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Abstract 
Distributed, reactive software systems, e.g. process 
control tools, can be modelled with the Unified Mod-
elling Language (UML). Recently such UML models 
are used to generate source code automatically. Be-
cause of the complexity of UML, it is necessary to re-
strict the usage of its constructs by defining UML pro-
files to allow the automatic generation of source code. 
In this paper a UML profile for the design and im-
plementation of distributed, reactive systems and an 
associated mapping to Ada 95 source code are intro-
duced.  Further, our experiences with the chosen ap-
proach are discussed. 
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1   Introduction 
In our research group at the Forschungszentrum Karlsruhe 
we optimize industrial processes using methods like infra-
red thermography, fuzzy control and image processing. 
Since available process control tools have not been able to 
implement complex algorithms in a time effective and com-
fortable way we decided to overcome this situation with the 
development of the process control tool Inspect 2 [1]. 

First of all, the Inspect 2 system can be classified as a reli-
able, distributed, reactive system. Second, the area of re-
search implies high maintainability requirements. To cope 
with this situation we decided to use a special development 
process which combines the good maintainability charac-
teristics of UML with the advantages of Ada 95 of reliabil-
ity aspects. 

In cooperation with the Company Aonix, Karlsruhe, we 
defined a UML profile for distributed reactive systems and 
developed ACD (Architecture Component Development) 
templates for code generation to Ada 95 source code with 
the UML tool Software through Pictures (StP) 8.01.  

ACD allows the user to define code generation templates 
for any implementation language using a script language. 
In theory it is possible to define own stereotypes and tagged 
values in StP, and to access these stereotypes by the code 
generator, and therefore almost any mapping between UML 
and the implementation language of choice can be defined. 
The details concerning the usage and implementation of the 
templates for the generation of Ada 95 source code can be 
found in [2]. The described UML profile and the associated 

                                                           
1 Parts of the UML model, describing the communications 
subsystem, have also been mapped to Java source code 

templates developed togehter with Aonix in the Inspect 2 
project are part of the latest release StP 8.3. 

This report describes the UML profile and reviews our ex-
periences with code generation from UML to Ada 95 based 
on StP. 

2   The process control tool Inspect 2 
In order to use Inspect 2 as a running example we will first 
of all give a brief description of its architecture (see Figure 
1). 

 

 

Figure 1 The structure of Inspect 2 

 Inspect 2 is a client server system with the Inspect server 
managing the collection, distribution and archiving of data. 
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Additionally, the server is able to schedule various analysis 
and control tasks. The clients, communicating with the 
server via TCP/IP, are responsible for the measurement of 
process values and for the communication with other sys-
tems, e.g. the process control system. Special clients 
(Gateways) allow the communication with non TCP/IP 
based systems. Clients also act as distributed/remote human 
machine interfaces. 

Each client communicates with the server via an own asso-
ciated task (Remote_Comp_Module) within the server, 
which maintains the communication and caters for a reli-
able data transfer. The application logic of Inspect (i.e. data 
processing) is defined in Application_Module tasks. All 
modules can be customized by configuration and are 
scheduled by the Inspect server. 

At present instances of Inspect 2 are 
used in the field of industrial 
combustion control and sensor net-
works. 

3   The UML profile 
As we already motivated in [3], an 
advantage in the use of UML is its 
possibility of customization. Since 
UML is a complex family of 
languages (see [4]) with a large 
amount of concepts, it is generally 
convenient to restrict these to the 
minimum required by the application 
domain. Otherwise problems in the 
mapping of UML diagrams to Ada 95 
code are induced. Due to the fact that 
there are no complete formal 
semantics for UML, we decided to 
define a UML profile and give 
denotational semantics to it by 
mapping its concepts to the concepts 
of Ada 95. 

