
 1

Ada User Journal Volume 23, Number 3, September 2002

Customizing UML for the development of distrib-
uted reactive systems and code generation to Ada 95
Michael Kersten, Jörg Matthes, Christian Fouda Manga, Stephan Zipser, Hubert B. Keller
Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany, www.iai.fzk.de

Abstract
Distributed, reactive software systems, e.g. process
control tools, can be modelled with the Unified Mod-
elling Language (UML). Recently such UML models
are used to generate source code automatically. Be-
cause of the complexity of UML, it is necessary to re-
strict the usage of its constructs by defining UML pro-
files to allow the automatic generation of source code.
In this paper a UML profile for the design and im-
plementation of distributed, reactive systems and an
associated mapping to Ada 95 source code are intro-
duced. Further, our experiences with the chosen ap-
proach are discussed.

Keywords:UML ,automatic generation of code, Ada.

1 Introduction
In our research group at the Forschungszentrum Karlsruhe
we optimize industrial processes using methods like infra-
red thermography, fuzzy control and image processing.
Since available process control tools have not been able to
implement complex algorithms in a time effective and com-
fortable way we decided to overcome this situation with the
development of the process control tool Inspect 2 [1].

First of all, the Inspect 2 system can be classified as a reli-
able, distributed, reactive system. Second, the area of re-
search implies high maintainability requirements. To cope
with this situation we decided to use a special development
process which combines the good maintainability charac-
teristics of UML with the advantages of Ada 95 of reliabil-
ity aspects.

In cooperation with the Company Aonix, Karlsruhe, we
defined a UML profile for distributed reactive systems and
developed ACD (Architecture Component Development)
templates for code generation to Ada 95 source code with
the UML tool Software through Pictures (StP) 8.01.

ACD allows the user to define code generation templates
for any implementation language using a script language.
In theory it is possible to define own stereotypes and tagged
values in StP, and to access these stereotypes by the code
generator, and therefore almost any mapping between UML
and the implementation language of choice can be defined.
The details concerning the usage and implementation of the
templates for the generation of Ada 95 source code can be
found in [2]. The described UML profile and the associated

1 Parts of the UML model, describing the communications
subsystem, have also been mapped to Java source code

templates developed togehter with Aonix in the Inspect 2
project are part of the latest release StP 8.3.

This report describes the UML profile and reviews our ex-
periences with code generation from UML to Ada 95 based
on StP.

2 The process control tool Inspect 2
In order to use Inspect 2 as a running example we will first
of all give a brief description of its architecture (see Figure
1).

Figure 1 The structure of Inspect 2

 Inspect 2 is a client server system with the Inspect server
managing the collection, distribution and archiving of data.

Volume 23, Number 3, September 2002 Ada User Journal

Additionally, the server is able to schedule various analysis
and control tasks. The clients, communicating with the
server via TCP/IP, are responsible for the measurement of
process values and for the communication with other sys-
tems, e.g. the process control system. Special clients
(Gateways) allow the communication with non TCP/IP
based systems. Clients also act as distributed/remote human
machine interfaces.

Each client communicates with the server via an own asso-
ciated task (Remote_Comp_Module) within the server,
which maintains the communication and caters for a reli-
able data transfer. The application logic of Inspect (i.e. data
processing) is defined in Application_Module tasks. All
modules can be customized by configuration and are
scheduled by the Inspect server.

At present instances of Inspect 2 are
used in the field of industrial
combustion control and sensor net-
works.

3 The UML profile
As we already motivated in [3], an
advantage in the use of UML is its
possibility of customization. Since
UML is a complex family of
languages (see [4]) with a large
amount of concepts, it is generally
convenient to restrict these to the
minimum required by the application
domain. Otherwise problems in the
mapping of UML diagrams to Ada 95
code are induced. Due to the fact that
there are no complete formal
semantics for UML, we decided to
define a UML profile and give
denotational semantics to it by
mapping its concepts to the concepts
of Ada 95.

For better understanding we do not
use the UML notation for profiles (see
[5]), but we define the concepts of our
profile informally and illustrate them
using parts of our running example
Inspect 2. The structure of the profile
is given in Figure 2. It uses class
diagrams and statechart diagrams
because they are able to describe
distributed reactive systems
completely. The structural and
functional view of the system to be
described is modelled by class dia-
grams. The behavioral view is
modelled by statechart diagrams.

