
34 1092-3063/00/$10.00 © 2000 IEEE IEEE Concurrency

Atomic Commit in
Concurrent Computing

distributed file systems, Internet TP, net-
work management, and reliable messaging.

Designing a commit protocol for a par-
ticular application is tricky, especially when
a distributed computing environment is
unreliable and thus requires efficiency and
robustness. Furthermore, developments in
middleware1 have made it relatively easy
to incorporate industry-standard com-
mit protocols into concurrent-computing
applications.2 However, potential users
must bear in mind that these standard
commit protocols were designed and opti-
mized with a typical TP workload in
mind.3 According to industry folklore,
most transactions are read-only, and the
average transaction

• accesses 10 data items,
• executes no more than a million

machine instructions,
• stands a 95% chance of succeeding

(rather than aborting or being aborted),
and

• spends one third of its lifecycle in the
commit phase.

Because TP bears little resemblance to
new application areas, transplanting a stan-
dard commit protocol into a concurrent

computing application can take a toll on
performance. The issue is further compli-
cated by the fact that some computational
problems appear to require a commit pro-
tocol but are actually either too easy or too
hard to benefit from its use.4

To contend with these issues, I have
outlined two sets of conditions that can
help you determine whether or not to use
a commit protocol for a concurrent-
computing application. Here, I offer an
overview of commit protocols. I then dis-
cuss atomicity and isolation in application-
neutral terms and present my condition
sets for atomicity and barrier synchro-
nization.These condition sets can help
you decide whether or not you need a
commit protocol, and can also help you
reengineer your application to avoid the
need for one should it prove too expen-
sive to implement.

Commit protocol overview
In transaction processing, distributed

transactions read and update data items
located on two or more autonomous data-
base servers.2 The commit protocol kicks
in at the end of each transaction to help
provide the “A” and “I” of the ACID prop-

Commit protocols

have been proposed for

use in a variety of

concurrent-computing

applications. The author

has developed two

condition sets that can

help you determine

when to use a commit

protocol and when to

avoid them.

Concurrent Computing

C
ommit protocols were originally developed for distributed

transaction processing (TP) to help provide atomicity and

isolation for a set of actions. More recently, researchers and

practitioners have proposed the use of commit protocols for

many concurrent-computing applications, including atomic broadcast,

Peter Thanisch
Accrue Software

October–December 2000 35

erties—Atomicity, Consistency, Isola-
tion, and Durability.

Two or more related actions that
change the outside world are atomic if the
computation’s correctness depends on
adherence to the following rule:

If circumstances external to the com-
putation conspire to prevent any of
the transaction’s updates from being
carried out, then none of the trans-
action’s updates are carried out.2

Atomicity is typically required, for
example, when you book a flight and
hotel for a vacation. If all the flights are
already full, your hotel booking is use-
less and vice versa. You need both, or,
failing that, neither.

The commit protocol helps provide
isolation when a transaction reads data
items. When concurrently executing
transactions continually update a data-
base, the commit protocol creates a bar-
rier synchronization that ensures that the
transaction sees a globally consistent state
of the distributed database. In a bank, for
example, one transaction might total the
balances in two accounts while another
transaction transfers an amount from one
of these accounts to the other. Isolation
prevents the totaling transaction from
reading one account before the transfer
and the other account after the transfer.

In a distributed database system, the
lock managers work in conjunction with
the commit protocol to provide isolation.
With respect to isolation, the commit
protocol provides only barrier synchro-
nization. Other aspects of the isolation
service are provided by other database
system components, such as the lock
manager, and I do not discuss them here.

PROTOCOL ELEMENTS
Although implementation details vary

depending on the application, I have
identified three basic elements common
to all commit protocols.

• Context is the computation from
which the set of client requests
emanates. The context represents a
logical locus of control that can be
single-threaded, multithreaded, mul-
tiprocess, or distributed.

• Agents are responsible for interactions
with the outside world. Agents need
not be physically distributed—they
could be processes executing on dif-
ferent machines, separate processes
executing on the same machine, or
separate threads running in the same
process. Retrieving agents obtain
information about the state of the
outside world. Altering agents change
the state of the outside world. In
many applications, a single agent per-
forms both of these roles.

• A coordinator enlists the service of
agents to perform atomicity and bar-
rier synchronization, and thereafter
initiates the commit protocol. Coor-
dinator actions are based on instruc-
tions from the context.

A decentralized commit protocol avoids
the need for a coordinator by having
agents swap information with each other.
However, the computational expense of
such extra message passing is unacceptable
in most applications. I therefore assume a
centralized protocol in which the coordi-
nator and context are separate (in some
implementations, the coordinator is an OS
service). I refer to the combined activity
of all three elements as the computation.