For better understanding we do not 
use the UML notation for profiles (see 
[5]), but we define the concepts of our 
profile informally and illustrate them 
using parts of our running example 
Inspect 2. The structure of the profile 
is given in Figure 2.  It uses class 
diagrams and statechart diagrams 
because they are able to describe 
distributed reactive systems 
completely. The structural and 
functional view of the system to be 
described is modelled by class dia-
grams. The behavioral view is 
modelled by statechart diagrams. 

In the following we will describe the 
concepts of our UML profile and 
illustrate them using our running 
example Inspect 2 (see Figure 3). 

 

3.1   Packages 
In UML, the concept of Packages is used in the Model 
Management Part for the grouping of model elements (refer 
to [5], pp. 3-17). Since in standard UML subsystems are 
behavioral units rather than structural units (refer to [5], pp. 
3-21) we introduce the stereotype subsystem for packages. 
In this sense in our profile a subsystem is a package which 
groups model elements which belong to structural parts of 
the system.  

In our profile only packages with the stereotype subsystem 
are allowed. Subsystems may contain subsystems and for 
simplicity the total system is modelled by a subsystem too. 
In Figure 3 an example for a package with stereotype sub-
system is shown: the package Inspect_Server. 

Figure 2 The structure of our profile 

Figure 3 The structure of Inspect 2 as class diagram 
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3.2   Classes 
In UML, Classes (refer to [5], pp. 3-34) follow the concept 
of abstract datatypes, i.e. they are container for typed at-
tributes and operations over these. In our profile attributes 
and operations can have public or private visibility (as de-
scribed in [5],p. 3-40 and 3-43). The protected visibility 
property is not allowed in our profile. 

In order to model the concurrent behavior of distributed 
reactive systems we introduced the stereotypes 
Tagged_Protected_Type and Tagged_Task for classes:  

A class with the stereotype Tagged_Protected_Type is a 
special case of a passive class. It is a storage class with a 
mechanism for the synchronization of concurrent access of 
multiple tasks. 

The stereotype Tagged_Task defines an active class with a 
light-weight concurrent flow of control. In contrast to the 
standard passive classes our tagged_-task class has an own 
flow of control. To describe this flow of control, each 
Tagged_Task is associated with a statechart. For the con-
nection of the class and the statechart diagram, the follow-
ing well-formedness rules must hold: 

• Each public method of the class must be used as an 
event in the associated statechart diagram and vice 
versa. 

• Guard conditions in the statechart only refer to the at-
tributes of the class diagram. 

• The change of values of attributes of the class is mod-
elled in the associated statechart diagram as actions. 

• Public methods of the class are external events which 
allow communication between different classes. 

• Private methods of the class allow local abstraction and 
the expression of a behavior which is hidden to the en-
vironment (other classes). 

• Methods of classes are non blocking (i.e. execution is 
locally without any further entry call or accept state-
ment).  Otherwise they could cause deadlocks. 

A further new introduced concept for classes with the 
stereotype Tagged_Protected_Type or Tagged_Task is the 
tagged value Timed_Call_Supported for public operations. 
These so-called timed operations have different semantics 
than normal public operations. The call of a normal public 
operation of a Tagged_Protected_Type or a Tagged_Task 
leads to the situation that the caller is blocked until the op-
eration is finished. If in the case of a Tagged_Task the as-
sociated statechart has no outgoing transition in the current 
state, which is annotated with the corresponding event, the 
caller is blocked until the Tagged_Task reaches a state with 
this predicate. In the worst case deadlocks and livelocks 
can occur, even though the called method itself is non 
blocking. A simple and effective way of avoiding liveness 
problems is the usage of timed operations. In our profile 
they have the semantic that the caller of the operation is 
only blocked until either the operation call is accepted or 
the timeout of the operation is expired. All timed operations 
have an extra in-parameter for specifying the maximum 
waiting time and an extra out-parameter informing the 
caller if the call was accepted (and processed) or not. These 
two parameters are implicitly defined in the class. On the 
caller side both parameter values need to be attached. 

