical mappingsamong di�erent layers and explicit representations of properties at di�erent layers and explicitrepresentations of the dependencies on lower layers. Suggested examples might include thefollowing:{ A Rushby-style separation kernel together with some applications that depend on it,complete with all privileged exceptions, demonstrating clearly how the technology canbe applied, how the higher-layer properties depend on the kernel properties, and howformal analysis can be e�ectively carried out for more than just the kernel{ Complete modeling and analysis of a crypto encapsulation (whether escrowed or not)and pursuit of the concepts outlined in Section 11.3 | including making explicit all ofthe assumptions on which the con�dentiality and integrity of the crypto-based securitydepend, and reasoning based on those assumptions{ The e�ort begun in [101] should be continued, in several directions | (1) re�ning theexisting representation of the MISSI security policy, (2) examining the consistency ofthe detailed design with those requirements, and (3) possibly attempting some reasoningabout the implementation, but not necessarily code-consistency proofs (see the secondbulleted item in Section 12.4). Speci�cation of the security requirements is clearly avaluable activity. However, there appears to be good potential for getting further mileageout of the e�ort already begun. An e�ort to track ongoing changes in the requirements,design, and implementation could also be valuable.In these e�orts, we recommend that research people with intimate knowledge of the formalmethods and the tools be heavily involved, together with systems experts.19There are of course some exceptions, such as e�orts by Leveson at the University of Washington and by Knight,Prey, and Wulf [111] at the University of Virginia. Although the Virginia undergraduate program devotes rela-tively little attention to formal methods, it nevertheless attempts to provide a more rigorous treatment of softwareengineering, completely integrated into the curriculum. 75

Secure Systems Architecture and Formalism� Model checking. Model checking has considerable potential. E�orts speci�cally oriented toapplying model checking to security are desirable. Careful examination of the relative bene�tsand areas of applicability is needed.� Integration of model checking. A somewhat longer-term but still near-term goal involvesincorporating model-checking tools compatibly into existing analysis tools, such as is beingpursued at SRI and the University of British Columbia (among others).� Integration of various approaches. The integration of methodologies, speci�cation languages,formal methods, and their corresponding toolsets within a common framework would be ofconsiderable value to system developers desiring to use formal methods pervasively. Fordevelopers of secure real-time systems, some sort of temporal logic should be included.� Modularization and interoperability of di�erent tools. At present, SRI, ORA, CLI, and manyothers have tools for formal methods that operate in their own environments. It would bevery useful to have modularized components of these toolsets that could interoperate acrossinstitutional boundaries.12.4 Long-Term RecommendationsThe conclusions of Sections 12.1 and 12.2 also suggest various actions with a longer-term perspec-tive.We suggest in this report that considerable gains can be achieved by taking a fresh view of secure-system architectures and applying formal methods selectively, where the payo�s are greatest. Wealso suggest that the choices of methodologies, formal methods, and languages are important, butsomewhat less so than the architectures and the emphasis on up-front uses of formal methods.However, there is still much worthwhile research to be done, particularly where it can reduce therisks of system developments, increase the chances of success, and reduce the cost and time requiredfor system development.� Reasoning about generalized compositions. Signi�cant e�ort should be devoted to a theory ofgeneralized compositions and the property transformations they induce. This work should en-compass system and network con�gurations generally, the interconnections involved in RISSCarchitectures, the interposition of trusted gateways, networking, and the necessary criteria tofacilitate evaluation of modular systems.A particularly fruitful approach in this direction that seems to have considerable potentialis noted in Section 6.2, namely the merging of the work of Moriconi, Qian, and Riemen-schneider [145, 146] with PVS, to greatly expand the ability to reason about complex systemdesigns.� Reasoning about implementations. We are by no means opposed to proofs that an implemen-tation is consistent with its speci�cations, despite earlier comments about the relatively biggerapparent payo�s resulting from up-front uses of formal methods. Some emphasis should alsobe placed on carrying out a formal-methods approach that extends into the code or microcode,especially if those code proofs can be formally related to the speci�cations and shown to coverthe critical requirements under carefully speci�ed assumptions. However, research should alsobe carried out to explore other approaches to reasoning about implementations that fall short76

Secure Systems Architecture and Formalismof full code proofs. For example, it should be possible to reason about program changesand con�guration control over implementations without having to reason about the programsthemselves. (A precedent for that exists with respect to reasoning about designs in earlierwork of Moriconi [144], which provides a framework for reasoning about design changes.) Asin the corresponding near-term e�orts, we recommend that research people with intimateknowledge of the formal methods and the tools be heavily involved together with systemsexperts and programmers.� More elaborate real examples. Further worked examples of formal methods applied to realsystems are needed, above and beyond the up-front examples suggested in Section 12.3. Anambitious system might involve a stem-to-stern speci�cation and analysis of a distributedsystem, encompassing all of the necessary assumptions on the infrastructure and end-usersystems, including all relevant properties of the operating systems, servers, crypto encapsu-lations, and people involved in operations (including people in the key-management loop andkey-escrow retrievals). However, such an e�ort should not be attempted all at once; rather,it should use an incremental approach whereby the pieces can emerge separately and thenbe combined. Again, these examples should be realistic, thoroughly documented, and wellmotivated.� Comparative studies. Comparative studies are needed to explore the explicit bene�ts thatcan result from consistent use of formal methods throughout a system development. Similarstudies are also desirable to determine whether post-hoc uses of formal methods have any realvalue | that is, where modeling and analysis are carried out after a system development iswell underway or even completed. These studies probably cannot be statistically meaningful,because of the many variables involved and the continual production pressures during devel-opment, but nevertheless some experiential learning is needed relating to the e�cacy of usingformal methods in large and realistic systems.12.5 Final RemarksThe potential bene�ts of formal methods remain undiminished. The need for formal methods inthe speci�cation and analysis of critical systems and system components remains enormous. Inthe light of past events | system
aws and detected vulnerabilities, system failures, experiencedpenetrations, and
agrant system misuses | formal methods remain an essential part of the systemdevelopment and assurance process. Their systematic use at appropriate places throughout thesystem life cycle can be far more productive than it has been in the past.

77

Secure Systems Architecture and FormalismEPILOGUEEpilogue | A Quote from Edsger W. DijkstraJust as I was completing this report, I received the latest in the long-running series of informalmemos from Edsger W. Dijkstra, a long-time advocate of the importance of design structure [55]and the value of designing correctly in the �rst place, before programming [56]. The followingexcerpts serendipitously echo many of the main conclusions presented here, and provide a �ttingend to the main text of this report.Being a better programmer means being able to design more e�ective and trustworthyprograms and knowing how to do that e�ciently.I see no meaningful di�erence between programming methodology and mathematicalmethodology in general.In a cruel twist of history, however, American society has chosen precisely the 20thCentury to become more a-mathematical... As a result, Program Design is preventedfrom becoming a subdiscipline of Computing Science. There is considerable concern forcorrectness, but almost all of it has been directed towards a posteriori program veri�-cation because, again, that more readily appeals to the dream of complete automation.But, of course, many | I included | regard a posteriori veri�cation as putting the cartbefore the horse because the whole procedure of programming �rst and verifying laterraises the burning question where the veri�able program comes from. If the latter hasbeen derived, veri�cation is no more than checking the derivation. And in the meantime, programming methodology | renamed \software engineering" | has become thehappy hunting-ground for the gurus and the quacks.Excerpted from Edsger W. Dijkstra, Why American Computing Science seems incur-able, EWD 1209-0, Austin, Texas, 26 August 1995.

78

Appendix A Architectural FamiliesAPPENDICESA Summary of Architectural FamiliesAppendix A is based on [158], with some changes and extensions. It summarizes a range of ar-chitecture families. and provides a broad comparative view of what is really a multidimensionalarchitectural spectrum.Of particular interest from the RISSC point of view are the cases [[1a]] and [[2a]], as well as [[1b]](all three of which are considered in Section 11 and in Table 12 in Section 11.2). These cases arethe most assiduous in their adherence to the RISSC concept.Because of their dependence on multilevel-secure �le servers, cases [[3a] and [[3b] are somewhat lessRISSC-oriented, but are still important | particularly whenever high-assurance MLS �le serversare available. Family [[3]] is also considered in Section 11) and in Table 13 in Section 11.2.For ease of description, we de�ne an abstract notation for expressing con�guration attributes. Thearchitectures considered here include end-user systems (User), �le servers (F), network servers (Z),network transmission media (X), and authentication functionality (A).In a simple implementation, the various servers of each type could be collocated with the end-usersystems; however, to minimize the extent to which the end-user systems must be trusted, the serversmay preferably be on systems distinct from (most of) the end-user systems.The notation used here is starkly simple, incomplete, and subject to wide ranges of di�ering re-quirements within each attribute. There are typically many shades of gray within a decidedlynon-black-and-white multidimensional spectrum. However, although no attempt is made to cap-ture notationally the relative degrees of trustworthiness within any give attribute, the notationenables us to identify and contrast some of the basic options without having to delve into manydetails that are less important to the challenge of attaining robust crypto in software.An entire system or network of systems may support multilevel security (MLS) or only a singlelevel. However, there are many di�erent architectural types that enforce MLS system-wide ornetwork-wide, as discussed here.An end-user system may be a single-level single-user system (User-S1), a single-level multiusersystem (User-Sn), a multilevel-secure single-user system (User-M1), or a multilevel-secure multiusersystem (User-Mn).Realistically, a single-user system as de�ned here could actually accommodate multiple simul-taneous users, as long as those users are all mutually trustworthy and mutually trusting. That is,they are equivalent users from a protection point of view, although they would presumably haveindividual user identities and separate accountability. The essence of the single-user notion here issimply that security does not rely critically on interuser isolation. For simplicity, we refer to suchsystems as single-user systems, although the more cumbersome term \single-user-group systems"might be more accurate in cases in which protection-equivalent users are allowed to coexist.In a networked environment, authentication functionality may be centralized into a collection ofauthentication servers or distributed among end-user operating systems. A commonality of all thenondegenerate approaches is that some component of authentication must to some extent be trust-79

Appendix A Architectural Familiesworthy (AT) rather than totally untrustworthy (AU). However, there are various authenticationattributes each of which may or may not be trustworthy, including, respectively, the following:CT or CU for key con�dentialityIT or IU for key integrityST or SU for antispoo�ngRT or RU for nonrepudiationDT or DU for nondenial of serviceThe attribute CT is essential for most but not all the crypto uses discussed here; the attribute IT isoften necessary as well. When no untrustworthy authentication attributes are explicitly speci�ed,AT is assumed to include at least some measures to address the authentication attributes CT, IT,and ST. The other attributes of trustworthiness may or may not be important, according to thenature of the application.A �le server may enforce multilevel security (FM) or may be single-level (FS). In either case, the �leserver may store �les in either an encrypted form (FN, for eNcrypted) or an unencrypted form (FP,for Plaintext). In those cases in which storage encryption is used, the cryption (that is, encryptionand decryption) may be provided by the client (FNc), by network servers (FNn), or by a �le serveritself (FNs). Multiple forms of cryption may be used together, such as communication cryption(ZT-FNn) on top of client-provided �le cryption (FT-FNc).20 For simplicity, encrypted system-to-system �le transfers (for example, using the IP FTP protocol) are also represented by FNc or FNneven though a �le server is not involved.Carrying out the cryption would typically be largely invisible to all components other than the onethat actually performs those functions.Each �le server may be trustworthy (FT) or untrustworthy (FU) with respect to each of severalrequirements:MT or MU for multilevel securityCT or CU for single-level con�dentialityIT or IU for �le integrityDT or DU for preventing denials of serviceIf no untrustworthy �le server attributes are speci�ed, FT is assumed to include some measuresto address each of these attributes, except for MT, which is always identi�ed explicitly. Thus, thecon�guration FP-FT-FM-MT-CT-IT-DU or simply FP-FT-FM-MT-DU would denote a multilevel-secure �le server storing unencrypted information, trustworthy with respect to enforcing multilevelsecurity, discretionary con�dentiality, and integrity, but untrusted for preventing denials of service.Similarly, FNc-FU-FS-CU-IU-DU or equivalently FNc-FU-FS would denote a single-level �le serverstoring encrypted information provided by the client, and untrusted for single-level con�dentiality,integrity, and nondenial of service. In such a case, the encryption provided by the client mightensure single-level con�dentiality and integrity with respect to the �le server, irrespective of whatactions the �le server might take.20Multiple encryption causes a slight terminology problem that is easily resolved contextually. For example, considerthe combination of client-provided �le encryption and network-server-provided network encryption. To the end-usersystem, the client-provided encrypted form is encrypted text; to the network server, that encrypted form is plaintext.80

Appendix A Architectural FamiliesThe distinction between the network transmission media (X) and the network servers (Z) is sig-ni�cant. The servers may be trustworthy with respect to providing multilevel-security separation(ZT-MT), while the communication media may be untrustworthy (XU-MU-CU-IU) precisely be-cause of the use of crypto by the network servers. Cryption provided by trustworthy network serversis denoted by ZN-ZT.Network transmission media may be untrustworthy (XT) or untrustworthy (XU) with respect toeach of several requirements:MT or MU for multilevel securityCT or CU for single-level con�dentialityIT or IU for message integrityDT or DU for preventing denials of serviceIf no untrustworthy network attributes are speci�ed, XT is assumed to include some measures toaddress each of these transmission attributes except for MT, which is always identi�ed explicitly.However, a transmission con�guration may be basically untrustworthy (XU) if the network serversare suitably trustworthy and the network tra�c is encrypted. In addition, some trustworthiness fornondenial of service (DT) may be obtained by error detection, multiple routing, and retry, in theabsence of any other trustworthiness of the network media. A completely enclosed and protectedwireway is an example of a trustworthy medium.Network servers may be untrustworthy (ZT) or untrustworthy (ZU) with respect to each of thesame requirements:MT or MU for multilevel securityCT or CU for single-level con�dentialityIT or IU for message integrityDT or DU for preventing denials of serviceWhenever �les and messages are not encrypted (and possibly even if they are encrypted), networkservers may provide their own cryption, invisible to all components except each other. Thus, we alsodi�erentiate between network-server-provided cryption (ZN) and networking that adds no furtherencryption (ZP). If no untrustworthy network-server attributes are speci�ed, ZT is assumed toinclude some measures to address each of these attributes except for MT, which is always identi�edexplicitly.A distinction is made between network-provided �le storage cryption (FNn) and network-providedmessage cryption (ZN). In the former case, cryption is performed only at the client side of thenetwork, and �les are stored in that encrypted form; in the latter case, cryption is performed ateach end of the network, and storage would not be encrypted unless otherwise provided by (FNc)or (FNs) functionality.A distinction is normally made between local networks and nonlocal networks. However, in thepresent context that distinction may or may not be meaningful. Clearly, wide-area network tra�cwould normally be encrypted in any sensible networking environment. However, if local-net tra�cis within a physically secure (and, if desired, properly shielded) environment and all the local-nettaps are occupied by trustworthy systems and individuals, then protection of the local network maybe avoided. 81

Appendix A Architectural FamiliesOnce again, we must understand that there are many shades of trustworthiness. Each of the above`T' attributes can be thought of as either an ideal to be striven for, or else as whatever can bepragmatically attained.The art of secure systems and secure networking is essentially one of placing appropriate controlsand protections in those facilities where they are needed. There is a sense in which an equiva-lence exists among various seemingly di�erent architectural views. For example, whether the mainclass of RISSC systems has single-level �le servers or multilevel-secure �le servers is perhaps animplementation detail; a formal transformation can be constructed under which the two familiesof architectures are essentially equivalent. Furthermore, a TCSEC kernel{TCB{application{userlayering represents one way of achieving security domains; a layered capability architecture suchas the original PSOS design [62, 161] is another; a networking of unsecure systems using trustedgateways is still another. In the last case, whether the gateways are internal or external is more orless incidental. Each of these approaches attempts to provide suitable domain isolation.The con�guration AU,ZP-ZU,XP-XU is more or less today's sorry network state of the art. What isneeded for trustworthy distributed systems is a con�guration such as AT,ZN-ZT, where XT-CT-IT-DT is e�ectively a by-product of the network-provided cryption, or possibly AT,ZP-ZT,XP-XU-DT,where client-provided �le cryption (FNc) can facilitate trustworthy XT-CT-IT networking withoutrequiring trustworthiness for con�dentiality and integrity on the part of the network servers.The architectural families of systems that might contain crypto implemented in software fall intotwo basic types, multilevel and single-level secure. Each family has its own potential risks andhardware{software trade-o�s. The architectural families enumerated here should be consideredas representative points in a multidimensional spectrum of architectures, with end-user systems,authentication, networking, and �le servers as di�erent dimensions, and with security levels (mul-tilevel vs. single-level) and the number of cohabiting users as parameters. Those dimensions andparameters may seem super�cially independent (which would result in a large number of families);however, only certain combinations are sensible, which helps to reduce the discussion to somewhatsensible proportions.� Multilevel security. In the �rst group of families (Sections A.1 through A.6), the overallsystems or networks of systems are capable of enforcing multilevel security. Among thesix basic families and variants, the �rst three baseline architectures considered below (Sec-tions A.1 through A.3) have end-user systems that are all single-level rather than multi-level, but in which the overall system still enforces multilevel security. The other threefamilies use multilevel-secure end-user systems. The fourth family (Section A.4) has end-user compartmented-mode workstations, while the others (Sections A.5 through Section A.6)have multilevel-secure multiple-end-user systems, with or without crypto storage, respectively.Among those six families, the �rst two use only single-level �le servers, while the remainingfour use multilevel-secure �le servers. The second and �fth have client-provided �le cryption,while the others do not.� Conventional systems. In the second group of families (Sections A.7 through A.10), the overallsystems do not enforce multilevel security, and everything (e.g., �les and networking) operatesat a single level throughout. The local operating systems may be for personal computers orfor high-end single-level minicomputer or mainframe systems lashed together with single-levelsecure servers. The systems may be single-user (Section A.7) or multiple-user (Section A.8).The �le servers may or may not use encrypted storage, as indicated. To provide a reductio ad82

Appendix A Architectural Familiesabsurdum, Section A.9 includes the low-end systems that one might obtain from o�-the-shelfsoftware with minimal concern for security, and Section A.10 considers stand-alone systemswith no networking whatsoever.The �rst column of Table 15 summarizes the architectural families discussed in the following sec-tions. Section A.11 contrasts the di�erent families and discusses the remaining columns of thetable.Although arbitrary crypto schemes can be used, we assume for simplicity that the illustrative ar-chitecture families include software implementations of a symmetric algorithm such as the DigitalEncryption Standard (DES) [167] or Rivest's RSA-Data-Security-proprietary RC-4 for communi-cation security, as well as software implementations of public-key crypto used for authenticationand key distribution. The public-key schemes might involve RSA [198] or Di�e-Hellman [53], andmight in addition employ one of the fair-crypto or multikey algorithms [22, 52, 142, 227] discussedin the appendix to [158], as appropriate for any particular application.In our discussion, we generally ignore arguments relating to the strength of the crypto itself,because the strength can always be improved | for example, by using di�erent algorithms, di�erentimplementations, longer keys, or multiple passes. We consider here primarily the extent to whichthe crypto and | as needed | its key escrowing can be securely embedded into the architectures.The emphasis in Sections A.1 through A.9 is on the basic architectural con�gurations and therelative crypto trustworthiness that can be attained with each con�guration. (As noted above, the�rst six sections consider environments that enforce multilevel security; the remainder do not.)A.1 Multilevel-Secure Network Interfacing� MLS,User-S1,AT,ZN-ZT-MT,XU,FP-FS-MU-CT [[1a]]The �rst baseline architecture family includes single-level single-end-user systems with a multiplicityof �le servers, each of which is a single-level �le server for some particular level (and compartment).In [[1a]] the network tra�c is encrypted by the trustworthy network servers, and thus the transmis-sion media need not be trustworthy with respect to con�dentiality (or for integrity, if encryptionis used appropriately).The network interfaces must be trusted not to violate the multilevel security constraints, thatis, they must not allow information to be accessible from a lower security level or incompatiblecompartment. However, the �le servers and the network media need not be trusted to maintainmultilevel separation or to protect keying information.The analysis of Proctor and Neumann [192] applies in this case. That is, multilevel security canbe implemented e�ciently with o�-the-shelf single-level end-user systems. The network servers canensure multilevel-security separation, and the interuser covert-channel bandwidth can be essentiallyzero. Read-down can be implemented e�ciently, while read-up and write-down are prevented. Somedefense against denial-of-service attacks can be provided by the presence of multiple �le servers andmultiple communication paths, especially for particularly critical levels and categories.[[1b]] is a variant of [[1a]] that also has single-level end-user systems. However, in [[1b]] each end-user system may have multiple users, that is, potentially competitive users. Network-providedcryption and multilevel separation enforced by the network servers avoid end-user-system concernsfor �le security. 83

Appendix A Architectural Families
Table 15: Architectural familiesMultilevel-secure overall systems Weak links SecurityMLS network interfacing:1a. MLS,User-S1,AT,ZN-ZT-MT,XU,FP-FS-MU-CT AT,S1,ZT Very good potential1b. MLS,User-Sn,AT,ZN-ZT-MT,XU,FP-FS-MU-CT AT,Sn,FT Sn-C2 too weakMLS network interfacing with storage crypto:2a. MLS,User-S1,AT,ZN-ZT-MT,XU,FNc-FS-MU-CT AT,S1,ZT Excellent potential2b. MLS,User-S1,AT,ZP-ZT-MT,XU,FNc-FS-MU-CT AT,S1,ZT Very good potential2c. MLS,User-Sn,AT,ZN-ZT-MT,XU,FNc-FS-MU-CT AT,Sn,ZT Sn-C2 inadequate2d. MLS,User-Sn,AT,ZP-ZT-MT,XU,FNc-FS-MU-CT AT,Sn,ZT Sn-C2 inadequateMLS network interfacing with MLS �le servers:3a. MLS,User-S1,AT,ZN-ZT-MT,XU,FP-FT-FM-MT AT,ZT,FT Needs FT-B3+3b. MLS,User-Sn,AT,ZN-ZT-MT,XU,FP-FT-FM-MT AT,ZT,FT Needs FT-B3+, C2++ SnCompartmented-mode end-user systems:4a. MLS,User-M1-B1,AT,ZN-ZT-MT,XU,FP-FT-FM-MT AT,ZT,FT B1 too weak4b. MLS,User-Mn-B1,AT,ZN-ZT-MT,XU,FP-FT-FM-MT AT,Mn,FT B1 too weakMLS end-user systems with storage crypto:5a. MLS,User-Mn-B3,AT,ZN-ZT-MT,XU,FNc-FT-FM-MU AT,Mn,FT Needs Mn-B3+5b. MLS,User-Mn-B3,AT,ZP-ZT-MT,XU,FNc-FT-FM-MU AT,Mn,ZT Needs Mn-B3+MLS end-user systems without storage crypto:6. MLS,User-Mn-B3,AT,ZN-ZT-MT,XU,FP-FT-FM-MT AT,Mn,FT Needs FT-B3+Single-level overall systems Weak links SecurityConventional single-user, single-level systems:7a. User-S1,AT,ZN-ZT,XU,FNc-FU AT,S1 Pretty good7b. User-S1,AT,ZN-ZT,XU,FP-FT-CT-IT-DU AT,S1,FT FT-C2 too weakConventional multiple-user, single-level systems:8a. User-Sn,AT,ZN-ZT,XU,FN-FT-CT-IT-DU AT,Sn,ZT Sn-C2 too weak8b. User-Sn,AT,ZN-ZT,XU,FP-FT-CT-IT-DU AT,Sn,ZT Sn-C2 too weakLow-end conventional systems:9a. User-S1,AU,ZP-ZU,XU,FP Everywhere Forget it!9b. User-Sn,AU,ZP-ZU,XU,FP Everywhere Forget it!Stand-alone end-user systems:10a. User-S1 stand-alone, with or without FNc S1 Physical10b. User-Sn stand-alone, with or without FNc Sn PhysicalMLS systems [[1a]] and [[2a,b]] are those that are most RISSC oriented.