FEASIBLE AND INFEASIBLE
INTERACTIONS

The new applications for commit pro-
tocols have at least one thing in com-
mon: the computation attempts to inter-
rogate or alter the state of the outside
world. Whenever an agent interacts with

the outside world, its actions are poten-
tially infeasible. As Table 1 shows, such
infeasibility can arise for various reasons.

The common factor in infeasible
actions is that both the problem and the
cure are outside the computation’s con-
trol. Neither the context nor the agent
can do much more than report the con-
dition or, in the case of a transient fault,
wait. In computations that use a commit
protocol to help achieve atomicity, the
agent must therefore check a proposed
action’s feasibility. For the commit pro-
tocol to be useful, it must be possible (at
least in principle) for the agents to dis-
agree with each other about feasibility.
This implies that each agent must decide
on the feasibility of its request indepen-
dent of other agents. If all agents were
always unanimous (and thus, within each
separate computation, either all actions
are feasible or all are unfeasible), then
the coordinator would only need to
check with one of the agents.

In some applications, an agent per-
forms both retrievals and alterations. In
typical TP applications, the context
gathers information from the agents and
uses that information to decide which
alterations the agent should make. Thus,
the context might send several requests
to a particular agent and, taken collec-
tively, they might be infeasible even
though they are individually feasible. For
example, their net effect might break an
integrity constraint.

Let’s examine how commit protocols
provide atomicity and barrier synchro-
nization.

Table 1. Infeasibility and agent actions.

TYPE OF AGENT INTERACTION WITH THE OUTSIDE WORLD POSSIBLE CAUSE OF INFEASIBILITY

Retrieval Reading a data item in a The data item is exclusively
database. locked by an agent in another

concurrently executing
computation.

Retrieval Interrogating a device, such as a The device is inaccessible
thermometer. because of a physical fault.

Update Writing a data item to a The resulting state of the
database. database would violate

an integrity constraint.

Update Creating a file in the operating The disk is full.
system’s file subsystem.

Update Activating a device, such as an The computation is
alarm. unauthorized.

36 IEEE Concurrency

Commit protocols for
atomicity

An application requires atomicity
whenever it uses two or more agents, at
least one of which is an altering agent.
The altering agent first checks the pro-
posed change’s feasibility. If a proposed
change is infeasible, the agent can imme-
diately release its context resources and
the result of the commit protocol will be
to abort the attempt to make a change.
When the change is feasible, the next step
depends on the system design.

• In an optimistic system, the agent
makes externally visible changes; if
the agent’s context subsequently
aborts, the system must abort all con-
texts that optimistically retrieved the
agent-altered data.

• In a conservative system, the agent’s
changes are not made externally vis-
ible until the feasibility of the con-
text’s entire set of required retrievals
and alterations is established.

The sidebar, “A commit protocol for
atomicity,” shows a basic version of the
two-phase commit (2PC) protocol.2

ENSURING ATOMICITY
In some applications, agents can undo

the changes they make to the outside
world. For example, the context might
execute a compensating transaction to can-
cel out the first transaction’s effects.
Thus, the entire computation’s atomic-
ity is not permanently compromised if
one agent performs its subtask and, sub-
sequently, another agent announces that

it can’t perform its subtask. This simpli-
fies the task of ensuring atomicity and
eliminates the need for a commit proto-
col—unless the cost of undoing the
agent’s change is prohibitively expensive.

In some cases, it is impossible to undo
a change’s external effects. For example,
once an automatic teller machine dis-
penses cash, the system cannot undo the
action. In such cases, the subtask effects
are permanent—the change’s effects are
visible and thus can influence behavior
external to the computation. In practice,
the computation can subsequently change
part of the outside world’s state. Nonethe-
less, the changes are still permanent in that
the new values could have influenced
behavior external to the computation.

Wherever the atomicity property is
required and interactions with the out-
side world are potentially infeasible, the
computation must proceed tentatively. It
would be wrong to simply tell agents to
perform their subtasks, because if one
agent reports that its subtask is infeasi-
ble, the atomicity property is lost. Con-
sequently, the coordinator must first con-
sult each agent on its subtask’s feasibility.

Although agents can check whether
subtasks are feasible, in many applica-
tions they cannot prevent a change of
external circumstances that might ren-
der the subtask infeasible. Without this
complication, a simpler protocol would
be possible because the context could
deal with agents one by one. If control-
ling feasibility is impossible, atomicity
cannot be ensured. A commit protocol
is thus useful only in cases where a cata-
strophic failure, such as a disk head crash,

would prevent the successful execution
of an agent’s feasible action.