In Figure 4 a fragment of the associated statechart diagram 
of the class Inspect_Server is shown. 

 

Figure 4 Fragment of the statechart of the class inspect_server 
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Between the states Initialized and Check_Password there 
are two interesting transitions. The transition from Initial-
ized to Check_Password is triggered by the event Authenti-
cate. After this event the attribute Password_User is set to 
Password. 

Password is the value of the concrete parameter of the 
method Authenticate. The parameter is only defined in the 
class diagram (see Figure 4) and not in the statechart2. The 
transition from Check_Password to Initialized gives an ex-
ample of a complex transition.  

If the event Is_Authenticated occurs the guard condition 
[Password_Inspect!=Password_User] is evaluated and the 
transition takes place if the result is true (i.e. the password 
is wrong). In that case two actions are executed. The first 
action changes the classes attribute Authenticated to the 
value False. The second action is the execution of the local 
method Local_Wrong_Password. This is another interesting 
concept of our approach. The user may specify actions in 
the statechart which are not member of the associated class. 
These are mapped to locally defined Ada procedures in the 
body and represent an additional mechanism of local ab-
straction. The semantic of the local procedure is defined in 
the implementation and does not matter in the design. The 
use of this concept increases the clarity and understandabil-
ity of the statechart diagram. It is important to avoid the 
definition of blocking local procedures in the code since 
this leads to deadlocks. Since local procedures are used as a 
concept of abstraction between the design and implementa-
tion level, we deliberately leave the avoidance of blocking 
in the responsibility of the developer. Thus our approach 
does not provide a method to ensure the non blocking defi-
nition of local procedures. We would therefore recommend 
not to use infinite loops and external operation calls. The 
latter can not always be considered, because the main pur-
pose of local procedures is the use of operating system 
functions.  

3.3   Associations 
UML consists of a rich set of association types. In our pro-
file only the following types of associations are necessary: 

• generalization 

• aggregation 

• composition 

For the use of the inheritance features, the generalization 
association (see [5], p. 3-79) is included in the profile. Ad-
ditionally our profile includes the association type 
composition as described in [5] on page 3-74. 

The most important association type in our profile is the 
aggregation association (see [5], p. 3-79). In contrast to 
standard UML the only restriction is the deprecation of 
association classes for the aggregation. 

For the aggregation our profile contains the stereotype 
Owner. The so-called ownership aggregation models a 
close binding between the associated classes. One side of 

                                                           
2 by convention the parameters of classes event can be 
omitted if the name of the event is unique in the class 

the association has the role of the owner and is responsible 
for the creation and destruction of the class on the other 
side.  

3.4  Well-formedness rules 

In order to avoid liveness problems we decided to use only 
hierarchic visibility between classes. 

 

4 Mapping the concepts to Ada 95 

4.1 Packages 
UML Packages with the stereotype Subsystem are mapped 
to folders in the project-folder. 

4.2 Classes 
The classes of the profile are mapped to Ada 95 packages 
with the following content: 

• a record with one component for each attribute of the 
class and one component for each aggregation of the 
class, 

• a public procedure for each public operation of the 
class, 

• a private procedure for each private operation of the 
class. 

4.2 Tagged_Protected_Type 
The classes with stereotype Tagged_Protected_Type are 
mapped to an Ada 95 package containing the following 
elements: 

• a record with one component for each attribute of the 
class and one component for each aggregation of the 
class, 

• a private protected type Class_Name_Pt with one entry 
for each class operation (with isomorphic  signatures), 

• a public procedure Operation_Name for each class 
operation with a signature isomorphic to the class    
operation (In the procedures body the corresponding 
entry of the protected type Class_Name_Pt is called.), 

a public procedure Timed_Operation_Name for each class 
operation with tagged value Timed_Call_Supported, which    
has a signature isomorphic to the class concatenated with 
the additional parameters for timing. These are 
(in:Time:duration,out:timed_out:boolean) (In the body of the 
procedure the corresponding entry of the protected type 
Class_Name_Pt is called as a timed operation.). 