84

Appendix A Architectural FamiliesA well-known instance of [[1b]] is provided by the Newcastle Distributed Secure System [211] inwhich Trusted Network Interface Units (TNIUs) are the primary enforcers of the multilevel-securityproperty by restricting �le access accordingly. (A TNIU is also expected to be a TrustworthyNetwork Interface Unit!)In [[1b]], each local shared end-user system does not need to enforce multilevel separation, becauseeverything on each system is at the same level. A weakness of such architectures is that because thelocal systems may not even be locally secure, there is a risk of information leakage or of integrityviolations between users. However, the risk of key leakage or tampering can be reduced wheneverthe TNIUs can completely and securely encapsulate the network crypto.In both [[1a]] and [[1b]], the network servers are essentially trusted gateways that mediate allinbound and outbound tra�c. They enable secure communication paths, but may also securelyenable other services such as FTP and TELNET. (For a detailed presentation of �rewall gateways,see [41] | which is in part relevant throughout this section whenever trusted network servers areincluded.) Network crypto can be completely encapsulated within the network servers, which mustbe trustworthy.A.2 Multilevel-Secure Network Interfacing with Storage Crypto� MLS,User-S1,AT,ZN-ZT-MT,XU,FNc-FU-FS [[2a]]� MLS,User-S1,AT,ZP-ZT-MT,XU,FNc-FU-FS [[2b]]Baseline architecture [[2]] includes single-level single-end-user systems and a multiplicity of �leservers, each of which is a single-level server for some particular level (and compartment) | as incon�gurations [[1a]] and [[1b]]. However, here information is stored in an encrypted form, wherecryption is provided by the client (FNc). (Cryption could alternatively be provided by the networkserver.)Two basic variants within this family are considered here, with and without encrypted networking([[2a]] and [[2b]], respectively). On one hand, the network encryption (ZN) in [[2a]] might beconsidered super
uous in the presence of the client-provided �le cryption (FNc); on the otherhand, there are many other reasons for encrypting network tra�c | such as protecting keying andcontrol information, and minimizing tra�c analysis. In particular, [[2b]] is not desirable wheneverthe network tra�c is not purely �le based, although remote sessions (for example, using the InternetProtocol telnet) would presumably be encrypted (ZN-Nn), in which case [[2b]] would be partiallytransformed into [[2a]]. Con�guration [[2b] is similar to [[1a]] except that it has storage cryptoinstead of network crypto; con�guration [[2a]] has both, and may be preferable.The network interfaces must be trusted not to violate the multilevel security constraints, thatis, they must not allow information to be accessible from a lower security level or incompatiblecompartment. However, because information is encrypted and decrypted only by the client (forboth �les and authentication), the �le servers and the network media need not be trusted tomaintain multilevel separation or to protect keying information. Nevertheless, sharing of a keybetween two users is a critical operation, which implies that the network software and �le systemsoftware on each end-user system must not leak keying information. Di�e-Hellman key exchangecan be used to provide virtual key sharing without actually having to transmit the shared key,while avoiding having to trust the network servers to manage the shared keys.85

Appendix A Architectural FamiliesThe analysis of [192] also applies to variants [[2a]] and [[2b]]. The absence of end-user covert channelsis particularly signi�cant in the context of software crypto implementations, because leakage ofkeying information through a covert channel could be very serious, even with very low covert-channel bandwidth. Some defense against denial-of-service attacks can be provided by the presenceof multiple �le servers and multiple communication paths, especially for particularly critical levelsand categories.In both of these two variants, compromises of the local single-level end-user operating systems mustnot be permitted to compromise the local cryptographic keys, the authority-granting capabilities,or the authenticity-ensuring certi�cates. The presence of single-end-user systems helps to minimizethe user-competitive aspects of local operating-system usage.Multiple-end-user systems may be considered as another alternative within this family, althoughthey tend to entail higher risks:� MLS,User-Sn,AT,ZN-ZT-MT,XU,FNc-FU-FS [[2c]]� MLS,User-Sn,AT,ZP-ZT-MT,XU,FNc-FU-FS [[2d]]Con�gurations [[2c]] and [[2d]] exist with and without network encryption, respectively, similar tothe corresponding pair of single-user systems [[2a]] and [[2b]]. However, in [[2c]] and]]2d]], thetrustworthiness of the operating systems that are not required to enforce multilevel security thenbecomes a vital issue with respect to key storage, as do the competitive aspects of multiuser networkinterfaces, processes, and user �les. These multiuser alternatives are not generally recommendedwith any of today's C2 systems, and are likely not to be particularly attractive in the future | unlessmultilevel-security separation systemwide is by itself su�cient in the absence of assured interuser(discretionary) security on each end-user system. On the other hand, because discretionary accesscontrols are typically vulnerable to misuse by insiders and penetrators, such a situation may indeedbe adequate.A.3 Multilevel-Secure Network Interfacing with MLS File Servers� MLS,User-S1,AT,ZN-ZT-MT,XU,FP-FT-FM-MT [[3]]Baseline architecture family [[3]] has single-user single-level end-user systems, as in alternatives[[2a]] and [[2b]], but does not use storage crypto. However, in this case at least some of the�le servers may store multilevel-secure information, and any that do so must be trustworthy inenforcing MLS separation (in contrast to the �rst two architecture families). As a consequence,even though the end-user systems operate as single-level systems with respect to their users, theend-user system authentication must be su�ciently trustworthy to prevent those end-user systemsfrom masquerading as systems authorized at higher security levels. All network communicationswould be encrypted invisibly by the network servers.A.4 Compartmented-Mode End-User Systems� MLS,User-M1-B1,AT,ZN-ZT-MT,XU,FP-FT-FM-MT [[4a]]� MLS,User-Mn-B1,AT,ZN-ZT-MT,XU,FP-FT-FM-MT [[4b]]Today's compartmented-mode workstations minimally satisfy the TCSEC B1 criteria, but are notlikely to be adequate for environments with a user community that is not completely trustworthy.86

Appendix A Architectural Families(Full MLS requirements as in B3 or A1 systems are found in [[6]].)A.5 Multilevel-Secure End-User Systems with Storage Crypto� MLS,User-Mn-B3,AT,ZN-ZT-MT,XU,FNc-FT-FM-MT [[5a]]� MLS,User-Mn-B3,AT,ZP-ZT-MT,XU,FNc-FT-FM-MT [[5b]]Family [[5]] has multilevel-secure end-user systems and client-provided storage crypto. Two casesare considered, a more conservatively designed version with network encryption [[5a]] and anotherwithout network encryption [[5b]]. Although it might seem that network cryption is super
uousin [[5a]], the situation is similar to that in [[2a]] | in which additional bene�ts result from thecombination of FNc and ZN.The presence of unencrypted data on a shared end-user system requires an advanced system archi-tecture to prevent local loss of con�dentiality and integrity. In particular, leakage of key informationcould result in one user's being able to decrypt another user's �les.A.6 Multilevel-Secure End-User Systems without Storage Crypto� MLS,User-Mn-B3,AT,ZN-ZT-MT,XU,FP-FT-FM-MT [[6]]Family [[6]] has network cryption but not client-provided storage cryption. (File servers couldchoose to store the network-encrypted form rather than decrypting it, when the destination is a�le server as opposed to another end-user system.)Again, the presence of unencrypted data on a shared end-user system requires an advanced systemarchitecture to prevent local loss of con�dentiality and integrity by direct access.Family [[6]] is a paradigmatic architecture according to the conceptual view of multilevel-securenetworked systems based on the B3 TCSEC criteria embodied in the Orange Book [151] and the RedBook [150]. However, it su�ers from the wide dispersion of the need for trustworthy components.In addition, the B3/A1 criteria are incomplete in many respects, and need to be augmented.(For example, see [157] for a summary of some of the missing criteria elements.) Nevertheless,with TCSEC B3/A1 systems, secure networking, trustworthy �le servers, and a trustworthy usercommunity, this family could in principle soundly support crypto in software.A.7 Conventional Single-User Single-Level Systems� User-S1,AT,ZN-ZT,XU,FNc-FU [[7a]] with storage crypto� User-S1,AT,ZN-ZT,XU,FP-FT-CT-IT-DU [[7b]] without storage cryptoThe �rst family of conventional systems includes operating systems that permit only a single user(or group of equivalent users, as de�ned above) of each end-user system and that provide nontrivialnetworked interuser separation and �le system security.If there is never more than one authorized user (or equivalent group) for the lifetime (or less time,under certain speci�c circumstances) of a particular end-user system, and if the user authenticationand physical security are strong enough to shut out all would-be external intruders, then therevealing of shared keys for communications and authentication can become much less of a concern,87

Appendix A Architectural Familiesas does the revealing of nonshared keys for storage crypto. Ironically, in such a case, despitethe considerable lack of security of the local end-user system, key hiding becomes less critical |although we must still recognize the problems presented by hardware maintenance.A.8 Conventional Multiple-User Single-Level Systems� User-Sn,AT,ZN-ZT,XU,FN-FT-CT-IT-DU [[8a]] with storage crypto (FN = FNc or FNn orFNs)� User-Sn,AT,ZN-ZT,XU,FP-FT-CT-IT-DU [[8b]] without storage cryptoConventional systems of family [[8]] include operating systems similar to those in [[7]], but whichpermit multiple users on the same end-user system and also take some care to provide nontrivialinteruser separation and �le system security. Multiple use may be either simultaneous (as in thecase of the Sun-OS and other multiprogrammed Unix workstations) or only one at a time, as in thecase of Novell's NetWare 4.0 running on top of an MS-DOS personal computer. The basic questionhere is whether crypto applications (storage, communications, and authentication) can be securelyimplemented even when the operating systems are vulnerable.User-speci�c crypto keys must be protected against attack by other authorized users. Encryptingthose keys with master keys is in general iteratively unsatisfactory, as noted in [158]. System-speci�ckeys may be vulnerable to spoo�ng attacks by other users.A.9 Low-End Conventional Systems� User-S1,AU,ZP-ZU,XP-XU,FP-FU [[9a]]� User-Sn,AU,ZP-ZU,XP-XU,FP-FU [[9b]]To contrast further the systems already discussed, we conclude this discussion with two cases of whatmight be termed comic relief, the run-of-the-mill state of the art typifying (somewhat exaggeratedly)today's low-end systems. The subfamily [[9a]] includes a collection of rather primitive systems thatmay or may not allow single-user multiprogramming but that do not permit multiplexing of anyend-user system among even nonsimultaneous users. Very little discussion is necessary, except tonote that this is essentially what one gets if one's head is in the sand.A.10 Stand-alone End-User Systems� User-S1 stand-alone, with or without FNc [[10a]]� User-Sn stand-alone, with or without FNc [[10b]]No enumeration of system con�gurations would be complete without including a stand-alone systemwith no networking whatsoever (except possibly for the system's own private �le server, whichlogically can be considered to be part of the stand-alone system). Although there is consequentlyno need for communication crypto, crypto is meaningful here for both storage and authentication.
88

Appendix A Architectural FamiliesA.11 Comparison of the Architecture FamiliesTable 15 (highlighting the various architectural families considered in Sections A.1 through A.10)summarizes what functionality must be trustworthy and gives a rough basis for comparing thesefamilies. The second column of the table summarizes the weak links for each of the families, whilethe third column provides some comments applicable to implementations of the given architecturalfamily.In each case, the authentication server must be su�ciently trustworthy, whether it is redundantlydistributed or in part collocated with the end-user systems. Con�dentiality and integrity are bothvital. However, if the authentication server enforces the use of nonreusable tokens with encryptionof suitably embedded identi�ers and timestamps or nonces, many of the conventional vulnerabilities(for example, capture of passwords, or replay attacks with de�cient certi�cates) can be avoided. (Forexample, see [68, 73, 74].) Typically, some of the authentication functionality would be centralizedin several authentication servers, while complementary functionality would be distributed in eachof the end-user systems.In several of the family members (for example, [[1a,2a,2b,3,4a]]), each end-user system is restrictedto be a single-user system, as de�ned above.In three families ([[1,2,5]]), the �le servers do not need to be trusted for multilevel-security separa-tion, although in [[5]] a particular �le server may be capable of handling �les at multiple securitylevels (which is not the case in [[1]] and [[2]]). In several cases ([[1a,2,5,7a]]), the �le servers donot need to be trusted for single-level �le con�dentiality or integrity, if the client-provided cryp-tion is used appropriately; in other cases, the �le servers must be trustworthy | with respect tosingle-level interuser separation in [[1b]] and multilevel-security separation in [[3,4,6]].Client-provided cryption may be appropriate whenever the network servers and �le servers are po-tentially less trustworthy than the end-user systems. Similarly, network encryption may be suitablewhenever the network servers are su�ciently trustworthy. File-server-provided �le encryption isuseful mainly when the storage media themselves may be vulnerable to attack.A primary motivation for storage crypto is to provide greater assurance that media capture orsoftware subversions do not compromise storage security. Decisions on whether to use storagecrypto are more or less independent of other architectural concerns | unless for other reasonsnetwork crypto is explicitly to be avoided. On the other hand, there are problems involved in tryingto use the network-encrypted format for storage media as well, because typically some decryptionmust take place for headers and identi�ers, or else some of the network tra�c must be in the clear.In either case, tra�c analysis becomes a problem, and thus it may be advantageous to have bothstorage crypto and network crypto.

89

Appendix B Tamperproo�ngB Tamperproo�ng NIDESAppendix B considers a speci�c distributed-system networked environment in which user behavioris monitored by a separate analytic system that seeks to detect and analyze potentially anomalousbehavior. A set of tamperproo�ng principles is considered, and a particular illustration of theadherence to these tamperproo�ng principles is given, in terms of SRI's Next-Generation IDES(NIDES) [6, 7, 98], the successor to SRI's Intrusion-Detection Expert System (IDES) [51, 99, 127].21The IDES/NIDES e�ort began in the mid 1980s.B.1 Tamperproo�ng via Subsystem EncapsulationVarious requirements are considered here. To make them somewhat speci�c, we apply them directlyto a NIDES-like situation in which an analysis system monitors the behavior of the target system(s).In this case, the target systems must not depend on any of the functionality in the analysis system,although the analysis system clearly depends on the target system(s) for its data.� Goal 1: Target-system integrity. The environment of the analysis system must not bepermitted to have any adverse e�ects on the integrity of the target systems. The normal
owof information is from the target systems to the analysis system. Any reverse information
ow (including control
ow, exception conditions, and indirect interactions) from the analyticsystem to the target system must be authenticated and validated. The analysis system shouldcontinually validate the status of all target systems to detect involuntary shutdown.� Goal 2: Target-system con�dentiality of transmitted data. The environment mustprotect any sensitive audit data on the target systems, before and during its transmission tothe analysis system. This suggests that encryption should be used if the transmission pathcannot otherwise be secured.� Goal 3: Analysis-system data security. The target systems and the analysis systemmust protect the transmitted audit data from browsing, alteration, deletion, and spoo�ng.� Goal 4: Analysis-system integrity. The analysis system must be protected from modi�-cation of its procedures and system data.� Goal 5: Analysis-system availability. The analysis system must be protected frommalicious denials of service.� Goal 6: Rulebase protection. The analysis-system rulebase must be protected fromundesired reading, unauthorized modi�cation, and reverse engineering.� Goal 7: Analysis-system user access. Access to the analysis system and its data must berestricted through user authentication within a tightly controlled set of authorized personnel.� Goal 8: Analysis-system user accountability. User activities must be logged and ana-lyzed in su�cient detail for the detection, by security o�cers and administrators, of maliciousmisuses of the analysis system and its data, and of intrusions by unauthorized personnel.21IDES was perhaps an overly narrowly chosen name, because from the beginning IDES included included astatistical component as well as an expert system. 90

Appendix B Tamperproo�ngB.2 Protection Against Reverse EngineeringIt may be desirable to protect sensitive knowledge about what is being monitored (for exam-ple, potential exploitation of little-known system vulnerabilities) from unauthorized reading ormodi�cation.22 This desire for antitampering suggests the identi�cation of more speci�c goalsrelating to those noted in Section B.1. (The relationships among those goals are indicated.)� Goal 9: Encapsulation and hiding of sensitive information | for example, therulebase and the statistical measures that are used in the analysis. Goal 9 requiresthe satisfaction of Goals 2 and 3.� Goal 10: Separation of roles among users and processes of the analysis system.Omnipotent superuser roles must be avoided in the analysis system, just as elsewhere.� Goal 11: Interprocess and server authentication. The internal components of theanalysis system must be authenticated with respect to one another. (Goal 7 relates to users,whereas Goal 11 relates to subsystem components.)� Goal 12: Self-monitoring of accesses to the analysis system itself. Goal 12 re-quires the satisfaction of Goal 8, but also requires the logging of certain actions taken by thesubsystem components themselves.B.3 Illustration of the Realization of These GoalsTo illustrate these tamperproo�ng goals, we consider here an encapsulated environment that demon-strates the needs for additional protection, namely, an analytic system that performs anomaly andmisuse detection based on inputs from audit trails, network tra�c, and other sources.In particular, we consider SRI's NIDES environment, which monitors a collection of target systems(for example, Sun Unix systems), but runs on a separate execution platform. NIDES runs on aplatform that is not a target system. (We assume that target-system security is whatever it is.)Section B.4 re�nes the security goals speci�cally for NIDES.NIDES is itself a sensitive application and has security requirements in addition to those of thesystems whose use is being monitored [51].Malicious tampering with the audit data or with the analysis system itself could lead to intrusionsgoing undetected. If an intruder can read the NIDES rulebase, then the penetrated site and othersites using a substantially similar rulebase could be jeopardized, especially if such knowledge isshared within the intruder community.As is any computer system, NIDES is potentially subject to attack. For example, an attacker maytry to break the security o�cer's account, try to cause a core dump, or try to exploit potentialweaknesses in the design and implementation. Once NIDES is compromised, the attacker maydisable the system.The NIDES rulebase represents explicit scenarios that are indicative of potential system misuse.An attacker who obtains the rulebase may be able to devise attack strategies to defeat the rules,22This is sometimes known as the \knowledge paradox" | in which the availability of a tool for analyzing vulner-abilities itself permits the identi�cation and knowledge of those vulnerabilities by would-be attackers. This paradoxresurfaced again recently when Dan Farmer's SATAN tool was released.91

Appendix B Tamperproo�ngand thus evade detection. Therefore, it is vital to protect the rulebase from disclosure to intrudersand from unauthorized modi�cation.B.4 Tamperproo�ng NIDES via Subsystem EncapsulationSection B.4 restates the generic goals of tamperproo�ng of Section B.1 in the speci�c context ofNIDES.� Goal 1: Target-system integrity. NIDES must not have adverse e�ects on the integrityof the target systems. NIDES should authenticate interactions with target systems. NIDESshould continually validate the status of all analysis systems to detect involuntary shutdown.� Goal 2: Target-system data con�dentiality. It is the responsibility of the target systemsto ensure the con�dentiality of audit data as it is collected and in transit to NIDES. Apartfrom agreement on crypto keys, protocols from transmission, and performance e�ects on boththe target systems and the analysis systems, this goal is largely independent of NIDES.� Goal 3: Audit data security. NIDES must protect the audit data transmitted from thetarget systems to NIDES, from browsing, alteration, deletion, or spoo�ng.� Goal 4: System integrity. NIDES must be protected from modi�cation of its proceduresand system data.� Goal 5: Availability. NIDES must be protected from malicious denials of service.� Goal 6: Rulebase protection. The NIDES rulebase must be protected from undesiredreading and reverse engineering and from unauthorized modi�cation.� Goal 7: User access. Access to NIDES and its data must be restricted through userauthentication within a tightly controlled set of authorized personnel.� Goal 8: User accountability. User activities must be logged and analyzed in su�cientdetail for the detection, by security o�cers and administrators, of malicious misuses of NIDESand its data, and of intrusions by unauthorized personnel.B.5 Addressing the NIDES Security GoalsTo address the goals stated in Section B.1, and ampli�ed in Section B.4, NIDES must be protectedat least as well as a TCSEC [151] C2 system, and better than a C2 system with respect to certaincriteria elements such as authentication.Various techniques can contribute to addressing these goals. A combination of physical, logical,and operational security controls can be used. For the proposed work, we consider only the logicalcontrols with the highest payo�, and the least developed risk, although we assume the presence ofboth physical and operational controls. We concentrate here on techniques to reduce the risk oftampering with NIDES operation and techniques that make reverse engineering di�cult.2323Debra Anderson participated in the formulation of the enhancements described in Sections B.6 and B.7.92

