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Abstract

This paper describes the design and implementation of
SWORD, a scalable resource discovery service for wide-
area distributed systems. In contrast to previous sys-
tems, SWORD allows users to describe desired resources
as a topology of interconnected groups with required intra-
group, inter-group, and per-node characteristics, along
with the utility that the application derives from vari-
ous ranges of values of those characteristics. This de-
sign gives users the flexibility to find geographically dis-
tributed resources for applications that are sensitive to both
node and network characteristics, and allows the system to
rank acceptable configurations based on their quality for
that application. We explore a variety of architectures to
deliver SWORD’s functionality in a scalable and highly-
available manner. A 1000-node ModelNet evaluation us-
ing a workload of measurements collected from PlanetLab
shows that an architecture based on 4-node server cluster
sites at network peering facilities outperforms a decentral-
ized DHT-based resource discovery infrastructure for all
but the smallest number of sites. While such a centralized
architecture shows significant promise, we find that our de-
centralized implementation, both in emulation and running
continuously on over 200 PlanetLab nodes, performs well
while benefitting from the DHT’s self-healing properties.

1. Introduction

Grid applications, ranging from distributed scientific
computations [7, 14, 26, 32] to long-running network ser-
vices [16, 20, 22, 25, 34], are becoming an increasingly
important part of the computing landscape. At the same
time, the prevalence, scale, and geographic distribution of
deployment platforms for such applications has grown. For
example, Grid3 consists of 2000 CPUs at 25 sites [18], and
PlanetLab offers 500 machines at 200 sites [3]. One sig-
nificant difficulty in the practical use of such shared, large-
scale infrastructures centers aroundresource discoveryand

service placement, that is, locating an appropriate subset of
the platform to host a distributed computation, experiment,
or service. We refer to this combined task of resource dis-
covery and service placement as simply resource discovery.

This paper considers the architectural tradeoffs involved
in building a resource discovery system targeting Grid set-
tings. Such a system mustscaleto thousands of nodes and
sites. It must behighly available, as it is the system entry
point for launching and maintaining applications. The sys-
tem mustaccurately reportdynamically changing node and
network characteristics. Because many distributed applica-
tions are sensitive to inter-node latency and bandwidth, the
system must support queries over not just per-node charac-
teristics, but also overinter-node characteristics. Finally,
because applications have widely varying needs and be-
cause desired resources are often scarce, users should be
able to specify the ranges of resource quantities that their
application needs, as well as theutility lost from the selec-
tion of imperfect but acceptable nodes.

A number of recent efforts have explored global resource
discovery [2, 9, 19, 23, 41, 46, 47]. However, to our knowl-
edge no existing system meets all of the above require-
ments. In particular, resource discovery systems must sup-
port specifying required inter-node characteristics and the
relative utility of both per-node and inter-node characteris-
tics in assessing tradeoffs among competing potential con-
figurations. One contribution of this work is to present the
semantics of SWORD, a resource discovery infrastructure
that allows users to easily describe desired resources as a
topology of interconnected groupswith required intra-group
and inter-group characteristics andpenalty functionsto in-
dicate the utility of those characteristics to the application.
Our implementation of SWORD, which supports our own
query language and Condor ClassAds, has been deployed
as a continuously-running PlanetLab service for more than
six months, tracking over 40 metrics per machine from a
combination of sources [11, 33, 40, 42].

A resource discovery service could incur significant
load, both in terms of monitoring the target infrastruc-
ture and answering resource discovery queries. Thus, the



Figure 1. High-level SWORD architecture.

second principal contribution of this work is an explo-
ration of the architectural space for efficient and robust re-
source discovery. Our initial intuition was that some vari-
ety of a distributed architecture would be required to scale
to our target settings, an approach adopted by related ef-
forts [2, 19, 41, 46]). The appropriate architecture depends
upon the system workload and deployment scenario, and
distributed architectures do offer a number of advantages.
However, through a large-scale deployment and evaluation
of multiple instances of SWORD embodying different ar-
chitectures, we find that a centralized architecture performs
competitively with several decentralized architectures under
a number of realistic settings.

The rest of this paper is organized as follows. Section 2
presents an overview of the SWORD architecture, and Sec-
tion 3 describes our implementation. Section 4 evaluates
SWORD, Section 5 presents related work, and Section 6
concludes.

2. System Architecture and Queries

2.1. Target Usage Scenarios

SWORD is designed with two usage scenarios in mind.
When used in a “best effort” environment such as Planet-
Lab, SWORD matches a user’s resource specification to
the node characteristics at the time the request is made.
SWORD returns an ordered list consisting of sets of nodes.
The list is ranked by the closeness of each set’s match to
user desires. Users deploy their application on the set of
nodes deemed to best match their requirements and period-
ically re-query SWORD to realign their configuration with
time-varying system characteristics.

Alternatively, SWORD may be used in conjunction with
an external resource allocation or admission control mech-
anism. The resource allocation system might augment

SWORD’s measurement database with information about
which resources each user can access, at what cost, and dur-
ing what time periods. Queries specify a period of time for
using the requested resources, and candidate nodes are fil-
tered to exclude nodes that are not available to that user for
the requested period. Although our deployment of SWORD
has been in a “best effort” environment, we expect to inte-
grate it with resource allocation tools such as SHARP [17]
or SNAP [10] to support arbitrated usage scenarios.

