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Abstract service placementhat is, locating an appropriate subset of

the platform to host a distributed computation, experiment

This paper describes the design and implementation ofor service. We refer to this combined task of resource dis-
SWORD, a scalable resource discovery service for wide-covery and service placement as simply resource discovery.
area distributed systems. In contrast to previous sys-  This paper considers the architectural tradeoffs involved
tems, SWORD allows users to describe desired resourcesn building a resource discovery system targeting Grid set-
as a topology of interconnected groups with required intra- tings. Such a system mustaleto thousands of nodes and
group, inter-group, and per-node characteristics, along sites. It must bénighly available as it is the system entry
with the utility that the application derives from vari- point for launching and maintaining applications. The sys-
ous ranges of values of those characteristics. This de-tem mustaccurately reportlynamically changing node and
sign gives users the flexibility to find geographically dis- network characteristics. Because many distributed amplic
tributed resources for applications that are sensitivedthb  tions are sensitive to inter-node latency and bandwidth, th
node and network characteristics, and allows the system tOSystem must Support queries over not just per-node charac-
rank acceptable configurations based on their quality for teristics, but also oveinter-node characteristics Finally,
that application. We explore a variety of architectures to pecause applications have widely varying needs and be-
deliver SWORD's functionality in a scalable and highly- cause desired resources are often scarce, users should be

available manner. A 1000-node ModelNet evaluation us- aple to specify the ranges of resource quantities that their
ing a workload of measurements collected from PlanetLab application needs, as well as thality lost from the selec-

shows that an architecture based on 4-node server clustertion of imperfect but acceptable nodes.
;ites at network peering facil'ities outpgrforms a decdntra A number of recent efforts have explored global resource
ized DHT-based resource dl_scovery _mfrastructure for_all discovery [2, 9, 19, 23, 41, 46, 47]. However, to our knowl-
but t_he smallest numbe_r_of sites. Whlle su<_:h a centrallzededge no existing system meets all of the above require-
architecture shows significant promise, we find that our de- ents. 1n particular, resource discovery systems must sup-
cent_rahzed implementation, both in emulation and running port specifying required inter-node characteristics drel t
continuously on over 200 PlanetLab nodes, performs well \o|4tive utility of both per-node and inter-node charaister
while benefitting from the DHT's self-healing properties. < in assessing tradeoffs among competing potential con-
figurations. One contribution of this work is to present the
semantics of SWORD, a resource discovery infrastructure
1. Introduction that allows users to easily describe desired resources as a
topology of interconnected groupsth required intra-group
Grid applications, ranging from distributed scientific and inter-group characteristics apenalty functiongo in-
Computations [7’ 14, 26, 32] to |ong-running network ser- dicate the Utility of those characteristics to the appimat
vices [16, 20, 22, 25, 34], are becoming an increasingly Our implementation of SWORD, which supports our own
important part of the computing landscape. At the same query language and Condor ClassAds, has been deployed
time, the prevalence, scale, and geographic distributfon o @s a continuously-running PlanetLab service for more than
deployment platforms for such applications has grown. For Six months, tracking over 40 metrics per machine from a
example, Grid3 consists of 2000 CPUs at 25 sites [18], andcombination of sources [11, 33, 40, 42].
PlanetLab offers 500 machines at 200 sites [3]. One sig- A resource discovery service could incur significant
nificant difficulty in the practical use of such shared, large load, both in terms of monitoring the target infrastruc-
scale infrastructures centers arouadource discovergnd ture and answering resource discovery queries. Thus, the



SWORD'’s measurement database with information about
which resources each user can access, at what cost, and dur-
ing what time periods. Queries specify a period of time for
using the requested resources, and candidate nodes are fil-
tered to exclude nodes that are not available to that user for
the requested period. Although our deployment of SWORD
has been in a “best effort” environment, we expect to inte-
T —— mSe:’::ORD grate it with resource allocation tools such as SHARP [17]
or SNAP [10] to support arbitrated usage scenarios.
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Two observations about distributed scientific applica-
tions and distributed network services guide the design of
Figure 1. High-level SWORD architecture. SWORD's query representation. First, as also noted in [23],
o o . ) some distributed scientific applications desire collewio
second principal contribution of this work is an explo- ¢ tightly-coupled groups of nodes. To enable discov-
ration of the architectural space for efficient and robust re ery of such groups, SWORD supports requests for a num-

source discovery. Our initial intuition was that some vari- pa of equivalence classes callgobups each defined by
ety of a distributed architecture would be required to scale 5 required number of nodes, a range of acceptable per-

to our target settings, an approach adopted by related efy,gge characteristics, and acceptable inter-node measure-
forts [2, 19, 41, 46]). The appropriate architecture degend ments sych as latency and bandwidth among group nodes.
upon the system workload and deployment scenario, andgome applications may further wish to constrain group
distributed architectures do offer a number of advantages.gcation in the network topology or connectivigmong
However, through a large-scale deployment and evaluationyroyps,  For example, a Content Distribution Network
of multiple instances of SWORD embodying different ar- g,ch as CoDeeN [34] may desire small clusters of tightly-
chltectqrgs, We'flnd thatacentrallzgd archltgcture par$or coupled nodes near several distinct geographically dis-
competitively with several decentralized architecturedar  iputed user populations, with low-latency, high-bandiivi

a number of realistic settings. ~_links among clusters. Hence, SWORD also allows the user
The rest of this paper is organized as follows. Section 2 1 request that each group be within a desired latency of a
presents an overview of the SWORD architecture, and Sec'specified network reference point, and to specify required

tion 3 describes our implementation. Section 4 evaluatesranges of inter-node measurements between nodes in dis-
SWORD, Section 5 presents related work, and Section 6tinctgr0ups.

