
Abstract

Four per-session guarantees are proposed to aid users
and applications of weakly consistent replicated data:
Read Your Writes, Monotonic Reads, Writes Follow Reads,
and Monotonic Writes. The intent is to present individual
applications with a view of the database that is consistent
with their own actions, even if they read and write from
various, potentially inconsistent servers. The guarantees
can be layered on existing systems that employ a read-any/
write-any replication scheme while retaining the principal
benefits of such a scheme, namely high-availability, sim-
plicity, scalability, and support for disconnected opera-
tion. These session guarantees were developed in the
context of the Bayou project at Xerox PARC in which we
are designing and building a replicated storage system to
support the needs of mobile computing users who may be
only intermittently connected.

1. Introduction

Techniques for managing weakly consistent replicated
data have been employed in a variety of systems
[4,10,12,17,19,20]. Such systems are characterized by the
lazy propagation of updates between servers and the possi-
bility for clients to see inconsistent values when reading
data from different replicas. Weakly consistent systems are
popular due to their high-availability, good scalability, and
simplicity of design. These advantages arise from the abil-
ity to allow reads and writes to be performed with little or
no synchronization among replicas. For example, Grape-
vine [4], the first widely used computing system with
weak consistency, used aread-any/write-any replication
scheme, in which clients could read from any server and
could write to any server.

More recently, the use of weakly consistent replicated
data has been driven by the needs of mobile computing
applications [11,13,22]. For example, disconnected users

may want to read and update data copied onto their porta-
ble computers even if they did not have the foresight to
lock it before either a voluntary or an involuntary discon-
nection occurred. Also, the presence of slow or expensive
communications links in the system can make maintaining
closely synchronized copies of data difficult or uneconom-
ical.

Unfortunately, the lack of guarantees concerning the
ordering of read and write operations in weakly consistent
systems can confuse users and applications, as reported in
experiences with Grapevine [21]. A user may read some
value for a data item and then later read an older value.
Similarly, a user may update some data item based on
reading some other data, while others read the updated
item without seeing the data on which it is based. A seri-
ous problem with weakly consistent systems is that incon-
sistencies can appear even when only a single user or
application is making data modifications. For example, a
mobile client of a distributed database system could issue
a write at one server, and later issue a read at a different
server. The client would see inconsistent results unless the
two servers had synchronized with one another sometime
between the two operations.

In this paper, we introducesession guarantees that alle-
viate this problem of weakly consistent systems while
maintaining the principle advantages of read-any/write-
any replication. A session is an abstraction for the
sequence of read and write operations performed during
the execution of an application. Sessions are not intended
to correspond to atomic transactions that ensure atomicity
and serializability. Instead, the intent is to present individ-
ual applications with a view of the database that is consis-
tent with their own actions, even if they read and write
from various, potentially inconsistent servers. We want the
results of operations performed in a session to be consis-
tent with the model of a single centralized server, possibly
being read and updated concurrently by multiple clients.

Session Guarantees for Weakly Consistent Replicated Data

Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M. Theimer,
and Brent B. Welch

Computer Science Laboratory
Xerox Palo Alto Research Center

Palo Alto, California 94304

To achieve this, we propose four guarantees that can be
applied independently to the operations belonging to a ses-
sion. The guarantees are summarized as follows:

Read Your Writes - read operations reflect previous
writes.

Monotonic Reads - successive reads reflect a non-
decreasing set of writes.

Writes Follow Reads - writes are propagated after
reads on which they depend.

Monotonic Writes - writes are propagated after
writes that logically precede them.

These properties are "guaranteed" in the sense that
either the storage system ensures them for each read and
write operation belonging to a session, or else it informs
the calling application that the guarantee cannot be met.

The above guarantees can easily be layered on top of a
weakly-consistent replicated data system. Each read or
write operation is performed at a single server, and the
writes are propagated to other servers in a lazy fashion. To
ensure that the guarantees are met, the servers at which an
operation can be performed must be restricted to a subset
of available servers that are sufficiently up-to-date.

Because enforcement of the guarantees restricts the set
of servers that may be used within a session, requesting a
guarantee can have an adverse impact on availability.
Applications must make a trade-off between availability
and consistency. For this reason, guarantees can be
requested individually on a per-session basis. Requests for
one or more of the guarantees within a session have no
affect on the availability seen by applications that are
using other sessions or on applications that require no
guarantees.

The particular guarantees we present were derived pri-
marily from the needs of applications being investigated in
the Bayou project at Xerox PARC. Bayou is a weakly con-
sistent replicated storage system we are designing and
building to support collaborative applications running in a
mobile computing environment. The examples is this
paper discuss some of these applications and their possible
use of the guarantees. We do not claim that the set of four
guarantees is complete in any way; variations are possible
and may be suggested by new application domains.

This paper presents precise definitions for each of the
four guarantees, gives examples of their usage by various
applications, and shows how to implement them effi-
ciently using version vectors. It also demonstrates how the
guarantees can be added to existing systems, such as
Coda, with minimal or no changes to the server implemen-
tation. Finally, we discuss their effect on availability, raise
issues requiring further research, and compare this work to
other proposals for adding increased semantics to weakly
consistent replicated data.

2. Data storage model and terminology

In order to provide concrete definitions of the session
guarantees, it is first necessary to present the assumptions
made about the underlying replicated storage system and
the terminology used throughout the paper.

