
AN INTEGRATED COMPONENT-BASED APPROACH TO
ENTERPRISE SYSTEM SPECIFICATION AND DEVELOPMENT

Zoran Stojanovic, Ajantha Dahanayake
Faculty of Information Technology and Systems, Delft University of Technology, Zuidplantsoen 4, Delft, The Netherlands

E-mail: Z.Stojanovic@its.tudelft.nl, A.N.W.Dahanayake@its.tudelft.nl

Henk Sol
Faculty of Technology, Policy and Management, Delft University of Technology, Jaffalaan 5, Delft, The Netherlands

E-mail: h.g.sol@tbm.tudelft.nl

Keywords: Component-Based Development, Enterprise Systems, Open Distributed Processing.

Abstract: Component-Based Development (CBD) represents an advanced system development approach, capable for

managing complexity and ever-changing demands in the business and IT environment. While many of the
component technology solutions have been already settled in practice, of equal importance to their success
are the methods and techniques closely aligned with CBD principles. Current methods do not offer a
systematic and complete support for component-based way of thinking. This paper presents a new approach
to CBD, integrating the component concept consistently into all phases and aspects of the enterprise system
development. The approach combines the CBD paradigm and ISO Reference Model for Open Distributed
Processing (RM-ODP), providing a comprehensive component-based specification and development
framework for building enterprise systems of nowadays.

1. INTRODUCTION

Effective use of advanced information and
communication technologies is nowadays
considered as an integral part of modern enterprises’
business strategy, significantly impacting the way
they perform business services and compete on the
market. The main challenge enterprises face today is
how to manage the complexity inherent in the
systems they are deploying, while at the same time
being able to rapidly adapt to changes in technology
and business environment. The solution by many
lies in growing interest in the research community
and industry over component-based development
(CBD) [Szyperski, 1998; Brown and Wallnau,
2000]. CBD provides organisations with a method
for building complex enterprise-scale solutions that
are flexible and able to accommodate the ever-
changing demands in the environment, in a cost-
effective, timely manner. By using the CBD
approach, a system development becomes the
selection, reconfiguration, adaptation, assembling
and deployment of encapsulated, replaceable and

reusable, functional elements called components,
rather than building the whole system from scratch.

To date the move toward CBD paradigm has
impacted mainly the implementation and technology
level, providing pieces of system’s functionality to
be placed across the network nodes. Several
distributed infrastructure technologies based on
Microsoft’s Component Object Model (COM)
[Microsoft, 2001], Object Management Group’s
(OMG) Common Object Request Broker
Architecture (CORBA) [Siegel, 2000] or Java-based
tools [Sun Microsystems, 2001] have been
introduced and already widely used. While the
technology is a necessary element of any solution, it
is not sufficient by its own. Of equal importance to
the success of the CBD paradigm are the methods,
approaches and techniques for developing
component-oriented applications, targeting that
technology at the final phase. Current CBD methods
and approaches to enterprise system development
tend to consider business and technology issues
separately, which leads to unsatisfactory results from
both viewpoints. They use component concept in
rather an inconsistent manner handling mainly a
component as a binary or source-code software

package. Therefore, a new component-based
approach to system development is required,
covering all aspects of enterprise-scale, data-
intensive applications in integrated and consistent
manner. Such integrated solution should provide a
total system specification, from concept to
deployment, through business, information,
application and technology issues, using component-
based principles. This paper presents an integrated
and systematic approach providing basic concepts,
and guidelines for enterprise-scale component-based
system development.

2. COMPONENT-BASED

DEVELOPMENT

Although CBD has been introduced by many as a
new silver bullet for complex, enterprise-scale
system development in the Internet age, it is rather
evolutionary than revolutionary approach. CBD
inherits many concepts and ideas from the earlier
encapsulation and modularisation, “divide-and-
conquer” initiatives in the information technology
(IT), such as module programming and object-
orientation.]. Higher productivity, flexibility, and
quality, through reusability, replaceability,
maintainability, scalability, legacy compatibility and
the parallel-work ability are among the CBD
claimed benefits [Brown and Wallnau, 1998;
D’Souza and Wills, 1999; Szyperski, 1998].