concludes. A second observation guiding SWORD's query language
) ) is varying application sensitivity to deviations from spec
2. System Architecture and Queries ified per-node and inter-node constraints. Thus, we wish
to allow users to specify absolute requirements on per-
2.1. Target Usage Scenarios node and inter-node characteristics, similar to Class/&fl [3

“constraints,” and sensitivity to deviations from preésir

SWORD is designed with two usage scenarios in mind. Per-node and inter-node characteristics, similar to Gldss
When used in a “best effort” environment such as Planet- ranking functions. In this way, nodes whose value for an
Lab, SWORD matches a user’'s resource Specification toattribute fall within the required range are ranked by their
the node characteristics at the time the request is madesuitability based on their deviation from the preferredyean
SWORD returns an ordered list consisting of sets of nodes.Users describe this sensitivity using per-attribptnalty
The list is ranked by the closeness of each set's match tofunctions which can be thought of as the inverse of utility
user desires. Users dep|oy their app"caﬂon on the set offunctions. Penalty functions are described in detail |I'][31
nodes deemed to best match their requirements and period- SWORD consists of three parts, illustrated schematically
ically re-query SWORD to realign their configuration with in Figure 1. A user describes their desired configuration us-
time-varying system characteristics. ing a native SWORD XML syntax or a Condor ClassAd,

Alternatively, SWORD may be used in conjunction with and the system returns the lowest-penalty mapping (or a
an external resource allocation or admission control mech-ranked set of mappings) of available nodes to groups in the
anism. The resource allocation system might augmentuser’s query.



Group NA <QUERY> ::= <GRP>+ <| NTERGRP>?

Numvachi nes 4 <GRP> ::= <GRPNAME> <NUMVACHI NES>? (<REQ> <PREF>?) +
Required Load [0.0, 2.0] <GRPNAME> ::= 'Group’ <GNAMVE>
Preferred Load [0.0, 1.0], penalty 100.0 <GNAME> :: = <STRI NG
Requi red FreeDi sk [500.0, MAX] (MB) <NUMVACHI NES> :: = ' Nunvachi nes’ <I NTEGER>
Preferred FreeDi sk [1000.0, MAX], penalty 100.0 <REQ> ::= <PERREQ> | <I NTERREQ>
Required OS [*‘ Linux '] <PERREQ> ::= 'Required <ATTRNAME> [<DOUBLE> | "M n’, <DOUBLE> | 'Max'] |
Required All Pairs Latency [0.0, 20.0] (ns) "Required’ <ATTRNAME> [’ True' ? ' False' ?] |
Preffered All Pairs Latency [0.0, 10.0], penalty 100.0 ' Required’ <ATTRNAME> [ <STRING>+] |
Required All Pairs BW[0.5 MAX] (Ml/s) ' Required <ATTRNAME> [ <REFPQOI NT>+]
Preffered All Pairs BW[1.0, MAX], penalty 2.0 <REFPOI NT> ::= <LOCATI ON>, <DOUBLE> | 'Mn', <DOUBLE> | 'Max’
Required Location [‘‘NorthAnerica'’', 0.0, 50.0] (ms) <INTERREQ> ::= 'Required ’'OnePair’ <ATTRNAMVE> [<DOUBLE> | 'Mn’', <DOUBLE> | 'Max'] |
'Required 'AllPairs’ <ATTRNAME> [<DOUBLE> | 'Mn’', <DOUBLE> | 'Max']
Group Europe <PREF> ::= <PERPREF> | <I NTERPREF>
NumMachi nes 4 <PERPREF> ::= 'Preferred’ <ATTRNAME> [<DOUBLE> | 'Mn’', <DOUBLE> | 'Max'],
Required Load [0.0, 2.0] 'penal ty' <PENALTY> |
Preferred Load [0.0, 1.0], penalty 100.0 'Preferred” <ATTRNAME> [ (' True', <PENALTY>)? (' False', <PENALTY>)?] |
Required FreeDi sk [300.0, MAX] (MB) "Preferred” <ATTRNAME> [ (<STRING>+, <PENALTY>)+] |
Preferred FreeDi sk [1000.0, MAX], penalty 100.0 "Preferred’ <ATTRNAME> [ (<REFPO NT>+, <PENALTY>)+]
Required OS [*‘Linux' '] <INTERPREF> ::= 'Preferred 'OnePair’ <ATTRNAVE> [ <DOUBLE> |
Required All Pairs Latency [0.0, 20.0] (ns) 'Mn', <DOUBLE> | ’'Max'], <PENALTY> |
Preffered All Pairs Latency [0.0, 10.0], penalty 100.0 "Preferred” 'AllPairs’ <ATTRNAVE>
Required All Pairs BW[0.5 MAX] (Ml/s) [<DOUBLE> | 'Mn', <DOUBLE> | 'Max'], 'penalty’ <PENALTY>
Preffered All Pairs BW[1.0, MAX], penalty 2.0 <I NTERGRP> :: = (<I REQ> <| PREF>*) +
Required Location [‘‘Europe’’, 0.0, 50.0] <IREQ> ::= 'Required’ 'OnePair’ <ATTRNAVE> <GNAME> <GNAME>
[<DOUBLE> | "M n', <DOUBLE> | 'Max'] |
I nter G oup "Required 'AllPairs’ <ATTRNAME> <GNAME> <GNAME>
Required OnePair BWNA Europe [3.0, MAX] (M/s) [<DOUBLE> | "M n’, <DOUBLE> | ' Max']
Preferred OnePair BWNA Europe [5.0, MAX], penalty 0.5 <IPREF> ::= "Preferred ’'OnePair’ <ATTRNAVE> <GNAME> <GNAME>
[<DOUBLE> | 'Mn', <DOUBLE> | 'Max'], 'penalty’ <PENALTY> |
"Preferred” 'AllPairs’ <ATTRNAME> <GNAMVE> <GNAME>
[<DOUBLE> | 'Mn’', <DOUBLE> | 'Max’'], 'penalty’ <PENALTY>
<PENALTY> ::= <DOUBLE>
(@) (b)
Figure 2. (2) Sample SWORD query requests two groups. Group N A requests four Linux nodes
within 50 ms (using network coordinates) of a reference node in North America. The query shows a

