
Collaborative, Distributed Software Engineering

JON A PRESTON

Clayton College and State University
Department of Information Technology

Georgia State University
Department of Computer Science

__

This survey paper investigates the current state of the art with respect to collaborative
computing. Specifically, the paper addresses the field of collaborative software
engineering and focuses on the background and issues related to distributed software
development. The paper begins by exploring collaborative computing in general,
discusses synchronous and asynchronous collaboration and communication mechanisms
to ensure updates are handled properly, and then focuses on elements that have
significant impact on distributed software engineering: mutual exclusion, achieving
“undo” and “redo,” organizational theory, merging code, and distributed version control.
The paper then examines some of the human-computer interface (HCI) issues of such
collaborative systems and presents various classification schemes that are helpful in
comparing various collaborative domains and applications. The paper concludes by
discussing recent and future work in the field.

Categories and Subject Descriptors: H.5.3 [Information Systems]: Group and
Organizational Interfaces – Collaborative Computing; D.2 [Software]: Software
Engineering - Management; I.7 [Information Computing Methodologies]: Document
and Text Processing – Document and Text Editing

General Terms: Management, Documentation, Human Factors

Additional Key Words and Phrases: Software engineering, collaborative computing,
synchronous, asynchronous, distributed, configuration management, merging
__

This research was supported by Dr. Prasad (CSC8530).

Authors' addresses: Jon A Preston, Department of Information Technology, Clayton College and State
University, Georgia 30260. Email: jonpreston@mail.clayton.edu

Permission to make digital/hard copy of part of this work for personal or classroom use is granted without
fee provided that the copies are not made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication, and its date of appear, and notice is given that copying is by permission
of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee.
© 2004 ACM 1073-0516/01/0300-0034 $5.00

TABLE OF CONTENTS

1. Introduction and overview of collaborative computing 2
2. Synchronous and asynchronous communication 5
3. Unicast, multicast, and other notification algorithms 6
4. Distributed mutual exclusion and file access 8
5. Issues raised in ad hoc (unreliable) and peer-to-peer networks 10
6. Achieving “undo” and “redo” in collaborative systems 11
7. Transparencies and aware CSCW systems 12
8. Distributed, collaborative software engineering 14

8.1. Organizational theory and group management 15
8.2. Merging code 17

9. Distributed version control 19
10. User interface issues 20
11. Classification models 23
12. Recent and future work 25

Acknowledgements 26
References 26

1. INTRODUCTION AND
OVERVIEW OF
COLLABORATIVE
COMPUTING

Computer-supported cooperative (or
collaborative) work (CSCW) systems
bring people together and utilize
computing to facilitate a work goal.
The field is rich in sub-categories and
has decades of research to support many
of the current theories about how people
can use computer technology to interact
and achieve a common goal. The most
pervasive example of collaborative
computing (at a fundamental level) is
the World Wide Web wherein users
cooperatively share documents. But
many other task-specific CSCW
systems exist; in this paper we examine
the field of computer-supported
cooperative work systems in general
and then discuss some fundamental
problems and areas of CSCW as they
related to software engineering. The
intent of the paper is to provide a survey
of literature pertinent to collaborative,
distributed software engineering and
enumerate the issues involved in a
collaborative system that facilitates
synchronous and asynchronous access

to files within a distributed development
environment.

Online systems have the potential to
improve the work between people. If
we view meetings as enabling
coordination among activities and
provide interactions among participants
on a project, then we can construct
a view of collaboration defined by two
variables: connective richness and
collaborative empowerment. Those
interactions which necessitate high
connectedness are those that require
real-time interactions with short,
pressing deadlines. In such situations,
synchronous communication
technologies are needed, and
teleconferencing can really pay off.
Those interactions which necessitate
high collaborative empowerment are
those that involve sequential,
interdependent tasks. In this case,
project scheduling, file sharing, and task
coordination dominate the interactions.
Interactions which involve both a high
level of connectedness and
collaborative empowerment are those
that require cross-functional
collaboration and are typically highly
complex in nature; such environments

require application-sharing tools and/or
screen sharing software.

Beyond just want a collaborative system
can provide an organization, we must
determine whether such a system will
be successful within the organization.
Some factors of a collaborative system's
success are: support from senior
management, involving users in the
planning and development, standardize
and use standards whenever possible,
and train users on the system and how
to work in virtual teams [Townsend et
al. 2002].

Locasto et al. [2002] define three
fundamental elements of collaborative
systems: user management, content
management (and version control), and
process management. These are
defined as (emphasis added):

“User management is defined as
the administration of user
accounts and associated
privileges. This administration
should be as simple as possible
to avoid wasted time and
confused roles.

Content management is the
process of ensuring the
integrity of the data at the
heart of the project. Content
management systems often
employ versioning control that
transparently preserves the
progression of the project as the
associated documents mature
and grow.

A workflow is an abstraction of
the process that a task takes
through a team of people.
During the execution of the
workflow, it is often difficult
and time-consuming to manage
individual processes. Process
management handles the
interaction between different
levels of project contributors.”

Consequently, any collaborative system
must demonstrate that it manages users
and data while facilitating the process
and flow of the work being achieved.

What do collaborative environments
look like? Many are text-based and
non-graphic intensive; others are highly
interactive and graphic intensive. As
one example, Benford et al [Benford et
al. 2001] discuss the term Collaborative
Virtual Environments (CVE) as the
convergence of virtual reality and
computer-supported cooperative work
(CSCW). CVE moves beyond
videoconferencing and audio
conferencing. Rather, CVE are rich 3D
environments that attempt to create a
realistic space in which participants
may interact with each other. Given the
highly-social nature of CVE and the
new utilization of 3D environments,
some challenges and research questions
arise that include: how can such
systems scale well and still preserve the
interests of the users, how can various
heterogeneous architectures be
supported, what lessons learned in 2D
environments also apply to 3D
environments (and which don’t), and
what new human-computer interaction
issues are raised given the new
environments.

While the focus of CVEs is to create a
rich collaborative space, other CSCW
systems have different goals. For
example, collaboratories seek to provide
access rather than a virtual space.
Collaboratories may be defined as "the
emulation of a scientific laboratory in
which cooperative scientific or
technical work may be carried out
without regard to geographic location"
[Sunderam et al. 1998]. While similar
to traditional computer supported
collaborative work environments,
collaboratories necessitate access to
scientific equipment and
instrumentation, lab notebooks, access
to large databases, and support for near-

real-time scientific visualization that
can be broadcast/shared among all
participants.

A recent example of a collaboratory is
the Emory CCF whose aim was to
enable those working in natural sciences
- physics, chemistry, and biochemistry -
to utilize online interfaces to meet and
work even though they were
geographically dispersed. Their system
utilizes parallel computation (via
message passing and distributed
computing) and shared resources; the
system is modular in nature such that
existing features can be refined or
removed, and new features can be
added with ease. One potential
drawback of their system is that it uses
a multicast communication mechanism
to ensure consistency among all
distributed participants [Sunderam et al.
1998].

In addition to supporting
geographically-distributed work,
collaborative systems often support
groups that work at an extreme
distance; we define these as world-wide
groups (given the extreme geographic
distance). Some considerations in
world-wide groups (wide-area groups)
are: people connect from distributed
locations and often from different
locations (mobility) for different
sessions; synchronous and
asynchronous communication must be
supported; quality of service can be
improved by replicating and distributing
artifacts within the system; members of
one group may be members of many,
various other groups (multiplicity);
group size may be small or large and
should not be constrained; finally,
members of a group should be made
aware of the actions and activities of
other members within the group
[Marquès and Navarro, 2001].

All CSCW systems involve some level
of interaction among users – thus the
term “cooperative.” General interaction

principles are applicable, and it is
interesting to note that regardless of the
intent/goal of the system, all CSCW
systems exhibit four general phases.
The membership interaction cycle for a
group consists of four phases: 1) one
member interacts with the system to
produce a new (or changed) artifact; 2)
the system is made aware of the
changed or new artifact (and/or stores
the actions that brought about the
change in the system); 3) this change
information is distributed to other
members of the group; 4) recipients of
the change information process it and
update their awareness of the overall
system. Fundamentally, these for
phases all involve communication;
phases one and two involve the user and
system communicating, and phases
three and four involve the system
communicating (and propagating)
changes to other users within the
collaborative environment. Thus,
collaborative systems involve a high
level of communication; consequently
communication protocols to update
peers within the system (notification
algorithms) are vital to the success of
any CSCW system.

Of course, not all interactions are the
same. Different members often take on
different roles at various times within
interactions of the collaboration: active
(those users that need to receive all
changes), passive (those users that
generate new changes and need to
receive all changes from others in the
group, but do not produce changes
themselves), and observers (those users
that only need to see summary
information/events to keep track of how
the group is progressing in the meta-
sense) [Marquès and Navarro, 2001].

To conclude this section on the
overview of CSCW systems, it may be
helpful to provide a list of common
categories of CSCW tools from Kock
[1995]:

• Message systems
• Multiuser editors
• Group decision support

systems and electronic meeting
rooms

• Computer conferencing
• Coordination systems

The remainder of this paper focuses on
the multiuser editor arena of CSCW
systems but does discuss some common
themes of all CSCW systems –
communication mechanisms,
coordination of messages and updates,
network topology issues, and
interface/design considerations.

2. SYNCHRONOUS AND

ASYNCHRONOUS
COMMUNICATION

To truly be flexible and support the
broadest range of applications,
collaborative systems must provide
synchronous and asynchronous access
to the shared space. While it is possible
to have synchronous-only applications
(chat, ICQ, etc.) and also possible to
have asynchronous-only applications (e-
mail, Wikis, etc.), the literature suggests
that having both synchronous and
asynchronous access to shared files and
interaction space is advantageous
because it allows for users to interact in
real-time (synchronous) to achieve the
highest level of concurrency while still
maintaining history and the ability for
new members to join “late” and review
what has previously occurred
(asynchronous).