The most basic assumption concerns the existence of a
weakly consistent replicated storage system to which the
guarantees will be added. Such a system consists of a
number ofservers that each hold a full copy of some repli-
cateddatabase andclients that run applications desiring
access to the database. The session guarantees presented
are most applicable to systems in which clients and servers
may reside on separate machines and a client accesses dif-
ferent servers over time. For example, a mobile client may
choose servers based on which ones are available in its
region and can be accessed most cheaply.

The term “database” is not meant to imply any particu-
lar data model or organization, nor are the techniques pre-
sented in this paper specific to any data model. A database
is simply a set ofdata items, where a data item could be
anything from a conventional file to a tuple in a relational
database. For simplicity, the discussion in this paper
focuses on a single, fully replicated database, though the
guarantees are equally applicable to a system that manages
a collection of replicated databases.

Two main operations on a database are considered:
Read and Write. The Read operation represents a query
over the contents of the database. A Read could be a sim-
ple retrieval operation such as “return the contents of file
foo” or a complicated query such as “return the names of
all employees who make more than their boss.” The Write
operation updates the database. A Write may involve cre-
ating, modifying, or deleting data items. It may also repre-
sent a transaction that atomically updates multiple items in
a server’s database. The definition and implementation of
session guarantees is unaffected by whether Writes are
simple database updates or more complicated atomic
transactions. Each Write has a globally unique identifier,
called a “WID”. The server that first accepts the Write, for
instance, might be responsible for assigning its WID.

Read and Write operations may be performed at any
server or set of servers. Our guarantees are presented
assuming that each Read or Write is executed against a
single server’s copy of the database. That is, for the most
part, we discuss variants of a read-any/write-any replica-
tion scheme. However, the guarantees could also be used
in systems that read or write multiple copies, such as all of
the available servers in a partition [5].

We define DB(S,t) to be the ordered sequence of Writes
that have been received by server S at or before time t. If t
is known to be the current time, then it may be omitted
leaving DB(S) to represent the current contents of the

server’s database. Conceptually, server S creates its copy
of the database, which it uses to answer Read requests, by
starting with an empty database and applying each Write
in DB(S) in the given order. In practice, a server is allowed
to process the Writes in a different order as long as their
effect on the database is unchanged. The order of Writes in
DB(S) does not necessarily correspond to the order in
which server S first received the Writes (as discussed
below).

Weak consistency permits database copies at different
servers to vary. That is, DB(S1,t) is not necessarily equiva-
lent to DB(S2,t) for two servers S1 and S2. However, prac-
tical systems generally desireeventual consistency in
which servers converge towards identical database copies
in the absence of updates. Eventual consistency relies on
two properties:total propagation andconsistent ordering.
We assume that the replicated system provides eventual
consistency and thus includes mechanisms to ensure these
two properties as follows.

Writes are propagated among servers by a process
called anti-entropy, also referred to in some papers as
rumor mongering, lazy propagation, or update dissemina-
tion [1,6]. Anti-entropy ensures that each Write is eventu-
ally received by each server. In other words, for each
Write W there exists a time t such that W is in DB(S,t) for
each server S. This paper makes no further assumptions
about the anti-entropy protocol, the frequency with which
it happens, the policy by which servers choose anti-
entropy partners, or other characteristics of the anti-
entropy process.

Additionally, all servers must apply non-commutative
Writes to their databases in the same order. LetWriteOr-
der(W1,W2)be a boolean predicate indicating whether
Write W1 should be ordered before Write W2. The system
ensures that if WriteOrder(W1,W2) then W1 is ordered
before W2 in DB(S) for any server S that has received
both W1 and W2. In a strongly consistent system, Write-
Order would reflect the order in which individual Writes
or transactions are committed. In an eventually consistent
system, servers could use any of a variety of techniques to
agree upon the order of Writes. For example, the Grape-
vine system orders Writes by their origination timestamp
[4]. Using timestamps to determine the Write order does
not imply that servers have synchronized clocks since
there is no requirement that Writes be ordered by the
actual time at which they were performed. This paper
makes no assumption about how servers agree on the
ordering of Writes or about how servers make their copies
of the database conform to this ordering. It only assumes
that the system has some means by which Writes are
ordered consistently at every server, as required for even-
tual consistency, and uses the WriteOrder predicate to rep-
resent this ordering.

Finally, weakly consistent systems often allow conflict-
ing Writes to occur. That is, two clients may make concur-
rent and incompatible updates to the same data item.
Existing systems resolve conflicting Writes in different
ways. In some systems the Write order may determine
which Write “wins”, while other systems rely on humans
to resolve detected conflicts. How the system detects and
resolves Write conflicts is important to its users but has no
impact on our session guarantees.

3. Read/Write guarantees

This section precisely defines the four session guaran-
tees in terms of server state and Read/Write operations
performed at servers. Although session guarantees are
directly applicable to systems with client caching, we
present the guarantees as if clients do not cache data that
they read. An application may use one or more sessions to
control the scope of the guarantees that it requests. This
implies that each Read and Write operation issued by the
application is associated with a session. How this associa-
tion is made and whether sessions can be shared across
programs, processes, or machines is an implementation
detail that is left unspecified.