In the following we will describe the
concepts of our UML profile and
illustrate them using our running
example Inspect 2 (see Figure 3).

3.1 Packages
In UML, the concept of Packages is used in the Model
Management Part for the grouping of model elements (refer
to [5], pp. 3-17). Since in standard UML subsystems are
behavioral units rather than structural units (refer to [5], pp.
3-21) we introduce the stereotype subsystem for packages.
In this sense in our profile a subsystem is a package which
groups model elements which belong to structural parts of
the system.

In our profile only packages with the stereotype subsystem
are allowed. Subsystems may contain subsystems and for
simplicity the total system is modelled by a subsystem too.
In Figure 3 an example for a package with stereotype sub-
system is shown: the package Inspect_Server.

Figure 2 The structure of our profile

Figure 3 The structure of Inspect 2 as class diagram

 3

Ada User Journal Volume 23, Number 3, September 2002

3.2 Classes
In UML, Classes (refer to [5], pp. 3-34) follow the concept
of abstract datatypes, i.e. they are container for typed at-
tributes and operations over these. In our profile attributes
and operations can have public or private visibility (as de-
scribed in [5],p. 3-40 and 3-43). The protected visibility
property is not allowed in our profile.

In order to model the concurrent behavior of distributed
reactive systems we introduced the stereotypes
Tagged_Protected_Type and Tagged_Task for classes:

A class with the stereotype Tagged_Protected_Type is a
special case of a passive class. It is a storage class with a
mechanism for the synchronization of concurrent access of
multiple tasks.

The stereotype Tagged_Task defines an active class with a
light-weight concurrent flow of control. In contrast to the
standard passive classes our tagged_-task class has an own
flow of control. To describe this flow of control, each
Tagged_Task is associated with a statechart. For the con-
nection of the class and the statechart diagram, the follow-
ing well-formedness rules must hold:

• Each public method of the class must be used as an
event in the associated statechart diagram and vice
versa.

• Guard conditions in the statechart only refer to the at-
tributes of the class diagram.

• The change of values of attributes of the class is mod-
elled in the associated statechart diagram as actions.

• Public methods of the class are external events which
allow communication between different classes.

• Private methods of the class allow local abstraction and
the expression of a behavior which is hidden to the en-
vironment (other classes).

• Methods of classes are non blocking (i.e. execution is
locally without any further entry call or accept state-
ment). Otherwise they could cause deadlocks.

A further new introduced concept for classes with the
stereotype Tagged_Protected_Type or Tagged_Task is the
tagged value Timed_Call_Supported for public operations.
These so-called timed operations have different semantics
than normal public operations. The call of a normal public
operation of a Tagged_Protected_Type or a Tagged_Task
leads to the situation that the caller is blocked until the op-
eration is finished. If in the case of a Tagged_Task the as-
sociated statechart has no outgoing transition in the current
state, which is annotated with the corresponding event, the
caller is blocked until the Tagged_Task reaches a state with
this predicate. In the worst case deadlocks and livelocks
can occur, even though the called method itself is non
blocking. A simple and effective way of avoiding liveness
problems is the usage of timed operations. In our profile
they have the semantic that the caller of the operation is
only blocked until either the operation call is accepted or
the timeout of the operation is expired. All timed operations
have an extra in-parameter for specifying the maximum
waiting time and an extra out-parameter informing the
caller if the call was accepted (and processed) or not. These
two parameters are implicitly defined in the class. On the
caller side both parameter values need to be attached.

In Figure 4 a fragment of the associated statechart diagram
of the class Inspect_Server is shown.

Figure 4 Fragment of the statechart of the class inspect_server

Volume 23, Number 3, September 2002 Ada User Journal

Between the states Initialized and Check_Password there
are two interesting transitions. The transition from Initial-
ized to Check_Password is triggered by the event Authenti-
cate. After this event the attribute Password_User is set to
Password.

Password is the value of the concrete parameter of the
method Authenticate. The parameter is only defined in the
class diagram (see Figure 4) and not in the statechart2. The
transition from Check_Password to Initialized gives an ex-
ample of a complex transition.