Synchronous collaboration is best suited
in environments where there is a need
for high connectedness and real-time
interactions (or when pressing deadlines
are present). Witness how people
collaborate in research and publications
for conferences – there is often a large
zone of asynchronous collaboration
(trading of Web links, emails, rough

drafts of papers, etc.), but when the
deadline for publication is near, phone
calls, teleconferencing, and instant-
messaging (and chat) often dominate
the collaborative interaction. There is a
need for more immediate interaction in
such an environment, and consequently,
synchronous methods of
communication are beneficial. A
drawback of synchronous
communication can be that the
interaction is lost once completed;
questions such as “what did she say
about topic X” and “didn’t we agree to
Y” arise unless the synchronous
interaction is somehow recorded for
later playback (thus making it
simultaneously synchronous and
asynchronous).

In contrast, asynchronous collaboration
is appropriate when users cannot or do
not wish to interact simultaneously.
Synchronous communication by its very
nature demands an immediate response
and can interrupt work and actually
cause a decrease in productivity; thus
when people are working on very
mentally-demanding tasks that require
their focused attention, synchronous
collaboration can be quite negative. In
situations like these, asynchronous
collaboration allows users to participate
in the collaborative environment at their
own pace and when it is most
appropriate for them. Asynchronous
collaborative environments are also
appropriate when users are
geographically displaced as time zones
often make it difficult to collaborate at
the same time. Asynchronous systems
also have the advantage that they
automatically record the interaction so
others can view it later
(asynchronously); thus there is an
historical record that can be archived
and reviewed later by all members of
the collaboration.

Now that we’ve discussed synchronous
and asynchronous collaborative models,
let’s focus on how to enable the

ubiquity of collaborative environments.
It can be argued that until adding
collaboration into an application is as
easy as dropping a visual control on a
form, developers will still struggle with
implementing fundamentals such as
network communication,
synchronization, and event propagation.
Just as most modern APIs contain
controls/classes to facilitate network
communication, file I/O,
multithreading, etc. (all concepts that at
some point historically were novel and
difficult to achieve programmatically),
collaborative systems will not become
pervasive and easily achieved until a
similar set of APIs exist for
collaboration. Roth and Unger [2000]
have created such a set of controls;
TeamComponents is a set of visual
controls that have at their core the
ability and API to communicate
collaboratively with other instances of
the application into which the controls
are used. Because the API is already
embedded into the control, coordination
and synchronization is already
achieved. They make the case that if
controls could worry about their internal
data states and communicate and
coordinate such state with other
applications, collaborative interfaces
and applications would be much easier
to develop; consequently, collaborative
environments would expand in their use
and acceptance within computing.

Another interesting application to
object-oriented development is the idea
of encapsulating the contents and
communication mechanisms within the
controls themselves; thus a control is
completely responsible for and able to
provide collaboration and
synchronization with other instances of
the control within other users'
applications.

State information such as who is also
viewing a control or who is editing a
control's state can be shown in a non-
intrusive manner through small icons

within the visual control [Roth and
Unger, 2000].

It is hoped that synchronous and
asynchronous modes of communication
can be added to programs in such a
“drag and drop” fashion and alleviate
the developers from the arduous task of
“reinventing the wheel” when it comes
to collaborative systems development.

3. UNICAST, MULTICAST, AND

OTHER NOTIFICATION
ALGORITHMS

The change notification approach that a
system adopts widely influences the
uses that such as system supports. For
example, if change notifications are
infrequent, then the system will
typically be used for asynchronous
collaboration; whereas if change
notifications are frequent, then the
system will typically be used for
synchronous collaboration. In a unicast
system, notifications are sent to peers
sequentially; the advantage of this
model is that the network congestion is
kept small, but the change propagation
delay can be excessive. In a multicast
system, notifications are sent to peers in
parallel; the advantage of this model is
that the propagation delay can be
minimized, but the disadvantage is that
the bandwidth consumption/congestion
can be too costly.

It may be advantageous to adopt a
general-purpose, flexible notification
mechanism that is adaptable to the
needs of the collaborative system; such
a system should contain two principle
parts: the notification policy (frequency
and granularity of notifications) and the
notification mechanism (the
implementation of the policy). Key
elements of such a system involve
incoming and outgoing buffers to
received and send messages [Shen and
Sun, 2002].

Safety properties of multicast
communication within group
communication systems (GCS) include:
delivery integrity (for every receive
event, there is a preceding send even for
the same message), no duplication (we
cannot have two receive events at the
same process that contain the same
message/content), sending view
delivery and same view delivery
(message send/receive must be within
the same context - i.e. the same view),
virtual synchrony (processes must keep
consistency among views - i.e. if
message m transfers process p from
view V to view V', then the same
message m must have been received by
and processed in process q from V to
V'), transitional set (processes are able
to locally decide whether they are
synchronized with other processes or
whether they must transition into a new
view to maintain synchronicity), safe
delivery (all members of the current
view have received the message via the
network), reliable FIFO message
delivery, and liveness; liveness is
ensured by a reliable, independent third
party that can guarantee that the
communication between separate
processes is available and all messages
sent will be received [Chockler et al.
2001].

Others have done work with regard to
update and communication protocols
for collaborative systems. These
include the McCanne et al. [1999]
system entitled MASH that seeks the
enable scalable multipoint collaboration
using “lightweight sessions” where thin
application-specific protocols have been
developed on top of IP multicast;
sessions are grouped together to avoid
network flooding. This is similar to the
notion of super nodes and networks of
clusters in KaZaA. Their approach also
seeks to go beyond existing APIs that
provide protocols and mechanisms for
communication (ActiveX, ObjectTcl,
etc.) and “extract their commonalities

into a high-level architecture that is
reusable.”

To ensure that replicated objects are
synchronized in distributed
environments, Vidot et al. [2000] have
devised an algorithm that defers
broadcasts of operations to others in the
system, potentially reducing bandwidth
consumption. One drawback of this
algorithm is that there is potential
latency in that others in the system have
stale copies of the objects that have
been modified; also, even though the
changes are sequenced and ordered
causally, achieving “undo” in the
deferred broadcast algorithm can be
problematic (since the algorithm
assumes that no operation will be
undone and immediately redone).

Another field of distributed
collaborative systems that requires
complex notification algorithms is the
area of design. Wu and Sarma [2001]
developed an algorithm that involves
working in complex highly-detailed
CAD systems with large data sets.
Prior work in this area of collaborative
computing dealt with boundary
representations (b-reps) to provide
update notification for the models using
a central database (to ensure
consistency) and broadcasts of updates
to keep locally-replicated copies
coherent. Like distributed collaborative
systems in general, the problem with the
centralized approach is that it does not
provide for a high level of collaboration
(and provides on point of failure in the
system); the network bandwidth
consumption in the broadcast model is
too costly and does not necessarily scale
well. Wu’s and Sarma’s [2001] work is
novel in that if we assume that edits to
the system’s data are valid, then our
notification algorithm can simply
propagate the changes to the peers in
the system and only focus on the
segmented region of the system that has
been changed (rather than the entire
system). In text-based systems, this

involves notifying peers of the location
and content of the text change; in
object-oriented systems, this involves
notifying peers of the objects and the
actions/methods invoked (or attributed
modified); in graphics-based or design
systems, this notification involves
specifying the region (or boundary
representation – b-rep) and the changes
made to the element(s) within the
region. Consequently, this approach
can dramatically reduce the overall
bandwidth for notification to peers in
the system while maintaining the
advantageous distributed nature of
avoiding a central copy/version of the
system’s data.

The choice to adopt unicast or multicast
is dependent upon the nature of the
collaborative environment and the time
delays that are acceptable in change
notifications. Segmenting the system’s
data space can help to reduce the
amount of data needed in the
notification, and creating a hierarchy of
the nodes within the system can help
reduce the amount of network traffic
needed to accomplish the change
notification.

4. DISTRIBUTED MUTUAL

EXCLUSION AND FILE
ACCESS

We have established various models of
how users interact (synchronous,
asynchronous, or a combination), and
we have discussed algorithms for
propagating changes to other users in
the system (unicast, multicast,
segmented, and hybrid approaches); we
now turn our attention to ensuring that
users within the shared space have
exclusive access to the elements of the
shared data and are provided adequate
access to the files within the system.

A "Distributed Version Control
System" (DVCS) is one in which
version control and software

configuration control is provided across
a distributed network of machines. By
distributing configuration management
across a network of machines, one
should see an improvement in reliability
(by replicating the file across multiple
machines) and speed (response time).
Load balancing can be another benefit
of distributed configuration
management. Of course, if file
replication is employed, then we must
implement a policy whereby all copies
of the file are always coherent [Korel et
al. 1991].

In order for distributed configuration
management to work efficiently, the
fact that the files/modules are
distributed across multiple computers
on the network must be transparent to
the developer/user. The user should not
be responsible for knowing where to
locate the file he/she is seeking. Rather,
the system should be able to provide an
overall hierarchical, searchable view of
the modules present in the system; the
user should be able to find their needed
module(s) without any notion of where
it physically resides on the network.

Another interesting aspect of distributed
configuration management is the idea
that the system provides each user with
a public and private space for the files.
The public space contains all of the files
in the collaborative, distributed system.
The private space contains minor
revisions or "what if" development files
that the local user can "toy with" in an
exploratory manner; this provides a safe
"sandbox" area that each developer can
use to explore possible ideas and
changes. When a module is ready for
publication to others, it is moved from
the private space into the public space
[Korel et al. 1991].

