Published in: McGregor, R. (Hg.): Whitley, E.A. (Hg.): Proceedings of the First European Conference on
Information Systems. London 1993, pp. 131-140

An Integrated Environment for Designing Object-Oriented
Enterprise Models

Ulrich Frank
German National Research Center for Computer Science
SchloB Birlinghoven, 5205 Sankt Augustin, Germany

The paper presents an integrated environment for designing object-oriented enterprise models.
The conceptual framework it is based on recommends a multi-perspective approach. For this
purpose three main views on the enterprise are proposed: a static view that focuses on the rep-
resentation of structural aspects, a dynamic view that serves to represent office procedures and
a strategic view. The environment that is introduced is intended to encourage the design of en-
terprise models on these three levels as well as interconnecting them. The paper however will
only focus on two levels - the strategic view will be neglected. Two tools of the environment
will be described in detail. The Object Model Designer guides conceptualisation of an enter-
prise wide object model. Object models are represented using a graphical notation that is com-
pleted by a structured description of classes and associations. In order to facilitate user feed-
back fast prototyping is supported by generating code from class descriptions. The object mod-
el’s implementation demonstrates the automatic control of semantically rich integrity con-
strains as well as the benefits of inter-application communication using domain concepts as
common references rather than technical ones. The Office Procedure Designer guides the de-
scription of office procedures which are conceptualised as ordered graphs of activity blocks.
It provides means to analyse the effectiveness of business procedures and generates prototyp-
ical user-interface as a representation of a virtual procedure document.

Beside describing the tools listed above the paper presents a conceptual framework for the de-
sign of multi-perspective enterprise models. Furthermore it is demonstrated how the tools and
the related methods interact during analysis and design and how the partial models managed
by the tools are integrated.

1 Introduction design of enterprise models - particularly by

» providing a representation of organizations that is
illustrative for business people and takes into
account the requirements of object-oriented anal-
ysis and design at the same time;

Designing, implementing and using corporate infor-
mation systems face numerous challenges, e.g. fric-
tions between the different stages of system life-
cycles should be avoided, the software architecture
should support system adaptability, communication * supporting identification, specification and
between different applications (within one organiza- refinement of objects (classes);

tion as well as inter-organizational) should be possi-
ble on a high level of semantics, costs for develop-
ment and maintenance should be reduced. Integra-

» contributing to strategic planning of the business
and the information system;

tion as well as reusability seem to be attractive ori-
entations to meet these challenges. Both of them
require comprehensive models of the enterprise in
general and of its information system in particular.

For a number of reasons an object-oriented
approach seems to be very suitable to build such
models. The project ’Computer Integrated Enter-
prise’ (Frank & Klein 1992 a) that had been started
in 1990 at the German National Research for Com-
puter Science is dedicated to this subject. This paper
reports on some of the results that have been accom-
plished so far. It presents a methodology as well as a
set of related tools which are intended to support the

* providing means to analyse and refine the effec-
tiveness of business procedures;

* conveniently modelling and prototyping user-
interfaces.

Generic enterprise models that fulfil the requirements
of a wide range of firms are an attractive research
vision. It is however not possible to develop such
models from scratch. You have to start with one
enterprise of a particular domain. The domain we
started with is car insurance within an insurance
company. The examples given below are taken from
this domain.

2 Conceptual Framework

While the notion of enterprise models becomes
more and more popular - within the research com-
munity (see for instance Profrock et al. 1989, or
ESPRIT 1991) as well as in the area of commercial
software development and information system plan-
ning (IBM, Katz 1990) there is no detailed consen-
sus on how an enterprise model should look like.
Enterprise models are supposed to provide a suita-
ble foundation for integrating information systems.

2.1 Dimensions of Integration

Within the context of information systems the term
integration is usually related to the different compo-
nents of the system. Although this is an important
issue there are other dimension of integration which
should be taken into account as well:

* integrating the different phases of the software
life-cycle

* integrating the different roles and perspectives of
those who analyse, design and use an information
system

« contributing to strategic planning of the business
and the information system.