4.3   Tagged_Task 
The classes with stereotype Tagged_Task are mapped to an 
Ada 95 package which includes the following elements: 

• a record with one component for each attribute of the 
class and one component for each aggregation of the 
class, 
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• a variable Current_State of an enumeration type 
Class_Name_Event_Type containing all states of the    
associated statechart diagram, 

• a private task type Class_Name_Task with one entry 
for each event in the statechart diagram. The entries 
have a signature isomorphic to the corresponding class 
operation. 

• a public procedure Operation_Name for each class 
operation with a signature isomorphic to the class op-
eration (In the procedures body the corresponding en-
try of the task type Class_Name_Task is called.), 

• a public procedure Timed_Operation_Name for each 
class operation with the tagged value 
Timed_Call_Supported which has a signature isomor-
phic to the class concatenated    with the additional pa-
rameters for timing. These are    
(in:Time:duration,out:timed_out:boolean) (In the body 
of the procedure the corresponding entry of the task 
type Class_Name_Task  is called as a timed opera-
tion.), 

• a statechart implementation using select-statements 
depending on the value of the variable Current_State, 

• a private procedure for each action in the statechart 
diagram with a signature isomorphic to the action. 

4.4   Code examples 
In the section above we described the mapping of the UML 
concepts to Ada 95. For a better impression to the reader 
we will give a detailed code example. First, we will show 
the Ada specification file of the Inspect_Server_Pkg, 
whose UML representation was discussed in section 33. 

In the specification the package Inspect_Server_Pkg is in-
troduced:  

package Inspect_Server_Pkg is         

type Inspect_Server is new 
ACD_Runtime.Active_Base_Class.ActiveLimitedInstance 
with private; 

type Inspect_Server_Cptr is access all In-
spect_Server'class; 

type Inspect_Server_Ptr is access all Inspect_Server; 

… 

It consists of the derived type Inspect_Server with a pointer 
Inspect_Server_Ptr and a class wide pointer In-
spect_Server_Cptr. The type ACD_Runtime.Active_Ba-
se_Class.ActiveLimitedInstance is an empty tagged record 
type which represents the type active class in the profile 
and was adopted from the standard ACD code generation 
templates. We found it usefull, because it enables the user 
to define global properties of active classes, if necessary. In 
the private part the type is redefined. 
                                                           
3 For better readability we reformatted the automatically 
generated file an removed irrelevant comments. 

Next, the type Inspect_Server_Event_Type defines the set 
of events of the class Inspect_Server: 

type Inspect_Server_Event_Type is ( 

          Is_Authenticated_Event 

        , Is_Shut_Down_Event 

        , System_Ready_Event 

        , Shut_Down_Event 

        , Init_Event 

        , Authenticate_Event 

        , Run_Event 

        ); 

The correspondance between events, class operations and 
entries of the task are shown in the body. The next parts in 
the specification are the constructor and destructor opera-
tions: 

--Constructor Operations------------------------------------------- 

    procedure Initialize (Acc_This : Inspect_Server_Cptr); 

    function Create return Inspect_Server_Ptr; 

--Destructor Operations--------------------------------------------     

procedure Finalize (Acc_This : in out   In-
spect_Server); 

procedure Free (Acc_This : in out  In-
spect_Server_Cptr); 

Next, the class operations are specified. Since the mapping 
principle is the same for each operation, we show only two  
examples:  

--Operations----------------------------------------------------------- 

procedure System_Ready(Acc_This : access In-
spect_Server); 

-- Timed_Call_Supported: 

procedure Timed_System_Ready(Acc_This : access 
Inspect_Server; Timeout : duration; Timed_Out : out 
Boolean); 

procedure Init(Acc_This : access Inspect_Server); 

