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This survey paper investigates the current state of the art with respect to collaborative 
computing.  Specifically, the paper addresses the field of collaborative software 
engineering and focuses on the background and issues related to distributed software 
development.  The paper begins by exploring collaborative computing in general, 
discusses synchronous and asynchronous collaboration and communication mechanisms 
to ensure updates are handled properly, and then focuses on elements that have 
significant impact on distributed software engineering: mutual exclusion, achieving 
“undo” and “redo,” organizational theory, merging code, and distributed version control.  
The paper then examines some of the human-computer interface (HCI) issues of such 
collaborative systems and presents various classification schemes that are helpful in 
comparing various collaborative domains and applications.  The paper concludes by 
discussing recent and future work in the field. 
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1. INTRODUCTION AND 
OVERVIEW OF 
COLLABORATIVE 
COMPUTING 

 
Computer-supported cooperative (or 
collaborative) work (CSCW) systems 
bring people together and utilize 
computing to facilitate a work goal.  
The field is rich in sub-categories and 
has decades of research to support many 
of the current theories about how people 
can use computer technology to interact 
and achieve a common goal.  The most 
pervasive example of collaborative 
computing (at a fundamental level) is 
the World Wide Web wherein users 
cooperatively share documents.  But 
many other task-specific CSCW 
systems exist; in this paper we examine 
the field of computer-supported 
cooperative work systems in general 
and then discuss some fundamental 
problems and areas of CSCW as they 
related to software engineering.  The 
intent of the paper is to provide a survey 
of literature pertinent to collaborative, 
distributed software engineering and 
enumerate the issues involved in a 
collaborative system that facilitates 
synchronous and asynchronous access 

to files within a distributed development 
environment. 
 
Online systems have the potential to 
improve the work between people.  If 
we view meetings as enabling 
coordination among activities and 
provide interactions among participants 
on a project, then we can construct 
a view of collaboration defined by two 
variables: connective richness and 
collaborative empowerment.  Those 
interactions which necessitate high 
connectedness are those that require 
real-time interactions with short, 
pressing deadlines.  In such situations, 
synchronous communication 
technologies are needed, and 
teleconferencing can really pay off.  
Those interactions which necessitate 
high collaborative empowerment are 
those that involve sequential, 
interdependent tasks.  In this case, 
project scheduling, file sharing, and task 
coordination dominate the interactions.  
Interactions which involve both a high 
level of connectedness and 
collaborative empowerment are those 
that require cross-functional 
collaboration and are typically highly 
complex in nature; such environments 



require application-sharing tools and/or 
screen sharing software. 
 
Beyond just want a collaborative system 
can provide an organization, we must 
determine whether such a system will 
be successful within the organization.  
Some factors of a collaborative system's 
success are: support from senior 
management, involving users in the 
planning and development, standardize 
and use standards whenever possible, 
and train users on the system and how 
to work in virtual teams [Townsend et 
al. 2002 ]. 
 
Locasto et al. [2002] define three 
fundamental elements of collaborative 
systems: user management, content 
management (and version control), and 
process management.  These are 
defined as (emphasis added): 
 

“User management is defined as 
the administration of user 
accounts and associated 
privileges. This administration 
should be as simple as possible 
to avoid wasted time and 
confused roles. 
 
Content management is the 
process of ensuring the 
integrity of the data at the 
heart of the project. Content 
management systems often 
employ versioning control that 
transparently preserves the 
progression of the project as the 
associated documents mature 
and grow. 
 
A workflow is an abstraction of 
the process that a task takes 
through a team of people. 
During the execution of the 
workflow, it is often difficult 
and time-consuming to manage 
individual processes. Process 
management handles the 
interaction between different 
levels of project contributors.” 

 
Consequently, any collaborative system 
must demonstrate that it manages users 
and data while facilitating the process 
and flow of the work being achieved. 
 
What do collaborative environments 
look like?  Many are text-based and 
non-graphic intensive; others are highly 
interactive and graphic intensive.  As 
one example, Benford et al [Benford et 
al. 2001] discuss the term Collaborative 
Virtual Environments (CVE) as the 
convergence of virtual reality and 
computer-supported cooperative work 
(CSCW).  CVE moves beyond 
videoconferencing and audio 
conferencing.  Rather, CVE are rich 3D 
environments that attempt to create a 
realistic space in which participants 
may interact with each other.  Given the 
highly-social nature of CVE and the 
new utilization of 3D environments, 
some challenges and research questions 
arise that include: how can such 
systems scale well and still preserve the 
interests of the users, how can various 
heterogeneous architectures be 
supported, what lessons learned in 2D 
environments also apply to 3D 
environments (and which don’t), and 
what new human-computer interaction 
issues are raised given the new 
environments.   
 
While the focus of CVEs is to create a 
rich collaborative space, other CSCW 
systems have different goals.  For 
example, collaboratories seek to provide 
access rather than a virtual space.  
Collaboratories may be defined as "the 
emulation of a scientific laboratory in 
which cooperative scientific or 
technical work may be carried out 
without regard to geographic location" 
[Sunderam et al. 1998].  While similar 
to traditional computer supported 
collaborative work environments, 
collaboratories necessitate access to 
scientific equipment and 
instrumentation, lab notebooks, access 
to large databases, and support for near-



real-time scientific visualization that 
can be broadcast/shared among all 
participants. 
 
A recent example of a collaboratory is 
the Emory CCF whose aim was to 
enable those working in natural sciences 
- physics, chemistry, and biochemistry - 
to utilize online interfaces to meet and 
work even though they were 
geographically dispersed.  Their system 
utilizes parallel computation (via 
message passing and distributed 
computing) and shared resources; the 
system is modular in nature such that 
existing features can be refined or 
removed, and new features can be 
added with ease.  One potential 
drawback of their system is that it uses 
a multicast communication mechanism 
to ensure consistency among all 
distributed participants [Sunderam et al. 
1998]. 
 
In addition to supporting 
geographically-distributed work, 
collaborative systems often support 
groups that work at an extreme 
distance; we define these as world-wide 
groups (given the extreme geographic 
distance).  Some considerations in 
world-wide groups (wide-area groups) 
are: people connect from distributed 
locations and often from different 
locations (mobility) for different 
sessions; synchronous and 
asynchronous communication must be 
supported; quality of service can be 
improved by replicating and distributing 
artifacts within the system; members of 
one group may be members of many, 
various other groups (multiplicity); 
group size may be small or large and 
should not be constrained; finally, 
members of a group should be made 
aware of the actions and activities of 
other members within the group 
[Marquès and Navarro, 2001]. 
 
All CSCW systems involve some level 
of interaction among users – thus the 
term “cooperative.”  General interaction 

principles are applicable, and it is 
interesting to note that regardless of the 
intent/goal of the system, all CSCW 
systems exhibit four general phases.  
The membership interaction cycle for a 
group consists of four phases: 1) one 
member interacts with the system to 
produce a new (or changed) artifact; 2) 
the system is made aware of the 
changed or new artifact (and/or stores 
the actions that brought about the 
change in the system); 3) this change 
information is distributed to other 
members of the group; 4) recipients of 
the change information process it and 
update their awareness of the overall 
system.  Fundamentally, these for 
phases all involve communication; 
phases one and two involve the user and 
system communicating, and phases 
three and four involve the system 
communicating (and propagating) 
changes to other users within the 
collaborative environment.  Thus, 
collaborative systems involve a high 
level of communication; consequently 
communication protocols to update 
peers within the system (notification 
algorithms) are vital to the success of 
any CSCW system. 
 
Of course, not all interactions are the 
same.  Different members often take on 
different roles at various times within 
interactions of the collaboration: active 
(those users that need to receive all 
changes), passive (those users that 
generate new changes and need to 
receive all changes from others in the 
group, but do not produce changes 
themselves), and observers (those users 
that only need to see summary 
information/events to keep track of how 
the group is progressing in the meta-
sense) [Marquès and Navarro, 2001]. 
 
To conclude this section on the 
overview of CSCW systems, it may be 
helpful to provide a list of common 
categories of CSCW tools from Kock 
[1995]: 
 



• Message systems 
• Multiuser editors 
• Group decision support 

systems and electronic meeting 
rooms 

• Computer conferencing 
• Coordination systems 

 
The remainder of this paper focuses on 
the multiuser editor arena of CSCW 
systems but does discuss some common 
themes of all CSCW systems – 
communication mechanisms, 
coordination of messages and updates, 
network topology issues, and 
interface/design considerations. 
 