* integrating the information system (and its devel-
opment) with the organization (and its develop-
ment).

Integration implies communication. For components
to be able to communicate there has to be a common
semantic reference system. In other words: they need
to have corresponding interpretations of the symbols
they interchange as well as common unique names
for these interpretations. Data types, functions of an
operating system or relations within a database are
examples for such reference systems.

Research Area

(Management Science)

C Computer Science) Psychology

4

System Analyst
(L

Roles

Enterprise
Model

\

Supplier

Business Partners

J

(Document-Processing)

Applications

Figure 1. Dimensions of Integration fostered by Enterprise Models

The more semantics is incorporated in the concepts
that can be referred to the higher is the level of inte-
gration. The amount of semantics itself depends on
the number of permitted interpretations. A data type
like an integer can be interpreted in numerous dif-
ferent ways - depending on what real world entity it
represents. A concept however that directly repre-
sents a real world entity reduces the set of possible
interpretations. Is there any indication for the appro-
priate amount of semantics? It seems to be desirable
to provide concepts that incorporate enough seman-
tics not to bother any of the involved components

with the need to reconstruct meaning for further
processing. For instance: defining a concept
’account’ rather than only providing more general
concepts that could be used to implement an account
in a convenient way. If you then include a certain
graphical representation of an account into a docu-
ment the document processor should know the
semantics of an account - which would improve the
chances for powerful interpretations. Considering the
need for flexibility and reusability however recom-
mends to also provide more general concepts that
allow for specialization.

Common semantic reference systems are not only a
prerequisite for technical integration. In order to
overcome the frictions between the different phases
of the software life-cycle it is desirable to use the
same or at least similar concepts from analysis to
implementation. Mediating between different
human perceptions of reality also requires common
reference systems or in other words: a common uni-
verse of discourse. Different from formal systems a
certain amount of ambiguity is not only tolerable
but sometimes even helpful to cope with complex-

ity.
2.2 Levels of Abstraction

What are the implications of these thoughts for the
design of enterprise models? First: for enterprise
models to serve as promoters of integration they
need to be comprehensive. That means they have to
provide a description of reality, "which correspond
directly and naturally to our own conceptualisa-
tions" (Levesque & Myloupolos 1984). Second:
since there are different conceptualisations as well
as different requirements on modelling (for instance
between business analysis and software develop-
ment), an enterprise model should represent reality
on different levels of abstraction. Considering the

numerous views/conceptualisations (see for instance
ESPRIT 1991, Zachman 1987) one can think of it is
necessary to make a suitable selection. We decided
on three main levels of abstraction:

* an operational/organizational level
* an information system level
* a strategic level

Considering the complexity of the overall design
process it is important to provide a tool that supports
a systematic approach. Such a tool should enforce a
certain methodology for object-oriented analysis and
design. It should prevent the model from becoming
inconsistent by checking for ambiguity and contra-
dictions. Participation requires a substantial under-
standing of how the system will look like. Therefore
the tool should allow for fast prototyping. The strate-
gic level - which is not subject of this paper - is rep-
resented using concepts like goals, value chains (Por-
ter), portfolios and corporate culture. On the strategic
as well as on the organizational level there may be
concepts which cannot be formalized although they
can be comprehensively described. In order to link
them to related concepts it is desirable that the tool
includes some kind of hypertext-features.

Strategic View

Value Chains

Goals Corporate Culture

Strategic Options

Value Chain

; “
Designer Hypertext—System é
Value Chains

Value Chain Activities

Resources

Figure 2. Tools of the design environment and their relation to different views of the enterprise

©
° 7.
Organizational View Costs 2 :
v = Office Procedure
Tasks Eyents ROIES / .&i Designer
. Objects 4 Qo
Office Procedures_ Object Model @) ~
Business Rules Designer S | Activity Blocks
------------- E Procedures
. Q [Procedure Documents
IS View Classes Attributes O
Constraints Roles States
Classes Procedures ;
Aesociati Default Widgets User-Interfaces
ssociations Services
Transactions USer-Interfaces Associations Throughput