Guaranteeing mutual exclusion to the
critical section is a classic problem in
computing. In the cases of distributed
software engineering in a collaborative
environment, we need to guarantee that

only one user can be editing any section
of the collaborative shared space at any
given time. In some cases, we might
like to allow k users to have
simultaneous access to a shared
resource (where k ≤ n, n = total number
of users in the system). This section
examines the various mutual exclusion
algorithms that are relevant within the
context of collaborative systems.

Distributed mutual exclusion algorithms
fall into one of two primary categories:
token-based and permission-based. In a
token-based system, a virtual object, the
token, provides the permission to enter
into the critical section. Only the
process that holds the token is allowed
into the critical section. Of interest is
how the token is acquired and how it is
passed across the network; in some
models, the token is passed from
process to process, and is only retained
by a process if it has need for it (i.e. it
wants to enter the critical section).
Alternatively, the token can reside with
a process until it is requested, and the
owner of the token makes the decision
as to who to give the token to. Of
course, finding the token is potentially
problematic depending upon the
network topology [Velazquez, 1993].

The other approach to distributed
mutual exclusion is the permission-
based approach. In the permission-
based approach, a process that wants to
enter the critical section sends out a
request to all other processes in the
system asking to enter the critical
section. The other processes then
provide permission (or a denial) based
upon a priority algorithm, and can only
provide permission to one process at a
time. Once a requesting process
receives enough positive votes, it may
enter the critical section. Of interest
here is how to decide the priority
algorithm and how many votes are
necessary for permission [Velazquez,
1993].

In the case where we would like to
allow some subset of users access to the
shared resource (or shared data)
simultaneously, the work of
Bulgannawar and Vaidya [1994] is of
particular interest. Their algorithm
achieves k-mutual exclusion with a low
delay time to enter the critical section
(important to avoid delays within the
system) and a low number of messages
to coordinate the entry to the critical
section. In their model, they use a
token-based system where there are k
tokens in the system; further, the system
is starvation and deadlock free
[Bulgannawar and Vaidya, 1994].

The k-mutual exclusion algorithm
differs from the traditional mutual
exclusion algorithm in that in a network
of n processes, we allows at most k
processes into the critical section
(where 1 <= k <= n). The algorithm
developed by Walter et al. [2001a]
utilizes a token-based approach that
contains k tokens. Tokens are either at
a requesting process or a process that is
not requesting access to the critical
section. In order for this algorithm to
work, all non-token requesting
processes must be connected to at least
one token requesting process. To
ensure that tokens do not become
"clustered," the algorithm states that if a
token is not being used, then it is sent to
a processor that is not the processor that
granted the token [Walter et al. 2001a].

Distributed token-based, permission-
based, and k-mutual exclusion
algorithms are all useful in various
scenarios. The primary use and impact
of distributed mutual exclusion in the
context of this survey paper is to
manage access to shared code in the
software engineering system. This is a
vital part of any distributed software
development environment with
simultaneous users access shared source
code.

5. ISSUES RAISED IN AD HOC
(UNRELIABLE) AND PEER-
TO-PEER NETWORKS

While most modern software
engineering is performed within
company local-area networks (LANs),
as networking becomes more ubiquitous
and as the trend of tele-working and
distributed working continues, one can
expect more software development to
involve ad hoc, non-LAN clients and
even peer-to-peer clients. To enable
more concurrent software development,
the system must be accessible and
available at any time from any place.
Of course, there are security issues
raised in such an accessible system, but
we will not discuss these in this paper.
Rather, we focus our attention to the
matter of providing connectivity and
access to the distributed software
engineering system within ad hoc and
peer-to-peer networks.

A mobile ad hoc network is one that
"pairs of nodes communicate by
sending messages either over a direct
wireless link, or over a sequence of
wireless links including one or more
intermediate nodes" [Walter et al.
2001b]. Communication from a node is
only possible within a radius of
transmission, and given the mobile
nature of such devices, changes in the
network topology and communication
failure between two nodes is
commonplace. Consequently, mutual
exclusion algorithms that assume
consistent network topologies and
reliable communication are not
necessarily well suited for wireless ad
hoc scenarios [Walter et al. 2001b].

When dealing with wireless and ad-hoc
networks, the topology changes
frequently (since machines are moving
in and out of the transmission range),
power consumption levels and battery
life and low, and the delay between
messages is highly unpredictable and
often takes quite a bit of time.

Consequently, implementing algorithms
that are reliable in such networks
requires careful attention to detail and
reliability.

Within a peer-to-peer network, many
obstacles must be overcome to ensure
that the peer is able to communicate
efficiently and correctly with other
peers in the network. First, a peer must
be able to speak the "language" of other
peers. In a homogenous P2P network,
this is trivially done since all peers
speak the same language; but in
heterogeneous P2P networks, each peer
requires a "wrapper" that can make
heterogeneous communication possible
by translating to and from protocols and
"languages." Additionally, since
different peers provide different APIs, a
"mediator" is needed at each peer to
convert the command from the local
peer to the meta-command that the
entire P2P network speaks. Thirdly, a
"facilitator" is needed to local peers,
services, and other agents in the P2P
network; the actions of a facilitator
involve registering with other peers and
"advertising" their set of services
(perhaps through reflection). Finally,
the last role that each peer must provide
is that of a "planner" who is responsible
for recovering from failure or lost
communication with other peers
[Penserini et al. 2002].

While it is not currently easily possible
to develop software on wireless phone
interfaces, in the future, wireless ad hoc
networks will become more pervasive.
Thus it is useful to examine these
network models and the issues they
raise in discussing the future and
current work within distributed software
engineering.

6. ACHIEVING "UNDO" AND
"REDO" IN COLLABORATIVE
SYSTEMS

The ability to undo in a single-user
system is vital to enable a user to
reverse a mistake; the ability to undo in
a collaborative system is even more
essential because other users can
destroy another's work, and the very
nature of collaborative systems
encourages exploratory work that may
need to be undone. In single-user
object-oriented systems, undo may be
achieved by reversing the operation on
the object; in single-user text-based
systems, insert and delete are natural
inverses of each other, thus undo and
redo are easily implemented in text-
based systems.

Potential uses for “undo” and “redo”
include: [Sun, 2002]

• Recover from unintended or

incorrect operation

• Learn new system feature by

exploring the interface (i.e. try and
undo)

• Explore alternatives (i.e. try and

undo multiple times)

In contrast, in bitmapped systems, undo
and redo are not as easily achieved
because the users are directly
manipulating color and pixel
information (in a more "freehand"
manner).

One approach in achieving undo/redo in
bitmapped based systems is to record
the actions of the users and only store
the pixels that have been affected. If an
operation is undone, then the operations
preceding the operation undone are
replayed to generate the correct state.
While this may take more time, the cost
associated with storing states is
dramatically reduced, since we are only

storing the operation performed at each
step and the pixels affected. The
"reconstruction" of valid state does take
some time, but as is often the case,
memory requirement is reduced at the
cost of this CPU/algorithm
performance/time [Wang et al. 2002].

Now that we have examined the various
types of systems that can employ the
undo and redo operations, let’s examine
the scenario that arises in a multi-user
(collaborative) text-based system in
detail and explore algorithms to
efficiently handle concurrent undo/redo
in collaborative systems.

As a point of reference so that the
reader understands the problem,
imagine the simple case of two users
(User1 and User2) interacting
synchronously in a collaborative text
document system. If the shared
document contains the string “man” and
User1 performs an Insert(3,"i") – i.e.
insert the character 'i' at the third
position, then the resultant string should
be “main”. If User2 then performs an
Insert(2,"d"), then the resultant string
should be “mdain”. Now, if User1
performs an “undo” operation, we
cannot simply inverse the Insert(3,"i")
operation previously invoked because
the character 'i' is no longer at position
3; it is at position 4 (due to the
operation by User2). Thus there is a
need for a robust solution to the “undo”
and “redo” problem in collaborative
text-based systems that transcends
simply inverting “insert” for “delete”
and visa versa.

Sun [2002] describes a system entitled
REDUCE (REal-time Distributed
Unconstrained Cooperative Editing)
that allows for any operation to be
undone at any time. The key to the
REDUCE system is that it separates the
“undo policy” from the “undo
mechanism.” This allows the system to
process the undo request in the context
in which the original command was

executed relative to the changes that
have occurred since the command on
the local user’s machine. Further, the
undo mechanism is broken into two
separate layers – the high-level
transformation control layer (that is
responsible for understanding the
concurrency relationships among past
actions in the system) and the low-level
transformation function (that is
responsible for actually carrying out the
desired action as it relates to “types,
parameters, and other relationships”
within the system).

Sun [2000] also defines a consistency
model that states a collaborative editing
system must ensure the following
properties:

1. “Convergence: when all sites
have executed the same set of
operations, all copies of the
shared document are
identical.

2. Causality preservation: for
any pair of operations Oa and
Ob, if Oa → Ob, then Oa is
executed before Ob at all
sites.

3. Intention preservation: for
any operation O, the effect of
executing O in any document
state is the same as the
intention of O.”

Sun’s work hinges on the claim that
these properties should hold for all
group “do” operations and all group
“undo” operations.

7. TRANSPARENCIES AND

AWARE CSCW SYSTEMS

Heretofore, we have discussed
communication methods, ensuring
access to shared content, network
configurations for collaborative
systems, and ensuring proper interaction

with shared content. We now turn our
attention to two models of computer
supported collaborative work systems:
transparencies and aware systems.

Transparent collaborative systems are
so named because the applications that
are being shared among multiple users
have no idea of the collaboration - the
collaborative interface acts as an
intermediary buffer for the application
and receives all users' input and relays
these interactions to the application;
when the application responds and
adjusts its output, the collaborative
system/agent relays this information to
all users' computers such that all users
see the same interface. The advantage
of such transparent systems is that they
can be integrated into most single-user
applications without the need to
recompile or edit the original
application.