 
2. SYNCHRONOUS AND 

ASYNCHRONOUS 
COMMUNICATION 

 
To truly be flexible and support the 
broadest range of applications, 
collaborative systems must provide 
synchronous and asynchronous access 
to the shared space.  While it is possible 
to have synchronous-only applications 
(chat, ICQ, etc.) and also possible to 
have asynchronous-only applications (e-
mail, Wikis, etc.), the literature suggests 
that having both synchronous and 
asynchronous access to shared files and 
interaction space is advantageous 
because it allows for users to interact in 
real-time (synchronous) to achieve the 
highest level of concurrency while still 
maintaining history and the ability for 
new members to join “late” and review 
what has previously occurred 
(asynchronous). 
 
Synchronous collaboration is best suited 
in environments where there is a need 
for high connectedness and real-time 
interactions (or when pressing deadlines 
are present).  Witness how people 
collaborate in research and publications 
for conferences – there is often a large 
zone of asynchronous collaboration 
(trading of Web links, emails, rough 

drafts of papers, etc.), but when the 
deadline for publication is near, phone 
calls, teleconferencing, and instant-
messaging (and chat) often dominate 
the collaborative interaction.  There is a 
need for more immediate interaction in 
such an environment, and consequently, 
synchronous methods of 
communication are beneficial.  A 
drawback of synchronous 
communication can be that the 
interaction is lost once completed; 
questions such as “what did she say 
about topic X” and “didn’t we agree to 
Y” arise unless the synchronous 
interaction is somehow recorded for 
later playback (thus making it 
simultaneously synchronous and 
asynchronous). 
 
In contrast, asynchronous collaboration 
is appropriate when users cannot or do 
not wish to interact simultaneously.  
Synchronous communication by its very 
nature demands an immediate response 
and can interrupt work and actually 
cause a decrease in productivity; thus 
when people are working on very 
mentally-demanding tasks that require 
their focused attention, synchronous 
collaboration can be quite negative.  In 
situations like these, asynchronous 
collaboration allows users to participate 
in the collaborative environment at their 
own pace and when it is most 
appropriate for them.  Asynchronous 
collaborative environments are also 
appropriate when users are 
geographically displaced as time zones 
often make it difficult to collaborate at 
the same time.  Asynchronous systems 
also have the advantage that they 
automatically record the interaction so 
others can view it later 
(asynchronously); thus there is an 
historical record that can be archived 
and reviewed later by all members of 
the collaboration. 
 
Now that we’ve discussed synchronous 
and asynchronous collaborative models, 
let’s focus on how to enable the 



ubiquity of collaborative environments.  
It can be argued that until adding 
collaboration into an application is as 
easy as dropping a visual control on a 
form, developers will still struggle with 
implementing fundamentals such as 
network communication, 
synchronization, and event propagation.  
Just as most modern APIs contain 
controls/classes to facilitate network 
communication, file I/O, 
multithreading, etc. (all concepts that at 
some point historically were novel and 
difficult to achieve programmatically), 
collaborative systems will not become 
pervasive and easily achieved until a 
similar set of APIs exist for 
collaboration.  Roth and Unger [2000] 
have created such a set of controls; 
TeamComponents is a set of visual 
controls that have at their core the 
ability and API to communicate 
collaboratively with other instances of 
the application into which the controls 
are used.  Because the API is already 
embedded into the control, coordination 
and synchronization is already 
achieved.  They make the case that if 
controls could worry about their internal 
data states and communicate and 
coordinate such state with other 
applications, collaborative interfaces 
and applications would be much easier 
to develop; consequently, collaborative 
environments would expand in their use 
and acceptance within computing. 
 
Another interesting application to 
object-oriented development is the idea 
of encapsulating the contents and 
communication mechanisms within the 
controls themselves; thus a control is 
completely responsible for and able to 
provide collaboration and 
synchronization with other instances of 
the control within other users' 
applications. 
 
State information such as who is also 
viewing a control or who is editing a 
control's state can be shown in a non-
intrusive manner through small icons 

within the visual control [Roth and 
Unger, 2000]. 
 
It is hoped that synchronous and 
asynchronous modes of communication 
can be added to programs in such a 
“drag and drop” fashion and alleviate 
the developers from the arduous task of 
“reinventing the wheel” when it comes 
to collaborative systems development. 
 
 
3. UNICAST, MULTICAST, AND 

OTHER NOTIFICATION 
ALGORITHMS 

 
The change notification approach that a 
system adopts widely influences the 
uses that such as system supports.  For 
example, if change notifications are 
infrequent, then the system will 
typically be used for asynchronous 
collaboration; whereas if change 
notifications are frequent, then the 
system will typically be used for 
synchronous collaboration.  In a unicast 
system, notifications are sent to peers 
sequentially; the advantage of this 
model is that the network congestion is 
kept small, but the change propagation 
delay can be excessive.  In a multicast 
system, notifications are sent to peers in 
parallel; the advantage of this model is 
that the propagation delay can be 
minimized, but the disadvantage is that 
the bandwidth consumption/congestion 
can be too costly. 
 
It may be advantageous to adopt a 
general-purpose, flexible notification 
mechanism that is adaptable to the 
needs of the collaborative system; such 
a system should contain two principle 
parts: the notification policy (frequency 
and granularity of notifications) and the 
notification mechanism (the 
implementation of the policy).  Key 
elements of such a system involve 
incoming and outgoing buffers to 
received and send messages [Shen and 
Sun, 2002]. 
 



Safety properties of multicast 
communication within group 
communication systems (GCS) include: 
delivery integrity (for every receive 
event, there is a preceding send even for 
the same message), no duplication (we 
cannot have two receive events at the 
same process that contain the same 
message/content), sending view 
delivery and same view delivery 
(message send/receive must be within 
the same context - i.e. the same view), 
virtual synchrony (processes must keep 
consistency among views - i.e. if 
message m transfers process p from 
view V to view V', then the same 
message m must have been received by 
and processed in process q from V to 
V'), transitional set (processes are able 
to locally decide whether they are 
synchronized with other processes or 
whether they must transition into a new 
view to maintain synchronicity), safe 
delivery (all members of the current 
view have received the message via the 
network), reliable FIFO message 
delivery, and liveness; liveness is 
ensured by a reliable, independent third 
party that can guarantee that the 
communication between separate 
processes is available and all messages 
sent will be received [Chockler et al.  
2001]. 
 
Others have done work with regard to 
update and communication protocols 
for collaborative systems.  These 
include the McCanne et al. [1999] 
system entitled MASH that seeks the 
enable scalable multipoint collaboration 
using “lightweight sessions” where thin 
application-specific protocols have been 
developed on top of IP multicast; 
sessions are grouped together to avoid 
network flooding.  This is similar to the 
notion of super nodes and networks of 
clusters in KaZaA.  Their approach also 
seeks to go beyond existing APIs that 
provide protocols and mechanisms for 
communication (ActiveX, ObjectTcl, 
etc.) and “extract their commonalities 

into a high-level architecture that is 
reusable.” 
 
To ensure that replicated objects are 
synchronized in distributed 
environments, Vidot et al. [2000] have 
devised an algorithm that defers 
broadcasts of operations to others in the 
system, potentially reducing bandwidth 
consumption.  One drawback of this 
algorithm is that there is potential 
latency in that others in the system have 
stale copies of the objects that have 
been modified; also, even though the 
changes are sequenced and ordered 
causally, achieving “undo” in the 
deferred broadcast algorithm can be 
problematic (since the algorithm 
assumes that no operation will be 
undone and immediately redone). 
 
Another field of distributed 
collaborative systems that requires 
complex notification algorithms is the 
area of design.  Wu and Sarma [2001] 
developed an algorithm that involves 
working in complex highly-detailed 
CAD systems with large data sets.  
Prior work in this area of collaborative 
computing dealt with boundary 
representations (b-reps) to provide 
update notification for the models using 
a central database (to ensure 
consistency) and broadcasts of updates 
to keep locally-replicated copies 
coherent.  Like distributed collaborative 
systems in general, the problem with the 
centralized approach is that it does not 
provide for a high level of collaboration 
(and provides on point of failure in the 
system); the network bandwidth 
consumption in the broadcast model is 
too costly and does not necessarily scale 
well.  Wu’s and Sarma’s [2001] work is 
novel in that if we assume that edits to 
the system’s data are valid, then our 
notification algorithm can simply 
propagate the changes to the peers in 
the system and only focus on the 
segmented region of the system that has 
been changed (rather than the entire 
system).  In text-based systems, this 



involves notifying peers of the location 
and content of the text change; in 
object-oriented systems, this involves 
notifying peers of the objects and the 
actions/methods invoked (or attributed 
modified); in graphics-based or design 
systems, this notification involves 
specifying the region (or boundary 
representation – b-rep) and the changes 
made to the element(s) within the 
region.  Consequently, this approach 
can dramatically reduce the overall 
bandwidth for notification to peers in 
the system while maintaining the 
advantageous distributed nature of 
avoiding a central copy/version of the 
system’s data. 
 