3.1 Read Your Writes

The Read Your Writes guarantee is motivated by the
fact that users and applications find it particularly confus-
ing if they update a database and then immediately read
from the database only to discover that the update appears
to be missing. This guarantee ensures that the effects of
any Writes made within a session are visible to Reads
within that session. In other words, Reads are restricted to
copies of the database that include all previous Writes in
this session. Specifically:

RYW-guarantee: If Read R follows Write W in a
session and R is performed at server S at time t,
then W is included in DB(S,t).

Applications are not guaranteed that a Read following a
Write to the same data item will return the previously writ-
ten value. In particular, Reads within the session may see
other Writes that are performed outside the session.

Consider a couple of examples to illustrate how the
RYW-guarantee might be used in practice.

Example 1. After changing his password, a Grapevine
user would occasionally type the new password and
receive an “invalid password” response. This annoying
problem would arise because the login process contacted a
server to which the new password had not yet propagated.
The problem is not specific to Grapevine but could occur
in any weakly consistent system that manages passwords.
It can be solved cleanly by having a session per user in

which the RYW-guarantee is provided. Such a session
should be created for each new user and must exist for the
lifetime of the user’s account. By performing updates to
the user’s password as well as checks of this password
within the session, users can use a new password without
regard for the extent of its propagation. The RYW-guaran-
tee ensures that the login process will always read the
most recent password. Notice that this application requires
a session to persist across logouts and machine reboots.

Example 2. Consider a user whose electronic mail is
managed in a weakly consistent replicated database. As
the user reads and deletes messages, those messages are
removed from the displayed “new mail” folder. If the user
stops reading mail and returns sometime later, she should
not see deleted messages reappear simply because the mail
reader refreshed its display from a different copy of the
database. The RYW-guarantee can be requested within a
session used by the mail reader to ensure that the effects of
any actions taken, such as deleting a message or moving a
message to another folder, remain visible.

3.2 Monotonic Reads

The Monotonic Reads guarantee permits users to
observe a database that is increasingly up-to-date over
time. It ensures that Read operations are made only to
database copies containing all Writes whose effects were
seen by previous Reads within the session.

Intuitively, a set of Writes completely determines the
result of a Read if the set includes “enough” of the data-
base’s Writes so that the result of executing the Read
against this set is the same as executing it against the
whole database. Specifically, we say a Write set WS is
complete for Read R and DB(S,t) if and only if WS is a
subset of DB(S,t) and for any set WS2 that contains WS
and is also a subset of DB(S,t), the result of R applied to
WS2 is the same as the result of R applied to DB(S,t).

Let RelevantWrites(S,t,R) denote the function that
returns the smallest set of Writes that is complete for Read
R and DB(S,t). Some complete set exists since DB(S,t) is
itself complete for any Read. If the smallest complete set
is not unique, the tie may be broken in an arbitrary, but
deterministic manner. Intuitively, RelevantWrites(S,t,R)
is a smallest set that is “enough” to completely determine
the result of R. Given this function, the Monotonic Reads
guarantee can be defined precisely as follows:

MR-guarantee: If Read R1 occurs before R2 in a
session and R1 accesses server S1 at time t1 and
R2 accesses server S2 at time t2, then Relevant-
Writes(S1,t1,R1) is a subset of DB(S2,t2).

Example 3. A user’s appointment calendar is stored on-
line in a replicated database where it can be updated by
both the user and automatic meeting schedulers. The

user’s calendar program periodically refreshes its display
by reading all of today’s calendar appointments from the
database. If it accesses servers with inconsistent copies of
the database, recently added (or deleted) meetings may
appear to come and go. The MR-guarantee can effectively
prevent this since it disallows access to copies of the data-
base that are less current than the previously read copy.

Example 4. Once again, consider a replicated electronic
mail database. The mail reader issues a query to retrieve
all new mail messages and displays summaries of these to
the user. When the user issues a request to display one of
these messages, the mail reader issues another Read to
retrieve the message’s contents. The MR-guarantee can be
used by the mail reader to ensure that the second Read is
issued to a server that holds a copy of the message. Other-
wise, the user, upon trying to display the message, might
incorrectly be informed that the message does not exist.

3.3 Writes Follow Reads

The Writes Follow Reads guarantee ensures that tradi-
tional Write/Read dependencies are preserved in the order-
ing of Writes at all servers. That is, in every copy of the
database, Writes made during the session are ordered after
any Writes whose effects were seen by previous Reads in
the session.

WFR-guarantee: If Read R1 precedes Write W2 in
a session and R1 is performed at server S1 at time
t1, then, for any server S2, if W2 is in DB(S2) then
any W1 in RelevantWrites(S1,t1,R1) is also in
DB(S2) and WriteOrder(W1,W2).

This guarantee is different in nature from the previous
two guarantees in that it affects users outside the session.
Not only does the session observe that the Writes it per-
forms occur after any Writes it had previously seen, but
also all other clients will see the same ordering of these
Writes regardless of whether they request session guaran-
tees.

Example 5. Imagine a shared bibliographic database to
which users contribute entries describing published
papers. Suppose that a user reads some entry, discovers
that it is inaccurate, and then issues a Write to update the
entry. For instance, the person might discover that the
page numbers for a paper are wrong and then correct them
with a Write such as “UPDATE bibdb SET pages = ‘45-
53’ WHERE bibid = ‘Jones93’.” The WFR-guarantee can
ensure that the new Write updates the previous biblio-
graphic entry at all servers.