preferred and required range of values for desired attribut es, and a penalty for being outside of the
preferred range. For example, nodes should have load less th an 1.0, but the operator is willing to
accept nodes with load up to 2.0, with a normalized penalty of 100 units for load values between 1.0
and 2.0. Group Europe is similarly defined. One inter-group b andwidth constraint between NA and
Europe is specified. (b) An abstract specification of SWORD’s native query language in EBNF.

2.3. Expressing Queries straints. For compatibility with existing Grid applicatis,
SWORD also supports Condor ClassAds as depicted in

Putting the group and penalty function features together, Figuré 3 for the search engine query. Because the stan-
consider the following example. A small Internet search dard ClassAd syntax does not support specifying inter-node

engine has large user populations in North America and Properties, SWORD can only constrain and rank based on
Europe. The service architecture is such that groups ofP€r-nede properties using this syntax.

four nodes constitute a “site,” sharing the search index and

parallelizing the search functionality. The service opera 3. Implementation

tor decides to request one group of four nodes near a net-

work reference point in North America, and another group ~ The main components of SWORD are tigery proces-
near a point in Europe. To enable close cooperation within sor and theoptimizer The query processor finds all nodes
a site, the operator specifies low-latency, high-bandwidth matching the user’s specifications. The optimizer finds the
links among all nodes within a site. Because sites peri- lowest penalty mapping of those candidate nodes to groups,
odically communicate newly-crawled data, the operator re- based on specified penalty functions.

quires at least one high-bandwidth link connecting a pair of

nodes in different groups. Finally, the operator places per 3.1. Query Processor

node requirements on free disk space and load.

SWORD supports two query languages. Figure 2(a) A node that wishes to offer its resources through
shows a sample query issued by the search engine oper&S8WORD joins the SWORD infrastructure and collects
tor using SWORD's XML specification language, slightly resource-monitoring data locally. Thigporting nodepe-
modified for clarity. Figure 2(b) provides an EBNF descrip- riodically sends ameasurement reporto one or more
tion of this query syntax. SWORD endeavors to locate the SWORDservers A node need not be part of the SWORD
lowest-penalty mapping of available nodes to groups in theinfrastructure to submit queries. To issue a querglient
user’s query, with the overall penalty of a mapping defined node sends a query to any node in the SWORD infras-
as the sum over all groups of each member node’s penaltytructure. Thisquery nodereceiving the request acts as a
accounting for per-node, inter-node, and inter-group con- proxy into the SWORD infrastructure, potentially issuing



et noe = free_mem = 13870396 (KB)

nunmechi nes = 4;

constraint = load <= 2.0 & freedisk >= 500 & os == ‘‘linux'’ &&
netdist(‘‘NorthAnerica ') < 50;
rank = (100.0 * (load-1 > 0 ? load-1: 0)) +
(100.0 * (1000-freedisk > 0 ? 1000-freedisk : 0));
1 .
attribute value
[ nane = ‘‘Europe'’; H H i
nunmachi nes = 4; blts blts f'ﬁndom b“‘s
constraint = load <= 2.0 && freedisk >= 300 & os == ‘‘linux’’ && —
netdist(‘‘Europe’ ') < 50;
rank = (100.0 * (load-1> 0 2 load-1: 0)) + key=0x31000D3A53C5E8F979C3

(100.0 * (1000-freedisk > 0 ? 1000-freedisk : 0));
I
. Figure 4. Constructing a DHT key from an
<attribute,value > pair. This key is 80 bits for
clarity; SWORD uses an analogous mapping

technique to produce its 160-bit keys.

Figure 3. Sample query using ClassAd syntax.

sub-queries to remote servers, depending on the query pro-
cessor algorithm in use. In our deployments, the reporting

node, server, client, and query node roles are implemented
on the same set of nodes. The DHT delivers the message to the node responsible for

the key, and automatically repartitions the keyspace among

nodes when DHT nodes fail, recover, or join. To enable a

3.1.1. Design Alternatives for Storing and Retrieving  qguery to visit the nodes responsible for a contiguous range
Per-Node Attributes of keys, SWORD uses existing DHT “successor pointers”

. N . i that organize the nodes into a linked list sorted by ascend-
The core query processing primitive of interestnisilti-

attribute range searchFor example, consider a query that g key ranges.

reguests a group of nodes that have load average between Figure 4 shows hO\_N SWO.RD maps a measurement to

0.0 and 2.0 and free disk space between 100 and 200 MB. a DHT key. The top b,'ts part_ltlon atiributes evenly among
One approach to handling such a query is a c:entralizedDHT SEIVers. T_he middle b'ts. map a value to one of the

architecture in which a central database collects andsstore > Vo'> responsible for that attribute. The b°“°”.‘ biteagbr

all reports of load and free disk space (along with the iden- measurements of the same value among multiple servers,

tity of the sending node and a timestamp), and maintainsto load balance attributes that take on a small number of
indices on load and disk space to quickly find nodes in re- values, such as booleans. The middle and bottom bits are

quired ranges. Although simple to implement, a centralized ?he;'tn;?nt;ytinbz(ljg'gés?ggr:rgiﬁmek% p;eg:;ten:uotﬁ Tg(mécte d
architecture potentially suffers from limited scalalyilénd . g Key ) | EXP
availability. values of that attribute. The only global configurationestat