ATOMICITY CONDITIONS
For a commit protocol to ensure

atomicity when agent tasks change the
outside world, an application should
meet several conditions. To facilitate dis-
cussion and mapping to particular appli-
cations, I have assigned each condition a
letter based on its key characteristic.

• (M) A computation must have multi-
ple agents (at least one of which is an
altering agent).

• (T) Agents tentatively establish feasibil-
ity, given that external circumstances
can render the changes infeasible.

• (B) Before the agent votes (B1) exter-
nal circumstances can render the
changes infeasible at any time, and
(B2) the context or coordinator can
force the agent to abort at any time.

• (A) After the agent votes feasible (A1)
only a catastrophic failure can render
the changes infeasible, and (A2) the
coordinator alone determines whether
the agent commits or aborts.

• (P) Agent changes are permanent in
that the agent can’t undo them.

Whereas M is a property of the agents
set, P and T are properties of how agents
interact with the outside world. M and
B1 ensure that the problem is sufficiently
hard to warrant the use of a commit pro-
tocol, whereas T, B2, A1, A2, and P
ensure that the problem is sufficiently
easy. If your application meets all of the
MTBAP conditions, it requires some-

A two-phase commit protocol for atomicity entails sev-
eral steps.

1. Once the context completes computation and wants the
agents to make their changes permanent, the context
informs the coordinator to initiate the commit protocol.

2. The coordinator sends a determine-feasibility
message to its enlisted agents and waits for them to
reply.

3. When an agent receives the determine-feasibility
message from the coordinator, it decides whether its sub-
task is feasible. If so, it sends the coordinator a feasible
message; otherwise, it sends an infeasible message
and aborts the subtask (if it has not already aborted it). If
no message has arrived from the coordinator when a time-
out expires, the agent unilaterally aborts its subtask and
releases its computation-related resources.

4. Once the coordinator collects all agent replies, it makes
one of three decisions:

• If all agents send feasible messages, it decides to
commit.

• If one or more agents send an infeasible
message, it decides to abort.

• If one or more agents fail to send a response
message after the timeout period expires, the
coordinator decides to abort.

5. The coordinator then informs the context of the out-
come and forwards the decision to agents that sent fea-
sible messages. It need not reply to agents that sent
infeasible messages.

6. When the agents receive the coordinator’s message,
they act accordingly.

A commit protocol for atomicity

October–December 2000 37

thing approximating a commit protocol.
Note, however, that these MTBAP
properties are minimal. In any particu-
lar application, the commit protocol will
face added demands and complications.

PERFORMANCE ISSUES
In many applications, some agents

might fail or be cut off due to a partial net-
work failure, while other agents continue
communicating and carrying out their
subtasks. Commit protocols are designed
to survive various categories of partial fail-
ures. For example, the atomicity protocol
shown in the sidebar “A Commit Proto-
col for Atomicity” uses timeouts to detect
possible failures. For example, if an agent
fails before voting, the coordinator will
timeout and might decide to abort. The
only effect on overall system performance
is a short delay and the extra work associ-
ated with rolling back and restarting the
context. However, other partial failures
can cause the protocol to block, as the fol-
lowing example shows.

Example 1. Suppose that there are
three agents: A1, A2, and A3, and a
coordinator, C. A1 and A2 have both
sent feasible messages to C, but
neither has received a subsequent
message from C. A1 and A2 try to
contact C in case a message has been
lost or delayed, but discover that C
and A3 have crashed or become iso-
lated. A1 and A2 are thus blocked:

• A1 and A2 cannot commit because,
before it crashed, C might have
told A3 to abort; and

• A1 and A2 cannot abort because,
before it crashed, C might have
told A3 to commit and A3 might
have carried out this command
before it crashed.

Given this, A1 and A2 must continue
to hold locks until C or A3 recovers.

A partial failure that leads to blocking
impacts overall system performance
because the “live” agents continue to
hold resources for the stalled client com-
putation. Throughput of concurrently
executing computations thus drops while

they await the release of shared resources
by agents stalled in the commit phase.

For a commit protocol to be robust
with respect to a particular failure sce-
nario, it must facilitate recovery regard-
less of how infrequently a particular fail-
ure scenario occurs. Traditionally, this
involves logging to disk the information
about a protocol execution’s progress
and outcome. Upon recovery from a sys-
tem crash, the participant reads the log
file and takes appropriate action to rejoin
the protocol execution.