The WFR-guarantee, as defined, associates two con-
straints on Write operations. A constraint on Write order
ensures that a Write properly follows previous relevant
Writes in the global ordering that all database replicas will
eventually reflect. A constraint on propagation ensures

that all servers (and hence all clients) only see a Write
after they have seen all the previous Writes on which it
depends. Example 5 requires both of these properties.
Some applications, however, may require only one of
them. For such applications, systems may wish to provide
relaxed variants of the Writes Follow Reads guarantee,
one to guarantee how Writes are ordered and the other to
guarantee how they propagate among servers:

WFRO-guarantee: If Read R1 precedes Write W2
in a session and R1 is performed at server S1 at
time t1, then WriteOrder(W1,W2) for any W1 in
RelevantWrites(S1,t1,R1).

WFRP-guarantee: If Read R1 precedes Write W2
in a session and R1 is performed at server S1 at
time t1, then, for any server S2, if W2 is in DB(S2)
then any W1 in RelevantWrites(S1,t1,R1) is also in
DB(S2).

Example 6. Consider a weakly consistent replicated bul-
letin board database that requires users to post articles or
to reply to articles by performing database Writes. The
WFRP-guarantee can be used within this system to ensure
that users see the replies to a posted article only after they
have seen the original. A user who replies to an article
must simply issue the reply in the same session as used to
read the article being replied to. Users who are only read-
ing articles need not request any guarantees. While the full
WFR-guarantee would suffice for this application, the
ordering property is not necessary since the posting of an
article and the posting of a reply are commutative opera-
tions as far as the database is concerned.

Example 7. Let’s revisit the shared bibliographic data-
base discussed in Example 5. Suppose that Write opera-
tions always contain complete bibliographic entries rather
than partial updates. For instance, to update the page num-
bers in an entry, a user would read the previous entry, cor-
rect the “pages” field and then Write back the full updated
entry including all of the unmodified fields. In this case,
the WFRO-guarantee could be used instead of the WFR-
guarantee. The reason is that permitting users to see the
newest version of a bibliography entry is acceptable even
if older versions have not yet reached the server they are
using.

3.4 Monotonic Writes

The Monotonic Writes guarantee says that Writes must
follow previous Writes within the session. In other words,
a Write is only incorporated into a server’s database copy
if the copy includes all previous session Writes; the Write
is ordered after the previous Writes.

MW-guarantee: If Write W1 precedes Write W2 in
a session, then, for any server S2, if W2 in DB(S2)
then W1 is also in DB(S2) and WriteOr-
der(W1,W2).

This guarantee provides assurances that are relevant
both to the user of a session as well as to users outside the
session. As with the Writes Follow Reads guarantee, one
could define two variants that allow applications to sepa-
rately control Write order and Write propagation.

Example 8. The MW-guarantee could be used by a text
editor when editing replicated files to ensure that if the
user saves version N of the file and later saves version
N+1 then version N+1 will replace version N at all serv-
ers. In particular, it avoids the situation in which version N
is written to some server and version N+1 to a different
server and the versions get propagated such that version N
is applied after N+1.

Example 9. Consider a replicated database containing
software source code. Suppose that a programmer updates
a library to add functionality in an upward compatible
way. This new library can be propagated to other servers
in a lazy fashion since it will not cause any existing client
software to break. However, suppose that the programmer
also updates an application to make use of the new library
functionality. In this case, if the new application code gets
written to servers that have not yet received the new
library, then the code will not compile successfully. To
avoid this potential problem, the programmer can create a
new session that provides the MW-guarantee and issue the
Writes containing new versions of both the library and
application code within this session.

Under certain circumstances, the Monotonic Writes
guarantee may be implied by the combination of Writes
Follow Reads and Read Your Writes. For instance, sup-
pose that in Example 8 the text editor always Reads ver-
sion N before producing version N+1. In this case, Writes
Follow Reads is sufficient to ensure the proper ordering of
versions. In general, this does not hold. Consider a session
that consists of the following series of operations: W1 R
W2. The WFR-guarantee says only that W2 will follow
the relevant Writes of R. If some other application were to
submit a Write Wx between W1 and R, and Wx overwrites
the data written by W1, W1 would be absent from the rele-
vant Writes of R. Since there is no ordering between W1
and Wx, the ordering imposed by Monotonic Writes on
W1 and W2 would be lost.

4. Providing the guarantees

Techniques for implementing the four guarantees are
presented in this section. These simple techniques are then
refined into more practical implementations in a later sec-
tion. The emphasis here is on devising correct implemen-

tations of the session guarantees and on precisely stating
the requirements placed on the underlying replicated stor-
age system. Problems concerning the amount of band-
width used between clients and servers, the storage space
needed by clients and servers, and the computation costs
involved are addressed in Section 5. Also, the implemen-
tations ignore issues of client caching. This allows us to
present the basic implementation of session guarantees
without the obscuring details of dealing with caches that
are too small or get flushed at inopportune times.

The implementations require only minor cooperation
from the servers that process Read and Write operations.
Specifically, a server must be willing to return information
about the unique identifier (WID) assigned to a new Write,
the set of WIDs for Writes that are relevant to a given
Read, and the set of WIDs for all Writes in its database.