To improve scalability and availability, one might dis- on which all nodes must agree is the number of key bits used

tribute the database across nodes. In this case. we partitio as attribute bits. Also, nodes issuing updates and queries
tr:eudata space among servers b. attritl)ute ar’u\lllv thp:z 'SLbr_nust know the mapping function for each attribute they
. P 9 y T wish to update or query. A system with more or fewer at-
partition by value. For example, one server might be re- _ . :
. . . tributes than are allowed by the number of configured at-
sponsible for handling updates for all machines whose load ibute bi il f X | d i b
is between 0.0 and 1.0, another for loads between 1.0 ano‘rI gte 1ts wi unctpn correctly, and any resu ting su
i ) R ' optimal load balance is corrected over long time scales us-
2.0, etc.; another for free disk between 0 MB and 100 MB, ing active load balancing in which DHT nodes reallocate
another for free disk between 100MB and 200MB, etc. Al-

though more scalable and available, satisfying distrithute thev\r/n qpp|Tg of kteys(;o reslpotns]:ble r(;oc:ez [?]'d
range queries in this architecture could require contgctin € Impiement and evaluate four distributed range query

many servers, increasing the amount of communication anqapprqaches—namelﬁngIeQuery, MultiQuery , Index, .
the complexity of the searching algorithm. andFixed—based on the preceding methodology. The first

. . . . three use a DHT while the fourth does not. These tech-
One way to reduce implementation complexity for this

. o nigues all return a list of nodes meeting a query’s per-node
approach is to use a distributed hash table (DHT) to auto- que -eling & query's p
requirements, and the corresponding measurements.

matically partition the data space among servers. DHTs are . . L . .
yp b 9 SingleQuery, illustrated in Figure 5(a), includes in each

scalable, self-configuring, and highly available, and ¢hes t dll attribut | for th "
traits are a good match to our target of large federated plat_measuremen repodl aftribute vaiues for the reporting

forms that eschew centralized management. SWORD map?Ode' A reporting node transmitsmeasurement reports,
a.n <atmbUte’Value measurem.em to a server by first map- 1We also implemented a scheme that follows DHT routing tablatp
ping it to a DHT key, as described below, and then ?.Sklng ers rather than successor pointers; we found that for oukloamis, the
the DHT to route the measurement to the corresponding keytwo approaches performed within 10% of one another.
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Figure 5. (a) The example query is routed to one key chosen ran domly between the key for A =6
and A = 22. Itis then forwarded along DHT successor pointers to all oth er nodes responsible for
values of A between 6 and 22. Those nodes return the lists of nodes they st ore matching both the
A=[6,22] and B=[2,391] criteria. (b) The query is routed to 0  ne key between A =6 and A = 22, and

one between B =2 and B = 391. Itis then forwarded along DHT successor pointers as in (a). The
nodes in the “A sub-region” return the lists of nodes they sto re matching the A=[6,22] criteria, and
the nodes in the “B sub-region” return the lists of nodes they store matching the B=[2,391] criteria.
The querying node intersects the node lists from the two sub- regions to find the set of nodes that

match both criteria. In (a) and (b), all nodes except the clie nt are part of SWORD and the DHT.

each containing: attribute values, tov servers, each of turned nodes to find those that satisfy all attributes in the
which is the DHT node responsible for a key derived from query. This approach is inspired by the search strategy in
the value of one of the attributes as illustrated in Figure 4. XenoSearch [41] and keyword search in [38].

While introducing relatively high overhead for updates, a  Fixed is an approximation to a non-replicated geograph-
multi-attribute query need only be sent to the set of serversically distributed datacenter model with a varying number
responsible for the target range of one of the queried at-of servers. To send an update, a SWORD node sends one
tributes. In particular, the query is first routed to a node copy of its measurement report to onerofnfrastructure
responsible for any key in the query range of one attribute servers that is assigned at random when the reporting node
in the query (the “range search attribute,” chosen with the starts up (so that approximately/n SWORD nodes are as-
goal of minimizing the number of DHT nodes that must be signed to each server, when the reporting node population is
visited to satisfy the query), and it is forwarded along DHT m). A query node sends one copy of each query to that same
successor pointers to all other nodes responsible for keys i server, which forwards it to the remaining- 1 servers, col-

the query range of that attribute. This technique is similar lects the results, and returns the results to the queryidg.no

to Mercury [4] multi-attribute distributed range queriesla  (Updatingn nodes and querying one performed within 10%

eSearch [43] multi-keyword text search. of this approach for our workloads.) A truly centralized so-
MultiQuery , shown in Figure 5(b), places a single value lution is an instance of this approach with= 1.

in each measurement report. A node reportingttributes Index is a hybrid between the Fixed and SingleQuery

transmitsn 1-attribute measurement reports 40 DHT approaches. Fixed infrastructure servers hold an index tha

keys (servers). This approach uses less update bandwidtimaps contiguous DHT key ranges to the IP address of the
and storage than does SingleQuery. The downside is thaDHT node responsible for that range. Updates are handled
one set of servers must be queried for each attribute in aas with the SingleQuery approach. Queries are sent first to
query. Moreover, because each server only stores infor-the index server(s) responsible for the key range of inter-
mation about one attribute, each server can only filter onest, and those index servers then forward the query directly
one attribute, so this approach can potentially return manyto the DHT nodes responsible for the requested key range
more nodes than SingleQuery, in which each server can fil-without first routing through the DHT. All queries are thus
ter on all attributes. The query node sends a copy of thehandled in three hops.