-- Timed_Call_Supported: 

procedure Timed_Init(Acc_This : access In-
spect_Server; Timeout : duration; Timed_Out : out 
Boolean); 

The reader may have recognized that two versions of each 
operation are defined. This reflects that for these operations 
the tagged value Timed_Call_Supported is set in the UML 
model. The timed versions of the procedures have prefix 
Timed_  attached. In the private part of the specification, 
the static part of the associated statemachine of the active 
class Inspect_Server is defined: 
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private 

package Inspect_Server_State_Machine is 

--State Type-------------------------------------------------------- 

    type State_Type is ( 

            ST_Authenticated 

          , ST_Check_Password 

 … 

    ); 

  end Inspect_Server_State_Machine; 

This is the type Inspect_Server_State_Machine which 
models the set of states of the statemachine. The transitions 
of the statemachine are defined in the body. Since each 
active class has an own thread of control a task type is nec-
essary: 

task type Inspect_Server_Task(Acc_This : access In-
spect_Server'class) is 

--State Machine Operations--------------------------------------- 

entry Take_Is_Authenticated_Event(Authenticated : 
out Types.I_Bool); 

… 

entry Take_Run_Event; 

end Inspect_Server_Task; 

For each event of the statemachine the task type has a cor-
responding entry. To increase the readability of the code, 
the prefix Take_ is attached to the entries. The example 
above shows only two entries. As stated earlier, the type 
Inspect_Server is redefined in the private part: 

type Inspect_Server is new 
ACD_Runtime.Active_Base_Class.ActiveLimitedInstance 
with 

record 

Tsk : Inspect_Server_task(Acc_This => In-
spect_Server'access); 

--Attributes----------------------------------------------------- 

Password_Inspect : Types.I_String; 

… 

 --Relations------------------------------------------------------ 

WD_Part : Watch_Dog_Pkg.Watch_Dog_Cptr; 

MA_Part : Module_Array_Pkg.Module_Array_Cptr; 

… 

end record; 

end Inspect_Server_Pkg; 

The first component of the tagged record is of the type of 
the previously defined task type. This shows the encapsula-
tion of the task in the tagged record which is the central 

concept of the active class implementation. The second 
component shown in the example is the attribute Pass-
word_Inspect. The other attributes are not shown. After 
that, two examples of relations to other classes are shown. 
The prefixes WD and MA are the names of the relations in 
the class diagram (refer to Figure 3). By convention each 
relation attribute is named by the relation name followed by 
_Part. 

After this short overview of the Ada specification of the 
Inspect_Server_Pkg we will have a look to the associated 
Ada body file: 

package body Inspect_Server_pkg is 

    package body Inspect_Server_State_Machine is 

    end Inspect_Server_State_Machine; 

The code fragment above shows the implementation of the 
statemachine type. Since it is an enumerated type the most 
information is still defined in the Ada specification. 

More interesting is the implementation of the In-
spect_Server_Task: 

task body Inspect_Server_Task is 

    This : Inspect_Server'class renames Acc_This.all; 

    --State Machine--------------------------------------------------- 

current-
State:Inspect_Server_State_Machine.State_Type 
:= Inspect_Server_State_Machine.ST_Start; 

                use Inspect_Server_State_Machine; 

For readability reasons the access to self (Acc_This.all) is 
renamed by the keyword This. After that, the variable cur-
rentState is declared and set to the initial state.  