The choice to adopt unicast or multicast 
is dependent upon the nature of the 
collaborative environment and the time 
delays that are acceptable in change 
notifications.  Segmenting the system’s 
data space can help to reduce the 
amount of data needed in the 
notification, and creating a hierarchy of 
the nodes within the system can help 
reduce the amount of network traffic 
needed to accomplish the change 
notification. 
 
 
4. DISTRIBUTED MUTUAL 

EXCLUSION AND FILE 
ACCESS 

 
We have established various models of 
how users interact (synchronous, 
asynchronous, or a combination), and 
we have discussed algorithms for 
propagating changes to other users in 
the system (unicast, multicast, 
segmented, and hybrid approaches); we 
now turn our attention to ensuring that 
users within the shared space have 
exclusive access to the elements of the 
shared data and are provided adequate 
access to the files within the system. 
 
A "Distributed Version Control 
System" (DVCS) is one in which 
version control and software 

configuration control is provided across 
a distributed network of machines.  By 
distributing configuration management 
across a network of machines, one 
should see an improvement in reliability 
(by replicating the file across multiple 
machines) and speed (response time).  
Load balancing can be another benefit 
of distributed configuration 
management.  Of course, if file 
replication is employed, then we must 
implement a policy whereby all copies 
of the file are always coherent [Korel et 
al.  1991]. 
 
In order for distributed configuration 
management to work efficiently, the 
fact that the files/modules are 
distributed across multiple computers 
on the network must be transparent to 
the developer/user.  The user should not 
be responsible for knowing where to 
locate the file he/she is seeking.  Rather, 
the system should be able to provide an 
overall hierarchical, searchable view of 
the modules present in the system; the 
user should be able to find their needed 
module(s) without any notion of where 
it physically resides on the network. 
 
Another interesting aspect of distributed 
configuration management is the idea 
that the system provides each user with 
a public and private space for the files.  
The public space contains all of the files 
in the collaborative, distributed system.  
The private space contains minor 
revisions or "what if" development files 
that the local user can "toy with" in an 
exploratory manner; this provides a safe 
"sandbox" area that each developer can 
use to explore possible ideas and 
changes.  When a module is ready for 
publication to others, it is moved from 
the private space into the public space 
[Korel et al.  1991]. 
 
Guaranteeing mutual exclusion to the 
critical section is a classic problem in 
computing.  In the cases of distributed 
software engineering in a collaborative 
environment, we need to guarantee that 



only one user can be editing any section 
of the collaborative shared space at any 
given time.  In some cases, we might 
like to allow k users to have 
simultaneous access to a shared 
resource (where k ≤ n, n = total number 
of users in the system).  This section 
examines the various mutual exclusion 
algorithms that are relevant within the 
context of collaborative systems. 
 
Distributed mutual exclusion algorithms 
fall into one of two primary categories: 
token-based and permission-based.  In a 
token-based system, a virtual object, the 
token, provides the permission to enter 
into the critical section.  Only the 
process that holds the token is allowed 
into the critical section.  Of interest is 
how the token is acquired and how it is 
passed across the network; in some 
models, the token is passed from 
process to process, and is only retained 
by a process if it has need for it (i.e. it 
wants to enter the critical section).  
Alternatively, the token can reside with 
a process until it is requested, and the 
owner of the token makes the decision 
as to who to give the token to.  Of 
course, finding the token is potentially 
problematic depending upon the 
network topology [Velazquez, 1993]. 
 
The other approach to distributed 
mutual exclusion is the permission-
based approach.  In the permission-
based approach, a process that wants to 
enter the critical section sends out a 
request to all other processes in the 
system asking to enter the critical 
section.  The other processes then 
provide permission (or a denial) based 
upon a priority algorithm, and can only 
provide permission to one process at a 
time.  Once a requesting process 
receives enough positive votes, it may 
enter the critical section.  Of interest 
here is how to decide the priority 
algorithm and how many votes are 
necessary for permission [Velazquez, 
1993]. 
 

In the case where we would like to 
allow some subset of users access to the 
shared resource (or shared data) 
simultaneously, the work of 
Bulgannawar and Vaidya [1994] is of 
particular interest.  Their algorithm 
achieves k-mutual exclusion with a low 
delay time to enter the critical section 
(important to avoid delays within the 
system) and a low number of messages 
to coordinate the entry to the critical 
section.  In their model, they use a 
token-based system where there are k 
tokens in the system; further, the system 
is starvation and deadlock free 
[Bulgannawar and Vaidya, 1994]. 
 
The k-mutual exclusion algorithm 
differs from the traditional mutual 
exclusion algorithm in that in a network 
of n processes, we allows at most k 
processes into the critical section 
(where 1 <= k <= n).  The algorithm 
developed by Walter et al. [2001a] 
utilizes a token-based approach that 
contains k tokens.  Tokens are either at 
a requesting process or a process that is 
not requesting access to the critical 
section.  In order for this algorithm to 
work, all non-token requesting 
processes must be connected to at least 
one token requesting process.  To 
ensure that tokens do not become 
"clustered," the algorithm states that if a 
token is not being used, then it is sent to 
a processor that is not the processor that 
granted the token [Walter et al.  2001a]. 
 
Distributed token-based, permission-
based, and k-mutual exclusion 
algorithms are all useful in various 
scenarios.  The primary use and impact 
of distributed mutual exclusion in the 
context of this survey paper is to 
manage access to shared code in the 
software engineering system.  This is a 
vital part of any distributed software 
development environment with 
simultaneous users access shared source 
code. 
 
 



5. ISSUES RAISED IN AD HOC 
(UNRELIABLE) AND PEER-
TO-PEER NETWORKS 

 
While most modern software 
engineering is performed within 
company local-area networks (LANs), 
as networking becomes more ubiquitous 
and as the trend of tele-working and 
distributed working continues, one can 
expect more software development to 
involve ad hoc, non-LAN clients and 
even peer-to-peer clients.  To enable 
more concurrent software development, 
the system must be accessible and 
available at any time from any place.  
Of course, there are security issues 
raised in such an accessible system, but 
we will not discuss these in this paper.  
Rather, we focus our attention to the 
matter of providing connectivity and 
access to the distributed software 
engineering system within ad hoc and 
peer-to-peer networks. 
 
A mobile ad hoc network is one that 
"pairs of nodes communicate by 
sending messages either over a direct 
wireless link, or over a sequence of 
wireless links including one or more 
intermediate nodes" [Walter et al. 
2001b].  Communication from a node is 
only possible within a radius of 
transmission, and given the mobile 
nature of such devices, changes in the 
network topology and communication 
failure between two nodes is 
commonplace.  Consequently, mutual 
exclusion algorithms that assume 
consistent network topologies and 
reliable communication are not 
necessarily well suited for wireless ad 
hoc scenarios [Walter et al. 2001b]. 
 
When dealing with wireless and ad-hoc 
networks, the topology changes 
frequently (since machines are moving 
in and out of the transmission range), 
power consumption levels and battery 
life and low, and the delay between 
messages is highly unpredictable and 
often takes quite a bit of time.  

Consequently, implementing algorithms 
that are reliable in such networks 
requires careful attention to detail and 
reliability. 
 
Within a peer-to-peer network, many 
obstacles must be overcome to ensure 
that the peer is able to communicate 
efficiently and correctly with other 
peers in the network.  First, a peer must 
be able to speak the "language" of other 
peers.  In a homogenous P2P network, 
this is trivially done since all peers 
speak the same language; but in 
heterogeneous P2P networks, each peer 
requires a "wrapper" that can make 
heterogeneous communication possible 
by translating to and from protocols and 
"languages."  Additionally, since 
different peers provide different APIs, a 
"mediator" is needed at each peer to 
convert the command from the local 
peer to the meta-command that the 
entire P2P network speaks.  Thirdly, a 
"facilitator" is needed to local peers, 
services, and other agents in the P2P 
network; the actions of a facilitator 
involve registering with other peers and 
"advertising" their set of services 
(perhaps through reflection).  Finally, 
the last role that each peer must provide 
is that of a "planner" who is responsible 
for recovering from failure or lost 
communication with other peers 
[Penserini et al.  2002]. 
 
While it is not currently easily possible 
to develop software on wireless phone 
interfaces, in the future, wireless ad hoc 
networks will become more pervasive.  
Thus it is useful to examine these 
network models and the issues they 
raise in discussing the future and 
current work within distributed software 
engineering. 
 