If the event Is_Authenticated occurs the guard condition
[Password_Inspect!=Password_User] is evaluated and the
transition takes place if the result is true (i.e. the password
is wrong). In that case two actions are executed. The first
action changes the classes attribute Authenticated to the
value False. The second action is the execution of the local
method Local_Wrong_Password. This is another interesting
concept of our approach. The user may specify actions in
the statechart which are not member of the associated class.
These are mapped to locally defined Ada procedures in the
body and represent an additional mechanism of local ab-
straction. The semantic of the local procedure is defined in
the implementation and does not matter in the design. The
use of this concept increases the clarity and understandabil-
ity of the statechart diagram. It is important to avoid the
definition of blocking local procedures in the code since
this leads to deadlocks. Since local procedures are used as a
concept of abstraction between the design and implementa-
tion level, we deliberately leave the avoidance of blocking
in the responsibility of the developer. Thus our approach
does not provide a method to ensure the non blocking defi-
nition of local procedures. We would therefore recommend
not to use infinite loops and external operation calls. The
latter can not always be considered, because the main pur-
pose of local procedures is the use of operating system
functions.

3.3 Associations
UML consists of a rich set of association types. In our pro-
file only the following types of associations are necessary:

• generalization

• aggregation

• composition

For the use of the inheritance features, the generalization
association (see [5], p. 3-79) is included in the profile. Ad-
ditionally our profile includes the association type
composition as described in [5] on page 3-74.

The most important association type in our profile is the
aggregation association (see [5], p. 3-79). In contrast to
standard UML the only restriction is the deprecation of
association classes for the aggregation.

For the aggregation our profile contains the stereotype
Owner. The so-called ownership aggregation models a
close binding between the associated classes. One side of

2 by convention the parameters of classes event can be
omitted if the name of the event is unique in the class

the association has the role of the owner and is responsible
for the creation and destruction of the class on the other
side.

3.4 Well-formedness rules

In order to avoid liveness problems we decided to use only
hierarchic visibility between classes.

4 Mapping the concepts to Ada 95

4.1 Packages
UML Packages with the stereotype Subsystem are mapped
to folders in the project-folder.

4.2 Classes
The classes of the profile are mapped to Ada 95 packages
with the following content:

• a record with one component for each attribute of the
class and one component for each aggregation of the
class,

• a public procedure for each public operation of the
class,

• a private procedure for each private operation of the
class.

4.2 Tagged_Protected_Type
The classes with stereotype Tagged_Protected_Type are
mapped to an Ada 95 package containing the following
elements:

• a record with one component for each attribute of the
class and one component for each aggregation of the
class,

• a private protected type Class_Name_Pt with one entry
for each class operation (with isomorphic signatures),

• a public procedure Operation_Name for each class
operation with a signature isomorphic to the class
operation (In the procedures body the corresponding
entry of the protected type Class_Name_Pt is called.),

a public procedure Timed_Operation_Name for each class
operation with tagged value Timed_Call_Supported, which
has a signature isomorphic to the class concatenated with
the additional parameters for timing. These are
(in:Time:duration,out:timed_out:boolean) (In the body of the
procedure the corresponding entry of the protected type
Class_Name_Pt is called as a timed operation.).

4.3 Tagged_Task
The classes with stereotype Tagged_Task are mapped to an
Ada 95 package which includes the following elements:

• a record with one component for each attribute of the
class and one component for each aggregation of the
class,

 5

Ada User Journal Volume 23, Number 3, September 2002

• a variable Current_State of an enumeration type
Class_Name_Event_Type containing all states of the
associated statechart diagram,

• a private task type Class_Name_Task with one entry
for each event in the statechart diagram. The entries
have a signature isomorphic to the corresponding class
operation.

• a public procedure Operation_Name for each class
operation with a signature isomorphic to the class op-
eration (In the procedures body the corresponding en-
try of the task type Class_Name_Task is called.),

• a public procedure Timed_Operation_Name for each
class operation with the tagged value
Timed_Call_Supported which has a signature isomor-
phic to the class concatenated with the additional pa-
rameters for timing. These are
(in:Time:duration,out:timed_out:boolean) (In the body
of the procedure the corresponding entry of the task
type Class_Name_Task is called as a timed opera-
tion.),

• a statechart implementation using select-statements
depending on the value of the variable Current_State,

• a private procedure for each action in the statechart
diagram with a signature isomorphic to the action.