Aware collaborative systems are so
named because the collaborative
interface is embedded within the
application itself and the system’s core
interface and operations support
synchronization and distribution/sharing
of the system’s content. These systems
are defined as aware because the
application is “aware” that the content
is being shared and the interface of the
system enables such sharing. While
there are many benefits of embedding
the collaboration within the application,
the disadvantage is that the source of
the application must be available and
the collaborative API (synchronization,
mutex, etc.) must be tightly coupled
within the application. This is often not
possible, thus the need for transparent
systems.

Application sharing and transparency
are two different approaches to
collaborative systems. Application
sharing involves either centralizing the
application's execution and distributing
the input and output (display) among
user machines or creating a replicated,

homogenous architecture in which each
user runs the same application across a
network; with either model, the user is
constrained to use the same application
as all other users in the collaborative
environment. Even in heterogeneous
application sharing environments,
considerable concerns must be
overcome in supporting the capture,
communication, and replication of
users' actions.

In comparison, transparency-based
systems allow users to share
applications without modifying the
original program. Transparencies
originally involved screen sharing
technologies in which the user would
share the entire screen to other users.
These systems evolved into sharing
only specific windows or applications,
rather than the entire screen, and are
best represented by the X windows
protocol.

Under conventional collaborative
transparent system, concurrency is not
possible - only one user is able to input
to the application at any given time;
while this is appropriate for
presentations and shared meetings, this
is too limiting for collaborative software
development. "Floor control" is the
term used to define which user has
access to the input stream (mutex), and
this is needed to ensure that event
interleaving is avoided.

One promising concept of being able to
merge the best of transparent and aware
collaborative systems is the modern
object-oriented concept of reflection [Li
and Patrao, 2001]. If a developer
wanted to transform a single-user
application into a collaborative
multiple-user application but did not
have access to the source code, then
through reflection, the developer could
extend the program and add the
communication/synchronization API
into the system externally via reflection.
Unfortunately, this approach does

require a high-level knowledge of the
internals of the single-user system, and
even without access to the original
source code, in-depth knowledge of the
internals of the system is often required.

An alternative approach would be to
design systems that allow users to
establish relationships to objects within
the system and extend the collaborative
software to support such relationships
[Li and Patrao, 2001]. Of course, the
prerequisite of this type of system
would be that the collaborative API be
built into the current system and that the
system supports extension by allowing
the user to establish relationships
between objects. Li and Patrao’s model
exhibits such an interface by viewing
the elements of the collaborative
interaction as objects that support
emergent sharing and distributed
referential integrity. Such objects
inherit common attributes and provide a
generalized API for modification such
that these modifications (small
differentials) can be broadcast to the
users of the system and tracked; this
avoids the more costly low-level
messaging (transparency-based) system
wherein all display information is
broadcast.

Li and Li [2002] discuss current
advances in the area of transparencies
that should support spontaneous
application sharing (i.e. a user can use a
single-user application and then later
decide to publish/share the application
to another user) and support
heterogeneous clients and independent
views. Additionally, the issue of "late
comers" needs to be addressed in
modern collaborative environments:
how can the system bring new users that
were not present at the beginning of the
session up to speed quickly; OS hooks
such as the Microsoft Windows API
provides such capabilities that allow
collaborative transparencies to record
sessions for replay on future, late
arriving clients [Li and Li, 2002].

Begole et al [1999] discuss a
synchronous methodology for providing
a "transparent" collaboration system
that works in coordination with existing
applications. This system is different
from other existing collaboration
transparencies in that it avoids the
"conventional" centralized architecture
that require that only one person
interact with the system at any given
time (single token-based mutex). One
difficulty that is avoided in such single-
controller transparent collaborative
systems is that of interaction
interleaving; since only one user can
“control” the cursor, then interactions
cannot be interleaved incorrectly (i.e.
the input is by definition sequential in
nature and no undesired overlap is
possible).

Begole et al [1999] list four attributes
that are useful in comparing aware and
transparent collaborative systems.

 Transparency Aware
Concurrent

Work Single Multiple

WYSIWIS Strict Relaxed

Group
Awareness Little Detailed

Network
Usage High Low

Table 1: Comparing Transparent and

Aware Collaborative Systems

These attributes are defined as:

Concurrent work: Does the system
allow for multiple users to provide input
simultaneously, or is only one user able
to provide input at any given time?

WYSIWIS: All users should see the
same state at all times; What You See Is
What I see.

Group Awareness: How much detail
does the system provide with regard to

what other users in the system are doing
and what section of the document they
are viewing? Some systems simply
provide a pointer/cursor showing the
current “location” of the other users;
other systems provide thumbnails and
more detailed views.

Network Usage: How much network
bandwidth is consumed and needed by
the system? In aware systems,
operations are typically all that is
communicated (and these messages are
small), whereas in transparent systems
typically rely upon centralized server
architectures and broadcast display
change information (quite large).

In conclusion, aware collaborative
systems consume less bandwidth, allow
for concurrent work, more easily
provide flexible WYSIWIS interfaces,
and allow for more inherently robust
group awareness. Transparency-based
collaborative systems are useful in
situations where the developer needs to
create a collaborative system based
upon a single-user application but does
not have access to the underlying code
base of the single-user system;
transparency-based systems often
consume more system resources and
require a centralized server model, but
they are often the only option in some
circumstances.

8. COLLABORATIVE,

DISTRIBUTED SOFTWARE
ENGINEERING

Coordination efforts within software
development projects is not a new
concept; NATO organized a meeting of
software developers in 1968 that
defined the term “software engineering”
and identified the complexity of
managing software development as a
key challenge within the field [Grinter,
1998]. Thirty-six years later, the issue
of coordinating the software
development process – including the

technical side and the human side – is
still a challenge. Brooks, Parnas, and
Conway (among others) all recognize
the importance of team structure and
collaboration among members as key to
the success of software development
[Grinter, 1998].

Computer-Aided Software Engineering
(CASE) tools are useful in supporting
the development of software systems.
Lower-CASE tools are primarily
focused on supporting the
implementation and testing phases of
software development; upper-CASE
tools are those that are primarily
focused on supporting the design and
analysis phases of software
development [Sommerville, 2001].

It is important to note that most
software engineering activities involve
the coordination and collaboration of
documents related to the software
system. These documents consist of
system requirements specifications,
design documents, project schedules,
risk tracking, features list documents,
test case documents, and software
source code. While many CASE tools
exist to help manage the software
development process, fundamentally all
software engineering activities involve
collaborating on documents; even
source code, as structured as it is, can
be viewed as a text document.

Regardless of whether the system
employs lower-CASE and/or upper-
CASE tools, modern software
engineering of large-scale software
systems involves a high level of
collaboration and coordination.
Software engineering offers an
excellent opportunity to examine
systems, subsystems, groups, and
subgroups within the context of CSCW
[Borghoff and Teege, 1993].
Consequently, the features of general-
purpose CSCW tools are readily applied
to software engineering.

Section 8.1 and 8.2 of the paper
examine two main areas within CSCW
that are particularly relevant to software
engineering – managing collaborative
teams and managing collaborative code.
Section 9 then continues section 8.2 and
goes into more detail with regard to
distributed version control.

8.1 Organizational Theory and
Group Management

Collaborative editing systems (CES) are
central to distributed, collaborative
software engineering. Without the
ability to collaborate on documents, the
system cannot function. Central to the
ability to collaborate on documents is
the ability to work within a group and
coordinate group effort. In a traditional
software engineering setting, these
activities entail project task scheduling,
status reporting (and meetings), and
inter-group communication.

Borghoff and Teege [1993] present a
model for collaborative editing that
"mediates coordination and
cooperation" and make the case that
such a system can be used in the
software engineering domain. They
define the multi-user distributed system
titled "IRIS" that consists of a data layer
an operations layer. Static user
information (such as phone numbers,
email addresses, etc.) is stored in the
data layer so communication is
facilitated. Explicit and implicit
coordination is provided by the
operation layer, where implicit takes
care of mutual exclusion for
collaborative editing, and explicit
allows users to soft and hard lock and
communicate their activities to others in
the collaborative space. The model also
allows users to defined new parts,
remove existing parts, and move parts
in a structured edit (assumes that the
documents in use have structure -
SGML, ODA, etc.).

Borghoff and Teege [1993] also have an
interesting view in the systems
applicability to software engineering.
The authors make the case that software
engineering consists of document
manipulation and coordination of
collaborative development. The code of
the software system being built can be
coordinated using their explicit and
implicit coordination structure;
versioned automatically because the
model contains "history information;"
report current activities because the
system tracks dynamic user profiles
(who has recently done what and is
currently doing what); and can extract
the latest build/version of the system
[Borghoff and Teege, 1993].

What is most novel about the “IRIS”
model is that it explicitly separates the
structural information of the document
from the content information of the
document. This allows the
transformation operations on the
document to more easily be achieved.
Of course, the system has the advantage
of working only with highly-structured
documents, which is often not the case
in general-purpose document editing.
Fortunately, software engineering
documents and source code are most
often highly structured; therefore, this
model is very applicable to the field of
collaborative software engineering.

Collaborative software development by
its nature involves four essential
problems: evolution (changes must be
tracked among many different versions
of the software), scale (increased
software systems involve more
interactions among methods and
developers), multiple platforms on
which the system will be deployed
(coupling the methods and subsystems
of the software), and distribution of
knowledge (in that many people all are
working on the system and each contain
a set of the working knowledge of the
system) [Perry et al. 1998]. The central
question to ask in parallel development

is one of managing the scope of changes
within the system over time. Certainly
we can employ process (as has been
done for decades) to manage the
software development activities, but
more and more, CASE tools are being
utilized to help manage the growing
complexity and tightly-coupled
activities within software development.