While many of the technology solutions have
been already settled in practice, of equal importance
to their success are the methods and techniques for
developing components and component-oriented
applications effectively targeting that technology.
Conventional methods and tools do not offer a full
support for CBD, so that new approaches that are
much closely aligned with CBD principles are
required. IT community has just recently started
exploring and inventing the methods and best
practices for developing enterprise-scale, web-based
systems from components. The most prominent of
these are:
- Rational’s Unified Process [Jacobson et al., 1999].
- Select Perspective [Allen and Frost, 1998]
- Catalysis [D’Souza and Wills, 1999]

Rational Unified Process (RUP) is development
and management process, providing an effective
way for system development, using breaking a
process into phases that can be performed parallelly.
The support for CBD paradigm in the RUP is rather
declarative, offered through the use of UML
notations in system development and limited by it.

There is not a strong emphasis on the component
concept, still seen here as an unit of software code.

Select Perspective provides the ability to
leverage object-oriented technology while
integrating it with other widespread and proven
approaches, such as business modelling and data
modelling, using the best of breed tools and
techniques. In handling the component concept, the
method uses the concept of package, defined in
UML as “a general purpose mechanism for
organising elements into groups” [UML, 1999]. Two
basic stereotypes of the package are distinguished:
service package used in business-oriented
component modelling and component package used
in component and system implementation. A service
package contains classes that have a high level of
interdependency, and serve a common purpose by
delivering a consistent set of services. A component
package represents an executable component, i.e.
actual code. The Select method does not provide a
systematic, formal way for building component-
based systems. It rather suggests using the best of
breed tools and techniques.

Catalysis represents the most comprehensive and
complete CBD method among the presented ones.
The first impression about Catalysis is its
complexity, although it is based on a small number
of underlying concepts, namely type, collaboration,
refinement and framework. Catalysis has an object-
oriented foundation; it is primarily dedicated to
object-oriented development, which impacts in a
great deal its way of handling CBD concepts. The
Catalysis process is not a rigorous methodology,
formally directing a system development. It is rather
a semi-structured set of design principles, advices,
guidelines and patterns that should be practiced
throughout the system life cycle. Therefore, a
systematic “roadmap” of the Catalysis way is
lacking. The whole method tends to be fuzzy, with
possible difficulties of applying it in practice.

All presented methods do not go far enough in
their support of a component concept. It results in
the fact that components are treated mainly as
implementation and deployment artifacts, instead of
being central point throughout the complete system
life cycle. A systematic component way of thinking
in the development process is missing as well as
proper support for component concepts in
requirements analysis, modelling and specification
of a component-based system. The conclusion is that
a more formal and systematic approach for
component-based development is needed. It must
incorporate CBD concepts into each phase of the life
cycle, efficiently targeting existing CBD technology
infrastructure at the end. Integration of various
enterprise system aspects, not only technology issue
than business, information, and application issues as

well, must be provided. Having that in mind, we
have proposed a new systematic and integrated
approach to component-based development of
complex enterprise-scale systems, providing
comprehensive, theoretical and practical support for
CBD paradigm.

3. AN INTEGRATED CBD
APPROACH

In order to gain full benefit of CBD in enterprise

system development, a component concept must be
the integral part of the whole system life cycle, from
business requirements to implementation and
deployment. The sooner we can identify components
and integrate them first at the business requirements
level and then into an appropriate model of the
enterprise system, the faster and more accurately we
can build the target system, through component-
based analysis, design and implementation.

3.1 Integrated Component Concept

Among the other important characteristics and

benefits of the CBD approach claimed so far, in our
opinion the component concept represents an
excellent solution for providing a meeting point
between technology and business worlds. By
defining a component as an encapsulated concept,
clearly delimited from the environment, with
specific roles and behaviour in the domain, with
hidden interior and exposed functionality through
services and interfaces, it can be easily understood
by both worlds. Such concept gives business
analysts and managers greater ability to model
business processes and requirements at a higher-
level, in a domain-specific, but implementation-
independent way. On the other hand, the application
developers retain control over how their models are
turned into complete applications using advanced
component-based technology infrastructure.

Object-orientation cannot be effectively used for
that purposes. Objects can be too small in size and
technologically oriented to be considered as basic
units of a development process by business side
people. The logic is usually too trivial to justify the
expense of modelling, building, documenting and
reusing a single object interface. On the other hand,
business processes are often too fuzzy and complex
to be uniformly and easily understood by IT side
people. Furthermore, components as service-based
concepts represent more natural approach for
describing complex business processes than objects
as entity-based structures. Thus, a component can
represent a lingua franca for business and IT worlds,

i.e. a means for integrating instead of separating
them. Component hierarchy considering granularity
and functionality issues is shown in the Figure 1.