4.4 Code examples
In the section above we described the mapping of the UML
concepts to Ada 95. For a better impression to the reader
we will give a detailed code example. First, we will show
the Ada specification file of the Inspect_Server_Pkg,
whose UML representation was discussed in section 33.

In the specification the package Inspect_Server_Pkg is in-
troduced:

package Inspect_Server_Pkg is

type Inspect_Server is new
ACD_Runtime.Active_Base_Class.ActiveLimitedInstance
with private;

type Inspect_Server_Cptr is access all In-
spect_Server'class;

type Inspect_Server_Ptr is access all Inspect_Server;

…

It consists of the derived type Inspect_Server with a pointer
Inspect_Server_Ptr and a class wide pointer In-
spect_Server_Cptr. The type ACD_Runtime.Active_Ba-
se_Class.ActiveLimitedInstance is an empty tagged record
type which represents the type active class in the profile
and was adopted from the standard ACD code generation
templates. We found it usefull, because it enables the user
to define global properties of active classes, if necessary. In
the private part the type is redefined.

3 For better readability we reformatted the automatically
generated file an removed irrelevant comments.

Next, the type Inspect_Server_Event_Type defines the set
of events of the class Inspect_Server:

type Inspect_Server_Event_Type is (

 Is_Authenticated_Event

 , Is_Shut_Down_Event

 , System_Ready_Event

 , Shut_Down_Event

 , Init_Event

 , Authenticate_Event

 , Run_Event

);

The correspondance between events, class operations and
entries of the task are shown in the body. The next parts in
the specification are the constructor and destructor opera-
tions:

--Constructor Operations---

 procedure Initialize (Acc_This : Inspect_Server_Cptr);

 function Create return Inspect_Server_Ptr;

--Destructor Operations--

procedure Finalize (Acc_This : in out In-
spect_Server);

procedure Free (Acc_This : in out In-
spect_Server_Cptr);

Next, the class operations are specified. Since the mapping
principle is the same for each operation, we show only two
examples:

--Operations---

procedure System_Ready(Acc_This : access In-
spect_Server);

-- Timed_Call_Supported:

procedure Timed_System_Ready(Acc_This : access
Inspect_Server; Timeout : duration; Timed_Out : out
Boolean);

procedure Init(Acc_This : access Inspect_Server);

-- Timed_Call_Supported:

procedure Timed_Init(Acc_This : access In-
spect_Server; Timeout : duration; Timed_Out : out
Boolean);

The reader may have recognized that two versions of each
operation are defined. This reflects that for these operations
the tagged value Timed_Call_Supported is set in the UML
model. The timed versions of the procedures have prefix
Timed_ attached. In the private part of the specification,
the static part of the associated statemachine of the active
class Inspect_Server is defined:

Volume 23, Number 3, September 2002 Ada User Journal

private

package Inspect_Server_State_Machine is

--State Type--

 type State_Type is (

 ST_Authenticated

 , ST_Check_Password

 …

);

 end Inspect_Server_State_Machine;

This is the type Inspect_Server_State_Machine which
models the set of states of the statemachine. The transitions
of the statemachine are defined in the body. Since each
active class has an own thread of control a task type is nec-
essary:

task type Inspect_Server_Task(Acc_This : access In-
spect_Server'class) is

--State Machine Operations---------------------------------------

entry Take_Is_Authenticated_Event(Authenticated :
out Types.I_Bool);

…

entry Take_Run_Event;

end Inspect_Server_Task;

For each event of the statemachine the task type has a cor-
responding entry. To increase the readability of the code,
the prefix Take_ is attached to the entries. The example
above shows only two entries. As stated earlier, the type
Inspect_Server is redefined in the private part:

type Inspect_Server is new
ACD_Runtime.Active_Base_Class.ActiveLimitedInstance
with

record

Tsk : Inspect_Server_task(Acc_This => In-
spect_Server'access);

--Attributes---

Password_Inspect : Types.I_String;

…

 --Relations--

WD_Part : Watch_Dog_Pkg.Watch_Dog_Cptr;

MA_Part : Module_Array_Pkg.Module_Array_Cptr;

…

end record;

end Inspect_Server_Pkg;

The first component of the tagged record is of the type of
the previously defined task type. This shows the encapsula-
tion of the task in the tagged record which is the central

concept of the active class implementation. The second
component shown in the example is the attribute Pass-
word_Inspect. The other attributes are not shown. After
that, two examples of relations to other classes are shown.
The prefixes WD and MA are the names of the relations in
the class diagram (refer to Figure 3). By convention each
relation attribute is named by the relation name followed by
_Part.