query to each server group in parallel and intersects the re- Our implementations use the Bamboo DHT [39], but the



approaches generalize to any DHT. In our DHT-based archi- The mapping from a node to its representative is one of
tectures we build our own soft-state distributed data riepos the attributes reported by each node. Therefore to bopistra
tory on top of the key-based routing interface. Measurementeach node need only know the identity of its own represen-
reports time out after a fixed multiple of their update inter- tative, much as nodes must typically know the IP address
val, thereby automatically deleting “dead” nodes and old of their DNS server. When a representative node boots, it
measurements. Determining an appropriate measuremenperforms a standard SWORD distributed query to find the
update rate depends on a number of factors, including meaidentities of all other representatives in the system, ard b
surement stability over time, required accuracy, and ddsir  gins measuring to them.

update bandwidth consumption. Experiments on PlanetLab

showed that 94% of nodes meeting a typical load constraint3 2. Optimizer Implementation

(5-minute load average= 5) at a given point in time con-
tinuously met it over the subsequent 5-minute interval, and
that 89% of nodes meeting that load constraint at a given
point in time continuously met it over the subsequent 10-
minute interval, suggesting an update interval on the or-
der of 5 minutes provides high accuracy for most nodes.
Amount of per-node network transmit bandwidth showed
similar behavior.

Once the per-node and inter-node measurements have
been retrieved, the optimizer finds the lowest-penalty map-
ping of nodes to the groups specified in the query. The op-
timizer computation is not parallelized, running only oe th
node that received the initial query from the client. But be-
cause clients may contact any SWORD node initially, the
i , computation is effectively distributed on a per-request ba

New attributes can be added to SWORD at runtime. ¢ the a5k of creating groups of a specific size that sat-
When a new attribute is installed on a reporting node, jof inter-node and inter-group constraints is NP-hardr Ou
SWORD itself can be used to distribute the attribute’s iden- optimizer finds the penalty of all possible node combina-

tity and its <attribute,value--to-key mapping function— yi5s bt the optimizer biases this exponential search to-

nodes periodically query a specie_ll attribute that each _nOdewards groups that are likely to have low penalty, so that
reports, whose associated value is the mapping function(Ske gearch can be terminated prior to completion without
that the reporting node has added to the system. severely impacting result quality. This allows the user to
trade off result quality for running time.
3.1.2. Storing and Retrieving Inter-node Attributes First the optimizer generates a set of “candidate groups”
meeting the per-node and inter-node requirements for each
The process we have described retrieves the identities ofgroup. To do this, for each grou@ in the query, the opti-
all reporting nodes matching gher-noderequirements in ~ mizer first enumerates all combinations of nodes meeting
the query, along with the values of those attributes. To re- G’s per-node requirements, and labels each combination
solve our queries we also need inter-node measurementswith the total per-node penalty for that set of nodes. For
To reduce the resource consumption of gatherirgv?) each of these combinations, it then computes the totakinter
inter-node measurements, SWORD leverages the observanode penalty (which is infinite if the set does not meet the
tion that nodes typically fall into equivalence classes for requirements). Combinations of nodes that do not have an
inter-node attributes. For example, the latency betweeninfinite penalty become candidate groups. SWORD allows
Node A in Autonomous System 1 (AS1) and Node B in the user to specify a time limit for this phase of the computa-
AS2 is often approximately equal to the latency between tion, and evaluates each combination in order of increasing
any node in AS1 and any node in AS2. SWORD there- labeled per-node group penalty. Thus if the time limit ex-
fore allows arbitrary groups of nodes to define a “represen-pires before the optimizer has evaluated all combinations,
tative” node that collects inter-node measurements om thei at the very least it has evaluated the sets of nodes with the
behalf. Choosing appropriate representatives is an orthog lowest total per-node penalty; these sets generally ale® ha
onal issue we do not address that might leverage existingthe lowest total group penalty (once inter-node penalty is
work on network-aware clustering [6, 24]. added).

Instead of storing inter-node measurements in the DHT,  Nextthe optimizer tests and ranks these candidate groups
representatives store inter-node measurements theraselvebased on inter-group requirements and preferences. The al-
This saves them the bandwidth of periodically publishing gorithm is similar to that described above, but instead of
a potentially large number of inter-node measurements intosearching for groups of nodes, it searches for groups of
the DHT. Upon receiving node reposfrom the per-node  groups, starting with the lowest-penalty candidate groups
attribute range query, the querying node issues a second dis  The full exponential search for the lowest-penalty solu-
tributed query to the representative nodes indicated®in tion may take a long time to complete. Thus, we have im-
to obtain the inter-node attribute(s) of interest amongé¢ho plemented several simple heuristics for stopping the searc
representative nodes. early. Three second timeoutstops the search after three
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Figure 6. 90th percentile latency of Single- Figure 7. 90th percentile latency of Sin-
Query vs. MultiQuery approaches, with work- gleQuery, Fixed, and Index per-node at-
load of 3 or 4 updates/hour/node and 3 or 4 tribute range query approaches. Workload
queries/hour/node. is 12 or 24 updates/hour/node and 12 or 24

queries/hour/node.