2.2. Query Semantics and Architecture

Two observations about distributed scientific applica-
tions and distributed network services guide the design of
SWORD’s query representation. First, as also noted in [23],
some distributed scientific applications desire collections
of tightly-coupled groups of nodes. To enable discov-
ery of such groups, SWORD supports requests for a num-
ber of equivalence classes calledgroups, each defined by
a required number of nodes, a range of acceptable per-
node characteristics, and acceptable inter-node measure-
ments such as latency and bandwidth among group nodes.
Some applications may further wish to constrain group
location in the network topology or connectivityamong
groups. For example, a Content Distribution Network
such as CoDeeN [34] may desire small clusters of tightly-
coupled nodes near several distinct geographically dis-
tributed user populations, with low-latency, high-bandwidth
links among clusters. Hence, SWORD also allows the user
to request that each group be within a desired latency of a
specified network reference point, and to specify required
ranges of inter-node measurements between nodes in dis-
tinct groups.

A second observation guiding SWORD’s query language
is varying application sensitivity to deviations from spec-
ified per-node and inter-node constraints. Thus, we wish
to allow users to specify absolute requirements on per-
node and inter-node characteristics, similar to ClassAd [36]
“constraints,” and sensitivity to deviations from preferred
per-node and inter-node characteristics, similar to ClassAd
ranking functions. In this way, nodes whose value for an
attribute fall within the required range are ranked by their
suitability based on their deviation from the preferred range.
Users describe this sensitivity using per-attributepenalty
functions, which can be thought of as the inverse of utility
functions. Penalty functions are described in detail in [31].

SWORD consists of three parts, illustrated schematically
in Figure 1. A user describes their desired configuration us-
ing a native SWORD XML syntax or a Condor ClassAd,
and the system returns the lowest-penalty mapping (or a
ranked set of mappings) of available nodes to groups in the
user’s query.



Group NA
NumMachines 4
Required Load [0.0, 2.0]
Preferred Load [0.0, 1.0], penalty 100.0
Required FreeDisk [500.0, MAX] (MB)
Preferred FreeDisk [1000.0, MAX], penalty 100.0
Required OS [‘‘Linux’’]
Required AllPairs Latency [0.0, 20.0] (ms)
Preffered AllPairs Latency [0.0, 10.0], penalty 100.0
Required AllPairs BW [0.5, MAX] (Mb/s)
Preffered AllPairs BW [1.0, MAX], penalty 2.0
Required Location [‘‘NorthAmerica’’, 0.0, 50.0] (ms)

Group Europe
NumMachines 4
Required Load [0.0, 2.0]
Preferred Load [0.0, 1.0], penalty 100.0
Required FreeDisk [300.0, MAX] (MB)
Preferred FreeDisk [1000.0, MAX], penalty 100.0
Required OS [‘‘Linux’’]
Required AllPairs Latency [0.0, 20.0] (ms)
Preffered AllPairs Latency [0.0, 10.0], penalty 100.0
Required AllPairs BW [0.5, MAX] (Mb/s)
Preffered AllPairs BW [1.0, MAX], penalty 2.0
Required Location [‘‘Europe’’, 0.0, 50.0]

InterGroup
Required OnePair BW NA Europe [3.0, MAX] (Mb/s)
Preferred OnePair BW NA Europe [5.0, MAX], penalty 0.5

<QUERY> ::= <GRP>+ <INTERGRP>?
<GRP> ::= <GRPNAME> <NUMMACHINES>? (<REQ> <PREF>?)+
<GRPNAME> ::= ’Group’ <GNAME>
<GNAME> ::= <STRING>
<NUMMACHINES> ::= ’NumMachines’ <INTEGER>
<REQ> ::= <PERREQ> | <INTERREQ>
<PERREQ> ::= ’Required’ <ATTRNAME> [<DOUBLE> | ’Min’, <DOUBLE> | ’Max’] |

’Required’ <ATTRNAME> [’True’? ’False’?] |
’Required’ <ATTRNAME> [<STRING>+] |
’Required’ <ATTRNAME> [<REFPOINT>+]

<REFPOINT> ::= <LOCATION>, <DOUBLE> | ’Min’, <DOUBLE> | ’Max’
<INTERREQ> ::= ’Required’ ’OnePair’ <ATTRNAME> [<DOUBLE> | ’Min’, <DOUBLE> | ’Max’] |

’Required’ ’AllPairs’ <ATTRNAME> [<DOUBLE> | ’Min’, <DOUBLE> | ’Max’]
<PREF> ::= <PERPREF> | <INTERPREF>
<PERPREF> ::= ’Preferred’ <ATTRNAME> [<DOUBLE> | ’Min’, <DOUBLE> | ’Max’],

’penalty’ <PENALTY> |
’Preferred’ <ATTRNAME> [(’True’, <PENALTY>)? (’False’, <PENALTY>)?] |
’Preferred’ <ATTRNAME> [(<STRING>+, <PENALTY>)+] |
’Preferred’ <ATTRNAME> [(<REFPOINT>+, <PENALTY>)+]

<INTERPREF> ::= ’Preferred’ ’OnePair’ <ATTRNAME> [<DOUBLE> |
’Min’, <DOUBLE> | ’Max’], <PENALTY> |

’Preferred’ ’AllPairs’ <ATTRNAME>
[<DOUBLE> | ’Min’, <DOUBLE> | ’Max’], ’penalty’ <PENALTY>

<INTERGRP> ::= (<IREQ> <IPREF>*)+
<IREQ> ::= ’Required’ ’OnePair’ <ATTRNAME> <GNAME> <GNAME>