After this short overview of the Ada specification of the
Inspect_Server_Pkg we will have a look to the associated
Ada body file:

package body Inspect_Server_pkg is

 package body Inspect_Server_State_Machine is

 end Inspect_Server_State_Machine;

The code fragment above shows the implementation of the
statemachine type. Since it is an enumerated type the most
information is still defined in the Ada specification.

More interesting is the implementation of the In-
spect_Server_Task:

task body Inspect_Server_Task is

 This : Inspect_Server'class renames Acc_This.all;

 --State Machine---

current-
State:Inspect_Server_State_Machine.State_Type
:= Inspect_Server_State_Machine.ST_Start;

 use Inspect_Server_State_Machine;

For readability reasons the access to self (Acc_This.all) is
renamed by the keyword This. After that, the variable cur-
rentState is declared and set to the initial state.

Next, the local procedures are defined. As shown in Figure
4, local procedures implement the actions of the UML
statecharts which model the behavior of active classes. For
example we show a fragment of the implementation of the
local procedure Local_Create_Components, which creates
all components of the active class Inspect_Server:

procedure Local_Create_Components is

begin

--Create Module_Array

This.MA_Part := Module_Array_Pkg.Create.all'access;

--Create Watch_Dog in the Pkg

Watch_Dog_Pkg.The_Watch_Dog_Ptr :=
Watch_Dog_Pkg.Create.all'access;

This.WD_Part := Watch_Dog_Pkg.The_Watch_Dog_Ptr;
…

end Local_Create_Components;

The following code fragment shows the implementation of
the statemachine. For a good understanding a comparison
of the implementation with the UML statechart diagram
(refer to Figure 4) is usefull. The core of the implementa-

 7

Ada User Journal Volume 23, Number 3, September 2002

tion is a case statement over the variable currentState en-
closed in a loop. The case statement branches (via when-
statements) over each possible state of the statemachine.
Since the variable currentState enumerates over all states of
the statemachine it is an invariant of the implementation so
in the focus of the loop statement exactly one when-
expression evaluates to true. This implies that the order of
the when-statements is inessential. We only show the states
Initialized and Check_Password in our example because
they include all relevant concepts of our statemachine im-
plementation:

 loop

 case currentState is
 …

when Inspect_Server_State_Machine.
ST_Check_Password =>

-- Activity:

null;-- user defined code to be added here

select

when (This.Password_Inspect =
This.Password_User)

or (This.Password_Inspect /=
This.Password_User) =>

accept
Take_Is_Authenticated_Event(Authenticated :
out Types.I_Bool) do

if This.Password_Inspect =
This.Password_User then

Authenticated := True;

currentState := ST_Authenticated;

elsif This.Password_Inspect /=
This.Password_User then

Authenticated := False; Lo-
cal_Wrong_Password;

currentState := ST_Initialized;

end if;

 end Take_Is_Authenticated_Event;

 end select;

when Inspect_Server_State_Machine.
ST_Initialized =>

-- Activity:

null; -- user defined code to be added here

select

when (TRUE) =>

accept Take_Authenticate_Event(Password
: in Types.I_String) do

if TRUE then

This.Password_User:=Password;

currentState := ST_Check_Password;

end if;

 end Take_Authenticate_Event;

end select;
 …

end case; -- end state case

end loop;

Assume the variable currentState has the value
ST_Check_Password. Thus Inspect_Server_State_Ma-
chine.ST_Check_Password evaluates to true and the other
when-expression evaluates to false. Then the code after the
first when-statement is executed. Because there is no entry
action defined in the state Check_Password, there is a null-
statement after the comment –Activity. Next, the implemen-
tation of the outgoing transitions of the state
Check_Password is shown. Both are triggered by the event
Is_Authenticated (for both guard conditions
Take_Is_Authenticated_Event is accepted). When this event
occurs (the operation Is_Authenticated is called) the guards
are evaluated in the if-elsif-combination. If the if-branch
evaluates to true, authenticated ist set to true and the next
currentState is set to ST_Authenticated. Otherwise authen-
ticated is set to false and the next currentState is set to Ini-
tialized.