6. ACHIEVING "UNDO" AND 
"REDO" IN COLLABORATIVE 
SYSTEMS 

 
The ability to undo in a single-user 
system is vital to enable a user to 
reverse a mistake; the ability to undo in 
a collaborative system is even more 
essential because other users can 
destroy another's work, and the very 
nature of collaborative systems 
encourages exploratory work that may 
need to be undone.  In single-user 
object-oriented systems, undo may be 
achieved by reversing the operation on 
the object; in single-user text-based 
systems, insert and delete are natural 
inverses of each other, thus undo and 
redo are easily implemented in text-
based systems. 
 
Potential uses for “undo” and “redo” 
include: [Sun, 2002] 
 
• Recover from unintended or 

incorrect operation 
 
• Learn new system feature by 

exploring the interface (i.e. try and 
undo) 

 
• Explore alternatives (i.e. try and 

undo multiple times) 
 

In contrast, in bitmapped systems, undo 
and redo are not as easily achieved 
because the users are directly 
manipulating color and pixel 
information (in a more "freehand" 
manner). 
 
One approach in achieving undo/redo in 
bitmapped based systems is to record 
the actions of the users and only store 
the pixels that have been affected.  If an 
operation is undone, then the operations 
preceding the operation undone are 
replayed to generate the correct state.  
While this may take more time, the cost 
associated with storing states is 
dramatically reduced, since we are only 

storing the operation performed at each 
step and the pixels affected.  The 
"reconstruction" of valid state does take 
some time, but as is often the case, 
memory requirement is reduced at the 
cost of this CPU/algorithm 
performance/time [Wang et al.  2002]. 
 
Now that we have examined the various 
types of systems that can employ the 
undo and redo operations, let’s examine 
the scenario that arises in a multi-user 
(collaborative) text-based system in 
detail and explore algorithms to 
efficiently handle concurrent undo/redo 
in collaborative systems. 
 
As a point of reference so that the 
reader understands the problem, 
imagine the simple case of two users 
(User1 and User2) interacting 
synchronously in a collaborative text 
document system.  If the shared 
document contains the string “man” and 
User1 performs an Insert(3,"i") – i.e. 
insert the character 'i' at the third 
position, then the resultant string should 
be “main”.  If User2 then performs an 
Insert(2,"d"), then the resultant string 
should be “mdain”.  Now, if User1  
performs an “undo” operation, we 
cannot simply inverse the Insert(3,"i") 
operation previously invoked because 
the character 'i' is no longer at position 
3; it is at position 4 (due to the 
operation by User2).  Thus there is a 
need for a robust solution to the “undo” 
and “redo” problem in collaborative 
text-based systems that transcends 
simply inverting “insert” for “delete” 
and visa versa. 
 
Sun [2002] describes a system entitled 
REDUCE (REal-time Distributed 
Unconstrained Cooperative Editing) 
that allows for any operation to be 
undone at any time.  The key to the 
REDUCE system is that it separates the 
“undo policy” from the “undo 
mechanism.”  This allows the system to 
process the undo request in the context 
in which the original command was 



executed relative to the changes that 
have occurred since the command on 
the local user’s machine.  Further, the 
undo mechanism is broken into two 
separate layers – the high-level 
transformation control layer (that is 
responsible for understanding the 
concurrency relationships among past 
actions in the system) and the low-level 
transformation function (that is 
responsible for actually carrying out the 
desired action as it relates to “types, 
parameters, and other relationships” 
within the system). 
 
Sun [2000] also defines a consistency 
model that states a collaborative editing 
system must ensure the following 
properties: 
 

1. “Convergence: when all sites 
have executed the same set of 
operations, all copies of the 
shared document are 
identical. 
 

2. Causality preservation: for 
any pair of operations Oa and 
Ob, if Oa → Ob, then Oa is 
executed before Ob at all 
sites. 
 

3. Intention preservation: for 
any operation O, the effect of 
executing O in any document 
state is the same as the 
intention of O.” 

 
Sun’s work hinges on the claim that 
these properties should hold for all 
group “do” operations and all group 
“undo” operations. 
 
 
7. TRANSPARENCIES AND 

AWARE CSCW SYSTEMS 

 
Heretofore, we have discussed 
communication methods, ensuring 
access to shared content, network 
configurations for collaborative 
systems, and ensuring proper interaction 

with shared content.  We now turn our 
attention to two models of computer 
supported collaborative work systems: 
transparencies and aware systems. 
 
Transparent collaborative systems are 
so named because the applications that 
are being shared among multiple users 
have no idea of the collaboration - the 
collaborative interface acts as an 
intermediary buffer for the application 
and receives all users' input and relays 
these interactions to the application; 
when the application responds and 
adjusts its output, the collaborative 
system/agent relays this information to 
all users' computers such that all users 
see the same interface.  The advantage 
of such transparent systems is that they 
can be integrated into most single-user 
applications without the need to 
recompile or edit the original 
application. 
 
Aware collaborative systems are so 
named because the collaborative 
interface is embedded within the 
application itself and the system’s core 
interface and operations support 
synchronization and distribution/sharing 
of the system’s content.  These systems 
are defined as aware because the 
application is “aware” that the content 
is being shared and the interface of the 
system enables such sharing.  While 
there are many benefits of embedding 
the collaboration within the application, 
the disadvantage is that the source of 
the application must be available and 
the collaborative API (synchronization, 
mutex, etc.) must be tightly coupled 
within the application.  This is often not 
possible, thus the need for transparent 
systems. 
 
Application sharing and transparency 
are two different approaches to 
collaborative systems.  Application 
sharing involves either centralizing the 
application's execution and distributing 
the input and output (display) among 
user machines or creating a replicated, 



homogenous architecture in which each 
user runs the same application across a 
network; with either model, the user is 
constrained to use the same application 
as all other users in the collaborative 
environment.  Even in heterogeneous 
application sharing environments, 
considerable concerns must be 
overcome in supporting the capture, 
communication, and replication of 
users' actions. 
 
In comparison, transparency-based 
systems allow users to share 
applications without modifying the 
original program.  Transparencies 
originally involved screen sharing 
technologies in which the user would 
share the entire screen to other users.  
These systems evolved into sharing 
only specific windows or applications, 
rather than the entire screen, and are 
best represented by the X windows 
protocol. 
 
Under conventional collaborative 
transparent system, concurrency is not 
possible - only one user is able to input 
to the application at any given time; 
while this is appropriate for 
presentations and shared meetings, this 
is too limiting for collaborative software 
development.  "Floor control" is the 
term used to define which user has 
access to the input stream (mutex), and 
this is needed to ensure that event 
interleaving is avoided. 
 
One promising concept of being able to 
merge the best of transparent and aware 
collaborative systems is the modern 
object-oriented concept of reflection [Li 
and Patrao, 2001].  If a developer 
wanted to transform a single-user 
application into a collaborative 
multiple-user application but did not 
have access to the source code, then 
through reflection, the developer could 
extend the program and add the 
communication/synchronization API 
into the system externally via reflection.  
Unfortunately, this approach does 

require a high-level knowledge of the 
internals of the single-user system, and 
even without access to the original 
source code, in-depth knowledge of the 
internals of the system is often required. 
 
An alternative approach would be to 
design systems that allow users to 
establish relationships to objects within 
the system and extend the collaborative 
software to support such relationships 
[Li and Patrao, 2001].  Of course, the 
prerequisite of this type of system 
would be that the collaborative API be 
built into the current system and that the 
system supports extension by allowing 
the user to establish relationships 
between objects.  Li and Patrao’s model 
exhibits such an interface by viewing 
the elements of the collaborative 
interaction as objects that support 
emergent sharing and distributed 
referential integrity.  Such objects 
inherit common attributes and provide a 
generalized API for modification such 
that these modifications (small 
differentials) can be broadcast to the 
users of the system and tracked; this 
avoids the more costly low-level 
messaging (transparency-based) system 
wherein all display information is 
broadcast. 
 
Li and Li [2002] discuss current 
advances in the area of transparencies 
that should support spontaneous 
application sharing (i.e. a user can use a 
single-user application and then later 
decide to publish/share the application 
to another user) and support 
heterogeneous clients and independent 
views.  Additionally, the issue of "late 
comers" needs to be addressed in 
modern collaborative environments: 
how can the system bring new users that 
were not present at the beginning of the 
session up to speed quickly; OS hooks 
such as the Microsoft Windows API 
provides such capabilities that allow 
collaborative transparencies to record 
sessions for replay on future, late 
arriving clients [Li and Li, 2002]. 