It is often argued that an information system should
be adapted to the organization, not the other way
around. While such a request seems reasonable at
first sight (specially when you consider how
restrictive today’s software sometimes is) it is not
completely convincing. This is for two reasons.
First: a business firm’s actual organization does not
have to be efficient. Adapting an information sys-
tem to it means to put effort in reconstructing inef-
ficient structures and procedures. Second: in order
to exploit the potential of information systems it
can be suitable to rearrange an organization that
had been efficient on a lower level of automation.
Like Savage (1990, p. xii) assumes: “Could it be
that we are putting fifth generation technology in
second generation organizations?” Taking these
thoughts into account recommends mutual adapta-
tion of organization and information technology. To
reduce the complexity of this task it is desirable
that a tool supports the evaluation of organizational
alternatives.

The environment we developed is a first attempt to
fulfil the requirements listed above. Currently it
consists of three tools (for a description of the Value
Chain Designer see Frank & Klein 1992 b) which
are enhanced by a hypertext-system. For an illustra-
tion of the tools correspondence to the three main
levels of abstraction see figure 2. All the tools have
been written in Smalltalk-80 within the Object-
works® environment, so they are highly integrated
by residing in a single Smalltalk-Image.

3 Developing a Static Representation of
the Enterprise: The Object Model De-
signer

An object model is the core of an enterprise model.
The concepts it describes can be referred to by
other particular models. An object model consists
of classes and relationships between them. While it
is often argued that objects offer a natural way of
describing reality it cannot be neglected that the
notion of an object within a conceptual model has
to be oriented towards a certain formal structure -
no matter how people prefer to describe entities
they perceive. The Object Model Designer is
intended to provide analysts and users with a suita-
ble and comprehensive concept of an object and
guide the mapping of real world domains to object
models.

3.1 Object Semantics

An object/class is modelled by describing
attributes, services, associations and triggers. Addi-

tionally it can be assigned a default view.

An attribute is regarded as an object that is encap-
sulated within the object. Among others it is
described by class, cardinality and history. Speci-
fying an attribute’s class is a prerequisite for typ-
ing. Cardinality has to be defined in min., max.-
notation. For instance: a customer’s telephone
number may have cardinality 0,*. If history is set to
true every update of the attribute has to be recorded
somehow. Services are characterized by their inter-
face, where each attribute is defined by its class,
and a natural language description of the function
they fulfil. Furthermore a precondition and a post-
condition can be specified. If the service returns an
object, this object’s class can be specified. While
attribute and service descriptions already include
constraints (like attribute-classes, pre- and postcon-
ditions) there may be other object-constraints that
cannot be assigned to just one attribute or service.
This is the case for integrity rules which interrelate
different attributes or services. We differentiate
between two types of constraints: guards and trig-
gers. A guard is a constraint that prevents the object
from merging into a certain state. For instance: the
resale-price assigned to a product should never be
less than the purchase-price. A trigger on the other
hand prevents an information system from becom-
ing inconsistent by not reacting if some condition is
fulfilled. For instance: If a customer who holds a
car insurance policy has been driving without an
accident for more than three years and has not been
assigned the highest claims bonus yet, his claim
bonus has to be increased.

In order to allow for generating prototypical user-
interfaces it is possible to assign a default-view (a
collection of widgets) to each class. This approach
is a first attempt to deal with the complexity of user
interaction. It cannot be completely satisfactory:
the way a value of a certain class is presented to the
user often is not unique but varies with the context
of interaction. For instance: you can display a name
using a scrollable text view, a listbox etc.