Appendix B Tamperproo�ngTable 16: Proposed NIDES user rolesUser RolesFunctionality Administrator Security O�cer ExperimenterAssignment of roles to privileged users �Review of system con�guration logs �NIDES start-up and entry of usage password � � �Con�guration of alert reporting � �Con�guration of alert �ltering � �Con�guration of target hosts � �Initiation/termination of real-time analysis � �Real-time result data review � �Audit record data review � � �Entry of encryption keys for rulebase recon�g � �Con�guration of NIDES real-time analysis �Creation and con�guration of test instances � �Execution of test runs � �Test result data review � �Legend: � = functionality accessible to speci�ed user roleB.6 Protecting NIDES from Tampering� Separation of roles. NIDES user roles and their corresponding privileges must be madedistinct by separately grouping routine security o�cer functions, security administrator func-tions, and experimentation functions. The current NIDES privileged user functionality mustbe enhanced to provide a role-separating facility that can be con�gured only by a NIDESsystem administrator. A particular user may be authorized to serve in several roles. Forexample, roles within NIDES could be divided as shown in Table 16, in which a bullet (�)indicates that the particular functionality would be accessible to the speci�ed user role.� Interprocess and server authentication. Via authentication in the IPC nameserver,we must ensure that the communication channels used by all NIDES host processes are notcompromised by the insertion of bogus processes or data. The following nameserver checkswould be added:1. Only processes known to belong to NIDES and running on the NIDES host would beallowed to register.2. Registration of processes with the NIDES ipc nameserver would be veri�ed. Processesregistering with the ipc nameserver must use an accepted password to be registered.3. Addresses for all known/registered processes would be veri�ed during all ipc nameservertransactions.4. Requested client/server connections would be veri�ed for appropriateness before theconnection is allowed.� Detection of and protection against denials of service. To minimize the opportunitiesfor denials of service, it would be desirable to make the following checks:93

Appendix B Tamperproo�ng1. The NIDES Alert PopUp window can be used to deny service to other NIDES functionswhen the system is
ooded with alerts. We might modify the window so that it will notrequire acknowledgment of each alert reported prior to executing any other NIDES func-tions. We would also enhance the window to provide a scrollable listing that summarizesrecent alert activity.2. NIDES should monitor, and report radical increases in, the volume of audit data pro-duced by each active target host.3. A new timeout mechanism can allow the NIDES Server processes to accept new Clientprocess requests if the current Client request is not completed within a speci�c periodof time.� Target system integrity/availability enhancements. We recommend that the followingfunctions be added to the NIDES target host interfaces to improve target host integrity andavailability:1. Each agen program (agen runs on the target systems and converts the indigenous audittrails into the standard internal NIDES format) should produce periodic \heartbeat"messages to arpool (the program that runs on NIDES and merges all audit-trail in-formation into a single stream) to detect outages of the link from the target system toNIDES.2. The security of agen should be increased by providing each agen a password, at start-up,that would be used by arpool to verify that the agen process has been properly startedby NIDES and has not been tampered with.3. Using a closed-loop veri�cation test, agen would periodically check the integrity of theaudit trail data that it converts. The closed-loop test would entail agen generating anaudit event, and then verifying that the event appears properly in the audit trail.4. agen would periodically check the Ethernet interface status to ensure that it is notallowing network packet snooping (i.e., when the Ethernet is set to promiscuous modeoperation).5. agen would periodically check audit trail �le modes for changes to �le permissions.6. agen would periodically check audit con�guration �les for changes.� arpool target host authentication. The arpool process would be enhanced to allow onlytarget hosts that have been activated by NIDES and authenticated to connect. Any suspiciousconnection attempts would be denied and reported.� Smokescreen detection. The resolver is intended to eliminate false positives and redundantalerts that might be generated by the rulebase or the statistical component. However, anintruder might deliberately
ood NIDES with alerts so that his malicious deed is buriedin the smoke. The NIDES resolver could be extended to detect and circumvent certainsmokescreen activities that attempt to mask illicit activities, by noting unusually high volumesof audit data, suppressing redundant or very similar closely spaced alerts, and providingexplicit cautionary messages for the security o�cer. When an attempted smokescreen isrecognized by the resolver, an alert would be reported giving information about the suspectedsmokescreen. 94

Appendix B Tamperproo�ng� Logging of NIDES user actions. A NIDES action log would be implemented to auditall security-relevant NIDES user actions, including all attempted or successful con�gurationchanges. This NIDES action log would be readable only by the NIDES security administratorrole.� NIDES process integrity/security. Processes associated with the NIDES host would beenhanced to ensure NIDES security and integrity as follows:1. nagen process. Monitoring of the NIDES hosts by NIDES itself can, for certain gran-ularities of audit data reporting, enter a positive feedback loop where the processing ofa single NIDES audit record generates multiple NIDES audit records. For this reason,the use of agen on a NIDES host has been strongly discouraged.While a manageable situation could, in principle, be achieved with an appropriate auditsystem con�guration, the e�ciency and reliability of NIDES could easily be degraded byaudit con�guration changes, either intentional (malicious) or unintentional (careless).A specialized agen process, nagen, would be developed that is designed explicitly tomonitor the activity on the NIDES hosts and �lter out, if present, extraneous andvoluminous data that does not directly a�ect the integrity of NIDES. In this way, nagenwould prevent NIDES from \
ooding itself" with audit records. The nagen processwould include these capabilities:{ Filtering of a small set of relevant audit events from the NIDES host audit trail{ Collection of data on network activity | in particular, attempts to access networkservices on the NIDES hosts from the network (e.g., telnet, ftp, rlogin).{ A specialized rulebase that addresses NIDES vulnerabilities using nagen-provideddata (for example, execution of ptrace on known NIDES processes or access ofmemory devices on the NIDES host)2. Alert reporting integrity. NIDES alert reporting can be compromised when theperpetrator of the alert is a NIDES user. In addition, since deactivation of sendmail onthe NIDES host is recommended, a reliable mechanism for transfer of E-mail alerts isnecessary.{ A specialized reporting mechanism for alerts involving a compromise of NIDESsecurity (e.g., cases where the perpetrator may be a NIDES user){ An enhanced E-mail alert reporting mechanism to route all E-mail alerts through aspeci�c mail host3. NIDES user authentication. NIDES users would be veri�ed through the following:{ Enhanced NIDES start-up procedures requiring the user to enter a one-time pass-word that would be used for NIDES-related authentications during the currentNIDES execution{ A NIDES modi�cation allowing NIDES logins only from the NIDES host, not fromany other systems{ A requirement for users who are authorized to perform rulebase con�guration func-tions to enter in the rulebase encryption key before performing any rulebase con�g-uration functions in NIDES4. TCP/IP services. The integrity of the NIDES analysis host, software, and data mustbe maintained. Network access to the NIDES host should be completely disabled or at95

Appendix B Tamperproo�ngleast severely restricted except for communication between the agen processes on theindividual target hosts and the arpool process.Additional system administration guidelines would be provided on which TCP/IP ser-vices should be allowed/con�gured on the NIDES host via TCP wrappers. Guidelinesfor the disabling (or restriction) of network protocols and services such as telnet, ftp,rlogin, sendmail would also be provided.NIDES would automatically review the status of TCP/IP connections (e.g., via netstat),analyzing changes in the status for suspicious behavior.B.7 Protecting NIDES from Reverse Engineering� Protecting the rulebase from reverse engineering. The most vulnerable area in NIDESwith respect to reverse engineering is the rulebase. In NIDES, each rule is speci�ed using arulebase language, and is translated into machine-generated C code. These machine-generatedrules are then compiled into object code that can be loaded into the operational rulebasedsystem at run time.Various techniques can contribute to making it di�cult to reverse engineer the NIDES rule-base:1. Protection of the NIDES rulebase source code. In NIDES installations the rule-base source code and con�guration �les are highly sensitive. The NIDES rule sourcesand their corresponding C source code should be maintained on a system separate fromNIDES. A rule source encryption mechanism would be provided that would decrypt rulesonly during compilation. The rule-build script would be enhanced to prompt the userfor the encryption key, decrypt the rule source, compile it, and then re-encrypt it.2. Protection of the NIDES rulebase from unauthorized modi�cation. Activa-tion/deactivation of the rules in the rulebase is safeguarded by the techniques enumeratedin Section B.6, speci�cally use of the one-time password for each NIDES invocation andentry of the rulebase encryption key when rulebase con�guration is initiated. Preven-tion of unauthorized users writing and installing rules into the NIDES rulebase would beaddressed in two ways | the rulebase development directories would be accessible onlyto the NIDES system administrator and all rules would be developed using an encryp-tion key, as mentioned earlier. Thus, any rule created with an improper encryption keycannot be decrypted by NIDES; when this occurs, the error would be reported and therule �les involved should be veri�ed by the NIDES system administrator and probablyremoved.3. Protection of rule object code and rulebase con�guration �les. NIDES rulebinaries and the rulebase con�guration �le, rb config, would be stored in an encryptedform when they are on disk, and would be decrypted at run time as needed | if thecorrect key has been entered at NIDES start-up. This can be accomplished withoutinhibiting access to object �les for rules during system execution. The rule-building scriptwould also be enhanced to encrypt the rule object �les immediately after compilation. Arule object �le would be decrypted when the rule is needed by NIDES, and re-encryptedwhen the rule object �le is no longer needed. This approach would add a slight delay tothe NIDES start-up processing and rulebase recon�guration.96

Appendix B Tamperproo�ng� Protecting NIDES software from reverse engineering. The NIDES processes wouldbe enhance in the following ways to deter reverse-engineering attempts:1. Prevention of dumping. Core dumping would be disabled systemwide. All signalsthat could cause a core dump and prevent the writing of the core �le would be trapped.2. Use of ptrace and /dev/mem. In the NIDES nagen rulebase, rules would be included todetect reverse-engineering attempts using the ptrace system call or reading /dev/mem.B.8 Coverage of the NIDES Security GoalsTable 17 lists the proposed enhancements and shows which of the goals given in Section B.4 areat least partially addressed by each enhancement. A solid bullet (�) indicates that the feature isprimary in addressing the goal. An open bullet (�) indicates a secondary contribution.These techniques would not make it impossible for NIDES to be compromised. However, theywould greatly reduce the risk and increase the likelihood that such compromise will be detected.B.9 Formal Methods Implications of NIDESNIDES is a system that is normally intended to run separately from the systems whose activities itmonitors, with no Internet or dial-up access, and with dedicated connectivity to the target systemsthat it monitors. As such, NIDES security can be considered somewhat independently of thesecurity of the target systems | except for the possibility of compromises of the audit data on thetarget systems being monitored, before that data ever reaches NIDES.From a RISSC architecture point of view, making the NIDES architecture largely separable fromthe target systems, and severely constraining the interface between the target systems and the datacollection and analysis systems, alleviates many of the security problems commonly found in morehighly accessible systems. However, numerous concerns remain as to the security of an environmentsuch as the NIDES platform itself | as addressed here.From a formal methods point of view, the goal is to apply formal methods where the payo� isgreatest. In this case, if it were deemed important to provide high assurance for the NIDES antita-mpering properties noted in Section B.6, Goals 3, 4, and 7 would probably be of greatest interest,with 6 and 8 also appropriate for analysis. The formalization of these goals would very similarto typical operating-system properties, although with considerable emphasis on system integrity(which is important anyway). The security issues involved in protecting against reverse engineeringalso do not require any fundamentally new formalizations. The three rulebase properties and thetwo system properties enumerated in Section B.7 are essentially just system security properties.

97

Appendix B Tamperproo�ngTable 17: Relationship of proposed enhancements and security goalsNIDES Requirement1 2 3 4 5 6 7Target AuditSystem Data Integrity Avail. Rules Access UsersAntitamperingUser Roles � � � � �IPCAllowed set � �Registration � �Veri�cation � �Restrictions � �NondenialAlert PopUp � � � �Audit data � � � �Server timeout � �Target HostsHeartbeat � � � �Authentication � � �Data verify � � � �Network checks � �Audit �les � �Audit con�g � �arpoolTarget connect � � �Smokescreen � � �Logging � � � �NIDES Hostnagenaudit data �lter � � �data collection � �special rulebase � �Alert reportingInsider alerts �E-mail reports � �User authenticationSession password � � �Local execution � � �Encryption key � �TCP/IP services � � � �AntireversingRulebaseRule source integrity � � �Unauthorized mods � � �Object/con�g integrity � � �NIDESNo core dumps �ptrace & /dev/mem �Legend:� = primary contribution to requirement ful�llment� = secondary contribution to requirement ful�llment98

Appendix C Architectural ImplicationsC Architectural Implications of Covert ChannelsFor convenience of the reader, the following article by Proctor and Neumann [192] is reprised fromthe 15th National Computer Security Conference, October 1992. (References are incorporatedwithin the main body of references to this report.) That paper examines Distributed, Single-level-user-processor, Multilevel-secure (DSM) architectures, with particular attention to the eliminationof end-user covert channels, and provides the basis for the Reduced Interfaces for Secure SystemComponents (RISSC) architectures considered here. The covert-channel issues considered in thepaper are actually secondary to the issues of (1) being able to readily con�gure multilevel-securesystems out of easily available end-user system components, and (2) being able to readily evaluatethose systems as compositions and layerings of their components.Architectural Implications of Covert ChannelsNorman E. Proctor and Peter G. NeumannComputer Science LaboratorySRI International, Menlo Park CA 94025Abstract This paper24 presents an analysis of covert channels that challenges several popularassumptions and suggests fundamental changes in multilevel architectures. Many applicationscould bene�t from a practical multilevel implementation but should not tolerate any compromiseof multilevel security, not even through covert channels of low bandwidth. With the present state ofthe art, the applications either risk compromise or forgo the bene�ts of multilevel systems becausemultilevel systems without covert channels are grossly impractical. We believe that the presenceof covert channels should no longer be taken for granted in multilevel systems.Many covert channels are inherent in the strategies that multilevel systems use to allocate resourcesamong their various levels. Alternative strategies would produce some sacri�ce of e�ciency butno inherent covert channels. Even these strategies are insu�cient for general-purpose processordesigns that are both practical and multilevel secure.The implications for multilevel system architectures are far-reaching. Systems with multilevel pro-cessors seem to be inherently either impractical or unsecure. Research and development e�ortsdirected toward developing multilevel processors for use in building multilevel systems should beredirected toward developing multilevel disk drives and multilevel network interface units for usewith use only single-level processors in building multilevel distributed operating systems and multi-level distributed database management systems. We �nd that distributed systems are much easierto make both practical and secure than are nondistributed systems. The appropriate distributedarchitectures are, however, radically di�erent from those of current prototype developments.C.1 IntroductionThis introduction describes covert channels and their exploitation. The next section gives somebackground on covert channel research and relevant standards. After that, we identify the circum-24Copyright 1992, Norman E. Proctor and Peter G. Neumann. Presented at the 15th National Computer SecurityConference, Baltimore, 13-16 October 1992, this paper is based on work performed under Contract F30602-90-C-0038from the U.S. Air Force Rome Laboratory, Computer Systems Branch, Gri�ss Air Force Base, NY 13441 [164].99

Appendix C Architectural Implicationsstances in which covert channels need not be avoided when designing a system for an installation.First, we consider various reasons why covert channels might be tolerable in a multilevel system.Then, because covert channels are relevant primarily in multilevel systems, we consider when alter-natives to multilevel systems are appropriate for an installation. This seems to leave a large classof installations that would want multilevel systems free of covert channels.We next turn our attention to various reasons why multilevel systems have covert channels and con-sider how the needs of applications can be met without producing covert channels. We consider inparticular how a multilevel system can allocate resources among levels without covert channels thatcompromise security and without ine�ciencies that leave the system impractical. We describe theproblems with dynamic allocation and identify three alternative strategies for secure and practicalresource allocation: static allocation, delayed allocation, and manual allocation.We describe some practical approaches to multilevel allocation for various devices, including mul-tilevel disk drives, and explain why allocating software resources among levels is so troublesome.Finally, we present the implications for multilevel system architectures and suggest new directionsfor research and development.To the ReaderEarlier versions of this paper were misinterpreted by some very knowledgeable readers, leadingus to clarify the exposition. Nevertheless, we warn readers familiar with the problems of covertchannels in multilevel systems that, because we are questioning some popular assumptions aboutcovert channels, what you already know about covert channels may cause you to misunderstandour main points. Thus, please forgive our belaboring certain central issues and slighting otherfascinating topics that seemed less central to the discussion.Covert ChannelsCovert channels are
aws in the multilevel security of a system.25 A malicious user can exploita covert channel to receive data that is classi�ed beyond the user's clearance. Although a covertchannel is a communication channel, it is generally not intended to be one and may require somesophistication to exploit. It may take considerable processing to send one bit of data through thechannel; error control coding is needed to signal reliably through a noisy covert channel. Exploita-tion may require the help of two Trojan horses. One runs at a high level and feeds high data intothe channel, and the other Trojan horse runs at a lower level and reconstructs the high data for themalicious user from the signals received through the covert channel. The low Trojan horse is notneeded if the high one can send a straightforward signal that can be directly interpreted. Also, aswe explain later, malicious users can exploit some special kinds of covert channels directly withoutusing any Trojan horses at all.A covert channel is typically a side e�ect of the proper functioning of software in the trustedcomputing base (TCB) of a multilevel system. Trojan horses are untrusted programs that malicioususers have written or otherwise introduced into the system. A Trojan horse introduced at a lowlevel can usually execute at any higher levels.26A malicious user with a high clearance does not need to use covert channels to compromise highdata. The mandatory access controls would permit reading the high data directly. Ordinary reading25Similar
aws in other aspects of security are sometimes called covert channels, too, but a covert channel in thissection is always a communication channel in violation of the intended multilevel policy of the system.26If a program could run only at the level where it was installed, it would be harder for a malicious user with alow clearance to introduce the high-level Trojan horse. It would also be inconvenient to install legitimate software.100

Appendix C Architectural Implicationsis certainly an easier way to receive the data if the discretionary access controls permit ordinaryreading. If not, it is easier for a Trojan horse to copy the data into another place where thediscretionary controls do permit the malicious user to read it than to exploit a covert channel totransmit the data.The levels that concern us here are not necessarily hierarchical con�dentiality levels. They mayinstead be partially ordered combinations of hierarchical levels with sets of compartments. Weassume that a level might have some compartments. This means that two di�erent levels maybe comparable or incomparable. If comparable, one level is higher and the other is lower. Ifincomparable, neither level is higher or lower. A higher level denotes greater intended secrecy orcon�dentiality.27Noise in Covert ChannelsThe bandwidth of a covert channel is the rate at which information or data passes through it. Anoisy channel intentionally or accidentally corrupts the data signal with errors so that the informa-tion rate is slower than the data rate. A very noisy channel with an apparent bandwidth of one bitof data per second might actually leak only one millionth of a bit of usable information per second.Such a low bandwidth is beneath the notice of some. A malicious user who might have receivedthe classi�ed answer to a yes-or-no question almost immediately if the channel had no noise wouldexpect to wait almost twelve days for the answer. Of course, the channel still compromises securityeven though extremely high noise makes for an extremely low e�ective bandwidth.Noise in a covert channel may also make its information probabilistic. For example, consider aslower covert channel with a bandwidth of a thousandth of a data bit per second where each bitreceived has a seventy-�ve percent chance of being the same as what was sent and a twenty-�vepercent chance of being wrong. A malicious user exploiting the channel must receive the answerto a yes-or-no question many times before believing whichever answer was received more often.The expected wait for each answer is about seventeen minutes, but it takes around �ve hoursfor con�dence in the answer to reach ninety-nine percent. Here again, compromise of security ispostponed but not prevented.C.2 BackgroundVarious approaches exist for detecting and analyzing covert storage channels [61, 189] and foravoiding some of them [106]. For covert timing channels, additional approaches exist for detection,analysis, and avoidance [94, 251]. Some approaches attempt to address both types of covert chan-nels [80]. The notions of restrictiveness and composability [137] seek to preserve the absence ofcovert channels under composition, assuming their absence in the underlying components.In section C.7 we discuss some new directions for multilevel system designs that avoid all covertchannels. The architectures themselves are not new, of course. Others have considered similararchitectures for somewhat di�erent reasons [188, 210].Much of the research and development in covert channels for practical systems has been devoted to27For simplicity, we assume that levels are for con�dentiality although they could instead be for integrity or for bothintegrity and con�dentiality. The levels for mandatory integrity are duals of con�dentiality levels; covert channelscan compromise mandatory integrity in a direct parallel to their compromise of mandatory con�dentiality. Forexample, a Trojan horse running at a low integrity level might covertly contaminate high integrity data where overtcontamination was prevented by multilevel integrity. 101