COMMIT PHASES
The industry standard (de jure and de

facto) commit protocols2 are 2PC pro-
tocols. In phase one, the participants
establish whether or not there is unani-
mous feasibility. In the second phase,
agents commit as soon as they are told
that feasibility is global. However, as
Example 1 shows, 2PC protocols can
cause problems under various failure
conditions.

Three-phase commit (3PC) protocols
can help in such situations. In quorum-
based 3PC protocols—where a quorum is
a majority of the agents—the coordinator
informs all agents when feasibility is
unanimous. The agents then acknowl-
edge receipt of this information, but do
not, at this stage, commit. When the
coordinator has collected acknowledge-
ments from a quorum, it tells agents to
commit. If the failure scenario outlined
in Example 1 occurs, A1 and A2 initiate
a termination protocol, as Example 2 shows.

Example 2. If neither A1 nor A2 have
been informed about the unanimity
of feasibility, they realize that they
constitute a quorum and thus that C
cannot have received quorum
acknowledgement. Hence, C could
not have told A3 to commit and it is
safe for A1 and A2 to abort. When C
and A3 recover, they rejoin A1 and
A2 in the commit-protocol execution
and are informed of the outcome.

To date, 3PC has not been used in
commercial TP systems. There are two
primary reasons for this. First, 3PC
involves extra messages for all transac-
tions, regardless of the rarity of relevant

failure scenarios. Second, some failure
scenarios can cause 3PC to block.

At the other end of the scale, one-
phase commit is sufficient for some
applications. For example, in some appli-
cations, agents can immediately deter-
mine and report feasibility. Thus, by the
time the commit-protocol execution
starts, the context knows its global fea-
sibility and the coordinator must merely
inform the agents of the global outcome.
Several services in new applications
(described later) fit this category.

Commit protocols for
barrier synchronization

For some distributed applications,
atomicity alone is insufficient because it
cannot guarantee that retrievals or alter-
ations will happen simultaneously at all
sites. Agents belonging to separate, con-
currently executing computations can
alter parts of the global state that the tar-
get computation needs to retrieve or alter.
This is particularly problematic in appli-
cations such as distributed TP, which
includes the notion of a consistent global
state from which agents at various sites
retrieve information. The agents’ views
must be compatible with each other.
Atomicity alone cannot ensure this com-
patibility because a computation’s alter-
ations and retrievals at different sites can
occur at different times, and thus other
computations can make interim changes.

Industry-standard commit protocols2

therefore provide isolation by enforcing
barrier synchronization (see the sidebar,
“A commit protocol for barrier syn-
chronization”). In distributed comput-
ing environments, it is generally impos-
sible to control retrieval such that agents
will obtain their information at exactly
the same time. The global state can
change at any time, and although an
agent might be able to delay such
changes—by locking or versioning, for
example—it cannot veto changes. In TP,
for example, the system can break a
deadlock by overriding an agent’s
attempts to retain a lock on a data item.

There are four conditions for best use
of a commit protocol to ensure barrier
synchronization for retrieving agents:

38 IEEE Concurrency

• (M) A computation features multiple
independent agents.

• (A) Access time is asynchronous. There
is no global time and the context has
no direct control over the precise
moment at which an agent reads the
outside world.

• (F) A fluid global state prevents agents
from freezing a part of the state to
obtain a consistent snapshot.

• (G) Agents require a globally consis-
tent state to see snapshots of the world
that are consistent with each other.

If your application lacks one of these
conditions, you can use a simpler proto-
col to ensure barrier synchronization. For
example, if F does not hold, the coordi-
nator can simply tell agents when to
release their locks, simplifying steps 3 and
4 in the barrier synchronization protocol.

New applications

Researchers have developed commit
protocols for several concurrent-com-
puting applications. The demands of
these applications differ in several ways
from those in traditional TP.

First, traditional TP contains the
notion of a consistent global state, in
which each transaction transforms the
database from one consistent global state
to another. Indeed, one of the roles of the
commit protocol is to ensure that agents
only make changes that maintain this
local consistency. However, some of the
new applications contain nothing analo-
gous to this notion of global consistency
beyond the computation wanting atom-
icity to hold. For example, a context

might want one agent to flash a light and
another to briefly sound a buzzer.
Although the context wants to enforce
the atomicity of these two transient
events, there is no real sense in which the
system achieves a consistent state.

Second, in traditional TP, agents hold
locks on shared resources until the commit
protocol reaches a critical point.
Researchers have optimized some commit
protocols to permit early release of such
locks. However, not all of the new appli-
cations need to lock critical data resources,
as they don’t compete for such resources
with other concurrently executing com-
putations. Consequently, several commit-
protocol optimizations are irrelevant.
Optimizations should focus on reducing
an individual computation’s response
time. Boosting throughput by enhancing
concurrency might not be significant.