3.2 Associations between Objects

Objects within an information system are interre-
lated in various ways: objects may use services
from other objects, they may be composed of other
objects, their existence may depend on other
objects etc. Taking such associations/relationships
into account is crucial for maintaining the integrity
of an IS. Therefore they are commonly regarded as
an essential part of an object model. From a soft-
ware engineering point of view it is desirable to
limit the number of association types that are used.

o

[

=1 | =1

asAoidwy[T 4 aroysey

aoueInsU| ey

Jaubisaq 1alqo _H_
o]
7 payoaoad 2 uogezuouny [2]
pUas gL < SWIED pajl) 10 JAgUnu W - sadlaag
surepomos | | (IR
SWIReD Joaya awie ssed SUDNEID0SSY
| < SWIED JUAUND JO J3GUinu Ji Jafeuepurels ssaalqo sasn uossadpansu — fununooay
SWIIE|D JO UORI3[|00 (sUnjal JeJpadnsul ;I
aspey paseasoul uopuodsod swreppajy sanofares
0} pifeA 198 ‘SAep OF e} adow Jo) af Jou }ENW shuog swiep ofie saeal uopuodald pIreAARUaUND
W 0> unodogwniwadd Jo aduereq 41 Z Uey) SS8] WL 158) J0 ayep)1 | siojauresed | swepuaung weansul AL paL
o = E v ‘Shuog s AWNJ0Janpadnd
s13B6uT SRIEND JuawwoD 583148 up A UDSA
SIUIRIISUOT) 1Adag | a._.nm_._.__wmmzmﬂ
= unodsgwniwad uosdagpainsu|
ou £ iAlojsiy paodad winiwaad suap
53y aslanll feinaiped e Ay pamas swre|d 1] AlfeuIpIED Hew aaquingy Asnod NPas0d J04 WD)
ayy pue [edauali U uoslagpainsu) 1 AUfEUIBIED U wnnuaug pred wrep
. auy} o paoaal syl uo Buipuada C) :
]]] el HHo P Hhup Buipuscad mapyxalurerd & jefpiy unelag juswAed JoRouaw N0 AIUENSULLEDY
aliqowong . . Buubig 0 ayer ualnedagsulie)
H _H_ _H_ - renaned B) payul pue uosiag papaayoud o ongnd a0 & eBapang-ssanoy UBWAE1SE101ED angowomy
. paINSUI UE A0 BIOY §1 3 "3IURINSUL O aun|jTenue) 55810 NG JUNOWYPaIBA0D aouensuUBpIIYY
JIEAUOD B 8| AdI0daDuRINSUNED - shuogswrepp | B o _____
Adljodaauednsulie) uo sjuawuod Aoljodasueansu] 4 sse|liadng sangupy r3 SE55E|D
5304 :
Uone|20s sy T | Adljodasueansupery ssen paupg Adodacueansu] A oy dn saunjea) paylayul mols
I
| 4031p3 Pafqo @ |

interface of the Object Model Designer

Figure 3. User

views on aspects of the object model. If somebody
is interested in an organizational schema one could

filter all classes which are associated via “is subor-

But in order to design illustrative as well as seman-

tically rich domain level models we prefer associa-
tions which may include domain specific semantics
and which are labelled with names that are known

dinated” or “is superior”. A relationship may have
features that cannot solely be assigned to any of the

in the application domain. Having a wider range of

connected objects. For instance: information on the

different types of associations allows to define

relationship attendsTo between an insurance agent
and an insured person like “when was the relation-
ship established?” or “where was it established?”.
For this reason we adopt the approach Rumbaugh
et al. suggest: associations may be modelled as
classes. The permissible cardinality range of an
association has to be specified in min, max-nota-
tion. Each of the involved classes has to be
assigned a tuple with the minimum number of
instances that have to be part of the association and
the maximum number that is permitted. One associ-
ation class is thought to provide a substitute for
multiple inheritance that even offers some advan-
tages over the original. An object can import
another objects” features by establishing a “has
role”-association (which is sometimes referred to as
“dynamic” or “object-level” inheritance). The roles
that are assigned to a class can be ordered to
resolve possible naming conflicts. If you want to
describe an employee who is a manager as well as a
salesperson you do not define a class “managing
salesperson” that inherits from manager and sales-
person. Instead employee is assigned the roles man-
ager and salesperson in a certain order.