Appendix C Architectural Implicationsreducing bandwidths to what some consider to be slow rates. Sometimes delays are introduced tolower bandwidth, and sometimes noise is added to lower the usable bandwidth. These approachesmerely ensure that malicious users exploiting the channels do not enjoy the same quick responsetimes to their queries as legitimate users enjoy. The assumption may be that if it takes hours or daysfor an answer to a simple illicit question, malicious users will ignore the covert channel and prefermore traditional methods of compromise, such as blackmailing or bribing cleared users. Althoughwe do recognize some situations where covert channels are tolerable, we believe the reason is rarelybecause of low bandwidths. For most installations, we believe that all covert channels should becompletely avoided, not simply made small. A clever, malicious user can generally compromiseclassi�ed information with even the narrowest covert channel.Other research in covert channels for practical systems has addressed the elimination of some speci�cvarieties of channels. The other varieties, typically including all timing channels, are permitted in amultilevel system because the developers could not �nd a way to eliminate them without renderingthe system impractical for its legitimate functions. The assumption may be that any channel thatis too hard for a developer to eliminate must also be too hard for a malicious user to exploit, butthis assumption is so clearly fallacious that it is never explicit.A cynical interpretation of this willingness to tolerate residual channels is that, because many usershave simply accepted systems with covert channels despite the potential for security violations,developers treat a multilevel security policy as an ideal to approach, not as a requirement to meet.A more generous interpretation is that the developers intend to eliminate more and more kindsof covert channels with each new generation of multilevel designs hoping that someday they canactually design a system with no covert channels. We wish they would go straight for systems freeof covert channels, and we believe the goal can be reached.StandardsThe U.S. Defense Department standards in the Trusted Computer System Evaluation Criteria [151],also known as the Orange Book, place restrictions on covert channels in secure systems. Systemsevaluated at classes C1 and C2 would have no covert channels simply because they would alwaysbe run at a single level. There are no restrictions on covert channels in a class B1 system, eventhough the system would probably have plenty of them.For a class B2 system, an attempt must be made to identify the covert storage channels, measuretheir bandwidths, and identify events associated with exploitation of the channels. The design mustavoid all storage channels with bandwidths over one bit per second, and the audit must be able torecord the exploitation events for any storage channels with bandwidths over one tenth of a bit persecond. There are no restrictions on covert timing channels. In a class B3 system, the criteria forcovert channels are extended to the timing channels.In a class A1 system, the attempt to identify covert channels must use formal methods, but thecriteria are otherwise the same as for class B3. The requirement of formal methods does imply thatthe informal methods acceptable for classes B2 and B3 may miss some covert channels. Among thechannels that formal methods themselves tend to miss are the timing channels.The criteria for covert channels in other security standards are similar to the Orange Book criteria.Although no standards require avoiding all covert channels, considerable theoretical work has beendone on hypothetical systems free of covert channels. This is in part because absolute multilevelsecurity would be better than multilevel security with potential compromise through covert chan-nels. Another reason is surely that absolute security is far easier to express in a mathematical102

Appendix C Architectural Implicationsmodel than is compromised security.We feel that the tolerance of covert channels in security standards is unnecessary and thereforeinappropriate for most multilevel systems. In fairness, when the Orange Book was written, covertchannels were believed to be inevitable. This belief remains widespread today. We do not acceptthe inevitability of covert channels in practical multilevel systems, and we fear that the currenttolerance of covert channels is itself a major threat to classi�ed information. The Orange Book andother standards are meant to promote the development of secure systems. The standards shouldnot be used as excuses for developing systems with unnecessary
aws.C.3 Tolerating Covert ChannelsA malicious user who is cleared for certain classi�ed data can always compromise the secrecy ofthe data. The problem with covert channels is that a malicious user with the help of one or moreTrojan horse programs can exploit a covert channel to compromise data classi�ed beyond the user'sclearance. Installations without malicious users or without Trojan horses can tolerate whatevercovert channels a multilevel system might have because the channels would not be exploited.No Malicious UsersOf course, at any installation with more than one user, one can never be certain that no users aremalicious, but a system-high installation might reasonably ignore its covert channels as if there werenone. Because running system-high requires that all users be cleared for every level, the securityo�cers of the installation would not expect users to exploit covert channels. To compromise anydata in the system, a malicious user does not need a covert channel. Covert channels are tolerablein system-high installations because they do not increase the system vulnerability.No Trojan HorsesThe security o�cers of some installations will assume that they have no Trojan horses. Theymay be right only because conventional compromise remains easier than exploiting Trojan horseswhen malicious users have limited technical skills. Few malicious hackers have access to multilevelsystems, and few multilevel systems are exposed to malicious hackers. But security o�cers cannotknow whether their installations are among the unfortunate systems.An installation cannot reasonably be assumed free of Trojan horses unless appropriately trainedpeople rigorously check all the programs that run on the system to be sure that none harbor Trojanhorses. All new applications and all changes to existing applications must be reviewed. Rigorousreviews are so expensive and time-consuming that the software on the system must be fairly stable.Also, the system must not have any compilers, command interpreters, or similar programs able tocreate code and bypass the review procedures. Because no Trojan horses are available to exploitthem, most covert channels are tolerable in an installation that can a�ord to ensure that all softwareis trusted not to contain a Trojan horse. Such a multilevel installation, if any exists, is probablydedicated to one modest-size application program running on a bare processor.Malicious users can exploit some special covert channels to compromise certain kinds of classi�eddata without employing Trojan horses. Typically, the data might indicate how busy the systemcurrently is at various levels. If the data were only nominally classi�ed, its leakage would not beserious, but release of such data at lower levels could constitute a real compromise of some systems.These special covert channels are, of course, intolerable even when an installation is known to be103

Appendix C Architectural Implicationsfree of Trojan horses.Low BandwidthIt may also be the case that leaks through covert channels are tolerable at some installations, pro-vided the leaks are slow enough. The Orange Book suggests that covert channels with bandwidthsunder one bit per second are \acceptable in most application environments." This acceptabilitymay simply be a concession to the sorry state of the art where some covert channels are sure to bepresent in any multilevel system and where merely identifying all the covert channels is generallyinfeasible.It is di�cult to believe that many security o�cers worry about how quickly data is compromisedinstead of worrying about whether it is compromised. Surely most worry about both problems.Nevertheless, a su�ciently low bandwidth could reasonably make covert channels tolerable at in-stallations with special situations. Where all classi�ed data is tactical data with ephemeral classi-�cations, slow covert channels are tolerable if data would no longer be classi�ed by the time it hadbeen released. If leaking the answer to one crucial yes-or-no question is enough to compromise thesystem, either the classi�cation of that answer must last only a split second or all covert channelsmust have extremely low bandwidth.Similarly, at installations where a price tag can be placed on all classi�ed data, some covert channelsare tolerable because no Trojan horses to exploit the channels would be cost-e�ective or becauseany alternative without covert channels would be too expensive. If covert channel bandwidths areimportant in performing the cost-bene�t analysis, some covert channels may be tolerable becauseof their low bandwidths. Where data is classi�ed to protect national security, assigning prices isfoolish and perhaps illegal.Lack of AlternativesMany installations tolerate covert channels simply because every multilevel system under consid-eration has some and because those in charge feel they need multilevel systems. Fortunately,these di�culties can be overcome. We believe that there can be multilevel systems without covertchannels and that there are often suitable alternatives to multilevel systems. The accreditors ofautomated systems for multilevel applications should not have to tolerate covert channels.Alternatives to Multilevel SystemsNot all applications have to run on multilevel systems. We mention �rst two unattractive optionsthat must sometimes be taken. One is not to implement the application at all, and the otheris to implement it with manual procedures only. The remaining alternatives are all automatedimplementations. The potential bene�ts of automation include convenience, accuracy, speed, andlower costs. These bene�ts have permitted the implementation of many applications that wereinfeasible before the advent of computers.When an application involves only one level of data or when all users are cleared for every level ofdata, the best alternatives are a single-level system or a system-high system, respectively. But theapplications that interest us here have some data classi�ed at levels beyond the clearances of someusers of the automated system. A single-level or system-high system cannot accommodate theseapplications, but a multilevel system is not the only alternative left. Another possibility is a systemwith an independent subsystem per level (ISPL). ISPL systems tend to be ine�cient, but at leastthey are intrinsically free of covert channels. We present the ISPL architecture mostly because itis useful later for comparisons with more attractive alternatives.104

Appendix C Architectural ImplicationsIn an ISPL system, there is a separate subsystem for any level where the system as a whole couldhave some data. Data is stored on the subsystem for the level matching the classi�cation of thedata. Additional upgraded copies of the data might be stored on some other subsystems at higherlevels. A user has access to a subsystem only if its level is dominated by the user's clearance.The subsystems are electronically independent. Each subsystem has its own hardware, and thehardware for the subsystem at one level is not connected to any hardware for subsystems at otherlevels. The subsystems are not completely independent, however. They are parts of a whole systemwith multiple levels because users sometimes refer to data on a lower subsystem in order to modifydata on a higher subsystem. Users might also manually reenter data from a low subsystem into ahigh one, or operators might transfer data storage media to higher subsystems.Like single-level systems, ISPL systems are inherently free of covert channels. Multilevel security iscompromised only when people fail to follow proper procedures. The automated parts of the systemcannot themselves reveal data to a user not cleared for it. However, trying to overcome some of thelimitations of an ISPL system may lead to complex procedures, and the complexity brings seriousdangers that accidental compromise would become frequent and that malicious compromise wouldbecome easy to arrange.Because the subsystems are independent of each other, none of the coordination among subsystemscan be automated. This tends to diminish all the potential bene�ts of automation. Unless therequired coordination among subsystems is minor, an ISPL system may well be too inconvenient,inaccurate, slow, or expensive for an application. An integrated multilevel system may then be theonly practical option. Unfortunately, multilevel systems typically have many covert channels.Some Reasons for Covert ChannelsOur aim is to avoid all covert channels in multilevel systems. Present experience, however, is thatany practical multilevel system contains many covert channels, despite the attempts of developersto eliminate them. It has been so di�cult to avoid covert channels because several highly desirablefunctions of a multilevel system seem to produce covert channels as a side e�ect. Fortunately, theessential multilevel functions can be implemented without building covert channels into the system.The di�erences in functional capabilities between ISPL systems and multilevel systems highlight themajor sources of covert channels in multilevel systems. In an ISPL system, which cannot have covertchannels, the absence of connections among the independent subsystems for each level preventsthe system from doing all that a multilevel system can do. Among the services requiring somemanual assistance in an ISPL system are reading consistent data from lower levels, downgradingoverclassi�ed data, writing up reliably, and maintaining consistency among the values of dataitems at di�erent levels. A multilevel system needs no manual assistance with these services, butthe implementation techniques generally introduce covert channels.Reading DownAn automated system might allow one process to change data that another process is currentlyreading. Then, the value the reading process receives could re
ect neither the value before thechange nor the value after the change, but some useless mixture of the two values. Such mixedresults from reading are unacceptable in most applications. The usual technique to prevent theproblem is for the reading process to lock the data before reading it. The lock is not granted ifany other process is currently writing the data, but once the lock is granted, no other process ispermitted to write the data until the reading process releases the lock.105

Appendix C Architectural ImplicationsIn a multilevel system with support for reading down, this technique produces a covert channel.Lower-level processes can detect when a higher process reads down to lower data because thehigher process holds a lock that prevents the lower processes from writing the lower-level data.Data cannot be locked for reading down without producing a covert channel.Di�erent techniques free of covert channels can ensure that high processes do not read inconsistentdata [59, 107, 130]. The most popular technique is for the high process to check whether any lowerprocess may have written the data between the time when the high process started to read the dataand the time when it stopped reading the data. If so, the read is potentially inconsistent, and thehigh process repeats the entire read again until it is sure that no lower process wrote the data whileit was being read. For some applications, there is a serious risk with this technique that a highprocess that tries to read a lengthy and volatile data item may keep trying to read the item for along time without ever succeeding. Other techniques may be appropriate for those applications.DowngradingAll downgrading is inherently an exploitation of a covert channel. When the downgrading islegitimate, one could say that the channel is not really \covert," but the intended downgrade ofoverclassi�ed data is often accompanied by some incidental and unacknowledged downgrading ofother data. A Trojan horse might exploit the channel by manipulating the other data. It mayalso be possible for a Trojan horse to hide other data in the overclassi�ed data. Multilevel systemdesigns cannot provide legitimate automated downgrading and still avoid all covert channels.Writing UpWhen a user working at a low level upgrades low data to a higher level, the data is said to bewritten up.28 To make the writing reliable, the low user might be noti�ed whether su�cientresources at the higher level are currently available to support the writing up. This noti�cationproduces an exploitable covert channel. Suppressing the noti�cation makes writing up unreliable;the user or program that wants to upgrade data never knows whether the writing up worked ornot. Applications that need writing up typically need reliable writing up, not hit-or-miss writingup. Reliable writing up can be achieved without covert channels by reserving su�cient resourcesat higher levels to accommodate all potential requests to write up. This is not easy to implement,and reserving the high resources may constitute a serious loss of e�ciency. A practical multilevelsystem apparently cannot provide reliable writing up without covert channels.Consistency Across LevelsWhen an application requires consistent values in two data items, a change to one may force achange to the other to keep them consistent, or alternatively, a change to one may be forbiddenuntil after the other is changed to a consistent value. This can be problematic in a multilevelsystem when the two data items are classi�ed at di�erent levels [59]. If the levels are comparable,one approach is secure and the other produces a covert channel. Which is which depends on whetherthe data item changed is at the lower or higher level. Neither approach is secure if the levels areincomparable due to di�ering compartment sets.Fortunately, one result of a rational classi�cation of data is that any criterion of consistency appliesto data items that are all at the same level. A data item would never have to be consistent withdata items at any other levels. A requirement for consistency with a higher item implies that auser cleared to read the lower item can infer something about the higher item, which must have28If the user were working at the higher level, the upgrade is from reading down, not writing up.106

Appendix C Architectural Implicationsa consistent value. The existence of the inference suggests either that the lower data should beclassi�ed at the higher level or that the higher data should be classi�ed at the lower level. If datawere classi�ed rationally, users cleared just for lower data could not infer anything about higherdata.In practice, however, classi�cation is not purely rational, and some applications really may needconsistency across levels. This can be achieved without covert channels, provided that reliablewriting up is properly implemented and the levels involved are all comparable. The likely cost isgross ine�ciency from keeping the writing up reliable and some inconvenience because users mustalways change the lowest items �rst. Data consistency across levels, freedom from covert channels,and practicality seem to be incompatible in a multilevel system.Resource Allocation among LevelsWe turn next to another distinction between ISPL systems and multilevel systems, their di�erentabilities to allocate resources among levels. In an ISPL system, the allocation for a level is thehardware in the subsystem for the level. In order to change the allocation for a level, some pieceof equipment must be replaced, and reallocating resources from one level to another is likely toinvolve bringing down two subsystems for a while. In a multilevel system, reallocating resourcesis more convenient. Resources can often be allocated to whichever level can make the best use ofthem at the time. This can greatly increase the e�ciency of the system. With a multilevel systeminstead of an ISPL system, the users can get more service from the same hardware or equivalentservice from less hardware.Reading down, downgrading, writing up, and data consistency across levels, as we explained before,are not just functional distinctions between ISPL systems and multilevel systems, but also commonreasons for covert channels in multilevel systems. Similarly, resource allocation is a common reasonwhy multilevel systems have covert channels, as well as being a functional di�erence from ISPLsystems.Because a system often has many kinds of resources, resource allocation may be the reason formost of the covert channels in a multilevel system. Among the space resources to be allocated arephysical memory, entries in operating system tables software, storage on disk, and bandwidth ina network connection. The allocable time resources include processor time (CPU time), servicetime from the operating system, disk access time, and access time to other multilevel devices suchas terminals, printers, tape drives, and network interface units. Resource allocation is a primaryfunction of operating systems, but multilevel networks, database management systems, and evenapplications have resources of their own to allocate among levels.We consider four general strategies for resource allocation among levels: static allocation, dynamicallocation, delayed allocation, and manual allocation. Dynamic allocation is the most e�cient butinherently produces covert channels. The other three strategies are free of covert channels but canbe ine�cient to the point of complete impracticality when used for the wrong resources. Staticallocation is the simplest strategy and the least e�cient. It is usually as ine�cient as an ISPLsystem. Delayed allocation and manual allocation are more e�cient, sometimes approaching thee�ciency of dynamic allocation. Delayed allocation is better suited to some resources, manualallocation is better for other resources, and a combination of both may be better than either onein some cases. We use the allocation of processor time as the main example to illustrate the fourstrategies.Static Allocation 107

Appendix C Architectural ImplicationsWith static allocation, a �xed portion of a resource is allocated to each level that shares the resource.One level cannot borrow from another level even when the �rst level could use more than its shareand the other level has idle capacity.If processor time is statically allocated, the share of time allocated to a level is generally determinedthrough the initial system con�guration. The con�guration might assign time slots to each level.The schedule would consist of a sequence of time slots that is repeated for as long as the processorruns. The share for a level is the length of its time slot in the sequence or, if the level has severalslots, their combined length. Only processes at the proper level run during the time slot for a level.The level gives up the processor at the end of its time slot even if some processes at that level stillwant processing time. On the other hand, during the time slot for a level, the processor is left idlewhenever every process at the level is waiting for I/O or whenever there are no current processesat the level. This means that the processor may be idle during the time slot for one level whenthere are processes at another level that could have been serviced.Dynamic AllocationAt the cost of producing a covert channel, dynamic allocation avoids such wasting of resources.Resources are allocated among levels based on the current needs at each level. The simplestalgorithms allow one level to borrow freely as needed from other levels. More complicated dynamicallocation algorithms place some limits on how much can be shared or how frequently reallocationcan occur.If processor time is dynamically allocated, the current loads might freely determine the share ofprocessor time for a level, or the system may adjust shares within con�gured limits. When thehigher levels are busy, processes at lower levels cannot get as much processing time as when thehigher levels are idle. Because lower processes can detect whether higher levels are relatively idleor relatively busy, there is an exploitable covert channel.For example, a high Trojan horse could send a \one" bit during a particular period by requestingso much processor time that the processor would seem especially busy to the low Trojan horsereceiving the signal. To send a \zero" bit instead, the high Trojan horse would refrain fromrequesting processor time so that the low Trojan horse would �nd the processor relatively idle.Irregular patterns of legitimate activity probably make the channel noisy, and the noise reducesthe e�ective bandwidth of the channel. But the channel is not eliminated. Some bandwidth wouldstill be available for leaking information to users who are not cleared to see it.The covert channel from dynamic allocation is exploited by exhausting the resource. Processortime like any resource is �nite, but in some cases, processor time is e�ectively inexhaustible. If theheaviest possible load on the processor would not consume all the available time, there is alwaystime available whenever a level wants some. This eliminates the covert channel, but it makesdynamic and static allocation equally ine�cient. Ensuring that processing time is always availablewith dynamic allocation would ensure that time is always available with static allocation, too. Thesame amount of processing time would go idle either way.2929In some circumstances, dynamic allocation might always give enough time even though static allocation of thesame total capacity did not always give enough. This may occur if the limits on the load yield a maximum combinedload for all levels that is less than the sum of the maximum loads for individual levels. The most likely reason forsuch a pattern of loads is that some other dynamically allocated resources are exhausted. The allocation routinesfor the other resources would then have exploitable covert channels even though the allocation routine for processortime did not. 108

Appendix C Architectural ImplicationsDelayed AllocationAllocating resources to one level may entail denying the same resources to other levels that requestthem later. A dynamic allocation strategy that could support instant reclamation of resources neednot have a covert channel. Each level would have a basic allocation, but when a lower level was notusing all of its basic allocation, a higher level wanting more than its own allocation could borrowfrom the unused portion of the lower level allocation. If the lower level later became busy enoughto want some of the borrowed allocation back, enough would be instantly reclaimed for the lowerlevel.Similarly, if an intermediate level wanted more than its allocation, it could also borrow from thelower level. When a higher level had already borrowed from the lower level, that would not in
uencehow much the intermediate level could borrow. If necessary, resources that were borrowed for thehigher level would be instantly reclaimed and reallocated to the intermediate level.A higher level could not borrow resources from a lower level while the lower level was using themor while any intermediate level was already borrowing them. Also, a lower level could never borrowfrom a higher level although it would sometimes reclaim its own basic allocation from the higherlevel or usurp the resources of a still lower level that the higher level happened to be borrowing.30When a process at a level is given resources, it might be told whether they come from the basicallocation for its own level, and if not, it could be told from which lower level it is borrowing them.It must not be informed whether the resources were reclaimed from a higher level. There is nocovert channel because the borrowings of higher levels do not a�ect the resource amounts availablefor a lower level.When requests for resources are satis�ed, the resources are allocated with the same speed whetherthe resources are currently free or currently being borrowed at a higher level. If free resourcesmight be allocated instantaneously, then borrowed resources must be reallocable to a lower levelinstantaneously, too. Because instantaneous reallocation is not feasible for most resources, instan-taneous allocation of free resources usually cannot be provided either. If borrowed resources canbe reallocated only slowly, free resources must be allocated just as slowly. The delayed allocationstrategy is named for the sometimes substantial delays the strategy can introduce in the allocationof resources.For a delayed allocation of processor time in a system with only comparable levels, throughputcould be maximized by making a basic allocation of all the processor time to the lowest level. Eachlevel would seem to have available to it all the time that lower levels were not already using. At theend of each time slice, the processor would be allocated to the lowest level with a process ready torun.31 An interrupt for the currently allocated level could be serviced promptly, but an interrupt30When a system involves incomparable levels, the rules for borrowing are more complex. Incomparable levelscannot borrow from each other, nor can they compete to borrow from another level lower than them. One wayto avoid competition among incomparable levels is to allow only some of the higher levels to borrow from a lowerlevel. The system con�guration would select which higher levels can borrow from a level. The levels selected to haveborrowing privileges for a resource at a lower level must be mutually comparable. For any two incomparable levels,the selections for a lower resource might contain one or the other of the two incomparable levels, or perhaps neither,but certainly not both. Because any level not selected could not borrow the lower resource at all, it would nevercompete for the resource with another incomparable level that was selected.31All levels except the lowest level are borrowing their time from the basic allocation to the lowest level. Becausetwo incomparable levels cannot compete for the same resource, a system with incomparable levels needs some changesto the algorithm. The simplest variation is to specify a repeating sequence of time slices. The slices in the sequenceneed not all be the same length of time, but for each cycle through the time slices, each slice must be the same length109