 
Begole et al [1999] discuss a 
synchronous methodology for providing 
a "transparent" collaboration system 
that works in coordination with existing 
applications.  This system is different 
from other existing collaboration 
transparencies in that it avoids the 
"conventional" centralized architecture 
that require that only one person 
interact with the system at any given 
time (single token-based mutex).  One 
difficulty that is avoided in such single-
controller transparent collaborative 
systems is that of interaction 
interleaving; since only one user can 
“control” the cursor, then interactions 
cannot be interleaved incorrectly (i.e. 
the input is by definition sequential in 
nature and no undesired overlap is 
possible). 
 
Begole et al [1999] list four attributes 
that are useful in comparing aware and 
transparent collaborative systems.   
 

 Transparency Aware 
Concurrent 

Work Single Multiple 

WYSIWIS Strict Relaxed 

Group 
Awareness Little Detailed 

Network 
Usage High Low 

 
Table 1: Comparing Transparent and 

Aware Collaborative Systems 
 
These attributes are defined as: 
 
Concurrent work: Does the system 
allow for multiple users to provide input 
simultaneously, or is only one user able 
to provide input at any given time? 
 
WYSIWIS: All users should see the 
same state at all times; What You See Is 
What I see. 
 
Group Awareness: How much detail 
does the system provide with regard to 

what other users in the system are doing 
and what section of the document they 
are viewing?  Some systems simply 
provide a pointer/cursor showing the 
current “location” of the other users; 
other systems provide thumbnails and 
more detailed views. 
 
Network Usage: How much network 
bandwidth is consumed and needed by 
the system?  In aware systems, 
operations are typically all that is 
communicated (and these messages are 
small), whereas in transparent systems 
typically rely upon centralized server 
architectures and broadcast display 
change information (quite large). 
 
In conclusion, aware collaborative 
systems consume less bandwidth, allow 
for concurrent work, more easily 
provide flexible WYSIWIS interfaces, 
and allow for more inherently robust 
group awareness.  Transparency-based 
collaborative systems are useful in 
situations where the developer needs to 
create a collaborative system based 
upon a single-user application but does 
not have access to the underlying code 
base of the single-user system; 
transparency-based systems often 
consume more system resources and 
require a centralized server model, but 
they are often the only option in some 
circumstances. 
 
 
8. COLLABORATIVE, 

DISTRIBUTED SOFTWARE 
ENGINEERING 

 
Coordination efforts within software 
development projects is not a new 
concept; NATO organized a meeting of 
software developers in 1968 that 
defined the term “software engineering” 
and identified the complexity of 
managing software development as a 
key challenge within the field [Grinter, 
1998].  Thirty-six years later, the issue 
of coordinating the software 
development process – including the 



technical side and the human side – is 
still a challenge.  Brooks, Parnas, and 
Conway (among others) all recognize 
the importance of team structure and 
collaboration among members as key to 
the success of software development 
[Grinter, 1998]. 
 
Computer-Aided Software Engineering 
(CASE) tools are useful in supporting 
the development of software systems.  
Lower-CASE tools are primarily 
focused on supporting the 
implementation and testing phases of 
software development; upper-CASE 
tools are those that are primarily 
focused on supporting the design and 
analysis phases of software 
development [Sommerville, 2001]. 
 
It is important to note that most 
software engineering activities involve 
the coordination and collaboration of 
documents related to the software 
system.  These documents consist of 
system requirements specifications, 
design documents, project schedules, 
risk tracking, features list documents, 
test case documents, and software 
source code. While many CASE tools 
exist to help manage the software 
development process, fundamentally all 
software engineering activities involve 
collaborating on documents; even 
source code, as structured as it is, can 
be viewed as a text document. 
 
Regardless of whether the system 
employs lower-CASE and/or upper-
CASE tools, modern software 
engineering of large-scale software 
systems involves a high level of 
collaboration and coordination.  
Software engineering offers an 
excellent opportunity to examine 
systems, subsystems, groups, and 
subgroups within the context of CSCW 
[Borghoff and Teege, 1993].  
Consequently, the features of general-
purpose CSCW tools are readily applied 
to software engineering. 
 

Section 8.1 and 8.2 of the paper 
examine two main areas within CSCW 
that are particularly relevant to software 
engineering – managing collaborative 
teams and managing collaborative code.  
Section 9 then continues section 8.2 and 
goes into more detail with regard to 
distributed version control. 
 
 
8.1 Organizational Theory and 
Group Management 
 
Collaborative editing systems (CES) are 
central to distributed, collaborative 
software engineering.  Without the 
ability to collaborate on documents, the 
system cannot function.  Central to the 
ability to collaborate on documents is 
the ability to work within a group and 
coordinate group effort.  In a traditional 
software engineering setting, these 
activities entail project task scheduling, 
status reporting (and meetings), and 
inter-group communication. 
 
Borghoff and Teege [1993] present a 
model for collaborative editing that 
"mediates coordination and 
cooperation" and make the case that 
such a system can be used in the 
software engineering domain.  They 
define the multi-user distributed system 
titled "IRIS" that consists of a data layer 
an operations layer.  Static user 
information (such as phone numbers, 
email addresses, etc.) is stored in the 
data layer so communication is 
facilitated.  Explicit and implicit 
coordination is provided by the 
operation layer, where implicit takes 
care of mutual exclusion for 
collaborative editing, and explicit 
allows users to soft and hard lock and 
communicate their activities to others in 
the collaborative space.  The model also 
allows users to defined new parts, 
remove existing parts, and move parts 
in a structured edit (assumes that the 
documents in use have structure - 
SGML, ODA, etc.). 
 



Borghoff and Teege [1993] also have an 
interesting view in the systems 
applicability to software engineering.  
The authors make the case that software 
engineering consists of document 
manipulation and coordination of 
collaborative development.  The code of 
the software system being built can be 
coordinated using their explicit and 
implicit coordination structure; 
versioned automatically because the 
model contains "history information;" 
report current activities because the 
system tracks dynamic user profiles 
(who has recently done what and is 
currently doing what); and can extract 
the latest build/version of the system 
[Borghoff and Teege, 1993]. 
 
What is most novel about the “IRIS” 
model is that it explicitly separates the 
structural information of the document 
from the content information of the 
document.  This allows the 
transformation operations on the 
document to more easily be achieved.  
Of course, the system has the advantage 
of working only with highly-structured 
documents, which is often not the case 
in general-purpose document editing.  
Fortunately, software engineering 
documents and source code are most 
often highly structured; therefore, this 
model is very applicable to the field of 
collaborative software engineering. 
 
Collaborative software development by 
its nature involves four essential 
problems: evolution (changes must be 
tracked among many different versions 
of the software), scale (increased 
software systems involve more 
interactions among methods and 
developers), multiple platforms on 
which the system will be deployed 
(coupling the methods and subsystems 
of the software), and distribution of 
knowledge (in that many people all are 
working on the system and each contain 
a set of the working knowledge of the 
system) [Perry et al. 1998].  The central 
question to ask in parallel development 

is one of managing the scope of changes 
within the system over time.  Certainly 
we can employ process (as has been 
done for decades) to manage the 
software development activities, but 
more and more, CASE tools are being 
utilized to help manage the growing 
complexity and tightly-coupled 
activities within software development. 
 
A recent study that tracked the number 
of changes to files by different 
developers and found that 12.5% of all 
changes were made to the same file 
within 24 hours of each other; thus there 
is a high degree of parallel development 
with a potentially high probability that 
changes made by one user would have 
an impact on the changes made by 
another developer.  The study also 
reports that there were up to 16 different 
parallel versions of the software system 
that needed to be merged - quite a task 
[Perry et al. 2001]! 
 
Another recent study [Herbsleb et al. 
2000] investigated a software 
development project that spanned six 
sites within 4 countries on two 
continents and a seventh site on a third 
continent acting as a supporting role.  
The study found that when teams were 
distributed, the speed of development 
was delayed when compared to face-to-
face teams.  Also of note was the fact 
that team members report that they are 
less likely to received help from distant 
co-workers, but they themselves do not 
feel that they provide less help for 
distributed co-workers. 
 
The study’s finding concludes with the 
idea that better interactions are needed 
to support collaborations at a distance.  
Better awareness tools such as instant 
messaging and the "rear view mirror" 
application by Boyer et al. [1998] offer 
potential for overcoming some of the 
problems inherent in distributed 
software system development [Herbsleb 
et al. 2000]. 
 