The Office Model Designer allows for a graphical
representation of an object model (see screenshot in
fig. 3). Furthermore it provides dictionaries of
already defined classes and checks for name con-
flicts. In order to facilitate searching for already
defined classes as well as to support a systematic
approach to find new classes, the classes are
grouped into categories. The definition of catego-
ries should be oriented towards domain level con-
cepts. Some of the categories we have chosen:
accounting, car insurance, marketing, people, docu-
ments, devices, associations. A class may be
assigned to more than one category.

3 Prototypical Instantiation

The OMD allows for fast prototyping and evalua-
tion on the instance level by generating executable
code. Smalltalk does not directly support important
aspects of the object model: there is no strong typ-
ing, in general constraints cannot be implemented in
a convenient way. Therefore we use a frame-orient-
ed object definition language that is part of the
Smalltalk Framekit (SFK), which has been devel-
oped by two colleagues at GMD (Fischer & Rostek
1992). The conceptual description of a class can be
partially transformed into SFK's object definition
language (primarily attributes together with their as-
sociated access services). SFK allows to define
classes and associations by providing a partially de-
clarative definition language. It enhances Smalltalk
with strong typing. Various types of constraints can

be defined as well. Compiling a class goes along
with generating code for implementing guards and
triggers (for an example of the transformation into
SFK see Frank 1992).

4 Adding Dynamic Aspects: The Office
Procedure Designer

While an object model can be sufficient to capture
all the semantics you need for implementation it is
definitely not sufficient to cover all important as-
pects of analysis and design. It hardly allows for
comprehensively expressing temporal and function-
al semantics of an information system. Object-ori-
ented analysis and design methodologies (like
Booch 1990, Rumbaugh et al. 1991) usually suggest
to complement the static object model with a dy-
namic model (represented by state transition dia-
grams), and a functional model (represented by data
flow diagrams). However, for our purpose these
techniques have two shortcomings. They do not pro-
vide a representation that is comprehensive for non
IS-people. Since state transition diagrams describe
the behavior of objects of a certain class they can
hardly be used to support the design of procedures
from preexisting components. The Office Procedure
Designer is intended to provide a more illustrative
representation that is based on an elaborated soft-
ware architecture at the same time.

4.1 Conceptualisation of an Office Pro-
cedure

We regard an office procedure as an ordered graph
of activity blocks (which we will refer to as activity
as well), which can be represented as a semanti-
cally enriched Petri net. Each activity block (for a
similar conceptualisation compare Lochovsky et al.
1988) is an object associated with a certain role of
an employee who is responsible for this particular
task. An activity block can be modelled as a proce-
dure itself. The information that is processed within
a procedure is collected in an object of class “Pro-
cedureDocument”. In the case of concurrent
processing special constraints have to be fulfilled
(see below). Each activity block requires a certain
state of the document as a precondition. Processing
the document within an activity results in one or
more new states of the document. Unlike a physical
document it can be worked on at different locations
at the same time - provided there are constraints
which prevent inconsistent states.

A procedure’s semantics can be divided into the fol-
lowing categories:

General constraints. For instance: A procedure

must not contain deadlocks. There must not be end-
less loops. There should be no task that cannot be
reached by any chance.

Constraints on activities. For instance: An activity
requires a certain state of a certain document type. It
must produce one of a set of possible document
states.

Constraints on documents. For instance: The varia-
ble parts of the document may be filled only with ob-
jects of a certain class. A part of the document that is
processed within one activity may not be processed
within another activity that works on the document
concurrently.

Dispatching. For instance: After an activity block’s
postcondition is fulfilled its successor has to be trig-
gered, after an activity has been started, an employee
who can take over the associated role has to be in-
formed. It may be important to first check an em-
ployee’s queue of activities before dispatching a new
activity to him. Dispatching has to be done according
to organizational rules, like: only one employee may
be responsible for the whole procedure or for a col-
lection of activities.

Exceptions. For instance: Within an activity block an
inconsistent document state is detected that had been

caused in a preceding activity. An employee becomes
sick before completing the activity.