Appendix C Architectural Implicationsfor another level would not be serviced until the next time slice when no lower tasks were pending.With all time slices being of equal duration, this delay in servicing interrupts conceals whetherthe processor was idle when the interrupt occurred or was busy servicing a higher level. Thedelay clearly wastes some processor time in order to avoid the covert channel found with dynamicallocation.Because a lower level would not be prevented from consuming all the time and shutting out allhigher levels, some installations may prefer instead to give each level a basic allocation in orderto guarantee some time for each level. This fairness comes at the cost of lower overall e�ciency.Whenever multiple levels compete for a shared resource, any strategy to prevent denial of serviceto high levels will either require more resources or produce a covert channel, entailing compromiseof multilevel security.The advantage of dynamic allocation is its more e�cient use of processor time than with staticallocation. In fortunate circumstances, delayed allocation is essentially as e�cient as dynamicallocation. But in ordinary circumstances, the delays introduced to conceal processor loads athigher levels make delayed allocation less e�cient than dynamic allocation. And in unfortunatecircumstances, delayed allocation could be even less e�cient than static allocation.Manual AllocationA contributing factor in producing a covert channel with dynamic allocation is that the allocation ischanged automatically based on data from untrusted software. Changes in the allocation based ontrustworthy data do not necessarily produce a covert channel. The operators of a multilevel systemcould sometimes switch the system manually among a variety of di�erent multilevel allocationsappropriate for di�erent situations. The operators would choose an allocation based on theirexpectations of the upcoming resource needs at each level. They must be careful to use informationfrom outside the system, not simply the current loads at each level. Those loads may re
ect thein
uence of Trojan horses instead of legitimate activity.More automated variants of manual allocation are also possible. Some information within thesystem could be used for automatic changes in the allocations of resources among levels. Theinformation that is safe to use is information that users or operators input manually and thatcomes through trusted paths to ensure freedom from the in
uence of any untrusted software. Ona multilevel system, safe inputs may include user logins, user logouts, user requests to change to anew level, and possibly some other inputs through an operator console.These inputs must follow trusted paths from the user or operator to the TCB. There is no covertchannel because Trojan horses are incapable of spoo�ng what a user does through a trusted path.That is precisely what makes a path qualify as a trusted path. Because Trojan horses cannotproduce any of the manual inputs that determine how allocations are updated in the manualallocation strategy, they cannot in
uence the changes in allocation to any level. It is crucial thatthe only information used to adjust the allocations is information the operating system receivesdirectly from users through trusted paths.Manual allocation of processor time can be reasonably e�cient in a multilevel system used primarilyfor online processing. If the user inputs for logging in, logging out, and changing level all come viaa trusted path, the allocation of processor time for a level can be proportional to the number ofas it was in the �rst cycle. All the time slices would still be in the basic allocation for the lowest level, but di�erentsets of borrowing levels should be selected for di�erent time slices in the sequence to ensure that each incomparablelevel has chances to borrow processor time. 110

Appendix C Architectural Implicationsuser sessions currently logged in at a particular level. This is often a fair measure of the expectedload at that level. No time would go to levels with no current user sessions. When all currentsessions are at one level, that level would be allocated all the processor time. Allocations would besubject to change each time a user logged in or out or changed from one level to another.The ratio of the number of current user sessions at a level to the total number of current sessionsis a secure basis for manual allocation only on a system where the total number of users logged inis unclassi�ed. If users with low clearances must not know how many users are logged in at higherlevels, then the ratio determining the allocation for a level should instead compare the currentsessions at the level to the sessions at or below the level. Manual allocation based on this ratiowould be somewhat less e�cient.E�ciency might be enhanced by taking into account some other information about current usersessions that the trusted paths have validated. The user's name, the time of day, and, if the systemis distributed, the processor supporting the user session could be used to anticipate di�erent loadsfrom di�erent sessions and calculate allocations based on those expectations. The weights for thecalculations should come from tables the operators have prepared in advance, not from the currentdemands of the sessions.In a multilevel system where online processing predominates but there is some background or batchprocessing, this approach should be modi�ed so that some time is allocated to levels that may haveo�ine processing. Otherwise, o�ine processing at a level would cease whenever there happened tobe no current user sessions at the level.Reallocation based solely on manual inputs would not be as e�cient as dynamic allocation basedon all available information. It should still be more e�cient than a static allocation that neverchanges. Manual allocation, like delayed allocation, is less e�cient than dynamic allocation. Bothallocation strategies are compromises between dynamic allocation and static allocation.Manual and delayed allocation can be combined. The same kinds of inputs as the manual strategyuses to update allocations can be used to update the basic allocations for the delayed strategy.The hybrid allocation strategy improves the e�ciency of delayed allocation, and with resources forwhich delayed allocation is appropriate, the hybrid strategy is more e�cient than manual allocation,too. The hybrid strategy cannot outperform the best dynamic allocation algorithm, nor is it likelyeven to be equally e�cient. However, the covert channels of dynamic allocation are absent froma combination of manual and delayed allocation, just as they are with static allocation, simpledelayed allocation, and simple manual allocation.C.4 Allocating Device ResourcesWe call a device multilevel if it ever stores or transmits data for more than one level. At oneextreme, the device may always handle hundreds of levels, or at the other extreme, it may handleone level on some days and another level on the other days.As a �rst example of a multilevel device, we consider a multilevel terminal. It is inconvenient fora user to move to a di�erent terminal in order to work at a di�erent level or for the user to haveas many terminals on one desk as there are levels of work to do. With one multilevel terminal,terminal access time could be allocated to whichever level the user currently wants. Multilevelterminals would cost more than single-level terminals, but the convenience may justify the addedcost. And if one multilevel terminal fully replaces several other terminals, there may even be a cost111

Appendix C Architectural Implicationssavings.The multilevel terminal would need some special manual inputs for selecting the level where theuser wants to allocate the terminal access time. A reset button, a dial or switch for indicating alevel, and a ready button would be enough. When the user presses the reset button, the terminalclears its screen and any volatile memory, locks the keyboard, and unlocks the level dial. Then,the user can set the dial to the new level. When the user presses the ready button, the terminallocks the dial, selects the single-level communication line at the level corresponding to the settingof the dial, and unlocks the keyboard.When the terminal is installed, the security administrators should make sure that the dial settingscorrectly label the processors that can be accessed through the corresponding single-level lines.The terminal must also be protected from sabotage, of course. We caution against making themultilevel terminal too sophisticated. A multilevel workstation is far less likely to be implementedfree of covert channels than is a basic multilevel terminal. Pushing the reset button must removeall traces of whatever had been done before.A similar approach would work for a multilevel printer or multilevel tape drive. The reset button ofa printer must clear all physical traces of what was printed at the previous level. The justi�cationfor a multilevel printer or tape drive is probably lower cost or greater convenience again.Trusted Network InterfacesA network of multilevel lines is more convenient for operators to install and maintain than areseparate networks of single-level lines for a variety of levels. The convenience may justify the costof the trusted network interface (TNI) units to connect each single-level communication line to amultilevel line. Especially in a wide-area network, the savings from having fewer cables may alsoo�set the cost of TNI units.If a multilevel line is a radio-frequency cable, each level can be statically allocated its own frequencyband. A TNI unit would tune to a band based on its control settings. Whoever installs or maintainsa unit connecting a multilevel line to a single-level line must check that the control settings of theunit agree with the level of the single-level line.TNI units should be connected to the communication lines of single-level processors and devicesso that they can communicate over the multilevel network lines. Rather than having TNI unitsconnected to the various single-level lines for a multilevel device such as the terminal describedearlier, one TNI unit could be embedded in the multilevel device so that one multilevel line couldreplace all its single-level lines. The terminal would retune its frequency based on the current dialsetting when the user pushed the ready button. Embedding a TNI unit is also an option for amultilevel printer or multilevel tape drive.A network of multilevel lines with TNI units wherever processors and devices connect to the networkis functionally equivalent to separate single-level networks. A single-level processor could commu-nicate with other single-level processors and devices only if they are at the same level. It couldcommunicate with the multilevel devices we described only when they were currently allocated tothe same level, too.More complex TNI units might support multiple single-level lines or support an allocation strategyfor the multilevel lines more e�cient than static allocation of frequency bands to levels. We suspectthe added e�ciency would not o�set the problems of the extra complexity: a higher cost per unitand reduced assurance of multilevel security. 112

Appendix C Architectural ImplicationsCryptographic methods can supplement such TNI units but are never a substitute. If networklines are vulnerable, encryption can help preserve the con�dentiality and integrity of messagestransmitted over the network. However, if the network does not carefully allocate resources basedon the levels of the decrypted messages, there are covert channels. Users communicating at lowlevels could detect heavier and lighter loads on the network from activity at higher levels, possiblydue to Trojan horses. Encrypting messages does nothing to eliminate this covert channel.Multilevel Disk DrivesAny multilevel application requires some support for reading down. Reading down can be imple-mented with multilevel processors, multilevel disk drives, some other multilevel storage media, ora combination. Disks are more generally useful for reading down than are other storage devices.Also, we believe that multilevel disk drives are much easier to build free of covert channels than aremultilevel processors. We are not certain that multilevel drives really can be implemented withoutcovert channels as nobody has yet tried, but we sketch a design that seems feasible.The design uses manual allocation of the storage space on the disk and uses a combination ofdelayed and manual allocation for the access time to the disk drive. The interface for the operatorhas a reset button, a restore button, an accept button, and various browsing buttons to controla display panel. The interface to the rest of the multilevel system is through separate single-levellines for each level the drive supports.32A special single-level line connects the disk drive to a single-level processor with a con�gurationtable that the operator maintains. The table shows (1) the levels of the other single-level lines, (2)which levels are higher or lower than other levels,33 (3) what level of data is to be stored in eachsector of the disk, (4) how long each period in the access time schedule lasts, (5) which level is thebasic level for each time period in the schedule, (6) which higher levels may borrow time duringeach time period,34 and (7) what position the disk arm is to be in at the end of each time period.When a con�guration table takes e�ect, the allocation of storage space to a level is the sectors thatthe con�guration assigns to that level. The allocation strategy for access time is a hybrid of delayedand manual allocation. The e�ective con�guration gives the parameters for delayed allocation. Thebasic allocation of access time to a level is the time periods where that level is the basic level.While the disk drive is providing its regular reading and writing services, the drive rejects anyrequests to change its internal con�guration table. When the operator pushes the reset button,the disk drive locks all the buttons, stops regular reading and writing services, and waits to receivea new con�guration table through its special line. The operator working on the processor wherecon�guration tables are maintained should request a change to the new con�guration. If the diskdrive �nds the new con�guration unacceptable, it shows an error code in its display panel andunlocks the reset and restore buttons. The operator has a choice of �xing and resubmitting thenew con�guration or restoring the old con�guration.If the drive would accept the new con�guration, it unlocks all buttons and prompts the operatorto double check the changes. The operator uses the browsing buttons to check all parts of thenew con�guration and perhaps also the old con�guration to be sure that the con�guration the diskdrive received is exactly as intended. This precaution means that the single-level processor where32As before, the single-level lines could be replaced with an embedded TNI unit and a multilevel line.33The level of the special line should be lower than the levels of the other lines.34If the disk supports some incomparable levels, the borrowing levels for a time period must be chosen to bemutually comparable. 113

Appendix C Architectural Implicationsthe table is maintained and the path connecting the processor and disk drive do not have to becompletely trusted.If the con�guration does not look right, the operator pushes the restore button. The disk drivelocks the restore and accept buttons, discards the new con�guration, and resumes regular servicewith the old con�guration. If the operator pushes the accept button instead, the restore and acceptbuttons are still locked, but it is the old con�guration that is discarded and the new con�gurationthat is used to resume regular services. Also, before resuming regular reading and writing serviceswith a new con�guration, the drive clears any disk sectors then allocated to levels lower thanbefore.35 During regular services, the reset and browsing buttons remain unlocked.While the disk drive serves a level, it accepts inputs and returns outputs through the communicationline for the level. The other communication lines are ignored. The drive honors any requests toread or write sectors at the current level. To support reading down, the drive also honors requeststo read sectors at lower levels.Within the disk drive itself, there is a scheduler that determines which level to serve and for howlong. The scheduler cycles through the schedule of time periods in the current con�guration. Atthe beginning of a time period, it serves the basic level for the period. When appropriate, thescheduler may change level before the period ends and allocate whatever remains of the periodto the lowest level that can borrow time in the period. It may also change level more times andallocate the remainder of the period to the next highest borrowing level.36 If the highest borrowinglevel for the period is reached, the level stays the same until the start of the next period { when itbecomes the basic level for that period.The scheduler in the disk drive changes to the next highest borrowing level when the current levelhas no more disk accesses to make. If the current level is already the highest borrowing level, thedrive waits idly until the period ends or more requests are received at the highest level. The drivedoes not change level if there would not be enough time to establish the new higher level and stillposition the disk arm as the con�guration requires before the period ends. Similarly, as the perioddraws to its end, the disk drive rejects any access request that could not be completed in time toposition the disk arm properly afterward.The covert channel that would be produced by a dynamic allocation of access time is not foundin this design. The allocations of storage space on the disk and the parameters used for delayedallocation of access time change only when the con�guration changes, and that is only when theoperator pushes the appropriate buttons. While the con�guration remains unchanged, the perfor-mance of a disk drive in one time period has no e�ect on its performance in later time periods.Within a time period, the service to a level depends just on the requests from that level and lowerlevels. The higher borrowing levels receive no service until the lower levels voluntarily release theirclaims on the time period.The sometimes long delays while a multilevel disk drive is inaccessible from a level make the driveinappropriate for the I/O of many ordinary processes. We suggest that most data be kept onsingle-level disks and accessed there primarily. Multilevel disks would hold only replicas of data35Any sector allocated to a level incomparable to its old level is also cleared. If the level of a sector is left unchanged,its contents are kept. The contents are also kept in a sector whose level increases. In such a sector, the contents aree�ectively upgraded to the higher level.36Because levels that may borrow time within a period are chosen to be mutually comparable even when the drivesupports incomparable levels, the next highest borrowing level is uniquely de�ned until the highest borrowing levelis reached. 114

Appendix C Architectural Implicationsthat is sometimes read down. The following scenario explains how this might work.A Scenario with Upgraded ReplicasAn ordinary process running on a single-level processor at some low level writes to a �le stored ona single-level disk at the low level. When the process releases its write lock, a new value of the �leis available for other processes at the low level to read from the same disk. But if the �le headerindicates the �le is replicated, the replicas do not yet have the new value.A replica management (RM) process on the same processor sends the updates to RM processes forany other disks that the �le header indicates keep replicas at the low level. Although some of theseRM processes may run on other processors, all run on single-level processors at the low level. TheRM processes update the replicas on their disks to re
ect the new value of the �le. Multiple copiesat the low level increases the availability of the �le to users throughout the system. If its disk ismultilevel, an RM process also records the new time stamp of the updated replica in a special disksegment for the low level.Periodically, each process of another kind, the upgraded replica management (URM) processes,reads down on a multilevel disk in the time stamp segments for any levels lower than the level ofthe processor where the URM process runs. For each �le with an upgraded replica at the high levelof its processor, the URM process checks whether the time stamp of the lower replica has changedsince last checked. If so, the URM process reads the updated lower replica of the �le. It is againreading down on the multilevel disk.The URM process sends the updates to the appropriate RM processes at the high level. As before,the RM processes write the new value of the �le into the replicas on their disks at the high level.If any of these disks are multilevel, that may trigger another round of propagating the updates toreplicas at still higher levels.The new value of the �le becomes available to ordinary processes running on single-level processorsat a variety of levels. A process running on a processor at one of those levels can read any replicaof the �le found on a single-level disk at the same level.37In the scenario above, all processes can run on single-level processors. Ordinary processes can doall their reading and writing on single-level disks. The only processes that must access multileveldisks are the replica management (RM) and updated replica management (URM) processes. AnRM process reads and writes time stamp segments and replicas at its own level, and the URMprocesses read down to lower time stamp segments and lower replicas.38The ine�ciencies of the allocation strategy for access time to the multilevel disk drives may hinderthe upgrading of new or changed �les. To update the upgraded replicas at the same time asthe changes are made in the �le itself would require reliable writing up, not just reading down.Because a covert-channel-free system is not expected to have reliable writing up, there will be somelag between the writing of a �le and the updating of the upgraded replicas. The choice of anallocation strategy for the multilevel disk drives would a�ect only how long that lag can be. It doesnot a�ect any other processing. In particular, the I/O of ordinary processes and the propagation ofreplicas within a level are una�ected. They can bene�t from all the e�ciencies of high-performance,single-level disks.37If the single-level disk is remote from the process, processes on other processors at the same level would helpwith the reading.38A disk controller process on the same processor as the RM or URM process might mediate its reading and writingof the multilevel disk. 115

Appendix C Architectural ImplicationsC.5 Allocating Software ResourcesWhile discussing multilevel devices, we have ignored multilevel processors and assumed that themultilevel devices would have to communicate with single-level processors. We now consider someof the resources of a multilevel processor. A multilevel processor has a trusted computing base(TCB), typically consisting of a kernel and some trusted processes. The software for the kerneland most trusted processes runs multilevel. The resources of that software are allocated among thevarious levels that the software serves.As with hardware resources, dynamically allocating these resources on the basis of current demandcreates an exploitable covert channel. Because the resources are limited, a low process employingthe services of the multilevel software can detect how much has been allocated to higher levels,and a high process can send signals by modulating its demands on the multilevel software services.Static, delayed, or manual allocation, on the other hand, would produce no covert channels. Staticallocation is feasible for most TCB software resources but is relatively ine�cient. Manual allocationis often feasible and more e�cient. Delayed allocation is also more e�cient but would be too di�cultto implement correctly for many software resources.Kernel ResourcesThe innermost layers of a trusted operating system for a multilevel processor are called a trustedexecutive or kernel. The layers that concern us include the layer presenting the abstraction ofprocesses and all lower layers. These are the layers that do not run as processes. The kernel isinherently multilevel, and many of its resources are also multilevel. The execution time of thekernel is allocated among the levels. An allocation of processor time to a level includes the time thekernel spends serving that level, not just the execution time of single-level processes at the level.The storage resources of the multilevel kernel in a multilevel processor include most of the systemdata space. At any given moment, some of these resources would be fully allocated to the samelevel as is the processor time. Other storage resources might be partially allocated among levels.It is extremely di�cult to avoid every covert channel in the allocation of kernel time and storagein a multilevel processor. Some kernel resources can easily be allocated among levels using a staticor manual allocation strategy, but it is unlikely that all resources of a practical multilevel kernelwould be so safely allocated, especially in the lowest layers of the kernel.A multilevel processor embedded in a special-purpose device such as a disk drive, printer, terminal,or network interface unit should need such a simple executive that safe allocation of all resourcescan be achieved without sacri�cing practicality. The executive probably would not even supportreal processes.A more general-purpose multilevel processor supporting user processes, however, seems doomedto have some covert channels at least within its kernel. The service time and data spaces for thelowest kernel layers could not avoid load-in
uenced dynamic allocation. The covert channels mightall have small bandwidths or high noise, but they would still be there for malicious users to exploit,however slowly. Even some special-purpose multilevel processors, such as �le servers, may be toosophisticated to be reliably free of covert channels.To date, no designers have even come close to producing a covert-channel-free kernel for a multileveloperating system. In a typical design for a multilevel kernel, many low-bandwidth covert channelsare not even identi�ed.Trusted Process Resources 116

Appendix C Architectural ImplicationsSecure allocation among levels is somewhat easier for the resources of multilevel trusted processesthan for kernel resources. This may be largely irrelevant, however, because multilevel processesexist only on multilevel processors with more sophisticated kernels. Because the kernels alreadywould have introduced some covert channels, the e�ort to avoid all covert channels in the trustedprocesses may be futile. The result would still be a TCB with some covert channels.As with the kernel, the allocation of the execution time of a trusted process to a level must beconsidered part of the allocation of processor time to the level. Static allocation of trusted processtime is simpler, but the e�ciencies of manual allocation might justify the extra complexity.The virtual address space of a trusted process in a multilevel processor gives it storage resourcesthat can be allocated among the levels that the process serves. Some variables in the addressspace would be fully allocated at any moment to the same level as the process time. Other storageresources, especially structures such as tables, lists, and bu�ers, might be partially allocated amonglevels based on a static allocation, or perhaps a manual allocation. Dynamic allocation based oncurrent demand would create a covert channel, of course.Memory management for the address spaces of trusted processes di�ers from the memory manage-ment for single-level process address spaces. Because the storage resources of a trusted multilevelprocess are allocated among multiple levels, it is not safe to handle them like those of untrustedsingle-level processes. The level of an untrusted process labels its whole address space, but thelabeling of trusted process storage is not so simple.The data of a trusted process must always be clearly labeled when it is stored in physical memory,when it is communicated over the memory bus, when it is kept on a paging disk, or when it issent over communication lines between the processor and the paging disk. Otherwise, it becomesimpossible to maintain control over the allocations among levels for various resources, includingspace in physical memory, access time to the memory bus, storage space on the paging disk, accesstime to the paging disk, and access time to the lines connecting the processor and the disk. Withoutexplicit labels on trusted process data at all times, current demands would in
uence the allocationof those resources. Their allocation strategies would degenerate into some variety of dynamicallocation with covert channels and compromise of multilevel security.C.6 Architectural ImplicationsAvoiding all covert channels in multilevel processors would require static, delayed, or manual allo-cation of all the following resources: processor time, space in physical memory, service time fromthe memory bus, kernel service time, service time from all multilevel processes, and all storagewithin the address spaces of the kernel and the multilevel processes. We doubt that this can beachieved in a practical, general-purpose processor. Perhaps the simplest strategy, static allocation,would be possible, but then the multilevel processor is not signi�cantly more e�cient than a set ofsingle-level processors. It would be better to replace it with single-level processors and have realassurance of freedom from covert channels in processors. We suggest that multilevel systems nothave any multilevel processors.Having no multilevel processors certainly helps to minimize the TCB for mandatory security. Thisis especially appropriate for the high-assurance systems at the Orange Book classes B3 and A1.Because of the rapid drop in prices for processors and memories and the relatively wide selectionof secure single-level processors, limiting a multilevel system to single-level processors may impose117