[<DOUBLE> | ’Min’, <DOUBLE> | ’Max’] |
’Required’ ’AllPairs’ <ATTRNAME> <GNAME> <GNAME>

[<DOUBLE> | ’Min’, <DOUBLE> | ’Max’]
<IPREF> ::= ’Preferred’ ’OnePair’ <ATTRNAME> <GNAME> <GNAME>

[<DOUBLE> | ’Min’, <DOUBLE> | ’Max’], ’penalty’ <PENALTY> |
’Preferred’ ’AllPairs’ <ATTRNAME> <GNAME> <GNAME>

[<DOUBLE> | ’Min’, <DOUBLE> | ’Max’], ’penalty’ <PENALTY>
<PENALTY> ::= <DOUBLE>

(a) (b)

Figure 2. (a) Sample SWORD query requests two groups. Group N A requests four Linux nodes
within 50 ms (using network coordinates) of a reference node in North America. The query shows a
preferred and required range of values for desired attribut es, and a penalty for being outside of the
preferred range. For example, nodes should have load less th an 1.0, but the operator is willing to
accept nodes with load up to 2.0, with a normalized penalty of 100 units for load values between 1.0
and 2.0. Group Europe is similarly defined. One inter-group b andwidth constraint between NA and
Europe is specified. (b) An abstract specification of SWORD’s native query language in EBNF.

2.3. Expressing Queries

Putting the group and penalty function features together,
consider the following example. A small Internet search
engine has large user populations in North America and
Europe. The service architecture is such that groups of
four nodes constitute a “site,” sharing the search index and
parallelizing the search functionality. The service opera-
tor decides to request one group of four nodes near a net-
work reference point in North America, and another group
near a point in Europe. To enable close cooperation within
a site, the operator specifies low-latency, high-bandwidth
links among all nodes within a site. Because sites peri-
odically communicate newly-crawled data, the operator re-
quires at least one high-bandwidth link connecting a pair of
nodes in different groups. Finally, the operator places per-
node requirements on free disk space and load.

SWORD supports two query languages. Figure 2(a)
shows a sample query issued by the search engine opera-
tor using SWORD’s XML specification language, slightly
modified for clarity. Figure 2(b) provides an EBNF descrip-
tion of this query syntax. SWORD endeavors to locate the
lowest-penalty mapping of available nodes to groups in the
user’s query, with the overall penalty of a mapping defined
as the sum over all groups of each member node’s penalty,
accounting for per-node, inter-node, and inter-group con-

straints. For compatibility with existing Grid applications,
SWORD also supports Condor ClassAds as depicted in
Figure 3 for the search engine query. Because the stan-
dard ClassAd syntax does not support specifying inter-node
properties, SWORD can only constrain and rank based on
per-node properties using this syntax.

3. Implementation

The main components of SWORD are thequery proces-
sor and theoptimizer. The query processor finds all nodes
matching the user’s specifications. The optimizer finds the
lowest penalty mapping of those candidate nodes to groups,
based on specified penalty functions.

3.1. Query Processor

A node that wishes to offer its resources through
SWORD joins the SWORD infrastructure and collects
resource-monitoring data locally. Thisreporting nodepe-
riodically sends ameasurement reportto one or more
SWORDservers. A node need not be part of the SWORD
infrastructure to submit queries. To issue a query, aclient
node sends a query to any node in the SWORD infras-
tructure. Thisquery nodereceiving the request acts as a
proxy into the SWORD infrastructure, potentially issuing



{ [ name = ‘‘NA’’;
nummachines = 4;
constraint = load <= 2.0 && freedisk >= 500 && os == ‘‘linux’’ &&

netdist(‘‘NorthAmerica’’) < 50;
rank = (100.0 * (load-1 > 0 ? load-1 : 0)) +

(100.0 * (1000-freedisk > 0 ? 1000-freedisk : 0));
];

[ name = ‘‘Europe’’;
nummachines = 4;
constraint = load <= 2.0 && freedisk >= 300 && os == ‘‘linux’’ &&

netdist(‘‘Europe’’) < 50;
rank = (100.0 * (load-1 > 0 ? load-1 : 0)) +

(100.0 * (1000-freedisk > 0 ? 1000-freedisk : 0));
];

};

Figure 3. Sample query using ClassAd syntax.

sub-queries to remote servers, depending on the query pro-
cessor algorithm in use. In our deployments, the reporting
node, server, client, and query node roles are implemented
on the same set of nodes.

3.1.1. Design Alternatives for Storing and Retrieving
Per-Node Attributes

The core query processing primitive of interest ismulti-
attribute range search. For example, consider a query that
requests a group of nodes that have load average between
0.0 and 2.0 and free disk space between 100 and 200 MB.

One approach to handling such a query is a centralized
architecture in which a central database collects and stores
all reports of load and free disk space (along with the iden-
tity of the sending node and a timestamp), and maintains
indices on load and disk space to quickly find nodes in re-
quired ranges. Although simple to implement, a centralized
architecture potentially suffers from limited scalability and
availability.

To improve scalability and availability, one might dis-
tribute the database across nodes. In this case, we partition
the data space among servers by attribute, and then sub-
partition by value. For example, one server might be re-
sponsible for handling updates for all machines whose load
is between 0.0 and 1.0, another for loads between 1.0 and
2.0, etc.; another for free disk between 0 MB and 100 MB,
another for free disk between 100MB and 200MB, etc. Al-
though more scalable and available, satisfying distributed
range queries in this architecture could require contacting
many servers, increasing the amount of communication and
the complexity of the searching algorithm.