It is a crucial question for the design of a dynamic
model to decide where to locate this knowledge.
While general constraints should be checked already
during the design process, all the other control
knowledge can only be applied when the procedure
is active. Each procedure is supervised by a proce-
dure manager, which is an object that coordinates
procedures of a certain domain. Whenever an event
occurs that should trigger a procedure the procedure
manager is notified. It then looks up its description of
the particular type of procedure and instantiates the
first activity block as well as the procedure docu-
ment. Each activity block is responsible for trans-
forming the document’s state to one of the states that
are defined as postconditions. The procedure man-
ager and the procedure document serve as “glue” to
link the activity blocks. If an activity has terminated
with one of its postconditional document states it
notifies the procedure manager. The procedure man-
ager looks up its list of available (human) operators
and their queues of work to be done. Depending on
its dispatch knowledge it will then instantiate an
appropriate activity object and move it into the queue
of the selected clerk.

an activity that requires user-interaction

an activity that is not computer supported at all

an activity that is modelled as a procedure itself

an activity that does not require user interaction

a procedure document’s state

Figure 4. Icons used for the graphical representation of office procedures

4.2 The Design Process

The Office Procedure Designer provides the ana-
lyst/designer with an interactive template for sys-
tematically describing a procedure’s activity blocks.
It also includes a graphical editor that allows to
model office procedures in an illustrative way using
a set of graphical icons (see fig. 4). The icons repre-
sent either document states or tasks.

The first step of describing an office procedure as a
net of activity blocks implicitly includes the defini-
tion of temporal semantics. Activity blocks can be
ordered sequentially or concurrently which implies a
notion of before, after and simultaneous. This allows
the tool to perform certain consistency checks. For
instance: detecting deadlocks, or an activity block
that produces a document state that had already been
produced before (the last example is only a strong
indicator of inconsistent design).

B2l

Faly
fipadoad
10U
uuo 4

A2y euuioy

h—8—

Buissanoug
paaLue jsankay
uuo § Bupunuoou)
vorpednddy

paaLue
uolpesuadwony

wrepn

s |

Juawrredap Jo peay
Aafieuew
uala Buissasoad wie

Bussasoad wnep

AUANDY anfe s

nesuadwo) Jo) wrep

sapa Buissaosoad wireja
alisuodsal
1§348]2 10 JBGWNU Kew
1§44812 40 JBHWnu U
painhal Ajaewxoldde

A palalifin

pajjaoues jou Adljod
pajaauwea Adog
ajy Ajadoad you uuog

X

A T T
auy] 'uoporjses
J3WNS09 0y ANg
—uoa oy Aapoe

LERR-R=IR=T-1]s!

]

1o Buissanolg
=

sadnpoid

fuissaool

d WeD

dauBlsaq ainpadlodd a3lj0

[1asn] wie|o 10algo op m_g._umGEDng 1nd
lasn] wrei2 yaalo o} sjmisnerd Lnd
uosladpainsul 1aalgo woy afe |30

1a8lgo wou swredsnolkaid 318¥d9LI0

I payzead ag i HO WIV1D
[nignop s1 Aojodasueansu) Ag afedaao
HO 2[QIPAID 10U S| UDSIAPANSU|