A recent study that tracked the number
of changes to files by different
developers and found that 12.5% of all
changes were made to the same file
within 24 hours of each other; thus there
is a high degree of parallel development
with a potentially high probability that
changes made by one user would have
an impact on the changes made by
another developer. The study also
reports that there were up to 16 different
parallel versions of the software system
that needed to be merged - quite a task
[Perry et al. 2001]!

Another recent study [Herbsleb et al.
2000] investigated a software
development project that spanned six
sites within 4 countries on two
continents and a seventh site on a third
continent acting as a supporting role.
The study found that when teams were
distributed, the speed of development
was delayed when compared to face-to-
face teams. Also of note was the fact
that team members report that they are
less likely to received help from distant
co-workers, but they themselves do not
feel that they provide less help for
distributed co-workers.

The study’s finding concludes with the
idea that better interactions are needed
to support collaborations at a distance.
Better awareness tools such as instant
messaging and the "rear view mirror"
application by Boyer et al. [1998] offer
potential for overcoming some of the
problems inherent in distributed
software system development [Herbsleb
et al. 2000].

In the more general sense (transcending
beyond software engineering), emergent
models of organizational theory suggest
that there is a movement away from
hierarchical forms of group
coordination to utilizing information
technology in facilitating more
adaptive, flexible structures. Such
structures are often termed “network
organizations” or “adhocracies”
[Hellenbrand, 1995] and offer the
possibility for more productive and
efficient groups and organizations. By
utilizing collaborative computing
environments, transaction costs are
reduced and coordination of tasks is
improved.

Certainly there is a need for
coordinating the collaborative nature of
software development. This problem is
beyond the scope of version control
systems and must address the very
human side of software development.
This view is supported by the very
name of the CSCW field in that
collaboration (and cooperation) occurs
among humans. Consequently, CSCW
systems must contain elements that
facilitate the communication and
coordination of group activities.

8.2 Merging Code

Beyond coordinating the flow of work
and communication of the members
within a group, a robust collaborative
software engineering system must also
manage the source code of the software
system that is being shared among the
users.

Grinter [1998] defines the term
“recomposition” as “the process of
reassembling the product” and takes a
reverse approach that begins with the
end and transitions to the origin. He
points out (quite correctly), that modern
software engineering supports the claim
that modularization is key to managing
the complexity of large software

systems. If software systems are
modularized, then at some point they
must be recomposed into a whole; this
is not done just to deliver the product to
the customer but also during the
development of the system for testing
and demonstration purposes. In a
modern rapid application development
(RAD) model, recomposition may occur
as often as every night [Lory et al.
2003] to ensure the product is always
making progress and there is always
something to show the customer.

If developers are modifying the source
code in parallel, then there will most
probably exist some module within the
code that has been modified by more
than one developer (see results from
Perry et al. [2001] in section 8.1); this
situation where the same module has
edits from multiple developers requires
recomposition. Another need for
recomposition comes when there are
dependencies between modules
themselves; for example, if module A
produces output for module B, and if a
user modifies either module, then the
resulting connection between the
modules may be broken (i.e. if the two
modules are coupled at all, editing one
may break the communication
mechanism of the two modules). While
well-defined change request processes
can help mitigate this potential problem,
in practice, processes are often not
followed as well as we would hope
[Grinter, 1998].

Thus the need to merge (or
recomposition) distributed source code
is established. But what are the
properties of a successful/correct model
for merging? Harrison [1990] defines
three properties essential for correct
coordination consistency. These are:

Change-serializability: if a change is
made in parallel by two users within the
system, then one change will not
overwrite the other (i.e. the changes can
be serialized as in a DBMS). This

property also ensures that changes can
be explicitly undone or overwritten by
another explicit action by a user.

Atomicity: if a modification activity by
a user is committed to the shared
source, then all actions within the
modification activity will be written
(i.e. the entire source will be updated to
reflect all changes). This property
ensures that all of the changes will be
committed to the shared source or none
will be committed.

Completeness: this property establishes
a causal relationship between
modification activities. For example, if
modification A precedes modification
B, and modification B precedes
modification C, then the source code
state that A acts upon also precedes the
state that B acts upon, which in turn
precedes the state that C acts upon.

One interesting outcome of the
completeness property is that since
modification operations are causal, then
the undo and redo operations are more
easily achieved (see section 6).

How can we automate the identification
of elements (source lines of code) that
have been modified by parallel users
that conflict when merged? Sun and
Chen [2002] define a “conflict relation
matrix” (CRM) that is useful. Given n
modifications, M1, M2, … Mn, then the
potential conflict among these
modifications can be expressed as an n
× n matrix CRM, where CRM[i,j] is
true if Mi conflicts with Mj., otherwise
CRM[i,j] is false. Note that CRM[i,i]
is always false (a modification cannot
conflict with itself). Even given the fact
that the matrix is symmetric along the
diagonal, there are still Ο(n2) possible
conflicts. In order to have merging
occur in a responsive time scale, we
must be able to parallelize the operation
of merging changes in a distributed
environment.

Now that we have established the need
for and properties of correct merging,
let us examine ways to accomplish
merging in parallel. Kaiser and Kaplan
[1993] discuss the concept of a parallel
change propagation algorithm that uses
the tree-like structure of a programming
language grammar to distribute changes
to multiple users in the system. The
model assumes an object-oriented
approach where attributes and methods
exist within the language such that a
change in one method or attribute of a
class must be propagated to all other
clients of the class. This is achieved in
parallel, and the change propagation is
decoupled from the users' ability to
continue to edit within the system;
consequently, the response of the
system is quite high. The authors do
discuss the most problematic scenario in
which a user repeatedly performs a
change and undo pair (i.e. change A,
undo, change A, undo, change A, undo
...) and conclude that this is still
manageable in their model.

The model assumes segmentation at a
modular level, but addresses the issue of
multiple edits by different users within
the same module; in this case, it is
suggested that multiple copies of the
module are distributed to the clients and
a merge operation is performed to
resolve the differentials among the
clients performing the change [Kaiser
and Kaplan, 1993].

Another interesting aspect of Kaiser and
Kaplan’s work is that they achieve
parallel synchronization by the use of
“firewalls” (i.e. mutex). User has a
“cursor” (place marker) in the tree that
locks the subtree that is being edited.
When the modification begins, the
firewall is raised; when the modification
is complete, the firewall is lowered and
the change is propagated to other users
in the system. This is necessary to
guarantee that no two users are ever
able to edit the same element in the
system at the same time. While this

model is somewhat pessimistic in its
locking mechanism, given the high
structure of the system and the fact that
the element to be locked is quite small
in nature, one may (correctly) hope that
collisions with exclusive access would
be rare.

9. DISTRIBUTED VERSION

CONTROL

Concurrent modification of shared
source code can create problems of
consistency (see section 8.2). One may
consider a simplistic solution to the
consistency problem to be version
control. While version control and
configuration management are key
elements of a distributed concurrent
software engineering system, these
aspects deal only with building and
releasing a software system [Harrison,
1990]; thus there is a need to control
concurrent modification/merging apart
from managing the files themselves.
This section addresses the former –
managing various versions and files of
the software in a distributed,
collaborative development environment.

Distributed version control can be
approached via three main models: turn
taking, split-combine, and copy-merge.
All have advantages and disadvantages.

The turn taking approach to
collaborative development suffers from
the fact that only one participant can
edit the document at any given time;
this reduces the parallel nature of
collaborative development. The split-
combine approach assumes that the
splits can be static and that there is very
little interaction among participants;
this is often not the case as different
sections of a system can be tightly
coupled and dependant upon each
other. The copy-merge approach has a
high degree of parallelism in the sense
that all participants can edit the
files/documents at the same time, but

the merge step of combining all of these
changes can become quite difficult and
costly [Magnusson et al. 1993].

Configuration management systems
typically take one of two approaches
with regard to locking: optimistic or
pessimistic locking. In the optimistic
approach, developers are free to
develop in a more parallel fashion, but
conflict occurs at the merge point when
two sets of files must be merged
together and changes brought together
(and avoid losing work and ensuring
that changes in one file have not
adversely affected changes in the other
file). In the pessimistic approach,
developers must obtain a lock on a file
before being able to edit it; this can
reduce the parallel nature of
development since at most one
developer can edit the file at any time.

Both optimistic and pessimistic
configuration management rely upon
the user to query the CMS as to the state
of the file; a better approach would be
one in which the emphasis shifts to a
"push" information flow where the
system updates the user as to who is
also interacting with the files that they
are interested in. Palantir [Serma et al.
2003] is one such system that takes an
active role in informing users of
changes and graphically depicts a
heuristic measure of the severity of
change with respect to the users' local
copy of the file.

Palantir takes an event tracking
approach, where events are: populate,
unpopulated, synchronized,
changesInProgress, changesReverted,
changedCommittted, added, removed,
renamed, moved, severityChanged
[Serma et al. 2003]. All of these
notification messages are intended to
manage changes at a fine level of detail
to keep peers within the system aware
of what edits are being made by others
in the system.

Since software development by nature
necessitates the ability for developers to
edit various sections/modules/files of a
system at any given time, any
collaborative software development
system must support the users in having
control of the entire system's code base.
Locking an entire file (or subsystem) is
too costly and potentially blocks other
users from being able to at the very
least view the document [Harrison,
1990]. Magnusson et al. [1993] defines
a fine-granularity approach to revision
control that focuses on language
elements (classes, methods, attributes,
functions, etc.) and merges these
smaller elements; since the elements are
smaller in nature, it is posited that edit
collisions will be reduced, and merge
operations will become more
manageable [Magnusson et al. 1993].