Next, the local procedures are defined. As shown in Figure 
4, local procedures implement the actions of the UML 
statecharts which model the behavior of active classes. For 
example we show a fragment of the implementation of the 
local procedure Local_Create_Components, which creates 
all components of the active class Inspect_Server: 

procedure Local_Create_Components is 

begin 

--Create Module_Array 

This.MA_Part := Module_Array_Pkg.Create.all'access; 

--Create Watch_Dog in the Pkg 

Watch_Dog_Pkg.The_Watch_Dog_Ptr := 
Watch_Dog_Pkg.Create.all'access; 

This.WD_Part := Watch_Dog_Pkg.The_Watch_Dog_Ptr; 
… 

end Local_Create_Components; 

The following code fragment shows the implementation of 
the statemachine. For a good understanding a comparison 
of the implementation with the UML statechart diagram 
(refer to Figure 4) is usefull. The core of the implementa-
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tion is a case statement over the variable currentState en-
closed in a loop. The case statement branches (via when-
statements) over each possible state of the statemachine. 
Since the variable currentState enumerates over all states of 
the statemachine it is an invariant of the implementation so 
in the focus of the loop statement exactly one when-
expression evaluates to true. This implies that the order of 
the when-statements is inessential. We only show the states 
Initialized and Check_Password in our example because 
they include all relevant concepts of our statemachine im-
plementation: 

 loop 

    case currentState is 
 … 

when Inspect_Server_State_Machine. 
ST_Check_Password => 

-- Activity:  

null;-- user defined code to be added here 

select 

when ( This.Password_Inspect = 
This.Password_User ) 

or ( This.Password_Inspect /= 
This.Password_User ) => 

accept 
Take_Is_Authenticated_Event(Authenticated : 
out Types.I_Bool) do 

if This.Password_Inspect = 
This.Password_User then 

Authenticated := True; 

currentState := ST_Authenticated; 

elsif This.Password_Inspect /= 
This.Password_User then 

Authenticated := False; Lo-
cal_Wrong_Password; 

currentState := ST_Initialized; 

end if; 

                   end Take_Is_Authenticated_Event; 

                end select; 

when Inspect_Server_State_Machine. 
ST_Initialized => 

-- Activity:  

null; -- user defined code to be added here 

select 

when ( TRUE ) => 

accept Take_Authenticate_Event(Password 
: in Types.I_String) do 

if TRUE then 

This.Password_User:=Password; 

currentState := ST_Check_Password; 

end if; 

    end Take_Authenticate_Event; 

end select; 
 … 

end case; -- end state case 

end loop; 

Assume the variable currentState has the value 
ST_Check_Password. Thus Inspect_Server_State_Ma-
chine.ST_Check_Password evaluates to true and the other 
when-expression evaluates to false. Then the code after the 
first when-statement is executed. Because there is no entry 
action defined in the state Check_Password, there is a null-
statement after the comment –Activity. Next, the implemen-
tation of the outgoing transitions of the state 
Check_Password is shown. Both are triggered by the event 
Is_Authenticated (for both guard conditions 
Take_Is_Authenticated_Event is accepted). When this event 
occurs (the operation Is_Authenticated is called) the guards 
are evaluated in the if-elsif-combination. If the if-branch 
evaluates to true, authenticated ist set to true and the next 
currentState is set to ST_Authenticated. Otherwise authen-
ticated is set to false and the next currentState is set to Ini-
tialized.  

Assume the current state is Initialized, there is one possible 
outgoing transition. In contrast to the transitions above this 
one has no guard condition. In the select-statement the ex-
pression when (TRUE) is used which is constantly true. 

Whenever the event Take_Authenticate_Event occurs (the 
operation Authenticate is called), the guard if TRUE evalu-
ates to true and the action code is executed. This means, 
that the attribute This.Password_User is set and the next 
value of the variable currentState is set to 
ST_Check_Password. 

5 Conclusion 
The above described UML profile for distributed reactive 
systems was developed at the Forschungszentrum 
Karlsruhe for internal use. We used it for the development 
of the process control tool Inspect 2 which we used as run-
ning example in this paper. 

A measurement of the systems complexity4 did not take 
place yet, but we can provide some estimates in order to get 
an idea of the projects effort. The UML model is decom-
posed into 19 subsystems with 31 class diagrams and 13 

                                                           
4 Complexity measurement of software is an interesting but 
elaborate scheme, in particular in the domain of the object-
oriented analysis and development. We use the notion of 
complexity in its natural sense, since the use of a formal 
complexity measure is no benefit for the reader for the un-
derstanding of our presented approach. 
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statechart diagrams. These are mapped to nearly 150 pack-
ages of Ada 95 source code. 