In the more general sense (transcending 
beyond software engineering), emergent 
models of organizational theory suggest 
that there is a movement away from 
hierarchical forms of group 
coordination to utilizing information 
technology in facilitating more 
adaptive, flexible structures.  Such 
structures are often termed “network 
organizations” or “adhocracies” 
[Hellenbrand, 1995] and offer the 
possibility for more productive and 
efficient groups and organizations.  By 
utilizing collaborative computing 
environments, transaction costs are 
reduced and coordination of tasks is 
improved. 
 
Certainly there is a need for 
coordinating the collaborative nature of 
software development.  This problem is 
beyond the scope of version control 
systems and must address the very 
human side of software development.  
This view is supported by the very 
name of the CSCW field in that 
collaboration (and cooperation) occurs 
among humans.  Consequently, CSCW 
systems must contain elements that 
facilitate the communication and 
coordination of group activities. 
 
 
8.2 Merging Code 
 
Beyond coordinating the flow of work 
and communication of the members 
within a group, a robust collaborative 
software engineering system must also 
manage the source code of the software 
system that is being shared among the 
users. 
 
Grinter [1998] defines the term 
“recomposition” as “the process of 
reassembling the product” and takes a 
reverse approach that begins with the 
end and transitions to the origin.  He 
points out (quite correctly), that modern 
software engineering supports the claim 
that modularization is key to managing 
the complexity of large software 

systems.  If software systems are 
modularized, then at some point they 
must be recomposed into a whole; this 
is not done just to deliver the product to 
the customer but also during the 
development of the system for testing 
and demonstration purposes.  In a 
modern rapid application development 
(RAD) model, recomposition may occur 
as often as every night [Lory et al.  
2003] to ensure the product is always 
making progress and there is always 
something to show the customer. 
 
If developers are modifying the source 
code in parallel, then there will most 
probably exist some module within the 
code that has been modified by more 
than one developer (see results from 
Perry et al. [2001] in section 8.1); this 
situation where the same module has 
edits from multiple developers requires 
recomposition.  Another need for 
recomposition comes when there are 
dependencies between modules 
themselves; for example, if module A 
produces output for module B, and if a 
user modifies either module, then the 
resulting connection between the 
modules may be broken (i.e. if the two 
modules are coupled at all, editing one 
may break the communication 
mechanism of the two modules).  While 
well-defined change request processes 
can help mitigate this potential problem, 
in practice, processes are often not 
followed as well as we would hope 
[Grinter, 1998]. 
 
Thus the need to merge (or 
recomposition) distributed source code 
is established.  But what are the 
properties of a successful/correct model 
for merging?  Harrison [1990] defines 
three properties essential for correct 
coordination consistency.  These are: 
 
Change-serializability: if a change is 
made in parallel by two users within the 
system, then one change will not 
overwrite the other (i.e. the changes can 
be serialized as in a DBMS).  This 



property also ensures that changes can 
be explicitly undone or overwritten by 
another explicit action by a user. 
 
Atomicity: if a modification activity by 
a user is committed to the shared 
source, then all actions within the 
modification activity will be written 
(i.e. the entire source will be updated to 
reflect all changes).  This property 
ensures that all of the changes will be 
committed to the shared source or none 
will be committed. 
 
Completeness: this property establishes 
a causal relationship between 
modification activities.  For example, if 
modification A precedes modification 
B, and modification B precedes 
modification C, then the source code 
state that A acts upon also precedes the 
state that B acts upon, which in turn 
precedes the state that C acts upon. 
 
One interesting outcome of the 
completeness property is that since 
modification operations are causal, then 
the undo and redo operations are more 
easily achieved (see section 6). 
 
How can we automate the identification 
of elements (source lines of code) that 
have been modified by parallel users 
that conflict when merged?  Sun and 
Chen [2002] define a “conflict relation 
matrix” (CRM) that is useful.  Given n 
modifications, M1, M2, … Mn, then the 
potential conflict among these 
modifications can be expressed as an n 
× n matrix CRM, where CRM[i,j] is 
true if Mi conflicts with Mj., otherwise 
CRM[i,j] is false.  Note that CRM[i,i] 
is always false (a modification cannot 
conflict with itself).  Even given the fact 
that the matrix is symmetric along the 
diagonal, there are still Ο(n2) possible 
conflicts.  In order to have merging 
occur in a responsive time scale, we 
must be able to parallelize the operation 
of merging changes in a distributed 
environment. 
 

Now that we have established the need 
for and properties of correct merging, 
let us examine ways to accomplish 
merging in parallel.  Kaiser and Kaplan 
[1993] discuss the concept of a parallel 
change propagation algorithm that uses 
the tree-like structure of a programming 
language grammar to distribute changes 
to multiple users in the system.  The 
model assumes an object-oriented 
approach where attributes and methods 
exist within the language such that a 
change in one method or attribute of a 
class must be propagated to all other 
clients of the class.  This is achieved in 
parallel, and the change propagation is 
decoupled from the users' ability to 
continue to edit within the system; 
consequently, the response of the 
system is quite high.  The authors do 
discuss the most problematic scenario in 
which a user repeatedly performs a 
change and undo pair (i.e. change A, 
undo, change A, undo, change A, undo 
...) and conclude that this is still 
manageable in their model. 
 
The model assumes segmentation at a 
modular level, but addresses the issue of 
multiple edits by different users within 
the same module; in this case, it is 
suggested that multiple copies of the 
module are distributed to the clients and 
a merge operation is performed to 
resolve the differentials among the 
clients performing the change [Kaiser 
and Kaplan, 1993]. 
 
Another interesting aspect of Kaiser and 
Kaplan’s work is that they achieve 
parallel synchronization by the use of 
“firewalls” (i.e. mutex).  User has a 
“cursor” (place marker) in the tree that 
locks the subtree that is being edited.  
When the modification begins, the 
firewall is raised; when the modification 
is complete, the firewall is lowered and 
the change is propagated to other users 
in the system.  This is necessary to 
guarantee that no two users are ever 
able to edit the same element in the 
system at the same time.  While this 



model is somewhat pessimistic in its 
locking mechanism, given the high 
structure of the system and the fact that 
the element to be locked is quite small 
in nature, one may (correctly) hope that 
collisions with exclusive access would 
be rare. 
 
 
9. DISTRIBUTED VERSION 

CONTROL 
 
Concurrent modification of shared 
source code can create problems of 
consistency (see section 8.2).  One may 
consider a simplistic solution to the 
consistency problem to be version 
control.  While version control and 
configuration management are key 
elements of a distributed concurrent 
software engineering system, these 
aspects deal only with building and 
releasing a software system [Harrison, 
1990]; thus there is a need to control 
concurrent modification/merging apart 
from managing the files themselves.  
This section addresses the former –
managing various versions and files of 
the software in a distributed, 
collaborative development environment. 
 
Distributed version control can be 
approached via three main models: turn 
taking, split-combine, and copy-merge.  
All have advantages and disadvantages. 
 
The turn taking approach to 
collaborative development suffers from 
the fact that only one participant can 
edit the document at any given time; 
this reduces the parallel nature of 
collaborative development.  The split-
combine approach assumes that the 
splits can be static and that there is very 
little interaction among participants; 
this is often not the case as different 
sections of a system can be tightly 
coupled and dependant upon each 
other.  The copy-merge approach has a 
high degree of parallelism in the sense 
that all participants can edit the 
files/documents at the same time, but 

the merge step of combining all of these 
changes can become quite difficult and 
costly [Magnusson et al.  1993]. 
 
Configuration management systems 
typically take one of two approaches 
with regard to locking: optimistic or 
pessimistic locking.  In the optimistic 
approach, developers are free to 
develop in a more parallel fashion, but 
conflict occurs at the merge point when 
two sets of files must be merged 
together and changes brought together 
(and avoid losing work and ensuring 
that changes in one file have not 
adversely affected changes in the other 
file).  In the pessimistic approach, 
developers must obtain a lock on a file 
before being able to edit it; this can 
reduce the parallel nature of 
development since at most one 
developer can edit the file at any time. 
 
Both optimistic and pessimistic 
configuration management rely upon 
the user to query the CMS as to the state 
of the file; a better approach would be 
one in which the emphasis shifts to a 
"push" information flow where the 
system updates the user as to who is 
also interacting with the files that they 
are interested in.  Palantir [Serma et al.  
2003] is one such system that takes an 
active role in informing users of 
changes and graphically depicts a 
heuristic measure of the severity of 
change with respect to the users' local 
copy of the file. 
 
Palantir takes an event tracking 
approach, where events are: populate, 
unpopulated, synchronized, 
changesInProgress, changesReverted, 
changedCommittted, added, removed, 
renamed, moved, severityChanged 
[Serma et al.  2003]. All of these 
notification messages are intended to 
manage changes at a fine level of detail 
to keep peers within the system aware 
of what edits are being made by others 
in the system. 
 