Software configuration management
(SCM) is a critical activity with respect
to ISO9000 conformance and is a key
activity of the Capability Maturity
Model (CMM); SCM acts to help
control changes in software products
such that accounting, progress, and
functionality may be more easily
measured; SCM also facilitates
developers in making controlled
changes to the software system and
tracking the inevitable evolution of the
software code base.

The evolution and change of software
artifacts may be categorized into three
actions: sequence (in which elements
are added and the artifact is expanded),
tree (also referred to as branching in
which the artifact splits into two distinct
but similar children wherein each child
has different functionality than its
sibling), and acyclic graph (in which
branching occurs but the children then
merge and sequence into one artifact
with a union of functionality) [Conradi
and Westfechtel, 1998].

The problem of merging two software
artifacts is problematic and the

approaches to this problem may be
categorized as "raw merging" (in which
the contents of one version are added to
the contents of another), "two-way
merging" (in which two versions are
presented to the user - with the
differences noted - and the user must
select which elements are to remain in
the final, combined version), and
"three-way merging" (which is similar
to two-way merging with the added
feature that the parent of each version is
used as a common baseline to reduce
the number of elements that necessitate
the user's input/choice) [Conradi and
Westfechtel, 1998].

10. USER INTERFACE ISSUES

Beyond what underlying algorithms and
models a distributed collaborative
software engineering system employs,
ultimately the user must be presented
with an interface in which to interact
with the system. Getting the interface
correct for collaboration can be
problematic; users are loathe to give up
their existing tools and single-user
applications with which they have a
high level of comfort, yet the benefits of
collaborative systems bear examination
and potential adoption if the users can
adopt them and effectively use them.

What degree of immersion should a
system provide? Boyer et al. [1998]
determined via interviews that team
members do not need virtual
environments that are overpowering and
immersive (which is in direct conflict
with the collaborative virtual
environment (CVE) work of [Benford et
al. 2001]). Rather, they seek tools that
are passive, unobtrusive and provide the
information that they need about their
colleagues without creating unnecessary
overhead in a new interface. The
system proposed by Boyer et al. uses a
progressive-scale model that goes from
left to right; those users that you place
on the left side of the window are

"important" enough to allow them to
interrupt your work and communicate
with you; those in the middle allow for
"bubble" popup messages that are small
and easily ignored if you desire; and
those on the right are blocked from
interrupting you at all. The overall
interface allows users to keep track of
who else is in the collaborative system
at the same time while still maintaining
privacy and giving the user the power to
control and avoid interruptions [Boyer
et al. 1998].

Another study by Cheng et al [2004]
show that meetings, email, software
engineering process, and meetings can
consume more than half of the average
work day. Improved processes and
better use of technology can help reduce
this burden on development and allow
more of the work day to be devoted to
developing the software system. The
authors make the case that if the
Integrated Development Environment
(IDE) is the central interface to the
developer, why not integrate
collaborative technologies that facilitate
communication into IDEs. Booch and
Brown refer to the intelligent
integration of software development
tools into the known interface with a
positive net effect as "reducing fiction"
in the development process; the authors
go on to show that configuration
management, screen sharing, and email
and instant messaging would be useful
collaborative tools to integrate into
existing IDEs. Adding email and
instant messaging to IDEs has the added
benefit of automating source code (and
requirements) change requests as well
as automatically tracking version
branching.

The study claims that many modern
IDEs contain support for extensibility,
but that these are simply additions to the
user interface and run externally as
scripts or "plug ins." For such
collaborative tools to truly be
effectively integrated into the IDE, the

collaborative tools and interfaces must
be tightly coupled to the underlying
structure of the system such that
automation of configuration
management and versioning.

Additionally, the study posits that
modern collaboration within IDEs must
include the flexibility to support passive
peripheral awareness of others working
on the system, support audio, video, and
text interfaces, integrate with
current/existing source control and error
reporting/tracking systems, and allow
for synchronous and asynchronous
communication among team members.
"Eclipse" is offered as an exemplar of
an open-source IDE that exhibits many
of the tools in the paper [Cheng et al.
2004].

The TeamSpace project [Geyer et al.
2001] seeks to provide services beyond
traditional distributed conferencing; the
goal of the system is to combine
synchronous distributed conferencing
with captured, annotated collaborative
workspace so that participants can view
the materials asynchronously. The
theory behind the approach is derived
from cognitive psychology's "episodic
memory" which states that we store and
recall events based upon life
experiences; leveraging from this, the
system's elements are all time-sensitive
in that every event and captured content
is related across time. Consequently,
not only can users view the content of
the collaboration hierarchically
according to the contents that they seek,
the user can also search across time (i.e.
"I remember it happened somewhere
near the end of the meeting").

The system allows users to share and
annotate PowerPoint presentations,
agenda items (which can be "checked
off" as the collaborative meeting
progresses), action items (which can
also be "checked off"), and provides for
low-bandwidth audio and video to

create the presence and awareness of
other users [Geyer et al. 2001].

Fussell et al [2000] performed a recent
study to examine the importance of
having presence within the
collaborative environment. In the
experiment, a novice attempted to
construct a complex mechanical device
with the assistance of an at-a-distance
mentor; the participants in the study
were able to share a communication
channel via voice and video,
establishing a “virtual physical co-
presence.” The study found that given
complex tasks, remote users must have
certain contextual cues in order for
users to collaborate effectively. These
“grounding” elements are:

Establishing a joint attention focus:
allow users to be sure that everyone
involved is viewing the same common
element within the system

Monitor comprehension: use
nonverbal communication and facial
expressions to establish that everyone
comprehends what was said/discussed

Conversational efficiency: make it as
easy as possible for users to
communicate their intentions (i.e. allow
gestures and constrain the conversation
within the context of the system).

While this study examined assembling a
physical device, the findings are also
applicable in a distributed environment
in which collaborators must establish a
shared space in which to communicate
about a common task [Fussell et al.
2000].

Koch [1995] reports on a collaborative
multi-user editor entitled “IRIS.” While
this system does utilize the near-
deprecated model of a
specialized/proprietary system, some
interesting interface issues can be
gleaned from the “IRIS” work. First is
the concept of visualizing the hierarchy

and structure of the document that is
being shared among multiple users; this
allows for users to easily identify who is
currently working on each section/unit
of a shared document. This “shared
meta view” is central to the project’s
goals and is achieved admirably. Also
of interest is the systems ability to
integrate the functionality and interface
of single-user applications; this is
absolutely critical in achieving
widespread adoption of any
collaborative system. Finally, the
“IRIS” interface provides direct
communication between authors so that
the can pass messages to each other for
clarification (or to request an author
relinquish control of a section of the
document so that another user may edit
it) [Koch, 1995].

There is also a considerable amount of
research in the area of agents and the
ability to manage the complexity and
sheer volume of information that users
are flooded with. Moksha [Ramloll and
Mariani, 1999] is a collaborative
filtration system that allows users to
specify their interest within the shared
space at various points/parameters; the
filtration agent then acts as an
intermediary that selectively exposes
the user to only those elements of the
shared, collaborative space that the user
has interest in. Many collaborative
development systems can benefit from
this model of filtering based upon
individual users’ preferences, especially
given the scope and size of many
modern software system projects (tens
of thousands of modules and millions of
source lines of code).

To conclude this section, [Schur et al.
1998] enumerate five critical elements
from their research that define interface
issues critical to collaborative systems.
Successful CSCW systems will achieve
the following:

Social dialog: enables users to send and
receive important concepts, thoughts,

and ideas; this also enables the creation
of “place” in which the collaborators
interact.

Provide framework: a collaborative
environment may enable a more rapid
application development (RAD)
approach to accomplishing goals in that
users can more rapidly cycle through
their interactions and processes.

Allow rapid context switching: the
interface should allow users to author
and then share changes/ideas rapidly
without requiring a series of complex
key or button inputs (i.e. make the
system unobtrusive and easily
navigable).

Culture/trust dramatically affect
adoption: realize that functionality
along will not drive the adoption of a
collaborative system – there must be an
understanding by users as to what they
will gain by using the new system.

Timeliness: the interface and messages
within the system must occur rapidly or
users will get frustrated.

11. CLASSIFICATION MODELS

If we view collaborations as primarily

consisting of communication, then we
can organize such communication along
three variables: time, space, and
modality time [Nickson, 1997]. With
respect to time, users can communicate
at the same time (synchronously) or at
different times (asynchronously). With
respect to space, users can occupy
similar spaces that are close in
proximity (proximal) or occupy spaces
that are distant from each other
geographically (distal). With respect to
modality, users can communicate via
text (a document-centered approach),
via audio (where audio information
plays an important role), and/or via
video (where visual information plays
an important role).

Certainly if we have more than one user
interacting in the collaborative
environment, then many different
instances of these variables can be in
play at any given. Table 2 (from
[Nickson, 1997]) summarizes various
applications and their features along
these variables.

Nickson’s taxonomy is useful to
compare various CSCW systems in
their support for various modalities of
use. He provides numerous examples
of commercial products in his paper to
relate the applications and modalities to
everyday products.