One way to reduce implementation complexity for this
approach is to use a distributed hash table (DHT) to auto-
matically partition the data space among servers. DHTs are
scalable, self-configuring, and highly available, and these
traits are a good match to our target of large federated plat-
forms that eschew centralized management. SWORD maps
an<attribute,value> measurement to a server by first map-
ping it to a DHT key, as described below, and then asking
the DHT to route the measurement to the corresponding key.

Figure 4. Constructing a DHT key from an
<attribute,value > pair. This key is 80 bits for
clarity; SWORD uses an analogous mapping
technique to produce its 160-bit keys.

The DHT delivers the message to the node responsible for
the key, and automatically repartitions the keyspace among
nodes when DHT nodes fail, recover, or join. To enable a
query to visit the nodes responsible for a contiguous range
of keys, SWORD uses existing DHT “successor pointers”
that organize the nodes into a linked list sorted by ascend-
ing key ranges.1

Figure 4 shows how SWORD maps a measurement to
a DHT key. The top bits partition attributes evenly among
DHT servers. The middle bits map a value to one of the
servers responsible for that attribute. The bottom bits spread
measurements of the same value among multiple servers,
to load balance attributes that take on a small number of
values, such as booleans. The middle and bottom bits are
defined by an administrator-specified, per-attribute function
that aims to balance load among keys based on expected
values of that attribute. The only global configuration state
on which all nodes must agree is the number of key bits used
as attribute bits. Also, nodes issuing updates and queries
must know the mapping function for each attribute they
wish to update or query. A system with more or fewer at-
tributes than are allowed by the number of configured at-
tribute bits will function correctly, and any resulting sub-
optimal load balance is corrected over long time scales us-
ing active load balancing in which DHT nodes reallocate
the mapping of keys to responsible nodes [4].

We implement and evaluate four distributed range query
approaches—namelySingleQuery, MultiQuery , Index,
andFixed—based on the preceding methodology. The first
three use a DHT while the fourth does not. These tech-
niques all return a list of nodes meeting a query’s per-node
requirements, and the corresponding measurements.

SingleQuery, illustrated in Figure 5(a), includes in each
measurement reportall attribute values for the reporting
node. A reporting node transmitsn measurement reports,

1We also implemented a scheme that follows DHT routing table point-
ers rather than successor pointers; we found that for our workloads, the
two approaches performed within 10% of one another.



(a) SingleQuery (b) MultiQuery

Figure 5. (a) The example query is routed to one key chosen ran domly between the key for A = 6
and A = 22. It is then forwarded along DHT successor pointers to all oth er nodes responsible for
values of A between 6 and 22. Those nodes return the lists of nodes they st ore matching both the
A=[6,22] and B=[2,391] criteria. (b) The query is routed to o ne key between A = 6 and A = 22, and
one between B = 2 and B = 391. It is then forwarded along DHT successor pointers as in (a). The
nodes in the “A sub-region” return the lists of nodes they sto re matching the A=[6,22] criteria, and
the nodes in the “B sub-region” return the lists of nodes they store matching the B=[2,391] criteria.
The querying node intersects the node lists from the two sub- regions to find the set of nodes that
match both criteria. In (a) and (b), all nodes except the clie nt are part of SWORD and the DHT.

each containingn attribute values, ton servers, each of
which is the DHT node responsible for a key derived from
the value of one of the attributes as illustrated in Figure 4.
While introducing relatively high overhead for updates, a
multi-attribute query need only be sent to the set of servers
responsible for the target range of one of the queried at-
tributes. In particular, the query is first routed to a node
responsible for any key in the query range of one attribute
in the query (the “range search attribute,” chosen with the
goal of minimizing the number of DHT nodes that must be
visited to satisfy the query), and it is forwarded along DHT
successor pointers to all other nodes responsible for keys in
the query range of that attribute. This technique is similar
to Mercury [4] multi-attribute distributed range queries and
eSearch [43] multi-keyword text search.

MultiQuery , shown in Figure 5(b), places a single value
in each measurement report. A node reportingn attributes
transmitsn 1-attribute measurement reports ton DHT
keys (servers). This approach uses less update bandwidth
and storage than does SingleQuery. The downside is that
one set of servers must be queried for each attribute in a
query. Moreover, because each server only stores infor-
mation about one attribute, each server can only filter on
one attribute, so this approach can potentially return many
more nodes than SingleQuery, in which each server can fil-
ter on all attributes. The query node sends a copy of the
query to each server group in parallel and intersects the re-

turned nodes to find those that satisfy all attributes in the
query. This approach is inspired by the search strategy in
XenoSearch [41] and keyword search in [38].

Fixed is an approximation to a non-replicated geograph-
ically distributed datacenter model with a varying number
of servers. To send an update, a SWORD node sends one
copy of its measurement report to one ofn infrastructure
servers that is assigned at random when the reporting node
starts up (so that approximatelym/n SWORD nodes are as-
signed to each server, when the reporting node population is
m). A query node sends one copy of each query to that same
server, which forwards it to the remainingn−1 servers, col-
lects the results, and returns the results to the querying node.
(Updatingn nodes and querying one performed within 10%
of this approach for our workloads.) A truly centralized so-
lution is an instance of this approach withn = 1.

Index is a hybrid between the Fixed and SingleQuery
approaches. Fixed infrastructure servers hold an index that
maps contiguous DHT key ranges to the IP address of the
DHT node responsible for that range. Updates are handled
as with the SingleQuery approach. Queries are sent first to
the index server(s) responsible for the key range of inter-
est, and those index servers then forward the query directly
to the DHT nodes responsible for the requested key range
without first routing through the DHT. All queries are thus
handled in three hops.