Appendix C Architectural Implicationslittle or no penalty in e�ciency. We believe the best architecture for most multilevel applications isa Distributed, Single-level-processor, Multilevel-secure (DSM) system. Even if a multilevel applica-tion does not need a distributed architecture for any other reason, we feel it should be distributedin order to be multilevel secure.The network in a DSM system must not introduce covert channels. A simple option is a separatenetwork for each level to connect the single-level processors at that level. A potentially less costlynetwork has multilevel lines connecting all the processors and has the trusted network interface(TNI) units sketched earlier ensuring covert-channel-free allocation of the lines. The two optionsare functionally equivalent. The di�erence is in the number and capacity of the lines and in thehardware at the interface between the processors and the network.Multilevel System Bene�ts in DSM SystemsEach processor of a DSM systems handles just one level, as in an ISPL system. An importantquestion is whether a DSM system is as limited in its functionality as an ISPL system.Downgrading, writing up reliably, and maintaining data consistency across levels cannot be fullyautomated as they can be in systems with multilevel processors and covert channels, but they canat least be more automated than in an ISPL system. Many, perhaps most, multilevel applicationsrequire none of these functions, but some do need one or more of them. Manual contributionsto reliable writing up or to data consistency are inconvenient, but the only practical alternativescompromise multilevel security. Downgrading is so fraught with risk that it is reasonable to insistthat some critical step be performed manually. The inconvenience is worthwhile.Reading down is the essence of multilevel processing. Users perceive a system as multilevel if theyhave a choice of levels at which to work and if they can refer to the data at lower levels while creatingor updating data at the current working level. Reading down and ordinary single-level services aresu�cient for most multilevel applications. DSM systems need not have the same problems withreading down as ISPL systems do. Reading down can be supported with multilevel disk drivessimilar to those described earlier. However, most disk drives in a practical DSM system shouldprobably still each service a single level.Some multilevel hardware in DSM systems can also escape the limitations on resource allocation inISPL systems. Cost and convenience arguments justify static allocation of multilevel network linesand manual allocation of such resources as terminals, tape drives, and printers.Partitioning LevelsIn the classi�cation scheme of the U.S. Department of Defense, there are four hierarchical levels:unclassi�ed, con�dential, secret, and top secret. A level at which data is classi�ed might also be oneof the four hierarchical levels plus a set of nonhierarchical compartments. Many other classi�cationschemes are similar. A user's clearance is the highest level of data the user may see. The clearanceis the hierarchical level to which the user is cleared plus any compartments for which the user iscleared.As noted above, it is best to run a multilevel application as system high if every user has the sameclearance, covering all data levels in the application, no matter how many. However, a DSM systemis appropriate when some users have di�erent clearances and data is classi�ed over a range of levels.Normally, a DSM system has di�erent processors for each di�erent data level. This is practical formany multilevel applications, ones with data at only two levels or at only a few levels. Some otherapplications, though, involving various nonhierarchical compartments use dozens or even hundreds118

Appendix C Architectural Implicationsof data levels. Processor prices may be falling, but a DSM system with at least one single-levelprocessor for each of hundreds of levels would be impractical. However, a DSM solution may stillbe reasonable, provided that the number of di�erent user clearances is fairly small, even thoughthe number of di�erent data levels is large.We describe a DSM system with many data levels, many users, and a handful of di�erent userclearances. A few users, perhaps just the system administrators, might be cleared for all levels, butmost would have limited clearances. Probably, those clearances di�er in their sets of compartments.The data levels are partitioned based on the overlaps and di�erences between pairs of clearances.Each partition contains one or more data levels; each data level belongs in one partition; and eachclearance includes one or more complete partitions. In the best case, there are exactly as manypartitions as clearances, but usually there would be more partitions.39The processors are allocated, not to a single level, but rather to a single partition. A processor mayhandle data at every level within its partition and may communicate with any other processorssharing the same partition. It should have functionality similar to that required for class B1 in theOrange Book.A user of a single-partition processor could be anybody whose clearance includes the partition.Because of how the levels are partitioned, the user's clearance will include all or none of the levelsin the partition. This is why multilevel security is not compromised even though we expect theprocessor to have plenty of covert channels. The channels are tolerable because their exploitationcould leak information only between levels in the same partition. A malicious user cleared for onelevel in a partition would not bother to exploit a covert channel in order to access another level inthe partition because the user's clearance must include the other level, too.Because covert channels can still leak within a partition, printed output from a partitioned DSMsystem can safely be released without review only if the label that the system generated is thehighest level of the partition. Users can release output with other labels after manually con�rmingthe labels.C.7 ConclusionsUntil feasible techniques are found to develop a covert-channel-free TCB for a practical multilevelprocessor, most multilevel systems should be DSM systems with some multilevel disks and perhapsother multilevel devices, but with no general-purpose, multilevel processors. The current researchand development e�orts on multilevel systems seem to focus on operating systems for multilevelprocessors, database management systems for multilevel processors, multilevel networks amongmultilevel processors, and distributed operating systems with multilevel processors. These sys-tems are suitable only for installations that really must tolerate compromises of multilevel securitythrough covert channels.Promising directions for new e�orts to serve secure installations include the development of mul-tilevel disk drives and trusted network interfaces without covert channels. Other e�orts shouldexamine how single-level processors can use the multilevel disks and networks to build basic DSMsystems that provide reading down in addition to the regular services of single-level distributed39In the worst case, n mutually incomparable clearances form 2n � 1 partitions. Probably, the levels in most ofthose partitions would never be used to classify any data in the system and so would never need resources. Partitionswith no resource needs can be ignored. 119

Appendix C Architectural Implicationssystems. Further e�orts should enhance the basic DSM systems to build more sophisticated DSMsystems or multilevel database management systems.Because these implications for multilevel system architectures represent such a radical shift fromthe predominant direction of research and development, we encourage readers to dispute our con-clusions. Optimists may wish to explain why most installations should tolerate covert channels orhow a practical, general-purpose, multilevel processor can be developed with no covert channels.Pessimists may wish to explain why multilevel disk drives or trusted network interfaces cannot bedeveloped without covert channels or why they could not be used to build practical DSM systems.We feel that avoiding all covert channels makes good sense for multilevel systems, that the currentdismal state of the art is su�cient evidence of the unsuitability of architectures with multilevel pro-cessors, and that it is worth a serious e�ort to build a prototype of a covert-channel-free, multilevelsystem that has multilevel disk drives and single-level processors instead of multilevel processors.

120

Appendix D Early VERkshopsD Contributions to the Early Veri�cation WorkshopsFollowing are the lists of contributions for each of the �rst three veri�cation workshops. Thepage number, author(s), and title are given for each item in the indicated issue of the ACMSIGSOFT Software Engineering Notes. This material is of considerable historical interest andimportance, especially because the early work and the experience gained therefrom seem to be tooeasily forgotten.D.1 VERkshop IVERkshop I was held at SRI, Menlo Park, California, 21-23 April 1980 [165].Summary statements5 Don Good, Veri�cation environments5 Bob Boyer, Theorem provers6 Karl Levitt, Methodology and speci�cations6 Susan Gerhart, Verifying systems and networks7 Jon Millen, Formal models and security7 Peter Neumann, ConclusionsContributions8 Stephen T. Walker, Department of Defense, Thoughts on the impact of veri�cation technologyon trusted computer systems9 V.G. Cerf, W.E. Carlson, L.E. Dru�el, ARPA, ARPA interests in applications of program veri-�cation9 Karl N. Levitt, Peter G. Neumann, SRI, An overview of SRI work in veri�cation11 Gregory A. Haynes, Texas Instruments, Position paper on program veri�cation12 Dan Craigen, David Bonyun, I.P. Sharp Associates, Ottawa, Canada, Two projects in programveri�cation13 Richard M. Cohen, The University of Texas at Austin, A review of the Gypsy veri�cationenvironment13 Steven German, Friedrich von Henke, David Luckham, Derek Oppen, Wolfgang Polak, StanfordAI, Program veri�cation at Stanford16 Bob Boyer, J Moore, SRI, The Fortran veri�cation system17 Mark Moriconi, SRI, Toward incremental and language-independent program veri�cation sys-tems 121

Appendix D Early VERkshops18 Stephen D. Crocker, USC-ISI, Toward practical veri�cation systems21 David Thompson, USC/ISI, User interfaces, user models, and user habitability22 Donald I. Good, The University of Texas at Austin, The problem with program veri�cation iscomputer science23 J Moore, SRI, A statement of position24 Avra Cohn, Edinburgh/ISI, Remarks on machine proof26 Bob Boyer, J Moore, SRI, A theorem-prover for recursive functions27 David R. Musser, Computer Science, GE Research & Development Center, The unique termi-nation method of program veri�cation28 V.R. Pratt, MIT, Modeling as a paradigm for veri�cation29 Joseph Goguen, SRI, Thoughts on speci�cation, design and veri�cation33 Jim Keeton-Williams, The MITRE Corporation, Needed: veri�able guidelines on how to designa methodology33 John Scheid, System Development Corporation, INA JO: SDC's formal development method-ology34 Susan Owicki (Stanford), Leslie Lamport (SRI), Concurrent program veri�cation36 Gregor v.Bochmann, Stanford and Univ. Montreal, On the construction of submodule speci�-cations36 Dick Kemmerer, Bruce Walker, Gerald Popek, UCLA, Retrospective: veri�cation experienceswith the UCLA operating system kernel38 S.L. Gerhart, USC/ISI, Applications of A�rm to protocol speci�cation and veri�cation38 Donald I. Good, Michael K. Smith, The University of Texas at Austin, A veri�ed distributedsystem40 R.A. Kemmerer, M. Schaefer, System Development Corporation, Applications of SDC's formaldevelopment methodology41 W.E. Boebert, Honeywell Sys&Res Center, and Univ. Minnesota, Formal veri�cation of em-bedded software42 Midge Corasick, The MITRE Corporation, MITRE computer security veri�cation activities42 Jonathan K. Millen, The MITRE Corporation, Veri�cation of security properties43 Stanley R. Ames, Jr., James G. Keeton-Williams, The MITRE Corporation, Excerpts fromDemonstrating security for trusted applications on a security kernel base44 R.J. Feiertag, SYTEK Inc., Automated proof of multilevel security46 Carl Landwehr, NRL, Assertions for veri�cation of multilevel-secure military message systems122

Appendix D Early VERkshopsD.2 VERkshop IIVERKshop II was held at NIST, Gaithersburg, MD, 21-23 April 1981 [166].2 Peter G. Neumann, Retrospective introduction to VERkshop II3 Stephen T. Walker, Introductory comments3 Vinton G. Cerf, A view of veri�cation technology4 Donald I. Good, Toward building veri�ed, secure systems8 Ben DiVito, A mechanical veri�cation of the alternating bit protocol13 Michael K. Smith, Ann E. Siebert, Benedetto L. DiVito, Donald I. Good, A veri�ed encryptedpacket interface16 Susan L. Gerhart, ISI AFFIRM summary24 Susan L. Gerhart, Research avenues veri�cation is not pursuing, but maybe should be24 Susan L. Gerhart, ISI high-level theories25 D.C. Luckham, F.W. von Henke, Program veri�cation at Stanford27 Karl N. Levitt, Peter G. Neumann, recent SRI work in veri�cation35 J Moore, SRI experience in writing VCG systems38 J.A. Goguen, More thoughts on speci�cation and veri�cation41 Richard A. Kemmerer, Status report on SDC's formal development methodology43 J.R. Landauer, Applications of FDM to KVM and COS/NFE45 R. Feiertag, T. Berson, An avenue for exploitation and development of veri�cation technology50 Jim Keeton-Williams, Anne-Marie G. Disceolo, A practical veri�cation system55 J.K. Millen, Recent veri�cation work at MITRE55 Gregory A. Haynes, Program veri�cation at Texas Instruments57 Joseph J. Tardo, Veri�cation: inside/outside views58 Robert Constable, VERking in constructive set theory60 David Bonyun, An untitled Canada goose61 Clark Weissman, Veri�cation targets: birds to shoot at63 Marv Schaefer, Egrets and regrets
123

Appendix D Early VERkshopsD.3 VERkshop IIIVERkshop III was held at Pajaro Dunes, Watsonville, California, 18-21 February 1985 [117].ii K.N. Levitt, S.D. Crocker, D. Craigen, VERkshop III introductioniv Attendeesvi QuestionnaireSection I: Veri�cation Systems1 D. Craigen, D. Good, Overview of Veri�cation Systems2 D.R. Musser, Aids to hierarchical structuring and reusing theorems in AFFIRM-8t5 M.K. Smith, R.M. Cohen, Gypsy veri�cation environment: status7 L. Marcus, S.D. Crocker, J.R. Landauer, SDVS: a system for verifying microcode correctness15 S.D. Crocker, engineering requirements for production quality17 S.T. Eckmann, R.A. Kemmerer, INATEST: an interactive environment for testing formal spec-i�cations19 D.M. Berry, An INA JO proof manager for the formal development method26 D. Putnam, The VERUS design veri�cation system28 O.-J. Dahl, A. Owe, A presentation of the speci�cation and veri�cation project \ABEL"33 D. Craigen, M. Saaltink, An EVES update35 S.K. Abdali, R. London, Exploiting workstations and displays in veri�cation systems37 S.L. Gerhart, Prolog technology as a basis for veri�cation systems41 P.M. Melliar-Smith, J. Rushby, The enhanced HDM system for the speci�cation and veri�cationof secure systems44 J. Williams, C. Applebaum, The practical veri�cation system project48 D.I. Good, R.S. Boyer, J S. Moore, A second generation veri�cation environment49 J. Williams, Components of veri�cation technology51 R.M. Hookway, Verifying Ada programsSection II: Theorem Proving53 D. Cooper, Overview of theorem proving55 N. Dershowitz, D. Plaisted, Conditional rewriting60 N. Dershowitz, Rewriting and veri�cation 124

Appendix D Early VERkshops61 B.T. Smith, Position paper63 D. Kapur, P. Marendran, An equational approach to theorem proving in �rst-order predicatecalculus67 D. Kapur, G. Sivakumar, RRL: Theorem proving environment based on rewriting techniques69 S. Owre, The Sytek theorem prover70 W. Wilson, S. Owre, Programmable heuristics for theorem provers72 R.S. Boyer, M. Kaufmann, A prototype theorem-prover for a higher-order functional languageSection III: Foundations75 R.A. Kemmerer, Overview of foundations76 J.I. Glasgow, G.H. Macewen, LUCID: a speci�cation language for distributed systems80 D. Craigen, Some thoughts arising from a language design e�ort82 M. Saaltink, Relational semantics84 F.W. von Henke, Reasoning with Hoare sentences85 J. McLean, Two dogmas of program speci�cation87 L.G. Monk, Old-fashioned logic for veri�cation90 D. Putnam, Separating methodology and speci�cation constructs92 M.R. Nixon, Enhancing FDM for the expression of concurrency requirementsSection IV: Applications95 K.N. Levitt, A. Whitehurst, Overview of applications97 R.A. Whitehurst, The need for an integrated design, implementation, veri�cation and testingmethodology101 B. DiVito, Towards a de�nition of \beyond A1" veri�cation102 J.M. Wing, Beyond functional behavior: combining methods to specify di�erent classes ofproperties of large systems104 J. McHugh, K. Nyberg, Ada veri�cation using existing tools107 C. Landwehr, Does program veri�cation help? how much?108 T.C. Vickers Benzel, Veri�cation technology and the A1 criteria110 D. Davis, Resource abstraction and validation111 C. Landwehr, Some lessons from formalizing a security model113 T. Taylor, VERkshop position paper 125

Appendix D Early VERkshops116 N. Proctor, The restricted access processor | an example of formal veri�cation119 W.E. Boebert, R.Y. Kain, W.D. Young, The extended access matrix model of computersecurity126 R. Macdonald, Verifying a real systems design | some of the problems129 R. Stokes, Some formal method activities in UK industry131: Section V. Completed Responses to the Veri�cation Questionnaire, with contributions fromTerry Benzel (MITRE), Norm Proctor (Sytek), Matt Kaufmann (Burroughs), P.M. Melliar-Smith (SRI), Robert S. Boyer and J Strother Moore (SRI, 4 entries, one with Milton W.Green; The University of Texas at Austin, 2 entries)

126

Architecture and Formalism ReferencesBibliographyWe include here some of the primary references relevant to system architectures and formal methodswith applications to secure systems and networks. All of these references are cited in context withinthe report. A reader interested in a particular subset of the references should see the relevantsections of the text. Many additional references are of course contained within the cited works.The determined reader is encouraged to follow areas of particular interest, and chase down thereferences that unfold.Of particular historical interest are the VERkshop proceedings identi�ed in Appendix D. In ad-dition, the works of Parnas, Dijkstra, and Hoare are important for methodology. The body ofliterature is growing rapidly. Some of these cited works will be of less interest in another decade| except to the historians. However, we have attempted to focus on fundamental concepts andprinciples, and many of the references thereto should remain valid for a long time to come { atleast to those interested in the historical evolution of the �eld.References[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access control in dis-tributed systems. Technical Report 70, DEC Systems Research Center, Palo Alto, California,28 February 1991.[2] M. Abadi and L. Lamport. Composing speci�cations. In J.W. de Bakker, W.-P. de Roever,and G. Rozenberg, editors, Stepwise Re�nement of Distributed Systems: Models, Formalisms,Correctness, pages 1{41, REX Workshop, Mook, The Netherlands, May-June 1989. Springer-Verlag, Lecture Notes in Computer Science Vol. 230.[3] M. Abadi and R.M. Needham. Prudent engineering practice for cryptographic protocols. InProceedings of the IEEE Symposium on Research in Security and Privacy, pages 122{136,Oakland, California, May 1994.[4] M.D. Abrams, E. Amoroso, L.J. LaPadula, T.F. Lunt, and J.N. Williams. Report of an in-tegrity working group. Technical report, MITRE Corp. (Abrams), McLean, Virginia, Novem-ber 1991.[5] S.R. Ames Jr., M. Gasser, and R.R. Schell. Security kernel design and implementation: Anintroduction. IEEE Computer, 16(7):14{22, July 1983.[6] D. Anderson, T. Frivold, A. Tamaru, and A. Valdes. Next-generation intrusion-detectionexpert system (NIDES): User manual for security o�cer user interface (SOUI). Technicalreport, Computer Science Laboratory, SRI International, Menlo Park, CA, 19 May 1994.[7] D. Anderson, T. Frivold, and A. Valdes. Next-generation intrusion-detection expert sys-tem (NIDES): Final technical report. Technical report, Computer Science Laboratory, SRIInternational, Menlo Park, CA, 16 November 1994.[8] R.S. Arbo, E.M. Johnson, and R.L. Sharp. Extending mandatory access controls to a net-worked mls environment. In Proc. 12th National Computer Security Conference, pages 286{295, Baltimore, 10-13 October 1989. NCSC/NIST.127

Architecture and Formalism References[9] J.M. Atlee and J. Gannon. State-based model checking of event-driven system requirements.IEEE Transactions on Software Engineering, 19(1):24{40, January 1993.[10] L. Badger, D.F. Sterne, D.L. Sherman, K.M. Walker, and S.A. Haghighat. Practical domainand type enforcement for Unix. In Proceedings of the 1995 Symposium on Security andPrivacy, pages 66{77, Oakland, CA, May 1993. IEEE Computer Society.[11] G. Barrett. Model checking in practice: The t9000 virtual channel processor. IEEE Trans-actions on Software Engineering, 21(2):69{78, February 1995. Special section on FormalMethods Europe '93.[12] D.E. Bell and L.J. La Padula. Secure computer systems : Volume I { mathematical foun-dations; volume II { a mathematical model; volume III { a re�nement of the mathematicalmodel. Technical Report MTR-2547 (three volumes), The Mitre Corporation, Bedford, MA,March{December 1973.[13] D.E. Bell and L.J. La Padula. Secure computer system: Uni�ed exposition and Multicsinterpretation. Technical Report ESD-TR-75-306, The Mitre Corporation, Bedford MA,March 1976.[14] S.M. Bellovin and M. Merritt. Limitations of the Kerberos authentication system. In USENIXConference Proceedings, Winter '91, January 1991. A version of this paper appeared inComputer Communications Review, October 1990.[15] T.C. Vickers Benzel and D.A. Tavilla. Trusted software veri�cation: A case study. In Pro-ceedings of the 1985 Symposium on Security and Privacy, pages 14{31, Oakland, CA, April1985. IEEE Computer Society.[16] T.A. Berson and G.L. Barksdale Jr. KSOS: Development methodology for a secure operatingsystem. In National Computer Conference, pages 365{371. AFIPS Conference Proceedings,1979. Vol. 48.[17] T.A. Berson, R.J. Feiertag, and R.K. Bauer. Processor-per-domain guard architecture. InProceedings of the 1983 IEEE Symposium on Security and Privacy, page 120, Oakland, CA,April 1983. IEEE Computer Society. (Abstract only).[18] W.R. Bevier. A veri�ed operating system kernel. Technical report, Ph.D. thesis, Departmentof Computer Science, The University of Texas at Austin, 1987.[19] K.J. Biba. Integrity considerations for secure computer systems. Technical Report MTR3153, The Mitre Corporation, Bedford, MA, June 1975. Also available from USAF ElectronicSystems Division, Bedford, MA, as ESD-TR-76-372, April 1977.[20] J. Bicarregui and B. Ritchie. Invariants, frames, and postconditions: A comparison of theVDM and B notations. IEEE Transactions on Software Engineering, 21(2):79{89, February1995. Special section on Formal Methods Europe '93.[21] M. Blaze. Protocol failure in the escrowed encryption standard. In Second ACM Conferenceon Computer and Communications Security, pages 59{67, Fairfax, Virginia, November 1994.ACM SIGSAC. 128