The burden of providing the guarantees lies primarily
with thesession manager through which all of a session’s
Read and Write operations are serialized. The session
manager can be considered a component of the client stub
that mediates communication with available servers. For
each session, it maintains two sets of WIDs:

read-set = set of WIDs for the Writes that are rele-
vant to session Reads

write-set = set of WIDs for those Writes performed
in the session

An alternative to recording WIDs would be to keep
copies of the Writes themselves. These Writes could then
be passed from clients to servers to bring a server suffi-
ciently up-to-date before it could process the session’s
Read and Write requests. This option was rejected because
allowing Writes to pass between servers via clients could
violate the propagation guarantees associated with Writes
Follow Reads and Monotonic Writes.

Providing the Read Your Writes guarantee involves two
basic steps. Whenever a Write is accepted by a server, its
assigned WID is added to the session’s write-set. Before
each Read to server S at time t, the session manager must
check that the write-set is a subset of DB(S,t). This check
could be done on the server by passing the write-set to the
server or could be done on the client by retrieving the
server’s list of WIDs. The session manager can continue
trying available servers until it discovers one for which the
check succeeds. If it cannot find a suitable server, then it
reports that the guarantee cannot be provided.

Providing the Monotonic Reads guarantee is similar in
that before each Read to server S at time t, the session
manager must ensure that the read-set is a subset of
DB(S,t). Additionally, after each Read R to server S, the
WIDs for each Write in RelevantWrites(S,t,R) should be
added to the session’s read-set. This presumes that the
server can compute the relevant Writes and return this
information along with the Read result.

Unlike the Read Your Writes and Monotonic Reads
guarantees, implementing the Writes Follow Reads and
Monotonic Writes guarantees requires placing two addi-
tional, but reasonable, constraints on the servers’ behav-
ior:
C1. When a server S accepts a new Write W2 at time t, it

ensures that WriteOrder(W1,W2) is true for any W1
already in DB(S,t). That is, new Writes are ordered
after Writes that are already known to a server.

C2. Anti-entropy is performed such that if W2 is propa-
gated from server S1 to server S2 at time t then any
W1 in DB(S1,t) such that WriteOrder(W1,W2) is also
propagated to S2.

Actually, these requirements as stated are slightly
stronger than needed for the guarantees. Strictly speaking,
the two conditions discussed above must hold for any
Write W1 in the session’s read-set or write-set rather than
for any Write in DB(S,t). This subtle distinction is not
likely to have a practical consequence since the weaker
requirements would require a server to keep track of cli-
ents’ read-sets and write-sets. The stronger requirements
allow a server’s behavior to be independent of the session
state maintained by clients.

Fortunately, these conditions are met in many systems
providing weakly consistent replicated data. In general,
ordering new Writes after previous Writes, as requested in
C1, is a desirable system property. Moreover, it is easy to
ensure. If the WriteOrder predicate is computed by com-
paring timestamps, for instance, then a new Write must
simply be timestamped later than previous Writes received
by the server. Constraint C2, in practice, means that either
servers atomically transfer their complete databases during
anti-entropy or else they transfer Writes according to the
order that these Writes were applied to their database. As
an example of a popular system that satisfies C2, the latest
version of Coda’s server-to-server “resolution” protocol
brings the file volumes maintained by two servers into a
consistent state as an atomic action (according to informa-
tion provided by Jay Kistler). The Grapevine system, how-
ever, does not meet this requirement because of its use of
electronic mail for propagating updates and the fact that
mail messages may get reordered during delivery.

Given these constraints on servers’ behavior, the Writes
Follow Reads guarantee can be provided as follows. As
with Monotonic Reads, each Read R to server S at time t
results in RelevantWrites(S,t,R) being added to the ses-
sion’s read-set. Before each Write to server S at time t, the
session manager checks that this read-set is a subset of
DB(S,t).

Providing the Monotonic Writes also involves two
steps. In order for a server S to accept a Write at time t, the
server’s database, DB(S,t), must include the session’s

write-set. Also, whenever a Write is accepted by a server,
its assigned WID is added to the write-set.

The four guarantees can be readily provided together or
in any combination. Table 1 summarizes for each guaran-
tee what operation causes the session state to be updated
and what operation requires checking this state to find a
suitable server.

5. Practical implementation of the guarantees

This section introduces the use of version vectors to
obtain more efficient implementations of the four guaran-
tees. The implementations discussed in the previous sec-
tion follow straightforwardly from the definitions of the
guarantees, but have several practical problems:
• The session state, i.e. the set of WIDs maintained for a

session, could get large.
• The set of relevant WIDs returned from a Read opera-

tion could get large.
• The set of WIDs checked on a Read or Write operation

could get large.
• The information used by servers to record the Writes

they have seen could be large.
• Finding a suitable server, including checking that a

server’s database contains all of the necessary Writes,
could be expensive.