Our implementations use the Bamboo DHT [39], but the



approaches generalize to any DHT. In our DHT-based archi-
tectures we build our own soft-state distributed data reposi-
tory on top of the key-based routing interface. Measurement
reports time out after a fixed multiple of their update inter-
val, thereby automatically deleting “dead” nodes and old
measurements. Determining an appropriate measurement
update rate depends on a number of factors, including mea-
surement stability over time, required accuracy, and desired
update bandwidth consumption. Experiments on PlanetLab
showed that 94% of nodes meeting a typical load constraint
(5-minute load average<= 5) at a given point in time con-
tinuously met it over the subsequent 5-minute interval, and
that 89% of nodes meeting that load constraint at a given
point in time continuously met it over the subsequent 10-
minute interval, suggesting an update interval on the or-
der of 5 minutes provides high accuracy for most nodes.
Amount of per-node network transmit bandwidth showed
similar behavior.

New attributes can be added to SWORD at runtime.
When a new attribute is installed on a reporting node,
SWORD itself can be used to distribute the attribute’s iden-
tity and its <attribute,value>-to-key mapping function—
nodes periodically query a special attribute that each node
reports, whose associated value is the mapping function(s)
that the reporting node has added to the system.

3.1.2. Storing and Retrieving Inter-node Attributes

The process we have described retrieves the identities of
all reporting nodes matching allper-noderequirements in
the query, along with the values of those attributes. To re-
solve our queries we also need inter-node measurements.
To reduce the resource consumption of gatheringO(N2)
inter-node measurements, SWORD leverages the observa-
tion that nodes typically fall into equivalence classes for
inter-node attributes. For example, the latency between
Node A in Autonomous System 1 (AS1) and Node B in
AS2 is often approximately equal to the latency between
any node in AS1 and any node in AS2. SWORD there-
fore allows arbitrary groups of nodes to define a “represen-
tative” node that collects inter-node measurements on their
behalf. Choosing appropriate representatives is an orthog-
onal issue we do not address that might leverage existing
work on network-aware clustering [6, 24].

Instead of storing inter-node measurements in the DHT,
representatives store inter-node measurements themselves.
This saves them the bandwidth of periodically publishing
a potentially large number of inter-node measurements into
the DHT. Upon receiving node reportsR from the per-node
attribute range query, the querying node issues a second dis-
tributed query to the representative nodes indicated inR
to obtain the inter-node attribute(s) of interest among those
representative nodes.

The mapping from a node to its representative is one of
the attributes reported by each node. Therefore to bootstrap,
each node need only know the identity of its own represen-
tative, much as nodes must typically know the IP address
of their DNS server. When a representative node boots, it
performs a standard SWORD distributed query to find the
identities of all other representatives in the system, and be-
gins measuring to them.

3.2. Optimizer Implementation

Once the per-node and inter-node measurements have
been retrieved, the optimizer finds the lowest-penalty map-
ping of nodes to the groups specified in the query. The op-
timizer computation is not parallelized, running only on the
node that received the initial query from the client. But be-
cause clients may contact any SWORD node initially, the
computation is effectively distributed on a per-request ba-
sis. The task of creating groups of a specific size that sat-
isfy inter-node and inter-group constraints is NP-hard. Our
optimizer finds the penalty of all possible node combina-
tions, but the optimizer biases this exponential search to-
wards groups that are likely to have low penalty, so that
the search can be terminated prior to completion without
severely impacting result quality. This allows the user to
trade off result quality for running time.

First the optimizer generates a set of “candidate groups”
meeting the per-node and inter-node requirements for each
group. To do this, for each groupG in the query, the opti-
mizer first enumerates all combinations of nodes meeting
G’s per-node requirements, and labels each combination
with the total per-node penalty for that set of nodes. For
each of these combinations, it then computes the total inter-
node penalty (which is infinite if the set does not meet the
requirements). Combinations of nodes that do not have an
infinite penalty become candidate groups. SWORD allows
the user to specify a time limit for this phase of the computa-
tion, and evaluates each combination in order of increasing
labeled per-node group penalty. Thus if the time limit ex-
pires before the optimizer has evaluated all combinations,
at the very least it has evaluated the sets of nodes with the
lowest total per-node penalty; these sets generally also have
the lowest total group penalty (once inter-node penalty is
added).

Next the optimizer tests and ranks these candidate groups
based on inter-group requirements and preferences. The al-
gorithm is similar to that described above, but instead of
searching for groups of nodes, it searches for groups of
groups, starting with the lowest-penalty candidate groups.

The full exponential search for the lowest-penalty solu-
tion may take a long time to complete. Thus, we have im-
plemented several simple heuristics for stopping the search
early. Three second timeoutstops the search after three
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Figure 6. 90th percentile latency of Single-
Query vs. MultiQuery approaches, with work-
load of 3 or 4 updates/hour/node and 3 or 4
queries/hour/node.

seconds. In this case we divide the allotted time evenly
between the first and second phases described above, and
subdivide the first phase’s time evenly among all groupsG.
Top half of candidates searches only the lowest-penalty
half of the candidate groups.Top 5 candidateseliminates
all but the lowest-penalty 5 candidates for each group before
running the search. Finally, since the lowest penalty can-
didate groups are processed first in the search, the first an-
swer found may be sufficient; thus thefirst answerheuristic
stops once the first valid solution is found. We evaluate the
performance and accuracy of these heuristics in Section 4.2.