Architecture and Formalism References[22] C. Blundo, A. De Santis, G. Di Crescenzo, A.G. Gaggia, and U. Vaccaro. Multi-secret sharingschemes. In Advances in Cryptology: Proceedings of CRYPTO '94 (Y.G. Desmedt, editor),pages 150{163, Berlin, 1994. Springer-Verlag LCNS 839.[23] W.E. Boebert and R.Y. Kain. A practical alternative to hierarchical integrity policies. InProceedings of the Eighth DoD/NBS Computer Security Initiative Conference, Gaithersburg,Maryland, 1{3 October 1985.[24] D. Bonyun. Rules as the basis of access control in database management systems. In 7thDoD/NBS Computer Security Initiative Conf., NBS, Gaithersburg, Maryland, pages 38{47,24-26 September 1984.[25] A. Boswell. Speci�cation and validation of a security policy model. IEEE Transactionson Software Engineering, 21(2):63{69, February 1995. Special section on Formal MethodsEurope '93.[26] R.S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, 1979.[27] R.S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press, New York,1988.[28] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill. Symbolic model checkingfor sequential circuit veri�cation. IEEE Transactions on Computer-Aided Design, 13(4):401{424, April 1994.[29] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions onComputer Systems, 8(1):18{36, February 1990.[30] R.W. Butler. An elementary tutorial on formal speci�cation and veri�cation using PVS.Technical report, NASA Langley Research Center, Hampton, Virginia, June 1993.[31] R.W. Butler. Formal methods and NASA. In Proceedings of the Eighteenth National Com-puter Security Conference, Baltimore, Maryland, 10{13 October 1995. NIST/NCSC.[32] R.W. Butler, J.L. Caldwell, V.A. Carre~no, C.M. Holloway, P.S. Miner, and B.L. DiVito.NASA Langley's research and technology-transfer program in formal methods. In Proceedingsof the Tenth Annual Conference on Computer Assurance, COMPASS 95, pages 135{149.IEEE, June 1995.[33] R.W. Butler, J.L. Caldwell, V.A. Carre~no, C.M. Holloway, P.S. Miner, and B.L. DiVito.NASA Langley's research and technology-transfer program in formal methods. In Proceedingsof the Third NASA Langley Formal Methods Workshop, May 10-12, 1995, pages 247{268.NASA Langley Research Center, June 1995. This is a longer but earlier version of [32], andincludes 28 more references.[34] Canadian Trusted Computer Product Evaluation Criteria. Canadian Systems Security Centre,Communications Security Establishment, Government of Canada., January 1993. Final Draft,version 3.0e.[35] R.A. Carlson and T.F. Lunt. The trusted domain machine: A secure communication device forsecurity guard applications. In Proceedings of the 1986 Symposium on Security and Privacy,pages 182{186, Oakland CA, April 1986. IEEE Computer Society.129

Architecture and Formalism References[36] T.A. Casey, Jr., S.T. Vinter, D.G. Weber, R. Varadarajan, and D. Rosenthal. A securedistributed operating system. In Proceedings of the 1988 IEEE Symposium on Security andPrivacy, April 1988.[37] NASA Langley Research Center. Formal Methods Speci�cation and Veri�cation, Volume I.NASA, June 1995.[38] NASA Langley Research Center. Formal Methods Speci�cation and Veri�cation, Volume II.NASA, Fall 1995.[39] Secure Computing Technology Center. LOCK formal top level speci�cation, volumes 1-6.Technical report, SCTC, 1988.[40] Secure Computing Technology Center. LOCK software B-speci�cation, vol. 2. Technicalreport, SCTC, 1988.[41] W.R. Cheswick and S.M. Bellovin. Firewalls and Internet Security: Repelling the WilyHacker. Addison-Wesley, Reading, Massachusetts, 1994.[42] D.D. Clark and D.R. Wilson. A comparison of commercial and military computer securitypolicies. In Proceedings of the 1987 Symposium on Security and Privacy, pages 184{194,Oakland, CA, April 1987. IEEE Computer Society.[43] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM Trans-actions on Programming Languages and Systems, 16(5):1512{1542, September 1994.[44] P.J. Courtois, F. Heymans, and D.L. Parnas. Concurrent control with readers and writers.Communications of the ACM, 14(10):667{668, October 1971.[45] D. Craigen. A formal speci�cation of the LSI Guard. Technical Report TR-5031-82-2, I.P.Sharp Associates, Ottawa, August 1982.[46] D. Craigen, S. Gerhart, and T. Ralston. An international survey of industrial applicationsof formal methods. Technical report, U.S. National Institute of Standards and Technology,Gaithersburg, Maryland, March 1993. Also available from U.S. Naval Research Laboratoryand the Atomic Energy Board of Canada.[47] D. Craigen, S. Gerhart, and T. Ralston. Formal methods reality check: Industrial usage.IEEE Transactions on Software Engineering, 21(2):90{98, February 1995. Special section onFormal Methods Europe '93.[48] R.C. Daley and J.B. Dennis. Virtual memory, processes, and sharing in Multics. Communi-cations of the ACM, 11(5), May 1968.[49] R.C. Daley and P.G. Neumann. A general-purpose �le system for secondary storage. InAFIPS Conference Proceedings, Fall Joint Computer Conference, pages 213{229. SpartanBooks, November 1965.[50] D.E. Denning, T.F. Lunt, R.R. Schell, W.R. Shockley, and M. Heckman. The SeaViewsecurity model. In Proceedings of the 1988 IEEE Symposium on Security and Privacy, April1988. 130

Architecture and Formalism References[51] D.E. Denning and P.G. Neumann. Requirements and model for IDES { a real-time intrusion-detection expert system. Technical report, Computer Science Laboratory, SRI International,Menlo Park, CA, August 1985.[52] Y. Desmedt, Y. Frankel, and M. Yung. Multi-receiver/multi-sender network security: E�cientauthenticated multicast/feedback. In Proceedings of IEEE INFOCOM. IEEE, 1992.[53] W. Di�e and M.E. Hellman. New directions in cryptography. IEEE Transactions on Infor-mation Theory, 22(5), November 1976.[54] E.W. Dijkstra. Co-operating sequential processes. In Programming Languages, F. Genuys(editor), pages 43{112. Academic Press, 1968.[55] E.W. Dijkstra. The structure of the THE multiprogramming system. Communications of theACM, 11(5), May 1968.[56] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cli�s, NJ, 1976.[57] D.L. Dill. Model checking. In Proceedings of the Third NASA Langley Formal MethodsWorkshop, May 10-12, 1995, pages 211{216. NASA Langley Research Center, June 1995.[58] J.E. Dobson and B. Randell. Building reliable secure computing systems out of unreliableunsecure components. In Proceedings of the 1986 Symposium on Security and Privacy, pages187{193, Oakland, CA, April 1986. IEEE Computer Society.[59] A. Downing, I. Greenberg, and T. Lunt. Issues in distributed system security. In Proceedingsof the Fifth Aerospace Computer Security Conference, December 1989.[60] European Communities Commission. Information Technology Security Evaluation Criteria(ITSEC), Harmonised Criteria of France, Germany, the Netherlands, and the United King-dom, 2 May 1990. Draft, Version 1, Available from UK CLEF, CESG Room 2/0805, FiddlersGreen Lane, Cheltenham UK GLOS GL52 5AJ, or GSI/GISA, Am Nippenkreuz 19, D 5300Bonn 2, Germany.[61] R.J. Feiertag. A technique for proving speci�cations are multilevel secure. Technical ReportCSL-109, Computer Science Laboratory, SRI International, Menlo Park, CA, January 1980.[62] R.J. Feiertag and P.G. Neumann. The foundations of a provably secure operating system(PSOS). In Proceedings of the National Computer Conference, pages 329{334. AFIPS Press,1979.[63] W.H.J. Feijen, A.J.M. van Gasteren, D. Gries, and J. Misra, editors. Beauty is our Business,A Birthday Salute to Edsger W. Dijkstra. Springer-Verlag, 11 May 1990.[64] J. Fellows, J. Hemenway, and N. Kelem. The architecture of a distributed trusted computingbase. In 10th National Computer Security Conference, pages 68{77, Baltimore, Maryland,21-24 September 1987. Reprinted in Rein Turn (ed.), Advances in Computer System Security,Vol. 3, Artech House, Dedham MA, 1988.[65] T. Fine, J.T. Haigh, R.C. O'Brien, and D.L. Toups. An overview of the LOCK FTLS.Technical report, Honeywell, 1988. 131

Architecture and Formalism References[66] S. Gar�nkel. PGP: Pretty Good Privacy. O'Reilly & Associates, Sebastopol CA 95472, 1995.[67] M. Gasser. An optimization for automated information
ow analysis. Cipher (Newsletter ofthe IEEE Technical Committee on Security and Privacy), pages 32{36, January 1989.[68] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The Digital distributed systemsecurity architecture. In Proceedings of the Twelfth National Computer Security Conference,pages 305{319, Baltimore, Maryland, 10{13 October 1989. NIST/NCSC.[69] V. Gligor. A note on the denial-of-service problem. In Proceedings of the 1983 Symposiumon Security and Privacy, pages 139{149, Oakland, CA, April 1983. IEEE Computer Society.[70] V.D. Gligor, R. Kailar, S. Stubblebine, and L. Gong. Logics for cryptographic protocols{ virtues and limitations. In Proceedings of the 4th IEEE Computer Security FoundationsWorkshop, pages 219{226, Franconia, New Hampshire, June 1991.[71] J.A. Goguen and T. Winkler. Introducing OBJ3. Technical Report SRI-CSL-88-9, ComputerScience Laboratory, SRI International, Menlo Park, CA, August 1988.[72] B.D. Gold, R.R. Linde, and P.F. Cudney. KVM/370 in retrospect. In Proceedings of the 1984Symposium on Security and Privacy, pages 13{23, Oakland, CA, April 1984. IEEE ComputerSociety.[73] L. Gong. A secure identity-based capability system. In Proceedings of the 1989 Symposiumon Research in Security and Privacy, pages 56{63, Oakland, California, May 1989. IEEEComputer Society.[74] L. Gong. Using one-way functions for authentication. ACM Communications Review, 19(5):8{11, October 1989.[75] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic protocols.In Proceedings of the 1990 Symposium on Research in Security and Privacy, pages 234{248,Oakland, CA, May 1990. IEEE Computer Society.[76] D.I. Good. Revised Report on Gypsy 2.1: DRAFT, July 1984. Institute for ComputingScience, The University of Texas at Austin, 1984.[77] D.I. Good, R.L. Akers, and L.M. Smith. Report on Gypsy 2.05: October 1986. ComputationalLogic Inc., 1986.[78] D.I. Good, A.E. Siebert, and L.M. Smith. The message
ow modulator, �nal report. TechnicalReport 34, Institute for Computing Science and Computer Applications, The University ofTexas, Austin, TX, December 1982.[79] R.M. Graham. Protection in an information processing utility. Communications of the ACM,11(5), May 1968.[80] J.W. Gray III. Toward a mathematical foundation for information
ow security. In Proceed-ings of the 1991 Symposium on Research in Security and Privacy, pages 21{34, Oakland, CA,May 1991. IEEE Computer Society. 132

Architecture and Formalism References[81] M.J. Grohn. A model of a protected data management system. Technical Report ESD-TR-76-289, I.P. Sharp Associates Ltd., June 1976.[82] J.T. Haigh. Top level security properties for the LOCK system. Technical report, Honeywell,1988.[83] J.T. Haigh et al. Assured service concepts and models, �nal technical report, vol. 3: Securityin distributed systems. Technical report, Secure Computing Technology Corporation, July1991.[84] J.T. Haigh et al. Assured service concepts and models, �nal technical report, vol. 4: Availabil-ity in distributedMLS systems. Technical report, Secure Computing Technology Corporation,July 1991.[85] J.T. Haigh et al. Assured service concepts and models, �nal technical report, volume 1:Summary. Technical report, Secure Computing Technology Corporation, July 1991.[86] R.W. Hamming. Error detecting and error correcting codes. Bell System Technical Journal,29:147{60, 1950.[87] Z. Har'El and R.P. Kurshan. Software for analytic development of communications protocols.AT&T Technical Journal, 69(1):45{59, January-February 1990.[88] B.A. Hartman. A Gypsy-based kernel. In Proceedings of the 1984 Symposium on Securityand Privacy, pages 219{225, Oakland, CA, April 1984. IEEE Computer Society.[89] T.H. Hinke and M. Schaefer. Secure data management system. Technical report, Rome AirDevelopment Center, November 1975. RADC-TR-266 (NTIS AD A019201).[90] H.M. Hinton. Composable Safety and Progress Properties. PhD thesis, University of Toronto,1995.[91] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cli�s, NewJersey, 1985.[92] C.M. Holloway, editor. Third NASA Langley Formal Methods Workshop, Hampton, Virginia,May 10-12 1995. NASA Langley Research Center. NASA Conference Publication 10176, June1995.[93] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, EnglewoodCli�s, NJ, 1991.[94] W.-M. Hu. Reducing timing channels with fuzzy time. In Proceedings of the 1991 Symposiumon Research in Security and Privacy, pages 8{20, Oakland, CA, May 1991. IEEE ComputerSociety.[95] J. Jacky. Specifying a safety-critical control system in Z. IEEE Transactions on SoftwareEngineering, 21(2):99{106, February 1995. Special section on Formal Methods Europe '93.[96] R. Jagannathan. Coarse-grain data
ow programming of conventional parallel computers.In In Advanced Topics in Data
ow Computing and Multithreading (edited by L. Bic, J-L.Gaudiot, and G. Gao). IEEE Computer Society, April 1995.133

Architecture and Formalism References[97] R. Jagannathan and C. Dodd. GLU programmer's guide v0.9. Technical report, ComputerScience Laboratory, SRI International, Menlo Park, CA, November 1994. CSL TechnicalReport CSL-94-06.[98] R. Jagannathan, T.F. Lunt, D. Anderson, C. Dodd, F. Gilham, C. Jalali, H.S. Javitz, P.G.Neumann, A. Tamaru, and A. Valdes. System Design Document: Next-generation intrusion-detection expert system (NIDES). Technical report, Computer Science Laboratory, SRIInternational, Menlo Park, CA, 9 March 1993.[99] H.S. Javitz, A. Valdes, D.E. Denning, and P.G. Neumann. Analytical techniques developmentfor a statistical intrusion-detection system (SIDS) based on accounting records. Technicalreport, SRI International, Menlo Park, CA, July 1986. not available for distribution.[100] A. Jirachiefpattana and R. Lai. An Estelle-NPN based system for protocol veri�cation. InProceedings of the Tenth Annual Conference on Computer Assurance, COMPASS 95, pages245{259. IEEE, June 1995.[101] D.R. Johnson, F.F. Saydjari, and J.P. Van Tassel. MISSI security policy: A formal approach.Technical report, NSA R2SPO-TR001-95, 18 August 1995.[102] R. Kailar, V.D. Gligor, and L. Gong. On the security e�ectiveness of cryptographic protocols.In Proceedings of the 1994 Conference on Dependable Computing for Critical Applications,pages 90{101, San Diego, CA, January 1994.[103] R.Y. Kain and C.E. Landwehr. On access checking in capability-based systems. In Proceedingsof the 1986 IEEE Symposium on Security and Privacy, April 1986.[104] P.A. Karger. Implementing commercial data integrity with secure capabilities. In Proceedingsof the 1988 Symposium on Security and Privacy, pages 130{139, Oakland, CA, April 1988.IEEE Computer Society.[105] P.A. Karger. Improving Security and Performance for Capability Systems. PhD thesis, Com-puter Laboratory, University of Cambridge, Cambridge, England, October 1988. TechnicalReport No. 149.[106] P.A. Karger and J.C. Wray. Storage channels in disk arm optimization. In Proceedings ofthe 1991 Symposium on Research in Security and Privacy, pages 52{61, Oakland, CA, May1991. IEEE Computer Society.[107] T.F. Keefe and W.T. Tsai. Multiversion concurrency control for multilevel secure databasesystems. In Proceedings of the 1990 Symposium on Research in Security and Privacy, pages369{383, Oakland, CA, May 1990. IEEE Computer Society.[108] S. Kent. Privacy enhancement for Internet electronic mail: Part I. RFC 1113. Technicalreport, Internet Activities Board Privacy Task Force, August 1989.[109] S. Kent and J. Linn. Privacy enhancement for Internet electronic mail: Part II: Certi�catebased key management. RFC 1114. Technical report, Internet Activities Board Privacy TaskForce, August 1989.[110] S.T. Kent. Internet privacy enhanced mail. Communications of the ACM, 36(8):48{60,August 1993. 134

Architecture and Formalism References[111] J.C. Knight, J.C. Prey, and W.A. Wulf. Undergraduate computer science education: A newcurriculum philosophy and overview. In Proceedings of the ACMCSE, Phoenix, Arizona,March 1994.[112] R. Kurshan. Algorithmic veri�cation. In Proceedings of the Eighteenth National ComputerSecurity Conference, Baltimore, Maryland, 10{13 October 1995. NIST/NCSC.[113] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM TOPLAS,4(3):382{401, July 1982.[114] T.M.P. Lee. Using mandatory integrity. In Proceedings of the 1988 Symposium on Securityand Privacy, pages 140{146, Oakland, CA, April 1988. IEEE Computer Society.[115] W. Legato. Formal methods: Changing directions. In Proceedings of the Eighteenth NationalComputer Security Conference, Baltimore, Maryland, 10{13 October 1995. NIST/NCSC.[116] N.G. Leveson. Safeware: System Safety and Computers. Addison-Wesley, Reading, Mas-sachusetts, 1995.[117] K.N. Levitt, S. Crocker, and D. Craigen, editors. VERkshop III: Veri�cation workshop. ACMSIGSOFT Software Engineering Notes, 10(4):1{136, August 1985.[118] P.D. Lincoln and J.M. Rushby. A formally veri�ed algorithm for interactive consistency undera hybrid fault model. In Fault Tolerant Computing Symposium 23, pages 402{411, 1993.[119] P.D. Lincoln and J.M. Rushby. Formally veri�ed algorithms for diagnosis of manifest, sym-metric, link, and byzantine faults. Technical Report SRI-CSL-95-14, Computer Science Lab-oratory, SRI International, Menlo Park, California, October 1995.[120] P.D. Lincoln, J.M. Rushby, N. Suri, and C. Walter. Hybrid fault algorithms. In Proceedingsof the Third NASA Langley Formal Methods Workshop, May 10-12, 1995, pages 193{209.NASA Langley Research Center, June 1995.[121] J. Linn. Privacy enhancement for Internet electronic mail: Part III: Algorithms, models andidenti�ers. RFC 1115. Technical report, Internet Activities Board Privacy Task Force, August1989.[122] J. Linn. Practical authentication for distributed computing. In Proceedings of the 1990Symposium on Research in Security and Privacy, pages 31{40, Oakland, CA, May 1990.IEEE Computer Society.[123] S.B. Lipner. Non-discretionary controls for commercial applications. In Proceedings of the1982 Symposium on Security and Privacy, pages 2{10. IEEE, 1982. Oakland, CA, 26{28April 1982.[124] T.F. Lunt, D.E. Denning, R.R. Schell, M. Heckman, and W.R. Shockley. Secure distributeddata views: Formal security policy model. Technical Report RADC-TR-89-313, vol. II (of�ve), Rome Air Development Center, 1989.[125] T.F. Lunt, D.E. Denning, R.R. Schell, M. Heckman, and W.R. Shockley. The SeaViewsecurity model. IEEE Transactions on Software Engineering, 16(6):593{607, June 1990.135

Architecture and Formalism References[126] T.F. Lunt and D. Hsieh. The SeaView secure database system: A progress report. InProceedings of the European Symposium on Research in Computer Security (ESORICS 90),Toulouse, France, October 1990. IEEE Computer Society.[127] T.F. Lunt, R. Jagannathan, R. Lee, S. Listgarten, D.L. Edwards, P.G. Neumann, H.S. Javitz,and A. Valdes. Development and application of IDES: A real-time intrusion-detection expertsystem. Technical report, Computer Science Laboratory, SRI International, Menlo Park, CA,1988.[128] T.F. Lunt, R.R. Schell, W.R. Shockley, M. Heckman, and D. Warren. A near-term design forthe SeaView multilevel database system. In Proceedings of the 1988 Symposium on Securityand Privacy, pages 234{244, Oakland, CA, April 1988. IEEE Computer Society.[129] D. MacKenzie. The automation of proof: A historical and sociological explanation. IEEEAnnals of the History of Computing, 17(3):7{29, Fall 1995.[130] W.T. Maimone and I.B. Greenberg. Single-level multiversion schedulers for multilevel se-cure database systems. In Proceedings of the Sixth Annual Computer Security ApplicationsConference, December 1990.[131] A.P. Maneki. Algebraic properties of system composition in the Loral, Ulysses and McLeantrace models. In Proceedings of the 8th IEEE Computer Security Foundations Workshop,Kenmare, County Kerry, Ireland, June 1995.[132] W. Mao. An augmentation of BAN-like logics. In Proceedings of the 8th IEEE ComputerSecurity Foundations Workshop, Kenmare, County Kerry, Ireland, June 1995.[133] E.J. McCauley and P.J. Drongowski. KSOS: The design of a secure operating system. InNational Computer Conference, pages 345{353. AFIPS Conference Proceedings, 1979. Vol.48.[134] D. McCullough. Speci�cations for multi-level security and a hook-up property. In Proceedingsof the 1987 Symposium on Security and Privacy, pages 161{166, Oakland, CA, April 1987.IEEE Computer Society.[135] D. McCullough. Noninterference and composability of security properties. In Proceedingsof the 1988 Symposium on Security and Privacy, pages 177{186, Oakland, CA, April 1988.IEEE Computer Society.[136] D. McCullough. Ulysses security properties modeling environment: The theory of security.Technical report, Odyssey Research Associates, Ithaca, NY, July 1988.[137] D. McCullough. A hookup theorem for multilevel security. IEEE Transactions on SoftwareEngineering, 16(6), June 1990.[138] J. McHugh and D.I. Good. An information
ow tool for Gypsy. In Proceedings of the 1985Symposium on Security and Privacy, pages 46{48, Oakland, CA, April 1985. IEEE ComputerSociety.[139] J. McLean. A general theory of composition for trace sets closed under selective interleavingfunctions. In Proceedings of the 1994 Symposium on Research in Security and Privacy, pages79{93, Oakland, CA, May 1994. IEEE Computer Society.136