seconds. In this case we divide the allotted time evenly

between the first and second phases described above, anghq client-stub links 384 Kb/s bandwidth. Latencies were
subdivide the first phase’s time evenly among all groips  pased on the INET topologyL /32 of the nodes were cho-
Top half of candidates searches only the lowest-penalty sep a5 “representatives.” When evaluating the Fixed and
half of the candidate groupop 5 candidateseliminates  |ngex approaches, the infrastructure servers were grouped
all but the lowest-penalty 5 candidates for each group kefor it 4-node stub domains each with 150 Mb/s. 1 ms la-
running the search. Finally, since the lowest penalty can-tency connections to their upstream transit node, to emu-
didate groups are processed first in the search, the first anpate an environment in which a service provider has dis-
swer found may be sufficient; thus tfiest answerheuristic  yipyted servers among a number of geographically dis-
stops once the first valid solution is found. We evaluate the yiputed. well-connected co-location centers. For the DHT
performance and accuracy of these heuristics in Section 4.2p55¢( approaches, we used the Bamboo DHT available in

August 2004.
4, Evaluation Our baseline workload consisted of updates (measure-
ment reports) and queries issued by each of 1000 virtual
4.1. Emulation-based Evaluation nodes. The content of updates were taken from a repre-

sentative one-hour portion of a trace of Ganglia [40] and
Our emulation experiments focus on the performance Vivaldi [11] measurements collected from PlanetLab. Up-
and overhead of SWORD'’s distributed query processor. Wedates contained 32 metrics collected by Ganglia during that
choose latency as our performance metric because SWORDImMe period, along with network coordinates computed by
clients may periodically re-query SWORD to adapt their ap- Vivaldi and several attributes we used for debugging, for
plication to changing node and network conditions, or as @ total of 40 attributes. Queries contained five per-node
the resource needs of their application changes. We chooséttributes—fifteen-minute load average, free disk space,
aggregate bandwidth consumption as our overhead metridree memory, bytes per second received, and bytes per sec-
because it potentially represents a real financial costeto th ond sent—and one inter-node attribute—inter-node latency
users and operators of the infrastructure. This sectiolneva Queries were formulated according to a distribution such
ates our distributed query processor. We evaluate optimize that they requested a minimum amount of disk space that is
performance separately in Section 4.2, and end-to-end perZipf distributed between 10 MB and 100 MB (biased toward
formance on PlanetLab in Section 4.3. the high end of the range), a fifteen-minute load average
We evaluated SWORD's query processor on a cluster ofless than a uniformly distributed value between 0 and 5.0,
40 IBM xSeries PCs with Dual 1 GHz Pentium Ill proces- a minimum amount of free memory that is Zipf distributed
sors, 1.5 GB of RAM, and Gigabit Ethernet. We used Mod- between 0 MB and 48 MB (biased toward the high end of
elNet [45] with an INET topology [5] with 10,000 tran- the range), bytes per second in and out (competing traffic)
sit nodes, 1,000 client nodes and 8 client nodes per stubthat is no more than 0.1 MB/s for half of the queries and
Transit-transit links were given 150 Mb/s (OC3) bandwidth unconstrained for the other queries, and inter-node Igtenc



| Range Search Techniquel Normalized bandwidth |

Fixed-2 1.0

Fixed-4 1.22 o
Fixed-8 1.37

Fixed-16 1.34 3w
Index-4 2.10
SingleQuery 2.22 R

Table 1. Bandwidth consumption for the 12/12
workload, normalized to Fixed-2, which con-
sumed an average of 5 Mb/s during the one- ‘ ‘ ‘ ‘ ‘ ‘
hour run. Network traffic overhead includes ° T
measurement reports, queries for per-node
attributes, retrieving inter-node attributes,

maintaining the DHT, and periodically com- Figure 8. Number of candidate nodes re-
puting network coordinates. turned by range query as a function of time,

before and after killing 20% of the reporting
nodes at 5000 seconds.

between 0 ms and 1000 ms. Because our trace containe("j{pproalCheS vary greatly in performance, but we see that for

valid data for only 124 PlanetLab nodes, we emulated aourworkload, a fixed infrastructure cluster with a relaljve

1000-node system by duplicating each of the 124 entries aromall number of nodes and a high-bandwidth network con-

average of 8 times. The median number of nodes returneonecuon can better support the typlcgl resource discgver
; workload that we tested than can an infrastructure based on
per query was 120 (12% of the nodes in the total system)

and the 90th percentile was 160. In the DHT approaches end-nodes organized into a DHT. The Fixed configurations

attribute bits are assigned so that each of the 40 attrilmites that performed poorly did S0 because of <_:ongest|on.
; - In another set of experiments, we varied the number of
mapped to a sub-region containing 25 nodes.

representatives. We found that electing half of the nodes
as representatives reduces query latency by up to 70% for
4.1.1. Distributed Query Latency the Fixed approaches and 7% for the SingleQuery approach
cfompared to electing all nodes as representatives; the im-
provement increases to 90% and 10% when a quarter of
nodes are representatives.

Figure 6 shows the impact of range-search approach an
workload intensity on the latency to satisfy the range query
for SingleQuery compared to MultiQuery. At higher work-
load rates, our emulation cluster's CPUs became overloaded ] ]
for the MultiQuery approach. Nonetheless, these experi-4-1-2- Bandwidth Consumption

ments reveal that SingleQuery clearly outperforms Multi- Taple 1 shows SWORD’s bandwidth consumption. The
Query for our “typical” resource discovery workload, SO centralized (Fixed) approaches use the least bandwidth.
we do not consider MultiQuery further. The primary rea- This is because they send one copy of each 40-attribute
son for the difference is that the network bandwidth con- measurement report to one server rather than one copy to
sumed by the larger number of nodes returned to the querysach of 40 servers as in the Index and SingleQuery ap-
ing node by MultiQuery compared to SingleQuery creates proaches. Also, the query in Fixed must on average be
sufficient congestion to overwhelm the benefit MultiQuery qistributed to a smaller number of nodes (2, 4, 8, and 16),
derives from sending only one attribute per update. rather than up to 25 for the DHT-based approaches. Elect-
Figure 7 shows the impact of range-search approach andng half of the nodes as representatives reduces bandwidth
workload intensity on the latency to satisfy the range query consumption by up to 15% compared to electing all, and