Figure 1. Component hierarchy.

- Business System Component represents a
business process built up of functional pieces
(components) that cooperate to deliver the
cohesive set of functionality required by a
specific business need i.e. to provide a solution
to a specific business problem, such as Invoice
Management or Order Management. It can be a
constituent component of a larger business
system.

- Business Component represents a single
autonomous real-world business concept in a
service-based business architecture. It
encapsulates everything about that concept
including name, purpose, knowledge, behavior,
role, objective, etc. Examples include:
Customer, Product, Order, Inventory, Pricing,
Credit Check, and Billing. At the specification
level, service-based business component is
completely independent on particular
implementation. It can be developed on any
platform using any technique and tool,
depending on available technical environment.

- Software Component is a physical building block
used in the assembly of applications. As
independent piece of software, it encapsulates
data and operations, and fulfills specific service
through well-defined interface. This type of
component corresponds to the usual concept of
component in the software industry, i.e. it may
be represented as an Java Bean, CORBA or
COM+ component. It is normally, but not
necessarily, built up using object-oriented
paradigm.

Business component has two facets, specification
and implementation, and represents a basic unit of
an enterprise-scale, web-based system. Business
Specification Components represent the results of
applying componentisation concepts and principles
in the business domain. They model the enterprise,
and thus enable future enterprise applications to
more completely satisfy the business needs. They
provide service-based, behaviour-partitioned view of
the business domain and consequently an excellent
way to define and scope the solution space, as a
good basis for further development of an enterprise
application.

On the other hand Business Implementation
Components handles the aspects and realities of the
technical environment in order to offer a component-
based implementation of the certain business
concept. They provide an excellent way of applying
“divide-and-conquer” principle at the
implementation level in a way that ties application to
the business domain. They provide the capability to
package software realisation into more meaningful
and manageable artifacts, inheriting the benefits of
CBD approach. Business Implementation
Components smoothly evolve from specification
ones, simply by taking into account the reality of
technical environment. In that way, they provide a
mapping between particular business concepts and
their technical representation.

Business Components can be either entity-centric
or process-centric. Business Entity Components
have an emphasis on representing significant entities
and concepts, as well as related information, inside
the particular business domain. Business Process
Components represent existing business processes,
workflows and functionality in the domain. This
categorisation cannot be quite strict, because most
business concepts are a blend of information and
functionality. However, this separation of concern
can be helpful in analysis and design to better
understand the nature of business concepts, but
especially in the implementation phase, where
concepts like permanent data storage, as well as
functions and function calls, are arising.

3.2 RM-ODP

RM-ODP is a joint standardisation effort of the
ISO (International Standardisation Organisation) and
ITU-T (International Telecommunication Union)
[ODP, 1996/1-4]. It originally consists of four parts,
namely Overview, Foundations, Architecture and
Architecture Semantics. RM-ODP defines a
reference model to integrate a wide range of future
ODP standards for distributed processing, such as
Trading function, Type Repository function, Naming

Framework, and Quality of Service, as well as to
maintain consistency among them.

RM-ODP defines a framework for describing
architectures for distribution, interoperability and
portability of applications based on object-oriented
technology. It is widely recognised as offering the
most complete and internally consistent specification
framework that crosses organisational and
technological boundaries. RM-ODP specification of
a system consists of five different specifications,
corresponding to five different, but related and
consistent viewpoints, Figure 2.

Figure 2. RM-ODP Viewpoints.

- Enterprise viewpoint – focuses on the purpose,

scope and policies governing the activities of the
specified enterprise system.

- Information viewpoint – focuses on the kinds and
semantics of the information handled by the
system, as well as information processing and
constraints on it.

- Computational viewpoint – focuses on the
functional decomposition of the system, enabling
system distribution.

- Engineering viewpoint – focuses on the
mechanisms and functions of the infrastructure
for distributed processing support.

- Technology viewpoint – focuses on the choice of
technology to support system distribution.

Each viewpoint is an abstraction of the whole
system focusing on a specific area of concern, and in
combination with others provides the complete
specification of the whole enterprise system. Five
viewpoints have been chosen to be both simple and
complete, covering all the domains of architectural
design. For each viewpoint there is an associated
viewpoint language, which can be used to express a
specification of the system from that viewpoint.