Architecture and Formalism References[140] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston, Mas-sachusetts, 1993.[141] P.M. Melliar-Smith and R.L. Schwartz. Formal speci�cation and veri�cation of SIFT: Afault-tolerant
ight control system. IEEE Transactions on Computers, C-31(7):616{630, July1982.[142] S. Micali. Fair public-key cryptosystems. In Advances in Cryptology: Proceedings of CRYPTO'92 (E.F. Brickell, editor), pages 512{517, Berlin, 1992. Springer-Verlag LCNS 740.[143] E.F. Moore and C.E. Shannon. Reliable circuits using less reliable relays. Journal of theFranklin Institute, 262:191{208, 281{297, September, October 1956.[144] M. Moriconi. A designer/veri�er's assistant. IEEE Transactions on Software Engineering,SE-5(4):387{401, July 1979. Reprinted in Arti�cial Intelligence and Software Engineering,edited by C. Rich and R. Waters, Morgan Kaufmann Publishers, Inc., 1986. Also reprinted inTutorial on Software Maintenance, edited by G. Parikh and N. Zvegintzov, IEEE ComputerSociety Press, 1983.[145] M. Moriconi and X. Qian. Correctness and composition of software architectures. ACMSoftware Engineering Notes, 19(5):164{174, December 1994. Proceedings of the Second ACMSIGSOFT Symposium on Foundations of Software Engineering.[146] M. Moriconi, X. Qian, and R.A. Riemenschneider. Correct architecture re�nement. IEEETransactions on Software Engineering, 21(4):356{372, April 1995.[147] L. Moser, P.M. Melliar-Smith, and R. Schwartz. Design veri�cation of SIFT. ContractorReport 4097, NASA Langley Research Center, Hampton, VA, September 1987.[148] S.J. Mullender, G. van Rossum, A.S. Tanenbaum, R. van Renesse, and H. van Staveren.Amoeba, a distributed operating system for the 1990s. IEEE Computer, 33(5):44{53, May1990.[149] S.J. Mullender (ed.). Distributed Systems. ACM Press, New York, and Addison-Wesley,Reading, Massachusetts, 1989.[150] NCSC. Trusted Network Interpretation (TNI). National Computer Security Center, 1 August1990. NCSC-TG-011 Version-1, Red Book.[151] NCSC. Department of Defense Trusted Computer System Evaluation Criteria (TCSEC).National Computer Security Center, December 1985. DOD-5200.28-STD, Orange Book.[152] R.M. Needham and M.D. Schroeder. Using encryption for authentication and authorizationsystems. Communications of the ACM, 21(12):993{999, December 1978.[153] R.M. Needham and M.D. Schroeder. Authentication revisited. Operating Systems Review,21(1):7, 1987.[154] R.B. Neely and J.W. Freeman. Structuring systems for formal veri�cation. In Proc. 1985Symposium on Security and Privacy, Oakland CA, April 1985. IEEE Computer Society.137

Architecture and Formalism References[155] B.C. Neuman and T. Ts'o. Kerberos: An authentication service for computer networks. IEEECommunications, 32(9):33{38, September 1994.[156] P.G. Neumann. On the design of dependable computer systems for critical applications.Technical report, Computer Science Laboratory, SRI International, Menlo Park, CA, October1990. CSL Technical Report CSL-90-10.[157] P.G. Neumann. Rainbows and arrows: How the security criteria address computer misuse.In Proceedings of the Thirteenth National Computer Security Conference, pages 414{422,Washington, DC, 1-4 October 1990. NIST/NCSC.[158] P.G. Neumann. Can systems be trustworthy with software-implemented crypto? Technicalreport, SRI International, Menlo Park, California, October 1994.[159] P.G. Neumann. Computer-Related Risks. ACM Press, New York, and Addison-Wesley, Read-ing, Massachusetts, 1994. ISBN 0-201-55805-X.[160] P.G. Neumann. The future of formal methods for security: Overview statement. In Proceed-ings of the Eighteenth National Computer Security Conference, Baltimore, Maryland, 10{13October 1995. NIST/NCSC.[161] P.G. Neumann, R.S. Boyer, R.J. Feiertag, K.N. Levitt, and L. Robinson. A provably secureoperating system: The system, its applications, and proofs. Technical report, ComputerScience Laboratory SRI International, Menlo Park, CA, May 1980. second edition, ReportCSL-116.[162] P.G. Neumann, R.S. Fabry, K.N. Levitt, L. Robinson, and J.H. Wensley. On the designof a provably secure operating system. In Proceedings of the International Workshop OnProtection in Operating Systems, pages 161{175, August 1974.[163] P.G. Neumann and L. Gong. Minimizing trust in multilevel-secure systems. Technical report,SRI International, Menlo Park, California, 15 March 1994.[164] P.G. Neumann, N.E. Proctor, and T.F. Lunt. Preventing security misuse in distributedsystems. Technical report, Computer Science Laboratory, SRI International, Menlo Park,CA, June 1992. Issued as Rome Laboratory report RL-TR-92-152 (for o�cial use only),Rome Lab C3AB, Gri�ss AFB NY 13441-5700. Contact Emilie Siarkiewicz, Internet:siarkiewicze@LONEX.RL.AF.MIL, phone 315-330-3241.[165] P.G. Neumann, editor. VERkshop I: Veri�cation Workshop. ACM SIGSOFT Software En-gineering Notes, 5(3):4{47, July 1980.[166] P.G. Neumann, editor. VERkshop II: Veri�cation Workshop. ACM SIGSOFT SoftwareEngineering Notes, 6(3):1{63, July 1981.[167] NIST. Data encryption standard. Technical report, National Institute of Standards andTechnology (formerly NBS), 1977.[168] ORA Corp. Final report for the (THETA) Experimental Secure Distributed Operating Sys-tem development. Technical report, ORA Corporation, Ithaca, NY, 15 July 1991. RomeLaboratory Contract F30602-88-C-0146, CDRL A021.138

Architecture and Formalism References[169] ORA Corp. Formal security model speci�cation for the (THETA) Experimental Secure Dis-tributed Operating System development. Technical report, ORA Corporation, Ithaca, NY,15 July 1991. Rome Laboratory Contract F30602-88-C-0146, CDRL A009.[170] ORA Corp. Software requirements speci�cation for the (THETA) Experimental Secure Dis-tributed Operating System development. Technical report, ORA Corporation, Ithaca, NY,15 July 1991. Rome Laboratory Contract F30602-88-C-0146, CDRL A008.[171] E.I. Organick. The Multics System: An Examination of its Structure. MIT Press, Cambridge,Massachusetts, 1972.[172] D. Otway and O. Rees. E�cient and timely mutual authentication. Operating SystemsReview, 21(1):8{10, 1987.[173] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal veri�cation for fault-tolerant ar-chitectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineering,21(2):107{125, February 1995. Special section on Formal Methods Europe '93.[174] D.L. Parnas. On the criteria to be used in decomposing systems into modules. Communica-tions of the ACM, 15(12), December 1972.[175] D.L. Parnas. A technique for software module speci�cation with examples. Communicationsof the ACM, 15(5), May 1972.[176] D.L. Parnas. On a `buzzword': Hierarchical structure. In Information Processing 74 (Pro-ceedings of the IFIP Congress 1974), pages Software: 336{339. North-Holland, 1974.[177] D.L. Parnas. The in
uence of software structure on reliability. In Proceedings of the Inter-national Conference on Reliable Software, pages 358{362, April 1975. Reprinted with im-provements in R. Yeh, Current Trends in Programming Methodology I, Prentice Hall, 1977,111{119.[178] D.L. Parnas. On the design and development of program families. IEEE Transactions onSoftware Engineering, SE-2(1):1{9, March 1976.[179] D.L. Parnas. Mathematical descriptions and speci�cation of software. In Proc. of IFIP WorldCongress 1994, Volume I, pages 354{359. IFIP, August 1994.[180] D.L. Parnas, P.C. Clements, and D.M. Weiss. The modular structure of complex systems.IEEE Transactions on Software Engineering, SE-11(3):259{266, March 1985.[181] D.L. Parnas and G. Handzel. More on speci�cation techniques for software modules. Technicalreport, Fachbereich Informatik, Technische Hochschule Darmstadt, Research Report BS I75/1, Germany, April 1975.[182] D.L. Parnas, J. Madey, and M. Iglewski. Precise documentation of well-structured programs.IEEE Transactions on Software Engineering, 20(12):948{976, December 1994.[183] D.L. Parnas and W.R. Price. The design of the virtual memory aspects of a virtual machine.In Proceedings of the ACM SIGARCH-SIGOPS Workshop on Virtual Computer Systems.ACM, March 1973. 139

Architecture and Formalism References[184] D.L. Parnas and W.R. Price. Design of a non-random access virtual memory machine. InProceedings of the International Workshop On Protection in Operating Systems, pages 177{181, August 1974.[185] D.L. Parnas and D.L. Siewiorek. Use of the concept of transparency in the design of hierar-chically structured systems. Communications of the ACM, 18(7):401{408, July 1975.[186] D.L. Parnas and Y. Wang. Simulating the behaviour of software modules by trace rewritingsystems. IEEE Transactions of Software Engineering, 19(10):750{759, October 1994.[187] W.W. Peterson and E.J. Weldon, Jr. Error-Correcting Codes, second edition. MIT Press,Cambridge, Massachusetts, 1972.[188] R. Pike, D. Resotto, K. Thompson, H. Trickey, T. Du�, and G. Holzmann. Plan 9: The earlypapers. Technical report, AT&T Bell Laboratories, Murray Hill, NJ, July 1991. (ComputingScience Technical Report 158. This report contains seven conference papers presented during1990 and 1991.).[189] P.A. Porras and R.A. Kemmerer. Analyzing covert storage channels. In Proceedings of the1991 Symposium on Research in Security and Privacy, pages 36{51, Oakland, CA, May 1991.IEEE Computer Society.[190] B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Speci�cation and Z. Prentice-Hall International, Hemel Hempstead, Great Britain, 1991.[191] N.E. Proctor. SeaView formal speci�cations. Technical report, Computer Science Laboratory,SRI International, Menlo Park, CA, April 1991.[192] N.E. Proctor and P.G. Neumann. Architectural implications of covert channels. In Proceedingsof the Fifteenth National Computer Security Conference, pages 28{43, Baltimore, Maryland,13{16 October 1992.[193] S. A. Rajunas, N. Hardy, A. C. Bomberger, W. S. Frantz, and C. R. Landau. Security inKeyKOS. In Proceedings of the 1986 IEEE Sympsium on Security and Privacy, April 1986.[194] B. Randell and J.E. Dobson. Reliability and security issues in distributed computing systems.In Proceedings of the Fifth Symposium on Reliability in Distributed Software and DatabaseSystems, Los Angeles CA, January 1986.[195] T.R.N. Rao. Error-Control Coding for Computer Systems. Prentice Hall, Englewood Cli�s,New Jersey, 1989.[196] M. Reiter and K. Birman. How to securely replicate services. ACM Transactions on Pro-gramming Languages and Systems, 16(3):986{1009, May 1994.[197] R. Rivest. The MD4 message digest algorithm. Technical report, MIT Laboratory for Com-puter Science, October 1990. TM 434.[198] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120{126, February 1978.140

Architecture and Formalism References[199] L. Robinson and K.N. Levitt. Proof techniques for hierarchically structured programs. Com-munications of the ACM, 20(4):271{283, April 1977.[200] L. Robinson, K.N. Levitt, P.G. Neumann, and A.R. Saxena. A formal methodology forthe design of operating system software. In R. Yeh (ed.), Current Trends in ProgrammingMethodology I, Prentice Hall, 61{110, 1977.[201] L. Robinson, K.N. Levitt, and B.A. Silverberg. The HDM Handbook. Computer ScienceLaboratory, SRI International, Menlo Park, California, June 1979. Three Volumes.[202] A.W. Roscoe and L. Wulf. Composing and decomposing systems under security properties.In Proceedings of the 8th IEEE Computer Security Foundations Workshop, Kenmare, CountyKerry, Ireland, June 1995.[203] J.M. Rushby. A trusted computing base for embedded systems. In Proceedings of the SeventhDoD/NBS Computer Security Initiative Conference, pages 294{311, Gaithersburg, Maryland,September 1984.[204] J.M. Rushby. Mathematical foundations of the MLS tool for revised special. Forthcoming,Computer Science Laboratory, SRI International, Menlo Park, California, 1986.[205] J.M. Rushby. Kernels for safety? In T. Anderson, editor, Safe and Secure ComputingSystems, chapter 13, pages 210{220. Blackwell Scienti�c Publications, 1989. Proceedings ofa Symposium held in Glasgow, October 1986.[206] J.M. Rushby. Composing trustworthy systems. Technical report, Computer Science Labora-tory, SRI International, Menlo Park, CA, July 1991.[207] J.M. Rushby. A formally veri�ed algorithm for clock synchronization under a hybrid faultmodel. In Proceedings of the Thirteenth Conference on Principles of Distributed Computing,pages 304{313, Los Angeles, CA, Aug 1994. ACM.[208] J.M. Rushby. Fault-tolerant algorithms and the design of PVS. In Proceedings of the ThirdNASA Langley Formal Methods Workshop, May 10-12, 1995, pages 93{104. NASA LangleyResearch Center, June 1995.[209] J.M. Rushby. Formal methods and their role in digital systems validation for airborne systems.Technical report, SRI International, Menlo Park, California, CSL-95-01, March 1995.[210] J.M. Rushby and B. Randell. A distributed secure system. IEEE Computer, 16(7):55{67,July 1983.[211] J.M. Rushby and B. Randell. A distributed secure system (extended abstract). In Proceedingsof the 1983 IEEE Symposium on Security and Privacy, pages 127{135, Oakland, CA, April1983. IEEE Computer Society.[212] J.M. Rushby and D.W.J. Stringer-Calvert. A less elementary tutorial for the PVS speci�cationand veri�cation system. Technical report, SRI International, Menlo Park, California, CSL-95-10, October 1995. 141

Architecture and Formalism References[213] J.M. Rushby and F. von Henke. Formal veri�cation of the interactive convergence clocksynchronization algorithm using Ehdm. Technical Report SRI-CSL-89-3, Computer ScienceLaboratory, SRI International, Menlo Park, CA, February 1989. Also available as NASAContractor Report 4239.[214] T.T. Russell and M. Schaefer. Toward a high B level security architecture for the IBMES/3090 processor resource/systems manager (PR/SM). In Proceedings of the Twelfth Na-tional Computer Security Conference, pages 184{196, Baltimore, Maryland, 10{13 October1989. NIST/NCSC.[215] O.S. Saydjari, J.M. Beckman, and J.R. Leaman. LOCKing computers securely. In 10th Na-tional Computer Security Conference, Baltimore, Maryland, pages 129{141, 21-24 September1987. Reprinted in Rein Turn (ed.), Advances in Computer System Security, Vol. 3, ArtechHouse, Dedham MA, 1988.[216] O.S. Saydjari, S.J. Turner, D.E. Peele, J.F. Farrell, P.A. Loscocco, W. Kutz, and G.L. Bock.Synergy: A distributed, microkernel-based security architecture. Technical report, NSA IN-FOSEC Research and Technology, November 22 1993.[217] M. Schaefer and R.R. Schell. Toward an understanding of extensible architectures for eval-uated trusted computer system products. In Proceedings of the 1984 IEEE Symposium onSecurity and Privacy, April 1984.[218] M. Schaefer (editor). Multilevel Data Management Security. National Academy Press, AirForce Studies Board, National Research Council, Washington DC, 1983. Report of the 1982Summer Study (For O�cial Use Only), National Academy of Sciences, Air Force StudiesBoard, Marvin Schaefer, Chairman; published in 1983).[219] R. Schell. A security kernel for a multiprocessor microcomputer. IEEE Computer, 16(7):47{53, July 1983.[220] R.R. Schell and T.F. Tao. Microcomputer-based trusted systems for communications andworkstation applications. In Proceedings of the Seventh DoD/NBS Computer Security Initia-tive Conference, pages 277{290, Gaithersburg, Maryland, September 1984.[221] W.L. Schiller. The design and speci�cation of a security kernel for the PDP-11/45. TechnicalReport MTR-2934, Mitre Corporation, Bedford, MA, March 1975.[222] F.B. Schneider. Understanding protocols for Byzantine clock synchronization. TechnicalReport 87-859, Department of Computer Science, Cornell University, Ithaca, NY, August1987.[223] B. Schneier. Applied Cryptography. John Wiley and Sons, New York, 1994.[224] B. Schneier. E-Mail Security with PGP and PEM. John Wiley and Sons, New York, 1995.[225] M.D. Schroeder, D.D. Clark, and J.H. Saltzer. The Multics kernel design project. In Pro-ceedings of the Sixth Symposium on Operating System Principles, November 1977. ACMOperating Systems Review 11(5). 142

Architecture and Formalism References[226] M. Seagar, D. Guaspari, M. Stillerman, and C. Marceau. Formal methods in the theta kernel.In Proceedings of the 1995 Symposium on Security and Privacy, pages 88{100, Oakland, CA,May 1993. IEEE Computer Society.[227] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612{613, November1979.[228] W.R. Shockley. Implementing the Clark/Wilson integrity policy using current technology.Technical report, Gemini Computers, P.O. Box 222417, Carmel CA, 1988. GCI-88-6-01.[229] J.M. Silverman. Re
ections on the veri�cation of the security of an operating system. InProceedings of the Ninth ACM Symposium on Operating System Principles, pages 143{154,October 1983.[230] M.K. Smith, D.I. Good, and B.L. DiVito. Using the Gypsy Methodology: DRAFT, November1987. Computational Logic Inc., 1987.[231] J.M. Spitzen, K.N. Levitt, and L. Robinson. An example of hierarchical design and proof.Communications of the ACM, 21(12):1064{1075, December 1978.[232] J.M. Spivey. Understanding Z: a speci�cation language and its formal semantics. CambridgeUniversity Press, Cambridge, England, 1988.[233] SRI-CSL. HDM Veri�cation Environment Enhancements, Interim Report on Language Def-inition. Computer Science Laboratory, SRI International, Menlo Park, California, 1983. SRIProject No. 5727, Contract No. MDA904-83-C-0461.[234] SRI-CSL. Ehdm Speci�cation and Veri�cation System Version 4.1: Preliminary De�nitionof the Ehdm Speci�cation Language. Computer Science Laboratory, SRI International, MenloPark, California, September 6, 1988.[235] SRI-CSL. Ehdm Speci�cation and Veri�cation System { Version 6.1: User's Guide. Com-puter Science Laboratory, SRI International, Menlo Park, CA, March 27, 1992.[236] J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos: An authentication service for opennetwork systems. In Proceedings of the USENIX Winter Conference, pages 191{202, February1988.[237] S.G. Stubblebine and V.D. Gligor. On message integrity in cryptographic protocols. In Pro-ceedings of the 1992 Symposium on Research in Security and Privacy, pages 85{104, Oakland,CA, May 1992. IEEE Computer Society.[238] D.I. Sutherland. A model of information
ow. In Proceedings of the Ninth National ComputerSecurity Conference, pages 175{183, September 1986.[239] A.S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Englewood Cli�s, New Jersey,1992.[240] A.S. Tanenbaum and R. van Renesse. Distributed operating systems. ACM ComputingSurveys, 17(4):419{470, December 1985. 143

Architecture and Formalism References[241] A.S. Tanenbaum, R. van Renesse, H. van Staveren, G.J. Sharp, S.J. Mullender, and G. vanRossum. Experiences with the Amoeba distributed operating system. Communications ofthe ACM, 33(12):46{63, December 1990.[242] K. Thompson. Re
ections on trusting trust. Communications of the ACM, 27(8):761{763,August 1984.[243] K. J. Turner, ed. Using Formal Description Languages. John Wiley, Chichester, 1993.[244] S.T. Vinter. Extended discretionary access controls. In Proceedings of the 1988 IEEE Sym-posium on Security and Privacy, April 1988.[245] F. von Henke and J.M. Rushby. Introduction to Ehdm. Computer Science Laboratory, SRIInternational, Menlo Park, California, September 1988.[246] F. von Henke, N. Shankar, and J.M. Rushby. Formal Semantics of Ehdm. Computer ScienceLaboratory, SRI International, Menlo Park, California, September 28, 1988.[247] F.W. von Henke, J.S. Crow, R. Lee, J.M. Rushby, and R.A. Whitehurst. The Ehdm veri�ca-tion environment: An overview. In Proceedings of the Eleventh National Computer SecurityConference, pages 147{155, Baltimore, Maryland, October 1988. NBS/NCSC.[248] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliablecomponents. In Automata Studies, pages 43{98, Princeton, N.J., 1956. Princeton University.[249] C. Weissman. Blacker: Security for the DDN. Examples of A1 security engineering trades.In Proceedings of the 1992 Symposium on Research in Security and Privacy, pages 286{292,Oakland, CA, May 1992. IEEE Computer Society.[250] J.H. Wensley et al. Design study of software-implemented fault-tolerance (SIFT) computer.NASA contractor report 3011, Computer Science Laboratory, SRI International, Menlo Park,CA, June 1982.[251] J.C. Wray. An analysis of covert timing channels. In Proceedings of the 1991 Symposiumon Research in Security and Privacy, pages 2{7, Oakland, CA, May 1991. IEEE ComputerSociety.[252] R. Yahalom, B. Klein, and Th. Beth. Trust relationships in secure systems: A distributedauthentication procedure. In Proceedings of the 1993 Symposium on Research in Security andPrivacy, pages 150{164, Oakland, CA, May 1993. IEEE Computer Society.[253] W.D. Young. A veri�ed code generator for a subset of Gypsy. Technical Report 33, Compu-tational Logic Incorporated, Austin, TX, October 1988.[254] C.-F. Yu and V.D. Gligor. A formal speci�cation and veri�cation method for the preventionof denial of service. In Proceedings of the 1988 Symposium on Security and Privacy, pages187{202, Oakland, CA, April 1988. IEEE Computer Society.[255] A. Zakinthinos and E.S. Lee. The composability of non-interference. In Proceedings of the8th IEEE Computer Security Foundations Workshop, Kenmare, County Kerry, Ireland, June1995. 144

Architecture and Formalism References[256] P.R. Zimmermann. The O�cial PGP User's Guide. MIT Press, Cambridge, Massachusetts,1995.

145