for SingleQuery compared to the remaining approaches. Weglecting one quarter reduces it by up to 23%.
see that Index always outperforms the other DHT-based ap-

proaches. This is reasonable bec;ause queries in Index takg_l_& Robustness to Perturbations

three hops in parallel (one to the index server(s), one to the

DHT server(s) storing measurements, and one back to theSWORD takes advantage of the DHT’s self-healing prop-
querying node) while in the SingleQuery approaches eacherty to automatically remap keys to nodes when a node fails
query may visit up to 25 nodes (the maximum number of or recovers, or voluntarily joins or leaves the system. To
nodes to which any attribute’s range is mapped). The Fixedverify this robustness mechanism, we applied a workload



‘ W Full exp. 3 seconds MTop half EIFirst answer ETop 5 e

>

% of Exponential Runtime
% of Optimal Penalty Found

S2i zan 841 841 24389 24389 103823 103823 729000 729000
841 24389 103823 720000 Equal weight Heavy Cross Equal weight Heavy Cross Equal weight Heavy Cross Equal weight Heavy Cross
Group Group Group Group

Total # Searches weight weight weight weight
\E Full exp. N3 seconds [ Top half E First answer H Top 5 \ Total # of Searches Possible

Figure 9. Runtime of optimizer using different Figure 10. Accuracy of optimizer heuristics
heuristics shown as a percentage of the run- relative to optimal solution found in full expo-
time to complete the full exponential search. nential search. x-axis shows total number of
The x-axis shows the total number of possible group combinations checked if the full expo-
group combinations that would be checked nential search were run. A missing bar indi-
if the complete exponential search were run. cates that no solution was found.

Total runtime for the exponential search is in-

dicated at the top of the bars. tics relative to the results of the full exponential search.

In Figure 10, the “equal weight” bars represent queries
to SWORD (in the SingleQuery configuration), and killed in which penalties were assigned to all attributes equally.
20% of the DHT nodes 5000 seconds into the run. The “heavy cross-group weight” bars represent queries in

Figure 8 plots percentage of the maximum result set which the penalty assigned to the cross-group constraint is
returned during each 10 minute interval. All nodes are 10 times greater than the other attributes. We see that the 3-
“servers” in the DHT storing measurement reports as well second heuristic performs well for small searches, that the
as load generators, so killing 20% of the nodes removes‘top half” heuristic performs well in all cases and, for our
20% of the reporting nodes, and we therefore expect 80%Wworkload, actually finds the optimal solution. The “first an-
of the initial (maximum) result set to be returned once the swer” approach is the least accurate heuristic, and the “top
system recovers. Indeed we see soon after 20% of the node8” heuristic does not find a feasible solution at all in half of
are killed at time 5000 seconds, queries begin receiving theour test cases.
new result set (containing 80% of the original result set)
once Bamboo “heals,” stale data times out of SWORD, and4.3. End-to-end Performance on PlanetLab
new measurement reports are issued.

Compared to our ModelNet configuration, PlanetLab has
4.2. Optimizer Performance a smaller number of nodes and more CPU contention. We
ran experiments on PlanetLab on July 16, 2004 on the fol-
We measured the performance of the optimizer on a sin-lowing two sets of nodes (one a subset of the other): i)
gle 3 GHz Pentium 4 node. The update workload came fromall 214 usable nodes that were connected to the commod-
Ganglia and all-pairs-pings [42] measurements on Planet-ity Internet, and ii) a subset of the first set that are all
Lab, and the query workload consisted of a representativeat universities in North America and tend to have high-
mix of queries containing 2 or 3 groups. bandwidth, low-latency network paths to one another. We
Figure 9 shows the running time of the optimizer using used SWORD in the SingleQuery configuration. Nodes re-
each of our heuristics, as a percentage of the optimizer run-port the same metrics as in our ModelNet experiments. We
ning time when using the full exponential search. We see measured query latency for a single query at a time; so the
that for larger problems, the savings gained from using a measured times show “best case” latency.
heuristic is significant, reducing a 72 second search to afew We issued a series of queries, each requesting two groups
seconds or less. of 4 nodes each, such that the inter-node latency among all
Reducing the running time of the search is useful only nodes within each group was between 0 ms and 150 ms, and
if the result returned maintains an acceptable level of accu the load on each node was between 0 AhdvhereN was
racy. Figure 10 shows the accuracy of the various heuris-varied from query to query to cover all integers between 1
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Figure 11. Range query median latency ver- Figure 12. Optimizer median latency versus

sus upper bound on requested load, on Plan- upper bound on requested load, on Planet-
etLab. Number of candidate nodes returned Lab. This data is from the same experiment
ranged from 108 to 214 for the top line and as in Figure 11.