Since software development by nature 
necessitates the ability for developers to 
edit various sections/modules/files of a 
system at any given time, any 
collaborative software development 
system must support the users in having 
control of the entire system's code base.  
Locking an entire file (or subsystem) is 
too costly and potentially blocks other 
users from being able to at the very 
least view the document [Harrison, 
1990].  Magnusson et al. [1993] defines 
a fine-granularity approach to revision 
control that focuses on language 
elements (classes, methods, attributes, 
functions, etc.) and merges these 
smaller elements; since the elements are 
smaller in nature, it is posited that edit  
collisions will be reduced, and merge 
operations will become more 
manageable [Magnusson et al.  1993]. 
 
Software configuration management 
(SCM) is a critical activity with respect 
to ISO9000 conformance and is a key 
activity of the Capability Maturity 
Model (CMM); SCM acts to help 
control changes in software products 
such that accounting, progress, and 
functionality may be more easily 
measured; SCM also facilitates 
developers in making controlled 
changes to the software system and 
tracking the inevitable evolution of the 
software code base. 
 
The evolution and change of software 
artifacts may be categorized into three 
actions: sequence (in which elements 
are added and the artifact is expanded), 
tree (also referred to as branching in 
which the artifact splits into two distinct 
but similar children wherein each child 
has different functionality than its 
sibling), and acyclic graph (in which 
branching occurs but the children then 
merge and sequence into one artifact 
with a union of functionality) [Conradi 
and Westfechtel, 1998]. 
 
The problem of merging two software 
artifacts is problematic and the 

approaches to this problem may be 
categorized as "raw merging" (in which 
the contents of one version are added to 
the contents of another), "two-way 
merging" (in which two versions are 
presented to the user - with the 
differences noted - and the user must 
select which elements are to remain in 
the final, combined version), and 
"three-way merging" (which is similar 
to two-way merging with the added 
feature that the parent of each version is 
used as a common baseline to reduce 
the number of elements that necessitate 
the user's input/choice) [Conradi and 
Westfechtel, 1998]. 
 
 
10. USER INTERFACE ISSUES 
 
Beyond what underlying algorithms and 
models a distributed collaborative 
software engineering system employs, 
ultimately the user must be presented 
with an interface in which to interact 
with the system.  Getting the interface 
correct for collaboration can be 
problematic; users are loathe to give up 
their existing tools and single-user 
applications with which they have a 
high level of comfort, yet the benefits of 
collaborative systems bear examination 
and potential adoption if the users can 
adopt them and effectively use them. 
 
What degree of immersion should a 
system provide? Boyer et al. [1998] 
determined via interviews that team 
members do not need virtual 
environments that are overpowering and 
immersive (which is in direct conflict 
with the collaborative virtual 
environment (CVE) work of [Benford et 
al. 2001]).  Rather, they seek tools that 
are passive, unobtrusive and provide the 
information that they need about their 
colleagues without creating unnecessary 
overhead in a new interface.  The 
system proposed by Boyer et al. uses a 
progressive-scale model that goes from 
left to right; those users that you place 
on the left side of the window are 



"important" enough to allow them to 
interrupt your work and communicate 
with you; those in the middle allow for 
"bubble" popup messages that are small 
and easily ignored if you desire; and 
those on the right are blocked from 
interrupting you at all.  The overall 
interface allows users to keep track of 
who else is in the collaborative system 
at the same time while still maintaining 
privacy and giving the user the power to 
control and avoid interruptions [Boyer 
et al.  1998]. 
 
Another study by Cheng et al [2004] 
show that meetings, email, software 
engineering process, and meetings can 
consume more than half of the average 
work day.  Improved processes and 
better use of technology can help reduce 
this burden on development and allow 
more of the work day to be devoted to 
developing the software system.  The 
authors make the case that if the 
Integrated Development Environment 
(IDE) is the central interface to the 
developer, why not integrate 
collaborative technologies that facilitate 
communication into IDEs.  Booch and 
Brown refer to the intelligent 
integration of software development 
tools into the known interface with a 
positive net effect as "reducing fiction" 
in the development process; the authors 
go on to show that configuration 
management, screen sharing, and email 
and instant messaging would be useful 
collaborative tools to integrate into 
existing IDEs.  Adding email and 
instant messaging to IDEs has the added 
benefit of automating source code (and 
requirements) change requests as well 
as automatically tracking version 
branching. 
 
The study claims that many modern 
IDEs contain support for extensibility, 
but that these are simply additions to the 
user interface and run externally as 
scripts or "plug ins."  For such 
collaborative tools to truly be 
effectively integrated into the IDE, the 

collaborative tools and interfaces must 
be tightly coupled to the underlying 
structure of the system such that 
automation of configuration 
management and versioning. 
 
Additionally, the study posits that 
modern collaboration within IDEs must 
include the flexibility to support passive 
peripheral awareness of others working 
on the system, support audio, video, and 
text interfaces, integrate with 
current/existing source control and error 
reporting/tracking systems, and allow 
for synchronous and asynchronous 
communication among team members.  
"Eclipse" is offered as an exemplar of 
an open-source IDE that exhibits many 
of the tools in the paper [Cheng et al.  
2004]. 
 
The TeamSpace project [Geyer et al.  
2001] seeks to provide services beyond 
traditional distributed conferencing; the 
goal of the system is to combine 
synchronous distributed conferencing 
with captured, annotated collaborative 
workspace so that participants can view 
the materials asynchronously.  The 
theory behind the approach is derived 
from cognitive psychology's "episodic 
memory" which states that we store and 
recall events based upon life 
experiences; leveraging from this, the 
system's elements are all time-sensitive 
in that every event and captured content 
is related across time.  Consequently, 
not only can users view the content of 
the collaboration hierarchically 
according to the contents that they seek, 
the user can also search across time (i.e. 
"I remember it happened somewhere 
near the end of the meeting"). 
 
The system allows users to share and 
annotate PowerPoint presentations, 
agenda items (which can be "checked 
off" as the collaborative meeting 
progresses), action items (which can 
also be "checked off"), and provides for 
low-bandwidth audio and video to 



create the presence and awareness of 
other users [Geyer et al.  2001]. 
 
Fussell et al [2000] performed a recent 
study to examine the importance of 
having presence within the 
collaborative environment.  In the 
experiment, a novice attempted to 
construct a complex mechanical device 
with the assistance of an at-a-distance 
mentor; the participants in the study 
were able to share a communication 
channel via voice and video, 
establishing a “virtual physical co-
presence.”  The study found that given 
complex tasks, remote users must have 
certain contextual cues in order for 
users to collaborate effectively.  These 
“grounding” elements are: 
 
Establishing a joint attention focus: 
allow users to be sure that everyone 
involved is viewing the same common 
element within the system 

 
Monitor comprehension: use 
nonverbal communication and facial 
expressions to establish that everyone 
comprehends what was said/discussed 
 
Conversational efficiency: make it as 
easy as possible for users to 
communicate their intentions (i.e. allow 
gestures and constrain the conversation 
within the context of the system). 
 
While this study examined assembling a 
physical device, the findings are also 
applicable in a distributed environment 
in which collaborators must establish a 
shared space in which to communicate 
about a common task [Fussell et al. 
2000]. 
 
Koch [1995] reports on a collaborative 
multi-user editor entitled “IRIS.”  While 
this system does utilize the near-
deprecated model of a 
specialized/proprietary system, some 
interesting interface issues can be 
gleaned from the “IRIS” work.  First is 
the concept of visualizing the hierarchy 

and structure of the document that is 
being shared among multiple users; this 
allows for users to easily identify who is 
currently working on each section/unit 
of a shared document.  This “shared 
meta view” is central to the project’s 
goals and is achieved admirably.  Also 
of interest is the systems ability to 
integrate the functionality and interface 
of single-user applications; this is 
absolutely critical in achieving 
widespread adoption of any 
collaborative system.  Finally, the 
“IRIS” interface provides direct 
communication between authors so that 
the can pass messages to each other for 
clarification (or to request an author 
relinquish control of a section of the 
document so that another user may edit 
it) [Koch, 1995]. 
 
There is also a considerable amount of 
research in the area of agents and the 
ability to manage the complexity and 
sheer volume of information that users 
are flooded with.  Moksha [Ramloll and 
Mariani, 1999] is a collaborative 
filtration system that allows users to 
specify their interest within the shared 
space at various points/parameters; the 
filtration agent then acts as an 
intermediary that selectively exposes 
the user to only those elements of the 
shared, collaborative space that the user 
has interest in.  Many collaborative 
development systems can benefit from 
this model of filtering based upon 
individual users’ preferences, especially 
given the scope and size of many 
modern software system projects (tens 
of thousands of modules and millions of 
source lines of code). 
 