4. Evaluation

4.1. Emulation-based Evaluation

Our emulation experiments focus on the performance
and overhead of SWORD’s distributed query processor. We
choose latency as our performance metric because SWORD
clients may periodically re-query SWORD to adapt their ap-
plication to changing node and network conditions, or as
the resource needs of their application changes. We choose
aggregate bandwidth consumption as our overhead metric
because it potentially represents a real financial cost to the
users and operators of the infrastructure. This section evalu-
ates our distributed query processor. We evaluate optimizer
performance separately in Section 4.2, and end-to-end per-
formance on PlanetLab in Section 4.3.

We evaluated SWORD’s query processor on a cluster of
40 IBM xSeries PCs with Dual 1 GHz Pentium III proces-
sors, 1.5 GB of RAM, and Gigabit Ethernet. We used Mod-
elNet [45] with an INET topology [5] with 10,000 tran-
sit nodes, 1,000 client nodes and 8 client nodes per stub.
Transit-transit links were given 150 Mb/s (OC3) bandwidth
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Figure 7. 90th percentile latency of Sin-
gleQuery, Fixed, and Index per-node at-
tribute range query approaches. Workload
is 12 or 24 updates/hour/node and 12 or 24
queries/hour/node.

and client-stub links 384 Kb/s bandwidth. Latencies were
based on the INET topology.1/32 of the nodes were cho-
sen as “representatives.” When evaluating the Fixed and
Index approaches, the infrastructure servers were grouped
into 4-node stub domains each with 150 Mb/s, 1 ms la-
tency connections to their upstream transit node, to emu-
late an environment in which a service provider has dis-
tributed servers among a number of geographically dis-
tributed, well-connected co-location centers. For the DHT-
based approaches, we used the Bamboo DHT available in
August 2004.

Our baseline workload consisted of updates (measure-
ment reports) and queries issued by each of 1000 virtual
nodes. The content of updates were taken from a repre-
sentative one-hour portion of a trace of Ganglia [40] and
Vivaldi [11] measurements collected from PlanetLab. Up-
dates contained 32 metrics collected by Ganglia during that
time period, along with network coordinates computed by
Vivaldi and several attributes we used for debugging, for
a total of 40 attributes. Queries contained five per-node
attributes—fifteen-minute load average, free disk space,
free memory, bytes per second received, and bytes per sec-
ond sent—and one inter-node attribute—inter-node latency.

Queries were formulated according to a distribution such
that they requested a minimum amount of disk space that is
Zipf distributed between 10 MB and 100 MB (biased toward
the high end of the range), a fifteen-minute load average
less than a uniformly distributed value between 0 and 5.0,
a minimum amount of free memory that is Zipf distributed
between 0 MB and 48 MB (biased toward the high end of
the range), bytes per second in and out (competing traffic)
that is no more than 0.1 MB/s for half of the queries and
unconstrained for the other queries, and inter-node latency



Range Search Technique Normalized bandwidth
Fixed-2 1.0
Fixed-4 1.22
Fixed-8 1.37
Fixed-16 1.34
Index-4 2.10

SingleQuery 2.22

Table 1. Bandwidth consumption for the 12/12
workload, normalized to Fixed-2, which con-
sumed an average of 5 Mb/s during the one-
hour run. Network traffic overhead includes
measurement reports, queries for per-node
attributes, retrieving inter-node attributes,
maintaining the DHT, and periodically com-
puting network coordinates.

between 0 ms and 1000 ms. Because our trace contained
valid data for only 124 PlanetLab nodes, we emulated a
1000-node system by duplicating each of the 124 entries an
average of 8 times. The median number of nodes returned
per query was 120 (12% of the nodes in the total system)
and the 90th percentile was 160. In the DHT approaches,
attribute bits are assigned so that each of the 40 attributesis
mapped to a sub-region containing 25 nodes.

4.1.1. Distributed Query Latency

Figure 6 shows the impact of range-search approach and
workload intensity on the latency to satisfy the range query
for SingleQuery compared to MultiQuery. At higher work-
load rates, our emulation cluster’s CPUs became overloaded
for the MultiQuery approach. Nonetheless, these experi-
ments reveal that SingleQuery clearly outperforms Multi-
Query for our “typical” resource discovery workload, so
we do not consider MultiQuery further. The primary rea-
son for the difference is that the network bandwidth con-
sumed by the larger number of nodes returned to the query-
ing node by MultiQuery compared to SingleQuery creates
sufficient congestion to overwhelm the benefit MultiQuery
derives from sending only one attribute per update.

Figure 7 shows the impact of range-search approach and
workload intensity on the latency to satisfy the range query
for SingleQuery compared to the remaining approaches. We
see that Index always outperforms the other DHT-based ap-
proaches. This is reasonable because queries in Index take
three hops in parallel (one to the index server(s), one to the
DHT server(s) storing measurements, and one back to the
querying node) while in the SingleQuery approaches each
query may visit up to 25 nodes (the maximum number of
nodes to which any attribute’s range is mapped). The Fixed
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Figure 8. Number of candidate nodes re-
turned by range query as a function of time,
before and after killing 20% of the reporting
nodes at 5000 seconds.

approaches vary greatly in performance, but we see that for
our workload, a fixed infrastructure cluster with a relatively
small number of nodes and a high-bandwidth network con-
nection can better support the “typical” resource discovery
workload that we tested than can an infrastructure based on
end-nodes organized into a DHT. The Fixed configurations
that performed poorly did so because of congestion.