34 to 108 for the bottom line, with increas-
ing humbers of nodes returned as the upper

. source mapping component vgFAB stores resource mea-
bound on the requested load was increased. bping P 9

surements in a centralized database in contrast to SWORD's
distributed architecture, and it computes a bounded set of
and 15, inclusive. pre-fabricated groups and stores them in the database rathe
Figure 11 shows that SWORD's range search performsthan dynamically forming them on a query-by-query basis.
r_ea_sonab_ly _WeII on PlanetLab, returning results to the op-  condor and its ClassAds language [27] provide similar
timizer within a few seconds even when all nodes are re- fnctionality to virtual grids and SWORD, absent the notion
turned by the range query. Figure 12 shows that optimizer ot groups and inter-node connectivity constraints. Gang

running time for the full exponential search ranged from \51ching [37] extends Condor's original bilateral match-
two to twelve seconds. The completion time appeared t0ing scheme to a multilateral one, allowing co-allocation

be more strongly correlated with the load on the machine ot mtiple resources. Set matching [29] allows requests
performing the optimization than on the size of the opti- 4t express aggregate constraints. Redline [28] foresilat

mization problem. . the matching problem as a constraint satisfaction problem.
SWORD is currently used for resource discovery by tWo Thege [atter systems allow expression of resource groups,
other PlanetLab services, Bellagio [1] and PLUSH [44]. but they do not offer a concise method to express network

_In sum, end-to-end, even without shortcutting the dis- 1ohoogies. Also, to date their implementations have been
tributed query or optimization steps to sacrifice accuracy f  gntralized. R-GMA [15] and RGIS [12] use a relational

Iatenc_y, we find thgt typical queries can be resolved in 'essmodel to track and query dynamic and static per-node at-
than five seconds in an emulated 1000-node system, and igjhtes, respectively. The latter features nondetestimi

less than ten seconds on PlanetLab, with the larger Planetyeries, allowing users to trade reduced response time for
Lab latency caused by CPU load on the node performing humber of results received.

the optimization step. XenoSearch [41] supports DHT-based multi-attribute

range queries in a manner similar to our MultiQuery ap-
5. Related Work proach, but it uses a separate DHT instance per attribute,
creates its query routing structure explicitly rather tian
SWORD builds on work in resource discovery, Internet- ing built-in DHT successor pointers, and provides approxi-
scale query processing, and distributed range search. mate answers using Bloom Filters. Additionally, SWORD
Kee et al. describe “virtual grids” [23]. The descrip- allows users to define groups with inter-node and inter-
tion language vgDL allows users to describe resource re-group requirements and “penalty functions” to rank nodes
quirements as hierarchies of homogeneous or heterogemeeting the requirements.
neous groups of nodes with good or poor connectivity, rem-  Globus MDS2 [49] allows GIIS indexing servers to
iniscent of SWORD's groups with per-node, inter-node, and aggregate measurement data about GRIP information
inter-group constraints, but with coarser-grained spemifi  providers obtained from GRIS. SWORD's query processor
tions and support for arbitrarily deep hierarchies. The re- could be used as a GIIS, connecting GRISes in a peer-to-



peer fashion. MDS3 and MDS4 have recently emerged asensure that nodes are truthful in their measurement reports
successors to MDS2. a verification service could run micro-benchmarks to verify
PIER [20], Sophia [47], IrisNet [30], and Astrolabe [46] that resource availability matches earlier advertisemérd

provide Internet-scale query processing. All four could be ensure that, modulo collusion, nodes are truthful when they
used to satisfy per-node resource queries, and they offer aun the optimizer, a client might issue each query to several
more expressive language for specifying such requirementsjuery nodes and compare the results.

than SWORD. However, the first three must contact all ~ Privacy is the most challenging security issue for dis-
data-storing nodes to perform range search and the last distributed versions of SWORD. Reporting nodes could en-
seminates measurement data globally, while SWORD tar-crypt attribute names to hide their values, but our range
gets its range search to only the nodes storing measurementsearch mechanism relies on a monotonic mapping function

within the target attribute’s range.

from measured values to DHT keys, and encrypting values

DHT-based range search was suggested initially by using standard techniques, either before or after mapping
Karger and Ruhl [21], and was later implemented and en-them to a DHT key, will break this monotonicity. Privacy-
hanced in Mercury [4]. Our SingleQuery approach is simi- preserving DHT-based range search is an interesting topic

lar to Mercury, but with additional “passive” load balangin
provided by the<attribute,value--to-DHT-key functions.

for future work.

Finally, we have not yet studied the system dynamics

PHT [35] offers an alternative range search strategy basedhat result from multiple large-scale applications peiriod

on tries on top of DHTSs.

cally querying SWORD to determine when and how to mi-

The network topology embedding problem is formulated grate application instances. We anticipate that mechanism
as a constraint satisfaction problem in [8] for wide-areta ne are needed to damp potential oscillations.

works and as an optimization problem in [48] for cluster
networks.

6. Conclusion

We have described SWORD, a scalable resource discov-
ery service for wide-area distributed systems. Users define
a requested system topology in terms of groups with re-
quired intra-group, inter-group, and per-node charasties
whose relative importance and sensitivity are expressed us
ing penalty functions. We explore a number of distributed
query algorithms for finding nodes meeting required per-
node constraints, and several heuristics for finding thé bes
mapping of nodes to groups. Our evaluation shows that a
fixed server cluster at network peering facilities typigall
outperforms a DHT-based resource discovery infrastruc-
ture. Nonetheless, we find that a fully decentralized versio
of SWORD in emulation and on PlanetLab performs rea-
sonably well, while benefiting from the DHT’s resilience.
While our results are specific to the architectures and work-
loads we examined, we believe that our experience consid-
ering a variety of architectures provide interesting ihtsg
regarding appropriate architectures for a variety of syste
depending on available resources, expected level of load,
and required levels of performance and availability.

An important area of future work is security. Nodes
could sign measurement reports and queries as a form of
authentication. Given an authentication infrastructpes;
node rate limiting could ensure that no node utilizes more
than a predefined amount of bandwidth (or optimizer CPU

time) per unit time on any single node. We note, however, [10]

that such a technique is vulnerable to the Sybil attack [13]
and therefore requires a trusted identity creation service

SWORD'’s PlanetLab deployment can be accessed at

http://www.swordrd.org/.
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