4o ajqsmerd you si1odas afewneg

4l payzead ag i IN4L8n04a WIY1D

=

uosiadpalnsy|
— wre|D 1a8ino woy ajgowony 135

__[3 %

aanpaload

SUAWLO0D

Buissasold wie|

r

_ Hpa _ _ m>mm_

O —

pajjaoues jou Adljod
pajjaaues Adjod
paiy Auadoad 10u uuoy

= et 12algo wod uosiadpainsy) ._.m_0> quawnaop asnpadoad oy aysed O wuag -y Buissannd pareugsa >:m._:ﬂwnwh_w_ﬂ“w
5 = 2 . n papoalad wep
nsuajleeeads aunpasoig =
saf quawnaop uosaad paansuj daded () uoissayoad P Q sajels
d o aysed Areuonmgabeunsg swirepsnoiaaad fEaH @
mSamuE. | Lik] aidoad O : " abe = }_._mn_o._n_
suondaxa wrep @
eal s5aa0e Aaodasueansulie) s@| mmw._uum.w [ENUEISGNS 10 UONEILLIA Ry wio4
2 S| [EwEp .cozmn_o_) ¥ I e — - = — Adod Jo uorpedyuas juawnaoq m
splawwos $801ABT/SaIN0UIY s1a8lgo aanes uorenbay | [=l
’) N ’ uoRaBEs aa0ud 1sanbay Buiuwwoou)
LIOIFEHLIONI] | < H28y) reuuod
refial Jafieuew auetnsul Jea wald Buissasapaud ywm reanuapt (O . =
.c_ BAANIY | S0
| adueinsur ie) u _ we | uogean i D
g - a2 Buissasoud wiejo 1speN |epuelsqang
wur reuogezivelio uosog 121BY |elLBISONS JO LIONBDILIDA JO UORBDILID A
313044 (B ANanay (B 8z 4dy = |

User-interface of the Office Procedure Designer

5

Figure

tional, informational, and control. Organizational
aspects are expressed by assigning a responsible

Within the next step the activities are characterized

by the structured, semi-formalized description that

employee (represented by an appropriate role, like

is encouraged by the interactive template. Thereby
three main aspects are differentiated: organiza-

“Manager”) and a department both to the whole

procedure and to each activity block. Furthermore
it is possible to define organizational constraints on
the assignment of employees to activity blocks
(like each activity has to be taken care of by only
one person, or an activity block has to be super-
vised by the same person who supervised the pre-
ceding activity). Each activity block should also be
assigned an estimated processing time. Gathering
the information that is needed within an activity is
crucial for capturing the essence of an activity. It is
structured by offering three categories of informa-
tion sources: information system, people, and paper
based documents.

In order to instruct the description of the control
flow within an activity block a template is pre-
sented that is generated depending on the document
states that may result from the activity. It encour-
ages a declarative description, which may be more
or less formal. To support system analyst and
domain expert in filling the template a report that
includes a description of all the required informa-
tion is presented in another text view (see fig. 5).

The framework needed for an office procedure is
already implemented. On the conceptual level it
mainly consists of three classes: procedure man-
ager, activity block, and procedure document. For
the purpose of prototyping they have to be special-
ized for the particular type of procedure. In the eas-
iest case a class that had already been implemented
in the past can be (re-)used. Otherwise specializa-
tion requires modification. This is particularly the
case for new activities. The corresponding classes
inherit from the abstract class “ActivityBlock™.
Their semantics is usually not completely formal-
ized during analysis and design. Therefore the cur-
rent version of OPD requires to write some addi-
tional code using an implementation language,
which is Smalltalk in our case.

4.3 Generating User Interfaces and An-
alyzing Organizational Effective-
ness

The OPD can now generate a prototypical user-
interface. To accomplish this it looks up what
attributes/services as well as access types have
been specified for each activity block. Within the
object model a default widget should be associated
with each attribute, service-parameter or returned
object respectively. Taken these specifications
together it is possible to preliminarily associate a
set of widgets with each document state. These
widgets are then placed within a window. The
(sizeable) window comes up in a default size. The
number of widgets however is not limited by the

window size since the window’s content (that is all
its widgets) is scrollable. The generated user-inter-
face does not always provide a satisfactory layout
(for an example of an acceptable result see Frank
1992). Moving, resizing and even replacing widg-
ets however can be done interactively.

The OPD also allows to analyse the effectiveness
of a procedure’s organization. For this purpose a
communication diagram can be generated. It shows
the different roles participating in the procedure as
well as the media they use to communicate. For fur-
ther evaluation this diagram has to be interpreted
by a domain expert. A more substantial indicator
for the need to reorganize the procedure is a report
of detected media frictions (like they occur when
paper-based information has to be transferred to the
IS). Other indicators for further evaluation are the
total time the involved employees have to work on
the procedure as well as the costs that can be calcu-
lated from the different costs that have been speci-
fied.