Third, although the commit outcome
is always preferred to the abort outcome,
the penalty of having to abort differs
greatly among applications. For exam-
ple, in traditional TP, restarting a trans-
action is generally easy and, in many
applications, doing so wastes little work.
In contrast, some systems have jobs that
take days to complete and restarting
would be a major waste of resources.
Given this, different applications require
different protection against aborts.

Finally, some applications have real-
time constraints on task completion. For
example, each transaction might have a
deadline for completion and be forced to
abort if it misses that deadline. Some
researchers have proposed special-pur-
pose commit optimizations for real-time
applications.

I now offer an overview of new appli-
cations and how they incorporate com-
mit protocols. Note, however, that many
algorithms exist for these applications
and each application has alternative
implementations that do not use commit
protocols. Table 2 summarizes the appli-
cation characteristics as they relate to the
condition sets for atomicity and isolation.

ATOMIC BROADCAST
In some distributed computations, the

nodes can broadcast messages to each
other through a message delivery system.
This type of computation requires two
properties:

• Atomicity. If it is impossible for all
nodes to receive a particular broad-
cast message, then none should
receive it.

• Uniform delivery sequence. The system
can deliver the stream of broadcast
messages to application processes in
any order, but the order must be the
same for all processes.

Shyh-Wei Luan and Virgil Gligor use
a quorum-based 3PC protocol in their
atomic broadcast protocol.5 At each
node, an agent exchanges messages with
agents at other nodes. The agent also
delivers the broadcast messages it has
received to its local application process.
When an agent receives broadcast mes-
sages and wants to deliver them to its
application process, it must ensure that
another agent has not already delivered
messages to its application process in a
different order. The agent’s node
becomes an initiator, which combines the
context and coordinator roles. The ini-
tiator polls agents at other nodes to see
if they can deliver the proposed message
sequence. The initiator agent also sends
out details of the message sequence it has
already delivered.

An agent will send back a vote of
infeasible if it has already delivered
one or more messages to its application
process that the initiator’s agent has yet
to deliver. Included in the infeasible
message will be the missing message
sequence. If the initiator’s agent receives
an infeasible message, it aborts the

A simple commit protocol for barrier synchronization involves four basic steps.

1. As the context proceeds with the computation, it asks the coordinator to
enlist agents.

2. The context then issues requests to agents for retrievals and alterations;
once these are complete, it tells the coordinator to initiate the commit pro-
tocol.

3. The coordinator asks the agents to confirm that they are still locking the
state on behalf of the computation and tells retrieval agents to release
their resources for other agents to use.

4. If all agents confirm that they are holding their locks, the coordinator tells
the context that barrier synchronization was achieved. Otherwise, the coor-
dinator tells the context that barrier synchronization might not have been
achieved. The coordinator also informs the altering agents about the out-
come, so that they can determine whether or not to make their changes
permanent.

A commit protocol for barrier synchronization

October–December 2000 39

protocol execution. Because the agent did
not participate in an earlier, successful
protocol execution, it must catch up by
delivering the missing messages. If an
agent has not delivered a longer sequence
of messages than the initiator’s agent, it
votes feasible and requests any miss-
ing message from the initiator’s agent so
that it can catch up.

Because the agents are not truly inde-
pendent of each other, the initiator only
needs a quorum of feasible votes.
Once it has a quorum, it sends the details
of the addition to the agents’ streams,
along with a list of agents that sent fea-
sible responses. Agents send Acks
upon receipt. When the initiator receives
a quorum of Acks, it instructs the quo-
rum nodes to commit the new message
by adding it to their streams.

Luan and Gligor’s protocol also
includes

• a mechanism for dealing with con-
current protocol executions with dif-
ferent initiators, and

• a termination protocol that kicks in
when a node suspects that the initia-
tor has failed.

Table 3 shows the key differences
between this broadcast application and
distributed TP.

DISTRIBUTED FILE SYSTEMS
Rajmohan Panadiwal and Andrzej

Goscinski6 developed a high-perfor-
mance distributed file-storage system
that uses a commit protocol when writ-
ing changed pages back to their file. As
the commit protocol proceeds, it deter-
mines an efficient technique for making
changes permanent, such as write-ahead
logging for contiguous pages and
shadow paging for noncontiguous pages.

This preliminary information gathering
lets the commit protocol proceed in a
single phase.