Assume the current state is Initialized, there is one possible
outgoing transition. In contrast to the transitions above this
one has no guard condition. In the select-statement the ex-
pression when (TRUE) is used which is constantly true.

Whenever the event Take_Authenticate_Event occurs (the
operation Authenticate is called), the guard if TRUE evalu-
ates to true and the action code is executed. This means,
that the attribute This.Password_User is set and the next
value of the variable currentState is set to
ST_Check_Password.

5 Conclusion
The above described UML profile for distributed reactive
systems was developed at the Forschungszentrum
Karlsruhe for internal use. We used it for the development
of the process control tool Inspect 2 which we used as run-
ning example in this paper.

A measurement of the systems complexity4 did not take
place yet, but we can provide some estimates in order to get
an idea of the projects effort. The UML model is decom-
posed into 19 subsystems with 31 class diagrams and 13

4 Complexity measurement of software is an interesting but
elaborate scheme, in particular in the domain of the object-
oriented analysis and development. We use the notion of
complexity in its natural sense, since the use of a formal
complexity measure is no benefit for the reader for the un-
derstanding of our presented approach.

Volume 23, Number 3, September 2002 Ada User Journal

statechart diagrams. These are mapped to nearly 150 pack-
ages of Ada 95 source code.

Since the project was the first using the presented approach
there was an overhead in the early project phases. This was
caused by the need of defining the UML profile and the
associated mapping to Ada 95. Another cost factor was the
analysis of the existing design tools, their installation and
test. Additionally the customization of the Ada 95 tem-
plates for code generation increased the start up costs.

After finishing the projects foundations we have to point
out that most of the effort of the implementation phase was
drawn in the earlier design phase. Even some effort of the
documentation was done previously.

During the development of the system there was one very
important philosophy in the developers mind: whenever a
change could be made in the design instead of the imple-
mentation it was made in the design. This strong focus on
the design phase implied a good understanding of the sys-
tem to be developed (which reduces logical faults) and a
very tight relationship between the design and implementa-
tion model.

The common coding errors could be minimized. Therefore
the implementation phase was very short. Additionally the
testing phase5 was decreased extremely. This fact was in-
duced by the excellent debug capabilities of the approach.
Whenever a logical failure occurred during the testing
phase it was easy to find the error because its area could be
determined using the design model and specifically the
statechart diagram.

An analysis of the errors found in the testing phase leads to
the following error classes:

1) about 70% of the errors found were logical errors and
therefore design errors,

2) about 20% of the errors found were runtime errors,
caused by forgotten initializations in the manually im-
plemented code,

3) about 10% of the errors found were memory leaks.

The error classes two and three could be reduced in future
projects to a minimum by refining the code generation
properties. Class two errors will be reduced automatically
by increasing the amount of automatically generated code
(currently about 80 percent). The reduction of errors of
class three can be done by the integration of constructor
and destructor method implementations in the code genera-
tion templates. In the present templates only the standard
constructors and destructors are generated automatically.
Since the needed information is statically available in most
cases improvements are possible for less effort. Only the
first class errors cannot be addressed by increased use of
automated code generation and require deeper further in-
vestigations. To reduce these errors the combination of the

5 Since our approach has a strong focus on the design
phase, we use the term testing phase in an informal way.

chosen approach with design level simulations and formal
methods appears to be helpful. Another very promising
circumstance is the fact that the work on the UML standard
will go on. Influenced by the precise UML group (see e.g.
[6]) the Object Management Group (OMG) plans the new
standard UML 2.0 (see e.g. [7]). This will come with com-
plete meta-modelling semantics. Concluding it can be said
that the combination of UML as modelling language and
Ada 95 as implementation language in conjunction with the
ACD code generation leads to higher software quality. Our
concrete example, Inspect 2, has been successfully running
in industrial applications all over the world in round-the-
clock operation for six month.

The future plans of our research group can be divided into
different fields. One of these is the further development of
Inspect 2 with the creation of new application modules for
different application domains.