Temporal Spatial Modal
Application

Synchronous Asynchronous Proximal Distal Document Audio Visual

Messaging X X X

Information Sharing X X X X X

Document conferencing X X X

Audio Conferencing X X X

Video Conferencing X X X X
Electronic

Conferencing X X X X X

Meeting Support X X X X
Group

Calendaring/Scheduling X X X

Workflow Management X X X

Table 2: CSCW Variables and Applications

Another model to define CSCW
systems is Patterson’s [Roth and Unger,
2000] that defines groupware into four
levels: display (renders the application
to the user), view (contains the
application's logical presentation),
model (the application's state and
internal information), and file (the
persistent information of the
application). Based upon these four
levels, three different variations can be
described. The shared model is one in
which the different users each have
their own displays and views, but the
model and file levels are combined in a
centralized server. The shared view is
one in which each user has a separate
file, model, view, and display, but the
models and views utilize
communication mechanisms to ensure
consistency. The hybrid model is one
in which the file and model are
centralized and shared on a server, but
the system allows for different views
and displays (and views are coordinated
via communication to ensure
consistency).

Other modern models include the
window system and coordination
agent/subsystem that communication to
the presentation and functional core
aspects of the model. Based upon this
view, the system can be central (contain
server that maintains all state), direct
communication (a peer-to-peer system),
hybrid (combination of server and peer-
to-peer), asymmetrical (in which the
server resides on a user's machine), and
multiple servers (in which there is a
hierarchy of servers and communication
layers) [Roth and Unger, 2000].

Walpole et al. [1988] did work in this
unifying area earlier with specific focus
on software development environments
(SDEs) that seek to unify version
control, configuration control, and
modification transactions (edits). Their
model is novel in that it adopted the
object-oriented view of collaborative
software development systems.

File Model

Display

View

User 1 User N

…

Display

View

Shared Model

Display

View

User 1

Shared View

File

Model

Display

View

User N

File

Model

…

File Model

Display

View

User 1 User N
…

Display

View

Hybrid Model

A more modern object-oriented
approach to CSCW systems can be
found in [Teege, 1996]. He advocates a
general-purpose CSCW model that
integrates various aspects of
collaborative work into a unified model
called “Object-oriented Activity
Support Model” (OOActSM). This
model attempts to bring together
systems supporting processes, activities,
and toolkits (i.e. APIs). This model’s
fundamental unit is the “activity” that
can be viewed as an object that consists
of an “executing actor” (i.e. who
initiated the activity), the “context”
(what is changed and any relevant state
information), and “subactivity
structure” (which allows for multiple
actors and contexts).

12. RECENT AND FUTURE WORK

Recent trends in collaborative editing
systems have focused on mainstream
document types (PDF, Word, HTML)
and away from proof-of-
concept/research document types.
There is also a significant trend in Web
authoring moving away from a one
author model to a collaborative model
where many authors contribute to a
single document/site. Such trends
suggest that a more fine-grained
concurrency system be adopted in Web
authoring that will allow multiple
authors to modify a single file
collaboratively, rather than maintain
course-grain concurrency in which a
single author locks an entire file. Given
the highly structured nature of Web-
based languages like HTML, XML, and
other SGML languages, this fine-
grained locking/collaboration should be
easily implemented.

Recent work in the area of synchronous
editing of structured documents involve
defining positional addressing schemes
and sets of fundamental
transformational operations; given
these, concurrency among users and

granularity of editing can be improved
[Davis et al. 2002].

Drury [2001] has developed a set of
heuristics that are useful in analyzing
behavior within collaborative
computing systems; her heuristics are
derived from metaphors from activation
theory, workspace awareness,
coordination theory, distributed
cognition, information ecology, and
team situational awareness theory. This
work is significant in that it examines
how users interact within CSCW
systems and relates to many fields
within the social sciences.

Maybury [2001] discusses the Java
Collaborative Virtual Workspace that
has evolved from earlier multi-user
dungeon (MUD) and MUD object-
oriented (MOO) communication
protocols. This system has grown to
over 3000 users with as many as 400
simultaneous users within the system at
any given time. What is particularly
interesting about this work is that it
provides “rooms” in which users can
collaborate, persistence of objects
within the shared space, and even
supports a Palm client for wireless and
mobile users. Maybury claims that “we
have discovered three important
abstractions are central to all
collaborations: conference, context, and
participants.” It will be interesting to
see how these meta elements are present
in other CSCW systems.

A recent study [Cadiz et al. 2000] of a
collaborative document editing system
proves that it is a vibrant field with
many research opportunities. Within a
10 month period, 9239 annotations were
made on 1243 documents by 450
developers for the Microsoft Office
2000 system. Clearly, large-scale
software system development
necessitates the ability to make
annotations and collaboration. The
authors of this paper note that in-
context comments/annotations are

needed so that the comments are
situated with respect to the element that
is being annotated. Further, the authors
argue that the ubiquity of the Web lends
it as a natural medium by which
collaboration can be established.

Microsoft's Web Document and
Versioning Protocol was used in
cooperation with a SQL Server database
to track the changes. One interesting
result of the study is that collaborators
should be informed proactively when a
document that interests them has been
modified; this happens automatically
via email.

Among regular users, the average
number of annotations was 47.5; the
average number of documents
annotated was 10.5. Among occasional
users, the average number of
annotations was 9.3; the average
number of documents annotated was 3.2
[Cadiz et al. 2000].

I believe that in the near future, we will
see voice over IP (VOIP) emerge as a
ubiquitous aspect of any modern
collaborative environment; given that
VOIP is becoming more pervasive
(witness DirectX 9.0 that contains a
built-in API for VOIP), collaborative
systems should also begin to make use
of this important communication aspect
of how people naturally work.

ACKNOWLEDGMENTS

Many thanks to Dr. Prasad for the
opportunity to explore this topic and
study parallel computing.

REFERENCES

BEGOLE J., ROSSON M. B., and
SHAFFER C. A. Flexible
Collaboration Transparency:
Supporting Worker Independence
in Replicated Application-Sharing

Systems. ACM Transactions on
Computer-Human Interactions, vol.
6, no. 2, pp. 95-132, June 1999.

BEGOLE J., ROSSON M. B., and
SHAFFER C. A. Supporting
Worker Independence in
Collaboration Transparency. In
Proceedings of UIST'98, San
Francisco CA, pp. 133-142, 1998.

BEGOLE J., SMITH R. B., STRUBLE
C. A. and SHAFFER C. A.
Resource Sharing for Replicated
Synchronous Groupware.
IEEE/ACM Transactions on
Networking. vol. 9, no. 6, pp. 833-
843, December 2001.

BENFORD S., GREENHALGH C.,
RODDEN T., and PYCOCK J.
Collaborative Virtual
Environments. Communications of
the ACM, vol. 44, no. 7, pp. 79-85,
July 2001.

BORGHOFF U. and TEEGE G.
Application of Collaborative
Editing to Software-Engineering
Projects. ACM SIGSOFT, 18(3),
pp. 56-64, July 1993.

BOYER D. G., HANDEL M. J., and
HERBSLEB J. Virtual Community
Presence Awareness. SIGGROUP
Bulletin, vol. 19, no. 3, pp 11-14,
December 1998.

BULGANNAWAR S. and VAIDYA
N. A Distributed K-Mutual
Exclusion Algorithm. International
Conference on Distributed
Computing Systems, pp. 153-160,
1995.

CADIZ J., GUPTA A., GRUDIN J.
Using Web Annotations for
Asynchronous Collaboration
Around Documents. In
Proceedings of CSCW'00,
Philadelphia PA, pp. 309-318,
December 2000.

CHAWATHE Y., MCCANNE S., and
BREWER E. RMX: Reliable
Multicast in Heterogeneous
Networks. In Proc. IEEE
INFOCOM, March 2000.

CHENG L. et al. Building
Collaboration into IDEs. ACM
Queue. December/January 2003-
2004. 40-50.

CHENG L. et al. Jazz: A Collaborative
Application Development
Environment. In Proceedings of
OOPSLA'03, Anaheim CA, 102-
103, 2003.

CHOCKLER G. V., KEIDAR I., and
VITENBERG R. Group
Communication Specifications: A
Comprehensive Study. ACM
Computing Surveys, vol. 33, no. 4,
pp. 427-469, December 2001.

CONRADI R. and WESTFECHTEL B.
Version Models for Software
Configuration Management. ACM
Computing Surveys, vol. 30, no. 2,
pp. 232-282, June 1998.

DAVIS A. H., SUN C., and LU J.
Generalizing Operational
Transformation to the Standard
General Markup Language. In
Proceedings of CSCW'02, New
Orleans Louisiana, pp. 58-67,
November 2002.

DECOUCHANT D., QUINT V, and
SALCEDO M. R. Structured and
Distributed Cooperative Editing in
a Large Scale Network.

DRURY J. Developing Heuristics for
Synchronous Collaborative
Systems. In Proceedings of
CHI'2001, pp. 447-448,
March/April 2001.

EDWARDS W. K. et al. Using
Speakeasy for Ad Hoc Peer-to-Peer
Collaboration. In Proceedings of

CSCW'02, New Orleans LA, pp.
256-265, November 2002.

FUSSELL S. R., KRAUT R. E., and
SIEGEL J. Coordination of
Communication: Effects of Shared
Visual Context on Collaborative
Work. In Proceedings of
CSCW'00, Philadelphia PA, pp. 21-
30, December 2000.

FUSSELL S. R., et al. Assessing the
Value of a Cursor Pointing Device
for Remote Collaboration on
Physical Tasks. In Proceedings of
CHI'2003: New Horizons, Ft.
Lauderdale FL, pp. 788-789, April
2003.

GEYER W. et al. A Team
Collaboration Space Supporting
Capture and Access of Virtual
Meetings. In Proceedings of
GROUP'01, Boulder CO, pp. 188-
197, September 2001.

GEYER W., VOGEL J., CHENG L.,
and MULLER M. Supporting
Activity-centric Collaboration
through Peer-to-Peer Shared
Objects. In Proceedings of
GROUP'03, Sanibel Island FL, pp.
115-124, November 2003.

GRINTER R. E. Recomposition:
Putting It all Back Together Again.
In Proceedings of CSCW'98,
Seattle WA, pp. 393-402, 1998.