3.3 ODP-Based CBD Approach

By using two such powerful concepts in
enterprise distributed processing, CBD and RM-
ODP, in a meaningful and seamless combination, we
intend to define a comprehensive, systematic, and
flexible approach to enterprise system development,
Figure 3. It is designed to ensure a systematic path
from business to technology in the CBD manner,
integrate the semantic layers on that path and
provide as smooth a transition as possible between
them. In that way business inspired component-
based development and/or CBD directed business
solutions are effectively achieved.

 Component-Based
Development

Enterprise viewpoint

Information viewpoint INTEGRATED
 CBD
Computational viewpoint APPROACH

Engineering viewpoint

Technology viewpoint

Figure 3. Integrated CBD approach.

Since the component middleware infrastructures,

like OMG/CORBA and COM, are already widely
accepted and used, the ODP Engineering and
Technology Viewpoint Specifications can be based
on them. In the case of CORBA, these specifications
can be developed using CORBA ORBs and IDL,
CORBA services and CORBA common facilities
[Siegel, 2000]. This makes the semantically-lower
part of the ODP Specification component-oriented.
Our aim is to incorporate CBD concepts and
principles into the other ODP viewpoints, first to
Enterprise Viewpoint, and then to Information and
Computational Viewpoints. In that way, the
component concept, seen from different
perspectives, is the common conformance point and
unified factor across all ODP viewpoints.

Enterprise Viewpoint defining purpose, scope
and policies of an ODP system, naturally fit into
behaviour-focused, interface-driven component
specification and modelling. The main concepts of
this viewpoint, namely community, contract, role,
behaviour, enterprise object and policy perfectly
meet the component concept theory, and can be
represented using the concept of business
components. Community is the key enterprise
concept in RM-ODP, defined as a configuration of

objects formed to meet an objective, and can be
represented as a Business System Component,
formed by a collaboration of enterprise objects, i.e.
business components of a lower granularity. Roles,
contracts and policies can be defined through
specifying interfaces and behaviours of enterprise
objects, as well as constraints, pre- and post-
conditions on these interfaces.

Information viewpoint specifies the significant
information stored and processed by the system, as
well as invariants, constraints, and rules regarding
the transformation of this information. Three types
of information schemas are used for this purpose in
RM-ODP, namely static (rules about state and
structure of information at some point in time),
invariant (information independent of behaviour)
and dynamic (evolving of information through time).
Elements of these schemas can be defined as
Business Entity Components, representing elements
in the ODP system, which carry necessary
information. And again, information transformation
and processing can be specified by component
interfaces, with corresponding pre-, post- and
invariant conditions representing constraints and
rules on that information management.

Computational viewpoint is used to specify the
functionality of an ODP system in still a
distribution-transparent manner. It specifies
functionality and process flows in the system by
defining services offered by service-provider objects
and used by service-consumer-objects. This
functional linkage between objects is used to define
complex collaboration and interaction in the ODP
system. Object in the Computational viewpoint can
be represented as Business Process Components,
while interaction between them can be specified
through their provided and required interfaces. Some
aspects of an implementation issue must be taken
into account, since the placing of component
services and function flows in a multi-tier system
architecture should be considered as well.

Typically, an Enterprise object in the Enterprise
viewpoint as a Business Component of a higher-
level abstraction and granularity can map into one or
many objects from Information and Computational
Viewpoints. Roles, behaviours and policies of an
enterprise object are represented by conditions and
rules related to information object(s), along with
functions and corresponding constraints specified by
computational object(s).

Since the Engineering and Technology
Viewpoints are already component-based by using
CORBA (or COM) component model, introducing
the component concept into remain viewpoints
makes the whole RM-ODP component-oriented. In
that way the component concept can serve as a
conformance and consistent point among the ODP

viewpoints. Since RM-ODP originally represents an
object-oriented framework for specifying open,
flexible and distributed systems, UML as a standard
notation for object-oriented and component software
design, along using available extension mechanisms,
can be used for specifying component-based ODP
viewpoints. The Object Constraint Language (OCL)
[Warmer and Kleppe, 1999] can be used to specify
constraints, conditions and invariants on ODP
concepts and elements. By combining RM-ODP as a
standard framework, CBD as an advanced
development paradigm, and UML as a standard
notation, we intend to define a new, integrated CBD
approach, covering the whole system life cycle in a
component-oriented manner. Using RM-ODP
framework as a standard base results in applying of
CBD principles and practice, from concepts and
requirements to implementation and deployment, in
a rigorous and consistent manner. Only in that way,
the full benefit of CBD paradigm will be achieved in
complex enterprise system development.