5 Conclusions

Our experience with modelling an office domain
within an insurance company indicates that the pro-
posed representations offer illustrative abstractions
of an enterprise. This is especially the case for the
representation of office procedures. The graphical
notation was intuitively understood by both system
analysts and domain experts. Thereby it is a valua-
ble medium for starting knowledge acquisition or
object modelling respectively. Users seem to prefer
procedures as guidance in conceptualising the
domain they work in. Therefore asking for a
detailed description of office procedures does not
only serve the purpose of adding dynamic or tem-
poral semantics to the model it also provides a heu-
ristics to shape the static object model.

Our main focus was to develop general concepts
and instantiate them solely for prototyping issues.
However the tools can also be used on an opera-
tional level. This is specially true for the OPD and
the VCD since they are also thought to guide an
analysis of a particular firm’s competitive position.
For this purpose it would be important not only to
instantiate them with a complete description of the
enterprise but also to record the evolution of busi-
ness data. That would not only allow to analyse (or
detect) interdependencies. It would also enrich
modelling of office procedures and strategical anal-
ysis with enterprise specific data. Enterprise spe-
cific knowledge that cannot be formalised could be
added using the already available hypertext fea-
tures.

Although office procedures are an illustrative meta-
phor it is not sufficient to describe all kinds of work
in the office. Ill-structured cooperative work how-
ever requires other concepts as well as another
graphical representation. It would be interesting to
complement the Office Procedure Designer by a
tool that allows for illustratively modelling CSCW-
applications (for an example on the instance level
see Ellis 1987).

References

Booch G (1990) Object-oriented design with appli-
cations. Benjamin/Cummings, Redwood City

Coad P and Yourdon E (1990) Object-Oriented De-
sign. Prentice Hall, Englewood-Cliffs

Fischer D H and Rostek L (1992) SFK: 4 Smalltalk
Frame Kit. Concepts and Use. GMD research paper,
Darmstadt

Frank U and Klein S (1992 a) Unternehmensmodel-
le als Basis und Bestandteil integrierter betriebli-
cher Informationssysteme. GMD research report,
No. 629. Sankt Augustin

Frank U and Klein S (1992 b) Three integrated
Tools for designing and prototyping Object-Orient-
ed Enterprise Models. GMD research report, No.
689. Sankt Augustin

Frank U (1992) Designing Procedures within an
Object-Oriented Enterprise Model. In Dynamic
Modelling of Information Systems (Sol H G and
Crosslin R L, Eds.) pp. 385-388. Delft

ESPRIT Consortium AMICE (1991) CIM-OSA AD
1.0 Architecture Description. Brussels

Ellis C A (1987) NICK: Intelligent Computer Sup-
ported Cooperative Work. In Proceedings of the
IFIP WG 8.4 Workshop on Office Knowledge: Rep-
resentation, Management and Utilization (Locho-
vsky F, Ed.) pp. 95-102. Toronto

IBM (1990), IBM Enterprise Business Process Ref-
erence Model.

Katz R L (1990) Business/Enterprise Modelling.
IBM Systems Journal, Vol. 29, No. 4, 509-525

Levesque H J and Mylopoulos J (1984) An Over-
view of Knowledge Representation. In On Concep-
tual Modelling. Perspectives from Artificial Intelli-
gence, Databases and Programming (Brodie M L,
Mylopoulos J and Schmidt J, eds.) pp. 3-17. Spring-
er, Berlin, Heidelberg etc.

Lochovsky F H, Hogg J S, Weiser S P and Mendel-
zon A O (1988) OTM: Specifying office tasks. In
Proceedings of the ACM SIGOIS Conference on Of-
fice Information Systems. Palo Alto

Profrock A K, Tsichritzis D, Miiller G and Ader M
(1989) ITHACA: An Integrated Toolkit for Highly
Advanced Computer Applications. In: Object Ori-
ented Development (Tsichritzis D, Ed.) pp. 321-344.
Geneva

Rumbaugh J et.al. (1991) Object-oriented model-
ling and design. Prentice Hall, Englewood Cliffs

Savage C M (1990) Fifth generation management
- integrating enterprises through human network-
ing. Digital Press

Zachman J A (1987) A framework for information
systems architecture. IBM Systems Journal, Vol. 26,
No. 3, 277-293