Another field ist the advancement of the present develop-
ment approach. To increase the debugging capabilities, one
actual task is the definition of a watch-dog-concept which
allows the tracing of transitions in a log file. Therefore the
code generation templates are modified.

A Further, long term activity, is the development of formal
methods for the quality assurance of UML design level
models. Actually, the investigation of the theoretical foun-
dation of that work is in progress. That needs the definition
of formal meta-modeling semantics of the UML profile.
The main objectives of our formal methods are the proof of
liveliness and timing properties on the design level.

Another very promising subject in the field of the UML-
based analysis and development is test automation. For the
definition of test cases sequence diagrams are well suited.
The definition of templates for the ACD code generation
seems to be a facile venture. Since our resources are re-
stricted we can not address this subject in our research
group.

6 Acknowledgement
The developement of Inspect 2 was supported by the
"HGF-Strategiefond"-projects "NOX" and "ELMINA".

7 References
[1] C. Fouda, H.B. Keller, M. Kersten, J. Matthes, S.

Zipser and T. Krakau (2002), Systemhandbuch Inspect
2.1, technical report, Forschungszentrum Karlsruhe.

[2] W.D. Heker (2002), Generating Ada95 with StP/UML,
technical report, Aonix GmbH, available via stp-
support@aonix.de or StP 8.3.

[3] M. Kersten and H.B. Keller (2001), Die Problematik
der Abbildung von UML-Modellen auf Konstrukte der
Programmiersprache Ada 95, in: P. Dencker et.al., edi-
tors, Ada und Softwarequalität: Ada Deutschland Ta-
gung 2001, München, Ottobrunn, Shaker Verlag.

 9

Ada User Journal Volume 23, Number 3, September 2002

[4] S. Brodsky, T. Clark, S. Cook, A. Evans, and S. Kent
(2000), Feasibility Study in Rearchitecting UML as a
Family of Languages using a Precise OO Meta-
Modelling Approach, technical report, The precise
UML Group, http://www.cs.york.ac.uk/puml/mmf.

[5] OMG (1999), OMG: Unified Modeling Language
Specification, technical report, OMG,
http://www.omg.org.

[6] Clark et.al. (2001), Initial Submission to OMG RFP’s :
ad/00-01-01(UML 2.0 Infrastructure), ad/00-09-
03(UML 2.0 OCL), technical report, Precise UML
Group,
http://www.cs.york.ac.uk/puml/papers/uml2submission
.pdf.

[7] OMG (2001), Request for Proposal: OMG Document:
ad/00-09-01 UML 2.0 Infrastructure, technical report,
OMG, http://www.omg.org.

Dr. Hubert B. Keller is head of
the research groups "Innovative
Process Control" and "Intelligent
Sensor Systems" at the Institute
for Applied Computer Science,
Research Centre Karlsruhe.
Research interests: real time sys-
tems, software engineering, ma-
chine intelligence, intelligent sen-
sor and process control systems.

Dipl.-Inf. Michael Kersten was
part of the research group "Inno-
vative Process Control" at the In-
stitute for Applied Computer Sci-
ence, Research Centre Karlsruhe
from 1999 to 2002. Now he is
working at the department of com-
puter science at the Carl von Os-
sietzky university Oldenburg.
Research interests: design and

analysis of object oriented embedded realtime systems.

Dipl.-Ing. Jörg Matthes is part of
the research group "Intelligent
Sensor Systems" at the Institute for
Applied Computer Science, Re-
search Centre Karlsruhe since
2000.
Research interests: data analysis in
sensor networks.

Dipl.-Ing. Christian Fouda
Manga is part of the research
group "Intelligent Sensor Sys-
tems" at the Institute for Applied
Computer Science, Research Cen-
tre Karlsruhe since 2000.
Research interests: safe and secure
interlinking of fieldbuses to
Ethernet.

Dipl.-Ing. Stephan Zipser is part
of the research group "Innovative
Process Control" at the Institute for
Applied Computer Science, Re-
search Centre Karlsruhe since
2000.
Research interests: optimization of
industrial combustion processes.

Email: keller|matthes|fouda|zipser@iai.fzk.de
 Michael.Kersten@informatik.uni-oldenburg.de