• The bookkeeping required of servers to determine the
relevant Writes for a Read could be excessive.
Version vectors, which were introduced in Locus [18]

and are used by several systems to detect Write conflicts,
can alleviate many of these problems. A version vector is a
sequence of <server, clock> pairs, one for each server. The
server portion is simply a unique identifier for a particular
copy of the replicated database. Theclock is a value from
the given server’s monotonically increasing logical clock.
The only constraint on this logical clock is that it must
increase for each Write accepted by the server; for
instance, it could be a Lamport clock [15], a real-time
clock or simply a counter. A <server,clock> pair serves
nicely as a WID, and this section assumes that WIDs are

Table 1: Read/Write guarantees

Guarantee
session state
updated on

session state
checked on

Read Your Writes Write Read

Monotonic Reads Read Read

Writes Follow Reads Read Write

Monotonic Writes Write Write

assigned in this manner by the server that first accepts the
Write.

Each server maintains its own version vector with the
following invariant: if a server has <S,c> in its version
vector, then it has received all Writes that were assigned a
WID by server S before or at logical time c on S’s clock.
For this invariant to hold, servers must transfer Writes in
the order of their assigned WIDs during anti-entropy. A
server’s version vector is updated as part of the anti-
entropy process so that it precisely specifies the set of
Writes in its database.

Assuming the use of version vectors by servers, more
practical implementations of the guarantees are possible in
which the sets of WIDs are replaced by version vectors as
follows:

To obtain a version vector V that provides a compact
representation for a set of WIDs, Ws, set V[S] =
the time of the latest WID assigned by server S in
Ws (or 0 if no Writes are from S).

To obtain a version vector V that represents the
union of two sets of WIDs, Ws1 and Ws2, first
obtain V1 from Ws1 and V2 from Ws2 as above.
Then, set V[S] = MAX(V1[S], V2[S]) for all S.

To check if one set of WIDs, Ws1, is a subset of
another, Ws2, first obtain V1 from Ws1 and V2
from Ws2 as above. Then, check that V2 “domi-
nates” V1, where dominance is defined as one vec-
tor being greater or equal to the other in all
components [18].

With these rules, the state maintained for each session
compacts into two version vectors: one to record the ses-
sion’s Writes and one to record the session’s Reads (actu-
ally the Writes that are relevant to the session’s Reads). To
find an acceptable server, the session manager must check
that one or both of these session vectors are dominated by
the server’s version vector. Which session vectors are
checked depends on the operation being performed and
the guarantees being provided within the session.

Servers return a version vector along with Read results
to indicate the relevant Writes. In practice, servers may
have difficulty computing the set of relevant Writes. For
one thing, determining the relevant Writes for a complex
query, such as one written in SQL, may be costly. For
another, it may require servers to maintain substantial
bookkeeping of which Writes produced or deleted which
database items. In real systems, servers typically do not
remember deleted database entries; they just store a copy
of the database along with a version vector. For such sys-
tems, a server is allowed to return its current version vec-
tor as a gross estimation of the relevant Writes. This does
not violate the Monotonic Reads or Writes Follow Reads
guarantees, it merely causes the session manager to be
overly conservative when choosing acceptable servers.

The vector-based Read and Write procedures are pre-
sented in Figure 1.

Read(R,S) = {
if MR then

check S.vector dominates read-vector
if RYW then

check S.vector dominates write-vector
[result, relevant-write-vector] := read R from S
read-vector := MAX(read-vector,

relevant-write-vector)
return result
}

Write(W,S) = {
if WFR then

check S.vector dominates read-vector
if MW then

check S.vector dominates write-vector
wid := write W to S
write-vector[S] := wid.clock
}

Figure 1. Implementation of the guarantees
using version vectors.

As an additional performance improvement, the checks
for a suitable server can be amortized over many opera-
tions within a session. In particular, the previously con-
tacted server is always an acceptable choice for the server
at which to perform the next Read or Write operation.
Thus, if the session manager "latches on" to a given server,
then the checks can be skipped. Only when the session
manager switches to a different server, like when the pre-
vious server becomes unavailable, must a server's current
version vector be compared to the session's vectors. To
facilitate finding a server that is sufficiently up-to-date, the
session manager can cache the version vectors of various
servers. Since a server’s database can only grow over time
in terms of the numbers of Writes it has received and
incorporated, cached version vectors represent a lower
bound on a server’s knowledge.

Caching of data at clients can also be used to improve
overall performance and data availability. However, notice
that circumstances may exist under which data that is
available in the cache cannot be read by an application
because it does not meet the application’s session guaran-
tees. As illustrated in the following example, this situation
can arise when applications with different consistency
requirements are sharing the cache. Suppose a client
machine is executing two applications, a mail reader and a
program that collects statistics on the mail messages that
the user receives. The statistics gathering program has no
consistency requirements and hence requests no session

guarantees. On the other hand, the mail reader requires the
Monotonic Reads and Read Your Writes guarantees as
explained in Examples 2 and 4. Assume that at some point
the statistics program reads from a server that holds an
out-dated copy of the user’s mail database, thereby filling
the cache with old data. When the mail reader executes,
allowing it to retrieve data from the cache would likely
violate its Monotonic Reads guarantee. It is important to
point out that this type of scenario can occur for any
weakly consistent replicated system with client caching,
regardless of the existence of mobile clients.

6. Adding guarantees to existing systems

Session guarantees could be utilized in many existing
systems that provide weakly consistent replicated data
semantics. Version vector based systems are of the most
interest since they represent systems to which our guaran-
tees could be added with relatively minimal effort. Exam-
ples of systems that employ version vectors to check the
consistency of database copies include Coda [13,20],
Ficus [10] (a successor to Locus [19]), OSCAR [7], and
refdbms [8]. The Coda distributed file system is in many
ways representative of modern-day systems that use ver-
sion vectors, so we briefly examine how to add the four
session guarantees to Coda.