DISTRIBUTED SHARED MEMORY
Jingsong Ouyang and Gernot Heiser7

provide fault tolerance in distributed
shared-memory applications by using
2PC in a consistent checkpointing tech-
nique. The coordinator makes tentative
checkpoints after the first phase of 2PC.
In the second phase, the coordinator can
use a lazy approach by piggybacking the
results sent to agents on the messages asso-
ciated with the next checkpoint. Ouyang
and Heiser point out that a one-phase
commit is possible, but agents must store
the two most recent checkpoints to ensure
recovery, whereas with 2PC, they need
only store the most recent one. This tech-
nique also makes the simplifying assump-
tion that only one distributed process is

performing a checkpoint at any one time.
This eliminates the F in MAFG.

INTERNET TP
Internet transactions need a commit

protocol in the same way that conven-
tional transactions do. However, for most
concurrent applications, we can assume
that the participating agents are coopera-
tive. This assumption might be invalid in
applications such as e-commerce,8 where
agents participating in an Internet trans-
action can represent different enterprises.
In such cases, a participating enterprise
might try to influence the transaction’s
outcome to its advantage. Consequently,
a robust commit protocol for such an envi-
ronment must have some of the charac-
teristics of a harder problem—the Byzan-
tine agreement,4 which handles cases in
which bogus messages are sent to deliber-
ately fool the agents or the coordinator.

Table 2. New applications of commit protocols as they relate to condition criteria.

SERVICE PHASES ATOMICITY BARRIER EXTRA OUTCOME QUALIFIED

SYNCHRONIZATION DIFFICULTY BY VOTE?

M T B1 B2 A1 A2 P M A F

Atomic broadcast 3 y n n y y y y y y n n y
Dist. file system 1 y y n y n y y y y n n n
Dist. shared memory 1 or 2 y n n y y y n y y n n y
Internet TP 2 y y y y y y y y y y y n
Network mgt. 2 y y n y y y n y n y n y
Reliable messaging 2 y y n y y y y - - - n n
Remote backup 2 y y n y y y y - - - y n
Replication 2 or 3 y y y y y y y - - - n n
Scheduling 2 y y n y y y n y n n n n

Table 3. Differences between a conventional commit protocol and Luan
and Gligor’s commit protocol.

TRANSACTION PROCESSING ATOMIC BROADCAST

A scheduler decides the order of The commit protocol decides
transactions before initiating the ordering of message delivery.
the commit protocol.

An agent votes infeasible An agent votes infeasible if the initiator
when there is a problem (external has a problem (that is, it hasn’t received
to the protocol) at its own site. all of the broadcasts that it should have).

Contention for resources There is no contention for shared
among transactions is a major resources among concurrently executing
performance factor. initiators.

The coordinator must receive a The initiator decides commit once it has
vote from every received feasible votes from a quorum of agents.
agent before it can commit.

Both barrier synchronization and Atomicity is the only service required.
atomicity are required.

40 IEEE Concurrency

There is no notion of a consistent
global state because the various partici-
pating systems belong to separate enter-
prises. Hence atomicity is the only ser-
vice required.

NETWORK MANAGEMENT
C.S. Li and colleagues propose a com-

mit protocol for network management
to facilitate connection setup in switch-
ing systems that support mixed-circuit
and packet connections for broadband
service.9 Their control architecture is
intended for systems that allow only one
connection to an output port at any
given time.

Various users might demand different
connection styles, such as broadcast,
multicast, and conferencing. Given this,
the developers note that a centralized
system is preferable for some services,
while for others a distributed arrange-
ment might be more efficient. Their
proposed scheme is an attempt to get the
best of both worlds.

The developers describe their proto-
col as having three phases, but I refer to
it as a two-phase protocol because one
phase involves no message passing. The
developers assume that their phases are
synchronized, as are incoming requests.
This departs from traditional assump-
tions made in the literature about com-
mit protocols, but is not unreasonable.
In traditional commit-protocol process-
ing, the protocol uses the network,
which might be congested. In this appli-
cation, the network uses the commit pro-
tocol. A consequence of the developers’
synchronization assumptions is that the
protocol can be decentralized and does
not require a separate coordinator. Fur-
thermore, the assumption obviates the
need for barrier synchronization.

The commit protocol keeps informa-
tion on the port-allocation status consis-
tent in the various controllers. Li and col-
leagues propose a multilevel hierarchical
architecture in which virtual-centralized
controllers (VCCs) are attached to each
level of the control network. A VCC can
obtain a port’s current status from its
VCC. Apart from the top and bottom of
this hierarchy, each VCC acts as a com-
bined agent, context, and coordinator. A

VCC is an agent in the commit protocol
that is initiated by a VCC higher up the
hierarchy; it in turn acts as context and
coordinator for the VCCs lower in the
hierarchy. The protocol actually com-
prises many concurrent but synchro-
nized commit protocols. Its three phases
are

• Phase 1: Connection request pro-
cessing. Each VCC, VCCi, makes a
tentative decision on whether it can
grant the connection requests, based
on the port status at the previous
cycle’s conclusion. A tentative alloca-
tion, TI, is made by VCCi.