Since the project was the first using the presented approach 
there was an overhead in the early project phases. This was 
caused by the need of defining the UML profile and the 
associated  mapping to Ada 95. Another cost factor was the 
analysis of the existing design tools, their installation and 
test.  Additionally the customization of the Ada 95 tem-
plates for code generation increased the start up costs. 

After finishing the projects foundations we have to point 
out that most of the effort of the implementation phase was 
drawn in the earlier design phase. Even some effort of the 
documentation was done previously. 

During the development of the system there was one very 
important philosophy in the developers mind: whenever a 
change could be made in the design instead of the imple-
mentation it was  made in the design. This strong focus on 
the design phase implied a good understanding of the sys-
tem to be developed (which reduces logical faults) and a 
very tight relationship between the design and implementa-
tion model. 

The common coding errors could be minimized. Therefore 
the implementation phase was very short. Additionally the 
testing phase5 was decreased extremely. This fact was in-
duced by the excellent debug capabilities of the approach. 
Whenever a logical failure occurred during the testing 
phase it was easy to find the error because its area could be 
determined using the design model and specifically the 
statechart diagram. 

An analysis of the errors found in the testing phase leads to 
the following error classes:  

1) about 70% of the errors found were logical errors and 
therefore design errors, 

2) about 20% of the errors found were runtime errors, 
caused by forgotten initializations in the manually im-
plemented code, 

3) about 10% of the errors found were memory leaks. 

The  error classes two and three could be reduced in future 
projects to a minimum by refining the code generation 
properties. Class two errors will be reduced automatically 
by increasing the amount of automatically generated code 
(currently about 80 percent).  The reduction of errors of 
class three can be done by the integration of constructor 
and destructor method implementations in the code genera-
tion templates. In the present templates only the standard 
constructors and destructors are generated automatically. 
Since the needed information is statically available in most 
cases improvements are possible for less effort. Only the 
first class errors cannot be addressed by increased use of 
automated code generation and require deeper further in-
vestigations. To reduce these errors the combination of the 

                                                           
5 Since our approach has a strong focus on the design 
phase, we use the term testing phase in an informal way. 

chosen approach with design level simulations and formal 
methods appears to be helpful. Another very promising 
circumstance is the fact that the work on the UML standard 
will go on. Influenced by the precise UML group (see e.g. 
[6]) the Object Management Group (OMG) plans the new 
standard UML 2.0 (see e.g. [7]). This will come with com-
plete meta-modelling semantics. Concluding it can be said 
that the combination of UML as modelling language and 
Ada 95 as implementation language in conjunction with the 
ACD code generation leads to higher software quality. Our 
concrete example, Inspect 2, has been successfully running 
in industrial applications all over the world in round-the-
clock operation for six month. 

The future plans of our research group can be divided into 
different fields. One of these is the further development of 
Inspect 2 with the creation of new application modules for 
different application domains.  

Another field ist the advancement of the present develop-
ment approach. To increase the debugging capabilities, one 
actual task is the definition of a watch-dog-concept which 
allows the tracing of transitions in a log file. Therefore the 
code generation templates are modified. 

A Further, long term activity, is the development of formal 
methods for the quality assurance of UML design level 
models. Actually, the investigation of the theoretical foun-
dation of that work is in progress. That needs the definition 
of formal meta-modeling semantics of the UML profile. 
The main objectives of our formal methods are the proof of 
liveliness and timing properties on the design level. 

Another very promising subject in the field of the UML-
based analysis and development is test automation. For the 
definition of test cases sequence diagrams are well suited. 
The definition of templates for the ACD code generation 
seems to be a facile venture. Since our resources are re-
stricted we can not address this subject in our research 
group. 
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