Because Coda servers already export access to the ver-
sion vectors they maintain, one could readily add the
Monotonic Reads and Read Your Writes guarantees to a
Coda client using the techniques presented in Section 5
without having to change any code running on Coda serv-
ers. Moreover, this upgrade could be done incrementally;
only those users who wanted the session guarantees would
need to install new client software. The interface between
applications and the Coda client code would have to be
extended so that applications could associate a session
with their read and write operations and indicate the ses-
sion guarantees they require.

Adding the Writes Follow Reads and Monotonic Writes
guarantees would be equally simple since Coda meets the
propagation requirements described in Section 4. Specifi-
cally, a server that is determined to be out-of-date obtains
newer copies of updated files by atomically synchronizing
the contents of a volume with that of another server.

Two different levels of granularity are possible for ses-
sion guarantees since Coda maintains version vectors for
both files and volumes. Using volume version vectors
would allow session guarantees to cover operations span-
ning multiple files within a volume. However, since vol-
ume version vectors reflect all the updates made to any file
in a volume, clients interacting with only a single file
might prefer to keep track of individual file version vec-
tors to obtain better availability.

7. Related work

A number of other systems and replication schemes
exist that provide guarantees between strong consistency
and weak (eventual) consistency or that provide individual
applications some control over their perceived consis-
tency.

The work that is closest to ours is that of Ladin, Liskov,
Shrira, and Ghemawat on “causal operations” [14]. In
their design, weakly consistent copies of a database are
updated via “gossip” messages. Clients ensure causal
ordering of their Read and Write operations by means of
version vectors that accompany each client interaction
message. The key difference between their design and
ours is that theirs has no notion of sessions or of being able
to specify the more fine-grained consistency requirements
that we introduce in this paper. Also, a client in their sys-
tem cannot switch to another host and have its operations
be causally ordered with respect to its previous activity
without doing a heavyweight synchronization action.

In many systems with lazy replication, such as Lotus
Notes [12], clients desiring consistency among multiple
read and/or write operations must, in general, use the same
server for their interactions. In contrast, our approach
focuses on providing guarantees to clients that routinely
interact with multiple servers.

As an example of a system that offers mobile comput-
ing users and applications a choice of consistency levels,
the file system of Tait and Duchamp supports bothstrict
and loose read operations [22]. The former provides
strongly consistent semantics, which ensures that the most
recent version of a file existing in the system is returned,
and the latter provides weakly consistent semantics where
any available copy is returned.

Much work has been done on providing various
“degrees of consistency” in database systems [9]. This
work focuses on relaxing the isolation between transac-
tions, yielding reduced consistency, in order to increase
concurrency. Weakly consistent systems, on the other
hand, generally provide ample concurrency with little or
no isolation. Our session guarantees are intended to pro-
vide applications with increased consistency, but do not
address the problem of isolation between concurrent appli-
cations. For an example of an attempt to provide increased
isolation for clients of a replicated file system, see the
recent proposal by Lu and Satyanarayanan for “Isolation
Only Transactions” [16].

Another form of intermediate consistency involves
controlling the amount of inconsistency that may occur
among data replicas. Two examples are bounded inconsis-
tency [3] and quasi-copies [2]. These approaches provide a
different kind of consistency than session guarantees and
should be viewed as complementary techniques.

8. Conclusions

Four new per-session guarantees have been proposed to
aid users and applications of weakly consistent replicated
data: Read Your Writes, Monotonic Reads, Writes Follow
Reads, and Monotonic Writes. These guarantees can pro-
vide an application with a view of the replicated database
that is consistent with its own Reads and Writes performed
in a session even though these operations may be directed
at different servers. The goal is to achieve semantics close
to those of a shared, centralized database while retaining
the principal benefits of a read-any/write-any replication
scheme, namely high-availability, simplicity, scalability,
and disconnected operation.

Even with the guarantees, an application must be aware
that other users and applications may be concurrently
updating data that it Reads or Writes. In particular, our
guarantees do not attempt to provide atomicity of multiple
updates or serializability of concurrent activities. Indeed,
these are orthogonal issues and solutions to them can be
added to a system independent of the guarantees discussed
in this paper.

A key aspect of our design is that applications may
choose just the guarantees that they require. This is
accomplished by providing the guarantees within the con-
text of a session. Moreover, since sessions are lightweight
entities, a single application may create several sessions
that it uses to exercise fine-grain control over the guaran-
tees it desires.

The main cost of requesting session guarantees is a
potential reduction in availability compared to a basic
read-any/write-any replication scheme. We expect the
impact on availability to be small in practice. Indeed, for
many clients, such as those employing local caching,
availability may be only rarely affected.

Practical implementations of our guarantees have been
developed. Since no system-wide state is maintained and
no additional coordination among servers is needed, an
efficient, localized implementation is possible. The
amount of per-session state needed to ensure all of the
guarantees is small, consisting of only two version vec-
tors. Also, the cost of checking those version vectors
against a server’s vectors to determine if the server is suffi-
ciently up-to-date is small, and frequently can be amor-
tized over many session operations.