• Phase 2: Tentative allocation broad-
cast. Tentative decisions are sent up
and down the hierarchy. Thus, each
VCC collects the tentative decisions
made by its parents and children.

• Phase 3: Conflict resolution. Con-
flicts that occurred in the tentative
allocations are resolved and a final
allocation is generated. Various con-
flict-resolution rules are possible.

Finally, none of the ports on a desti-
nation list of a multicast or a broadcast
connection will be allocated unless all of
them are available.

RELIABLE MESSAGING
Message queue mangers provide reli-

able asynchronous communication
between processes in a distributed sys-
tem.10 However, they provide more ser-
vices than simply sending a message to a
single recipient. They can provide atom-
icity, ensuring that a message gets to a
particular set of sites, rather than to just
some of them. Each receiving site has a
local message queue manager, and the
sending site ensures that the message is
placed in reliable queues so that all sites
can receive it.

The process of receiving messages is
largely nontransactional: only special-
ized applications require barrier syn-
chronization. Furthermore, if process-
ing a particular message causes an error,
rolling back and putting the message
back into the queue is pointless if the
same error will occur the next time the
message is read. To deal with this,

application-specific error handling is
required.

The relationship between reliable
messaging and TP is convoluted. The
leading reliable messaging products use
industry-standard commit protocols;
another product uses a database system
to ensure message persistence.

REMOTE BACKUP
Sharad Mehrotra and colleagues

describe a remote backup technique for
a multicomputer system.11 The tech-
nique replicates updates onto a backup
system. However, because of the appli-
cation’s nature, it makes no sense to use
a conventional commit protocol. The
point of doing this type of backup is to
survive a failure—if the processor that
fails happens to house the coordinator,
there is still a single point of failure. The
developers’ solution is to duplicate the
coordinator process on separate nodes.
At commit time, copies are made to
backup computers, which confirm that
the copies are on stable storage to the
backup coordinator. The backup coor-
dinator then acts as a participant in the
commit with the primary computers.

REPLICATION
Some data items are replicated to only

a few sites. Whenever a transaction alters
such a data item, all of the sites it is repli-
cated on can become commit-protocol
agents to ensure the altering propaga-
tion’s atomicity. However, this strategy
is impractical for data replicated on
numerous sites, which has led some
researchers to explore ways of relaxing
the atomicity requirement.

Liu and colleagues propose a scheme
whereby the sites that replicated data
should be propagated to are organized
into a tree-structured hierarchy.12 At
each hierarchy level, a transaction with
2PC propagates the replicated data item
to the sites at the next level down. The
propagation transaction is executed and
committed independent of the original
transaction. The drawback is that at any
time a data item might have different val-
ues on different sites.

Ididt Keidar and Danny Dolev13 pro-
pose a quorum-based 3PC protocol,

October–December 2000 41

where a quorum would be a majority of
sites on which a data item is replicated.
Their protocol can survive partial fail-
ures without blocking as long as a quo-
rum of the replicating sites continues
communicating.

SCHEDULING
Paolo Bizzarri14 and colleagues devel-

oped a multicomputer scheduling tech-
nique in which each system node can
potentially carry out its computation
using several different computational
procedures. They use a 2PC protocol in
which the agents (the nodes) vote on fea-
sibility and, at the same time, inform the
coordinator of the different procedures.
On receiving these replies, the coordi-
nator not only determines feasibility, but
also formulates a compatible plan for
carrying out the computation.

RESEARCHERS ORIGINALLY DEVISED
commit protocols to facilitate distributed
transactions between multiple main-
frames. However, many enterprises are
now replacing monolithic software sys-
tems with a complex infrastructure con-
sisting of autonomous midtier compo-
nents and back-tier server applications.
These components and server applica-
tions might be supplied by different ven-
dors and communicate with each other
through some form of message passing.
Researchers are now deploying commit
protocols to coordinate actions involv-
ing shared resources in multitier
client–server systems with distributed
objects middleware.1 However, unlike
traditional TP, the agents are not neces-
sarily complex or robust industrial-
strength systems. In fact, theoretically,
anyone could write an agent to join a
commit-protocol execution.