In another set of experiments, we varied the number of
representatives. We found that electing half of the nodes
as representatives reduces query latency by up to 70% for
the Fixed approaches and 7% for the SingleQuery approach
compared to electing all nodes as representatives; the im-
provement increases to 90% and 10% when a quarter of
nodes are representatives.

4.1.2. Bandwidth Consumption

Table 1 shows SWORD’s bandwidth consumption. The
centralized (Fixed) approaches use the least bandwidth.
This is because they send one copy of each 40-attribute
measurement report to one server rather than one copy to
each of 40 servers as in the Index and SingleQuery ap-
proaches. Also, the query in Fixed must on average be
distributed to a smaller number of nodes (2, 4, 8, and 16),
rather than up to 25 for the DHT-based approaches. Elect-
ing half of the nodes as representatives reduces bandwidth
consumption by up to 15% compared to electing all, and
electing one quarter reduces it by up to 23%.

4.1.3. Robustness to Perturbations

SWORD takes advantage of the DHT’s self-healing prop-
erty to automatically remap keys to nodes when a node fails
or recovers, or voluntarily joins or leaves the system. To
verify this robustness mechanism, we applied a workload



Figure 9. Runtime of optimizer using different
heuristics shown as a percentage of the run-
time to complete the full exponential search.
The x-axis shows the total number of possible
group combinations that would be checked
if the complete exponential search were run.
Total runtime for the exponential search is in-
dicated at the top of the bars.

to SWORD (in the SingleQuery configuration), and killed
20% of the DHT nodes 5000 seconds into the run.

Figure 8 plots percentage of the maximum result set
returned during each 10 minute interval. All nodes are
“servers” in the DHT storing measurement reports as well
as load generators, so killing 20% of the nodes removes
20% of the reporting nodes, and we therefore expect 80%
of the initial (maximum) result set to be returned once the
system recovers. Indeed we see soon after 20% of the nodes
are killed at time 5000 seconds, queries begin receiving the
new result set (containing 80% of the original result set)
once Bamboo “heals,” stale data times out of SWORD, and
new measurement reports are issued.

4.2. Optimizer Performance

We measured the performance of the optimizer on a sin-
gle 3 GHz Pentium 4 node. The update workload came from
Ganglia and all-pairs-pings [42] measurements on Planet-
Lab, and the query workload consisted of a representative
mix of queries containing 2 or 3 groups.

Figure 9 shows the running time of the optimizer using
each of our heuristics, as a percentage of the optimizer run-
ning time when using the full exponential search. We see
that for larger problems, the savings gained from using a
heuristic is significant, reducing a 72 second search to a few
seconds or less.

Reducing the running time of the search is useful only
if the result returned maintains an acceptable level of accu-
racy. Figure 10 shows the accuracy of the various heuris-
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Figure 10. Accuracy of optimizer heuristics
relative to optimal solution found in full expo-
nential search. x-axis shows total number of
group combinations checked if the full expo-
nential search were run. A missing bar indi-
cates that no solution was found.

tics relative to the results of the full exponential search.
In Figure 10, the “equal weight” bars represent queries
in which penalties were assigned to all attributes equally.
The “heavy cross-group weight” bars represent queries in
which the penalty assigned to the cross-group constraint is
10 times greater than the other attributes. We see that the 3-
second heuristic performs well for small searches, that the
“top half” heuristic performs well in all cases and, for our
workload, actually finds the optimal solution. The “first an-
swer” approach is the least accurate heuristic, and the “top
5” heuristic does not find a feasible solution at all in half of
our test cases.

4.3. End-to-end Performance on PlanetLab

Compared to our ModelNet configuration, PlanetLab has
a smaller number of nodes and more CPU contention. We
ran experiments on PlanetLab on July 16, 2004 on the fol-
lowing two sets of nodes (one a subset of the other): i)
all 214 usable nodes that were connected to the commod-
ity Internet, and ii) a subset of the first set that are all
at universities in North America and tend to have high-
bandwidth, low-latency network paths to one another. We
used SWORD in the SingleQuery configuration. Nodes re-
port the same metrics as in our ModelNet experiments. We
measured query latency for a single query at a time; so the
measured times show “best case” latency.

We issued a series of queries, each requesting two groups
of 4 nodes each, such that the inter-node latency among all
nodes within each group was between 0 ms and 150 ms, and
the load on each node was between 0 andN , whereN was
varied from query to query to cover all integers between 1
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Figure 11. Range query median latency ver-
sus upper bound on requested load, on Plan-
etLab. Number of candidate nodes returned
ranged from 108 to 214 for the top line and
34 to 108 for the bottom line, with increas-
ing numbers of nodes returned as the upper
bound on the requested load was increased.

and 15, inclusive.
Figure 11 shows that SWORD’s range search performs

reasonably well on PlanetLab, returning results to the op-
timizer within a few seconds even when all nodes are re-
turned by the range query. Figure 12 shows that optimizer
running time for the full exponential search ranged from
two to twelve seconds. The completion time appeared to
be more strongly correlated with the load on the machine
performing the optimization than on the size of the opti-
mization problem.

SWORD is currently used for resource discovery by two
other PlanetLab services, Bellagio [1] and PLuSH [44].

In sum, end-to-end, even without shortcutting the dis-
tributed query or optimization steps to sacrifice accuracy for
latency, we find that typical queries can be resolved in less
than five seconds in an emulated 1000-node system, and in
less than ten seconds on PlanetLab, with the larger Planet-
Lab latency caused by CPU load on the node performing
the optimization step.