To conclude this section, [Schur et al.  
1998] enumerate five critical elements 
from their research that define interface 
issues critical to collaborative systems.  
Successful CSCW systems will achieve 
the following: 
 
Social dialog: enables users to send and 
receive important concepts, thoughts, 



and ideas; this also enables the creation 
of “place” in which the collaborators 
interact. 
 
Provide framework: a collaborative 
environment may enable a more rapid 
application development (RAD) 
approach to accomplishing goals in that 
users can more rapidly cycle through 
their interactions and processes. 
 
Allow rapid context switching: the 
interface should allow users to author 
and then share changes/ideas rapidly 
without requiring a series of complex 
key or button inputs (i.e. make the 
system unobtrusive and easily 
navigable). 
 
Culture/trust dramatically affect 
adoption: realize that functionality 
along will not drive the adoption of a 
collaborative system – there must be an 
understanding by users as to what they 
will gain by using the new system. 
 
Timeliness: the interface and messages 
within the system must occur rapidly or 
users will get frustrated. 
 
  
11. CLASSIFICATION MODELS 

 
If we view collaborations as primarily 

consisting of communication, then we 
can organize such communication along 
three variables: time, space, and 
modality time [Nickson, 1997].  With 
respect to time, users can communicate 
at the same time (synchronously) or at 
different times (asynchronously).  With 
respect to space, users can occupy 
similar spaces that are close in 
proximity (proximal) or occupy spaces 
that are distant from each other 
geographically (distal).  With respect to 
modality, users can communicate via 
text (a document-centered approach), 
via audio (where audio information 
plays an important role), and/or via 
video (where visual information plays 
an important role).   
 
Certainly if we have more than one user 
interacting in the collaborative 
environment, then many different 
instances of these variables can be in 
play at any given.  Table 2 (from 
[Nickson, 1997]) summarizes various 
applications and their features along 
these variables. 
 
Nickson’s taxonomy is useful to 
compare various CSCW systems in 
their support for various modalities of 
use.  He provides numerous examples 
of commercial products in his paper to 
relate the applications and modalities to 
everyday products. 

Temporal Spatial Modal 
Application 

Synchronous Asynchronous Proximal Distal Document Audio Visual 

Messaging  X  X X   

Information Sharing  X  X X X X 

Document conferencing X   X X   

Audio Conferencing X   X  X  

Video Conferencing X   X  X X 
Electronic 

Conferencing X   X X X X 

Meeting Support X  X X X   
Group 

Calendaring/Scheduling  X  X X   

Workflow Management  X  X X   

Table 2: CSCW Variables and Applications

 



 
Another model to define CSCW 
systems is Patterson’s [Roth and Unger, 
2000] that defines groupware into four 
levels: display (renders the application 
to the user), view (contains the 
application's logical presentation), 
model (the application's state and 
internal information), and file (the 
persistent information of the 
application).  Based upon these four 
levels, three different variations can be 
described.  The shared model is one in 
which the different users each have 
their own displays and views, but the 
model and file levels are combined in a 
centralized server.  The shared view is 
one in which each user has a separate 
file, model, view, and display, but the 
models and views utilize 
communication mechanisms to ensure 
consistency.  The hybrid model is one 
in which the file and model are 
centralized and shared on a server, but 
the system allows for different views 
and displays (and views are coordinated 
via communication to ensure 
consistency). 

 
Other modern models include the 
window system and coordination 
agent/subsystem that communication to 
the presentation and functional core 
aspects of the model.  Based upon this 
view, the system can be central (contain 
server that maintains all state), direct 
communication (a peer-to-peer system), 
hybrid (combination of server and peer-
to-peer), asymmetrical (in which the 
server resides on a user's machine), and 
multiple servers (in which there is a 
hierarchy of servers and communication 
layers) [Roth and Unger, 2000]. 
 
Walpole et al. [1988] did work in this 
unifying area earlier with specific focus 
on software development environments 
(SDEs) that seek to unify version 
control, configuration control, and 
modification transactions (edits).  Their 
model is novel in that it adopted the 
object-oriented view of collaborative 
software development systems. 

File Model 

Display 

View 

User 1 User N 

… 

Display 

View 

Shared Model 

Display 

View 

User 1 

Shared View

File 

Model 

Display 

View 

User N 

File 

Model 

…

File Model 

Display 

View 

User 1 User N 
… 

Display 

View 

Hybrid Model 



A more modern object-oriented 
approach to CSCW systems can be 
found in [Teege, 1996].  He advocates a 
general-purpose CSCW model that 
integrates various aspects of 
collaborative work into a unified model 
called “Object-oriented Activity 
Support Model” (OOActSM).  This 
model attempts to bring together 
systems supporting processes, activities, 
and toolkits (i.e. APIs).  This model’s 
fundamental unit is the “activity” that 
can be viewed as an object that consists 
of an “executing actor” (i.e. who 
initiated the activity), the “context” 
(what is changed and any relevant state 
information), and “subactivity 
structure” (which allows for multiple 
actors and contexts). 
 
 
12. RECENT AND FUTURE WORK 
 
Recent trends in collaborative editing 
systems have focused on mainstream 
document types (PDF, Word, HTML) 
and away from proof-of-
concept/research document types.  
There is also a significant trend in Web 
authoring moving away from a one 
author model to a collaborative model 
where many authors contribute to a 
single document/site.  Such trends 
suggest that a more fine-grained 
concurrency system be adopted in Web 
authoring that will allow multiple 
authors to modify a single file 
collaboratively, rather than maintain 
course-grain concurrency in which a 
single author locks an entire file.  Given 
the highly structured nature of Web-
based languages like HTML, XML, and 
other SGML languages, this fine-
grained locking/collaboration should be 
easily implemented. 
 
Recent work in the area of synchronous 
editing of structured documents involve 
defining positional addressing schemes 
and sets of fundamental 
transformational operations; given 
these, concurrency among users and 

granularity of editing can be improved 
[Davis et al.  2002]. 
 
Drury [2001] has developed a set of 
heuristics that are useful in analyzing 
behavior within collaborative 
computing systems; her heuristics are 
derived from metaphors from activation 
theory, workspace awareness, 
coordination theory, distributed 
cognition, information ecology, and 
team situational awareness theory.  This 
work is significant in that it examines 
how users interact within CSCW 
systems and relates to many fields 
within the social sciences. 
 
Maybury [2001] discusses the Java 
Collaborative Virtual Workspace that 
has evolved from earlier multi-user 
dungeon (MUD) and MUD object-
oriented (MOO) communication 
protocols.  This system has grown to 
over 3000 users with as many as 400 
simultaneous users within the system at 
any given time.  What is particularly 
interesting about this work is that it 
provides “rooms” in which users can 
collaborate, persistence of objects 
within the shared space, and even 
supports a Palm client for wireless and 
mobile users.  Maybury claims that “we 
have discovered three important 
abstractions are central to all 
collaborations: conference, context, and 
participants.”  It will be interesting to 
see how these meta elements are present 
in other CSCW systems. 
 
A recent study [Cadiz et al. 2000] of a 
collaborative document editing system 
proves that it is a vibrant field with 
many research opportunities.  Within a 
10 month period, 9239 annotations were 
made on 1243 documents by 450 
developers for the Microsoft Office 
2000 system.  Clearly, large-scale 
software system development 
necessitates the ability to make 
annotations and collaboration.  The 
authors of this paper note that in-
context comments/annotations are 



needed so that the comments are 
situated with respect to the element that 
is being annotated.  Further, the authors 
argue that the ubiquity of the Web lends 
it as a natural medium by which 
collaboration can be established. 
 
Microsoft's Web Document and 
Versioning Protocol was used in 
cooperation with a SQL Server database 
to track the changes.  One interesting 
result of the study is that collaborators 
should be informed proactively when a 
document that interests them has been 
modified; this happens automatically 
via email. 
 
Among regular users, the average 
number of annotations was 47.5; the 
average number of documents 
annotated was 10.5.  Among occasional 
users, the average number of 
annotations was 9.3; the average 
number of documents annotated was 3.2 
[Cadiz et al.  2000]. 
 
I believe that in the near future, we will 
see voice over IP (VOIP) emerge as a 
ubiquitous aspect of any modern 
collaborative environment; given that 
VOIP is becoming more pervasive 
(witness DirectX 9.0 that contains a 
built-in API for VOIP), collaborative 
systems should also begin to make use 
of this important communication aspect 
of how people naturally work. 
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