4. CONCLUSION

As effective as possible way of using new
Internet, even mobile, technologies are nowadays
becoming a crucial point in organisations’ business
strategy, and main factor for being competitive on
the market. New enterprise systems are becoming
more and more complex, under the constant pressure
of ever-changing business and IT requirements in
the environment. One of the solutions for more
efficient managing of complexity and changeability
factors in the enterprise systems world is a new
paradigm for system development, known as
component-based development (CBD). CBD has
mainly impacted the technology infrastructure level,
where CORBA, COM+ and EJB represent de facto
standards for component-based middleware.
However, a set of methods and techniques are
needed, starting from earlier phases of the system
life cycle and targeting that technology. Current
methods supporting CBD do not go far enough in
their support of a component concept. It results in
the fact that components are still handled mainly at
the implementation and deployment phase, instead
of being focal point through the complete system
development process.

In this paper, we have proposed a new systematic
and integrated approach to component-based
development of complex enterprise-scale,
information systems. By offering well-defined
consistent CBD theory, through basic definitions,
and categorisations, and by integrating them with the
ISO RM-ODP standard framework for open
distributed processing, we intend to provide a

comprehensive method for applying CBD concepts
and principles throughout all phases and from all
viewpoints of the system development in an
integrated, systematic and consistent manner. Our
idea is that by combining and integrating two such
powerful concepts CBD and RM-ODP, a complete
set of principles, techniques and guidelines for
development of complex enterprise systems using
component way of thinking can be provided.

REFERENCES

Allen, P., Frost, S. (1998), “Component-Based

Development for Enterprise Systems: Applying the
Select Perspective”, Cambridge University Press.

Booch, G., Rumbaugh, J., Jacobson, I. (1999), “The
unified modeling language user guide”, Add.-Wesley.

Brown, A.W., Wallnau, K.C. (1998), “The Current State
of Component-Based Software Engineering”, IEEE
Software, September/October 1998.

D’Souza, D.F., Willis, A.C. (1999), “Objects,
Components, and Frameworks with UML: the
Catalysis Approach”, Addison-Wesley.

Jacobson, I., Booch, G., Rumbaugh, J. (1999), “The
unified software development process”, Reading MA:
Addison-Wesley.

Microsoft (2001) COM, DCOM, MTS, ActiveX, COM+,
available at http://www.microsoft.com/com/

ODP (1996/1), International Standard Organisation (ISO),
Information technology - Open Distributed Processing
- Reference model: Overview, ISO/IEC JTC1/SC07,
10746-1, ITU-T X.901.

ODP (1996/2), International Standard Organisation (ISO),
Information technology - Open Distributed Processing
- Reference model, Part 2: Foundations, ISO/IEC
JTC1/SC07, 10746-2, ITU-T X.902.

ODP (1996/3), International Standard Organisation (ISO),
Information technology - Open Distributed Processing
- Reference model, Part 3: Architecture, ISO/IEC
JTC1/SC07, 10746-3, ITU-T X.903.

ODP (1996/4) International Standard Organisation (ISO),
Information technology - Open Distributed Processing
- Reference model, Part 4: Architecture semantics,
ISO/IEC JTC1/SC07, 10746-4, ITU-T X.904.

OMG (1999a) Object Management Group: Unified
Modeling Language 1.3 specification, document
ad/99-06-09. Available at http://www.omg.org/uml/

Siegel, J. (2000), “CORBA 3: Fundamentals and
Programming” OMG Press, John Wiley & Sons, Inc.

Sun Microsystems (2001), The source for JavaTM
technology at http://java.sun.com

Szyperski, C. (1998), “Component Software: Beyond
Object-Oriented Programming”, ACM Press,
Addison-Wesley.

Warmer, J.B., Kleppe, A.G. (1999), “The Object
Constraint Language: Precise Modeling with UML”,
Reading, Mass., USA: Addison-Wesley.