GRUDIN J. CSCW Introduction.
Communications of the ACM, vol.
34, no. 12, pp. 30-34, December
1991.

HAO M. C., KARP A. H, and
GARFINKEL D. Collaborative
Computing: A Multi-Client Multi-
Server Environment. In
Proceedings of COOCS'95,
Milpitas CA, pp. 206-213, August
1995.

HARRISON W. H., OSSHER H., and
SWEENEY P. F. Coordinating
Concurrent Development. In
Proceedings of CSCW'90, 157-168,
October 1990.

HARTUNG J. et al. A Real-Time
Scalable Software Video Codec for
Collaborative Applications Over
Packet Networks. In Proceedings
of ACM Multimedia '98, Bristol
UK, pp. 419-426, 1998.

HELLENBRAND C. Defining the
Influence of Collaborative
Computing on Organizational
Activity Governance. In
Proceedings of SIGCPR'95,
Nashville TN, pp. 239, 1995.

HERBSLEB J. D. et al. Distance,
Dependencies, and Delay in Global
Collaboration. In Proceedings of
CSCW'00, Philadelphia PA, pp.
319-328, December 2000.

HORSTMANN T. and BENTLEY R.
Distributed Authoring on the Web
with the BSCW Shared Workspace
System. StandardView, vol. 5, no.
1, pp. 9-16, March 1997.

KAISER G. E. and KAPLAN S. M.
Parallel and Distributed
Incremental Attribute Evaluation
Algorithms for Multiuser Software
Development Environments. ACM
Transactions on Software
Engineering and Methodology, vol.
2, no. 1, pp. 47-92, January 1993.

KOCK M. The Collaborative Multi-
User Editor Project IRIS,
Technical Report TUM-I9524,
University of Munich, Aug. 1995.

KOREL B. et al. Version Management
in Distributed Network
Environment. In Proceedings of
the 3rd International Workshop on
Software Configuration
Management, pp. 161-166, May
1991.

LI D. and LI R. Transparent Sharing
and Interoperation of
Heterogeneous Single-User
Applications. In Proceedings of
CSCW'02, New Orleans LA, pp.
246-255, November 2002.

LI D. and PATRAO J.
Demonstrational Customization of
a Shared Whiteboard to Support
User-Defined Semantic
Relationships among Objects. In
Proceedings of GROUP'01,
Boulder CO, pp. 97-106, October
2001.

LOCASTO M. et al. CLAY:
Synchronous Collaborative
Interactive Environment. The
Journal of Computing in Small
Colleges, vol. 17, issue 6, pp. 278-
281, May 2002.

LORY G. et al. Microsoft Solutions
Framework version 3.0 Overview.
Microsoft Press.
http://www.microsoft.com/msf.
June 2003.

MAGNUSSON B., ASKLUND U., and
MINÖR S. Fine-Grained Revision
Control for Collaborative Software
Development. In Proceedings of
the 1st ACM SIGSOFT symposium
on Foundations of software
engineering, vol. 18, issue 5, pp.
33-41, December 1993.

MARQUÈS J. M. and NAVARRO L.
WWG: a Wide-Area Infrastructure
to Support Groups. In Proceedings
of GROUP'01, Boulder CO, pp.
179-187, September 2001.

MAYBURY M. Collaborative Virtual
Environments for Analysis and
Decision Support.
Communications of the ACM, vol.
44, no. 12, December 2001. pp. 50-
54.

MCCANNE S. et al. MASH: Enabling
Scalable Multiport Collaboration.

ACM Computing Surveys. vol 31,
issue 2es, article no. 2. 1999.

NICKSON R. C. A Taxonomy of
Collaborative Applications.
http://hsb.baylor.edu/ramsower/ais.
ac.97/papers/nickers.htm.

OLSON J. et al. Surprises in Remote
Software Development Teams.
ACM Queue. December/January
2003-2004. 52-59.

PENSERINI L., PANTI M.,
SPALAZZI L. Agent-Based
Transactions in Decentralised
P2P. In Proceedings of
AAMAS'02, Bologna Italy, pp.
1288-1289, July 2002.

PERRY D. E., SIY H. P., and VOTTA
L. G. Parallel Changes in Large
Scale Software Development: An
Observational Case Study. In
Proceedings of the 20th
International conference on
Software Engineering, pp. 251-260,
April 1998.

PERRY D. E., SIY H. P., and VOTTA
L. G. Parallel Changes in Large
Scale Software Development: An
Observational Case Study. ACM
Transactions on Software
Engineering and Methodology, vol.
10, no. 3, pp. 308-337, July 2001.

RAMAN S. Thesis: A Framework for
Interactive Multicast Data
Transport in the Internet.
Computer Science at the University
of California at Berkeley. 2000.

RAMLOLL R. and MARIANI J. A.
Moksha: Exploring Ubiquity in
Event Filtration-Control at the
Multi-user Desktop. In
Proceedings of WACC'99, San
Francisco CA, pp. 207-216,
February 1999.

ROTH J. and UNGER C. An extensible
classification model for distribution
architectures of synchronous

groupware. 4th International
Conference on Cooperative
Systems. 2000.

ROTH, J. and UNGER C. Developing
synchronous collaborative
applications with
TeamComponents. 4th
International Conference on
Cooperative Systems. 2000.

SARMA A., NOROOZI Z., and VAN
DER HOEK A. Palantír: Raising
Awareness among Configuration
Management Workspaces.
Proceedings of the 25th
international conference on
Software engineering, Portland OR,
pp. 444-454, May 2003.

SCHUR A. et al. Collaborative Suites
for Experiment-Oriented Scientific
Research. interactions..., pp. 40-
47, May/June 1998.

SHANDS D., JACOBS J., YEE R., and
SEBES E. J. Secure Virtual
Enclaves: Supporting Coalition
Use of Distributed Application
Technologies. ACM Transactions
on Information and System
Security, vol. 4, no. 2, pp. 103-133,
May 2001.

SHEN H. and SUN C. Flexible
Notification for Collaborative
Systems. In Proceedings of
CSCW'02, New Orleans Louisiana,
pp. 77-86, November 2002.

SOMMERVILLE, I. Software
Enginerring 6th Edition. Addison
Wesley, Harlow, England. 2001.
pp. 4-17.

STEIN M., RIEDL J., HARNER S., and
MASHAYEKHI V. A Case Study
of Distributed, Asynchronous
Software Inspection. In
Proceedings of ISCE'97, Boston
MA, pp. 107-117, 1997.

SUN C. Undo as Concurrent Inverse in
Group Editors. ACM Transactions
on Computer-Human Interaction,
vol. 9, no. 4, pp. 309-361,
December 2002.

SUN C. and CHEN D. Consistency
Maintenance in Real-Time
Collaborative Graphics Editing
Systems. ACM Transactions on
Computer-Human Interaction, vol.
9, no. 1, pp. 1-41, March 2002.

SUNDERAM V. et al. CCF:
Collaborative Computing
Frameworks. SC'98: High
Performance Networking and
Computing Conference (Orlando,
Florida USA). IEEE. 1998.

TEEGE, G. Object-Oriented Activity
Support: A Model for Integrated
CSCW Systems. Computer
Supported Cooperative Work
(CSCW): The Journal of
Collaborative Computing, 5(1), pp.
93-124, 1996.

TEEGE G. and BORGHOFF U. W.
Combining Asynchronous and
Synchronous Collaborative
Systems. In Proceedings of the 5th
International conference on
Human-Computer Interaction,
Amsterdam Netherlands, pp. 516-
521, 1993.

TOWNSEND A. M., HENDRICKSON
A. R., and DEMARIE S. M.
Meeting the Virtual Work
Imperative. Communications of
the ACM, vol. 45, no. 1, pp. 23-26,
January 2002.

VAN DER HOEK A., HEIMBIGNER
D., and WOLF A. L. A Generic,
Peer-to-Peer Repository for
Distributed Configuration
Management. Proceedings of the
18th international conference on
Software Engineering, pp. 308-317,
May 1996.

VELAZQUEZ M. A Survey of
Distributed Mutual Exclusion
Algorithms. Colorado State
University Department of
Computer Science Technical
Report CS-93-116, September
1993.

VIDOT N. et al. Copies convergence in
a distributed real-time
collaborative environment. In
Proceedings of CSCW'00,
Philadelphia PA, pp. 171-180,
December 2000.

WALPOLE J. et al. A Unifying Model
for Consistent Distributed Software
Development Environments. In
Proceedings of the third ACM
SIGSOFT/SIGPLAN software
engineering symposium on
Practical software development
environments, pp. 183-190,
January 1989.

WALTER J. et al. A K-Mutual
Exclusion Algorithm for Wireless
Ad Hoc Networks. Principles of
Mobile Computing '01. Newport,
Rhode Island USA. 2001.

WALTER J. et al. A Mutual Exclusion
Algorithm for Ad Hoc Mobile
Networks. Wireless Networks, vol.
7, no. 6, pp. 585-600, 2001.

WANG X., BU J., and CHEN C.
Achieving Undo in Bitmap-based
Collaborative Graphics Editing
Systems. In Proceedings of
CSCW'02, New Orleans Louisiana,
pp. 68-76, November 2002.

WU D. and SARMA R. Dynamic
Segmentation and Incremental
Editing of Boundary
Representations in a Collaborative
Design Environment. Proceedings
of the sixth ACM symposium on
Solid Modeling and Applications,
Ann Arbor Michigan, pp. 289-300,
May 2001.

YUNZHANG P. et al. Totally Ordered
Reliable Multicast for Whiteboard
Application. In Proceedings of the
4th International Workshop on
CSCW in Design, Compigne
France, 1999.