This is one among many challenges
that commit-protocol designers face as
they develop these protocols for areas
such as mobile computing, the Internet,
and client–server computing. In the past,
for example, people typically developed
commit protocols for tightly coupled
computational environments where
message latency was not only predictable

but was less significant than disk latency.
In some of the new environments, how-
ever, communication is inherently unre-
liable. Thus, message latency is highly
unpredictable and can impact perfor-
mance as much as disk latency. As
another example, new applications such
as reliable messaging rely chiefly on
altering agents, whereas distributed TP
relies chiefly on retrieving agents.

There is no question that new, appli-
cation-specific commit protocols are
needed. Until they emerge, my condition
sets can help you determine when it’s
wise to recycle a TP commit protocol for
your application, and when you might
better get by with a simpler choice.

References
1. S. Gray and R. Lievano, Microsoft

Transaction Server 2.0, SAMS Publishing,
Indianapolis, Ind., 1997.

2. P.A. Bernstein and E. Newcomer, Principles
of Transaction Processing, Morgan
Kaufmann, San Mateo, Calif., 1997.

3. P.K. Chrysanthis, G. Samaras, and Y.J. Al-
Houmaily, “Recovery and Performance of
Atomic Commit Processing in Distributed
Database Systems,” V. Kumar, ed.,
Recovery Mechanisms in Database
Systems, Prentice Hall, Upper Saddle River,
N.J., 1998, pp. 370–416.

4. J. Gray, “A Comparison of the Byzantine
Agreement Problem and the Transaction
Commit Problem,” Fault Tolerant
Distributed Computing, Springer Verlag,
Berlin, 1990, pp. 10–17.

5. S. Luan and V.D. Gligor, “A Fault-Tolerant
Protocol for Atomic Broadcast,” IEEE
Trans. on Parallel and Distributed Systems,
Vol. 1, No. 3, July 1990, pp. 271–285.

6. R. Panadiwal and A.M. Goscinski, “A High
Performance and Adaptive Commit
Protocol for a Distributed Environment,”
ACM Operating Systems Review, Vol. 30,
No. 3, July 1996, pp. 52–58.

7. J. Ouyang and G. Heiser, “Checkpointing
and Recovery for Distributed Shared
Memory Applications,” Proc. Fourth Int’l

Workshop on Object-Orientation in
Operating Systems (IWOOOS’95), IEEE
Computer Soc. Press, Los Alamitos, Calif.,
1995, pp. 191–199.

8. T. Kempster, C. Stirling, and P. Thanisch,
“A Critical Analysis of the Transaction
Internet Protocol,” Proc. Second Int’l Conf.
Telecommunications and Electronic
Commerce (ICTEC’99), 1999; www.dcs.
ed.ac.uk/home/tdk/projectpage.html
(current Nov. 2000).

9. C.S. Li, C.J. Georgiou, and K.W. Lee, “A
Hybrid Multilevel Control Scheme for
Supporting Mixed Traffic in Broadband
Networks,” IEEE J. Selected Areas in
Communications, Vol. 14, No. 2, Feb. 1996,
pp. 306–316.

10. C. Mohan and D. Dievendorff, “Recent
Work on Distributed Commit Protocols,
and Recoverable Messaging and
Queuing,” Data Engineering Bulletin, Vol.
17, No. 1, Mar. 1994, pp. 22–28.

11. S. Mehrotra, H. Kexiang, and S. Kaplan,
“Dealing with Partial Failures in Multiple
Processor Primary-Backup Systems,” Proc.
Sixth Int’l Conf. Information and
Knowledge Management (CIKM’97), ACM
Press, New York, 1997, pp. 371–378.

12. X. Liu, A. Helal, and W. Du, “Multiview
Access Protocols for Large-Scale
Replication,” ACM Trans. Database
Systems, Vol. 23, No. 2, June 1998, pp.
158–198.

13. I. Keidar and D. Dolev, “Increasing the
Resilience of Distributed and Replicated
Database Systems,” J. Computer and
System Sciences, Vol. 57, 1998, pp.
309–324.

14. P. Bizzarri, A. Bondavalli, and F. Di
Giandomenico, “A Scheduling Algorithm
for Aperiodic Tasks in Distributed Real-
Time Systems and Its Holistic Analysis,”
Proc. IEEE Future Trends in Distributed
Computing Systems (FTDCS’97), IEEE
Computer Soc. Press, Los Alamitos, Calif.,
1997, pp. 296–301.

Peter Thanisch is a software designer at
Accrue Software, Inc. His current interests
include distributed protocols and online
analytical processing. He received a PhD and
MSc in computer science from the University
of London. Readers can contact him at Accrue
Software, Unit 10 Alpha Centre, Stirling
University Innovation Park, Stirling FK9
4NF, Scotland; peter.thanisch@accrue.com.