5. Related Work

SWORD builds on work in resource discovery, Internet-
scale query processing, and distributed range search.

Kee et al. describe “virtual grids” [23]. The descrip-
tion language vgDL allows users to describe resource re-
quirements as hierarchies of homogeneous or heteroge-
neous groups of nodes with good or poor connectivity, rem-
iniscent of SWORD’s groups with per-node, inter-node, and
inter-group constraints, but with coarser-grained specifica-
tions and support for arbitrarily deep hierarchies. The re-
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Figure 12. Optimizer median latency versus
upper bound on requested load, on Planet-
Lab. This data is from the same experiment
as in Figure 11.

source mapping component vgFAB stores resource mea-
surements in a centralized database in contrast to SWORD’s
distributed architecture, and it computes a bounded set of
pre-fabricated groups and stores them in the database rather
than dynamically forming them on a query-by-query basis.

Condor and its ClassAds language [27] provide similar
functionality to virtual grids and SWORD, absent the notion
of groups and inter-node connectivity constraints. Gang
matching [37] extends Condor’s original bilateral match-
ing scheme to a multilateral one, allowing co-allocation
of multiple resources. Set matching [29] allows requests
that express aggregate constraints. Redline [28] formulates
the matching problem as a constraint satisfaction problem.
These latter systems allow expression of resource groups,
but they do not offer a concise method to express network
topologies. Also, to date their implementations have been
centralized. R-GMA [15] and RGIS [12] use a relational
model to track and query dynamic and static per-node at-
tributes, respectively. The latter features nondeterministic
queries, allowing users to trade reduced response time for
number of results received.

XenoSearch [41] supports DHT-based multi-attribute
range queries in a manner similar to our MultiQuery ap-
proach, but it uses a separate DHT instance per attribute,
creates its query routing structure explicitly rather thanus-
ing built-in DHT successor pointers, and provides approxi-
mate answers using Bloom Filters. Additionally, SWORD
allows users to define groups with inter-node and inter-
group requirements and “penalty functions” to rank nodes
meeting the requirements.

Globus MDS2 [49] allows GIIS indexing servers to
aggregate measurement data about GRIP information
providers obtained from GRIS. SWORD’s query processor
could be used as a GIIS, connecting GRISes in a peer-to-



peer fashion. MDS3 and MDS4 have recently emerged as
successors to MDS2.

PIER [20], Sophia [47], IrisNet [30], and Astrolabe [46]
provide Internet-scale query processing. All four could be
used to satisfy per-node resource queries, and they offer a
more expressive language for specifying such requirements
than SWORD. However, the first three must contact all
data-storing nodes to perform range search and the last dis-
seminates measurement data globally, while SWORD tar-
gets its range search to only the nodes storing measurements
within the target attribute’s range.

DHT-based range search was suggested initially by
Karger and Ruhl [21], and was later implemented and en-
hanced in Mercury [4]. Our SingleQuery approach is simi-
lar to Mercury, but with additional “passive” load balancing
provided by the<attribute,value>-to-DHT-key functions.
PHT [35] offers an alternative range search strategy based
on tries on top of DHTs.

The network topology embedding problem is formulated
as a constraint satisfaction problem in [8] for wide-area net-
works and as an optimization problem in [48] for cluster
networks.

6. Conclusion

We have described SWORD, a scalable resource discov-
ery service for wide-area distributed systems. Users define
a requested system topology in terms of groups with re-
quired intra-group, inter-group, and per-node characteristics
whose relative importance and sensitivity are expressed us-
ing penalty functions. We explore a number of distributed
query algorithms for finding nodes meeting required per-
node constraints, and several heuristics for finding the best
mapping of nodes to groups. Our evaluation shows that a
fixed server cluster at network peering facilities typically
outperforms a DHT-based resource discovery infrastruc-
ture. Nonetheless, we find that a fully decentralized version
of SWORD in emulation and on PlanetLab performs rea-
sonably well, while benefiting from the DHT’s resilience.
While our results are specific to the architectures and work-
loads we examined, we believe that our experience consid-
ering a variety of architectures provide interesting insights
regarding appropriate architectures for a variety of systems
depending on available resources, expected level of load,
and required levels of performance and availability.

An important area of future work is security. Nodes
could sign measurement reports and queries as a form of
authentication. Given an authentication infrastructure,per-
node rate limiting could ensure that no node utilizes more
than a predefined amount of bandwidth (or optimizer CPU
time) per unit time on any single node. We note, however,
that such a technique is vulnerable to the Sybil attack [13]
and therefore requires a trusted identity creation service. To

ensure that nodes are truthful in their measurement reports,
a verification service could run micro-benchmarks to verify
that resource availability matches earlier advertisements. To
ensure that, modulo collusion, nodes are truthful when they
run the optimizer, a client might issue each query to several
query nodes and compare the results.

Privacy is the most challenging security issue for dis-
tributed versions of SWORD. Reporting nodes could en-
crypt attribute names to hide their values, but our range
search mechanism relies on a monotonic mapping function
from measured values to DHT keys, and encrypting values
using standard techniques, either before or after mapping
them to a DHT key, will break this monotonicity. Privacy-
preserving DHT-based range search is an interesting topic
for future work.

Finally, we have not yet studied the system dynamics
that result from multiple large-scale applications periodi-
cally querying SWORD to determine when and how to mi-
grate application instances. We anticipate that mechanisms
are needed to damp potential oscillations.

SWORD’s PlanetLab deployment can be accessed at
http://www.swordrd.org/.
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