The implementation techniques make only a few rea-
sonable assumptions about how servers order and propa-
gate updates. In general, the guarantees could be added to
systems employing a variety of data models, Read/Write
operations, conflict resolution procedures, and schemes
for replica control.

Several existing replicated systems already success-
fully use version vectors in a manner similar to the imple-

mentation we propose, implying that our guarantees can
be layered on these systems. In the case of the Coda file
system, the guarantees can be provided simply by chang-
ing the clients; no changes to the servers are required.

These session guarantees were developed while design-
ing a replicated storage system to support mobile comput-
ing users who may be frequently disconnected yet wish to
collaborate. An implementation of session guarantees for
databases that are shared between workstations and laptop
computers is currently underway as part of the Bayou
project at Xerox PARC.

9. Acknowledgments

We thank our colleagues with whom we have discussed
many of the ideas in this paper, especially Tom Anderson,
Mary Baker, Helen Davis, Dan Greene and Carl Hauser,
who provided valuable feedback on earlier versions of this
paper. Finally, we appreciate Mark Weiser’s leadership in
pursuit of the Ubiquitous Computing vision.

10. References

[1] D. Agrawal and A. Malpani. Efficient dissemination of
information in computer networks.The Computer Journal
34(6):534-541, December 1991.

[2] R. Alonso, D. Barbara, and H. Garcia-Molina. Data caching
issues in an information retrieval system.ACM Transac-
tions on Database Systems 15(3):359-384, September 1990.

[3] D. Barbara-Milla and H. Garcia-Molina. The demarcation
protocol: A technique for maintaining constraints in distrib-
uted database systems. To appear inVLDB Journal.

[4] A. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder.
Grapevine: An exercise in distributed computing.Commu-
nications of the ACM 25(4):260-274, April 1982.

[5] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency
in a partitioned network: A survey.ACM Computing Sur-
veys 17(3):341-370, September 1985.

[6] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S.
Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
algorithms for replicated database maintenance.Proceed-
ings Sixth Symposium on Principles of Distributed Comput-
ing, Vancouver, B.C., Canada, August 1987, pages 1-12.

[7] A. R. Downing, I. B. Greenberg, and J. M. Peha. OSCAR:
A system for weak-consistency replication.Proceedings
Workshop on the Management of Replicated Data, Houston,
Texas, November 1990, pages 26-30.

[8] R A. Golding. Weak consistency group communication for
wide-area systems.Proceedings Second Workshop on the
Management of Replicated Data, Monterey, California,
November 1992, pages 13-16.

[9] J. Gray and A. Reuter.Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers, San Mateo,
California, 1993.

[10] R.G. Guy, J.S. Heidemann, W. Mak, T.W. Page, Jr., G.J.
Popek, and D. Rothmeier. Implementation of the Ficus rep-
licated file system.USENIX Conference Proceedings, pages
63-71, USENIX, June 1990.

[11] T. Imielinski and B. R. Badrinath. Data management for
mobile computing.ACM SIGMOD Record 22(1):34-39,
March 1993.

[12] L. Kalwell Jr., S. Beckhardt, T. Halvorsen, R. Ozzie, and I.
Greif. Replicated document management in a group com-
munication system.Proceedings Conference on Computer-
Supported Cooperative Work, Portland, Oregon, September
1988.

[13] J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the Coda file system.Proceedings Thirteenth ACM Sym-
posium on Operating Systems Principles, Pacific Grove,
California, October 1991, pages 213-225.

[14] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing
high availability using lazy replication.ACM Transactions
on Computer Systems 10(4):360-391, November 1992.

[15] L. Lamport. Time, clocks, and the ordering of events in a
distributed system.Communications of the ACM 21(7):558-
565, July 1978.

[16] Q. Lu and M. Satyanarayanan. Isolation-only transactions
for mobile computing.ACM Operating Systems Review
28(2):81-87, April 1994.

[17] D. C. Oppen and Y. K. Dalal. The Clearinghouse: A decen-
tralized agent for locating named objects in a distributed
environment.ACM Transactions on Office Information Sys-
tems 1(3):230-253, July 1983.

[18] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J.
Walker, E. Walton, J. M. Chow, D. Edwards, S. Kiser, and
C. Kline. Detection of mutual inconsistency in distributed
systems.IEEE Transactions on Software Engineering SE-
9(3):240-246, May 1983.

[19] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G.
Rudisin, and G. Thiel. LOCUS: A network transparent, high
reliability distributed system.Proceedings Eighth Sympo-
sium on Operating Systems Principles, Pacific Grove, Cali-
fornia, December 1981, pages 169-177.

[20] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki,
E.H. Siegel, and D.C. Steere. Coda: a highly available file
system for a distributed workstation environment.IEEE
Transactions on Computers 39(4):447-459, April 1990.

[21] M. D. Schroeder, A. D. Birrell, and R. M. Needham. Expe-
rience with Grapevine: The growth of a distributed system.
ACM Transactions on Computer Systems 2(1):3-23, Febru-
ary 1984.

[22] C. D. Tait and D. Duchamp. Service interface and replica
management algorithm for mobile file system clients.Pro-
ceedings First International Conference on Parallel and
Distributed Information Systems, December 1991, pages
190-197.

