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Abstract

The goal of this paper is to provide an architectural analysis of the existing distributed
object oriented platforms. Based on a relatively small number of design patterns, our
analysis aims at a unified view of the platforms. We achieve this by articulating a
series of key issues to be addressed in analyzing a particular platform. This approach
is systematically applied to the CORBA, Java RMI, and COM/DCOM platforms.
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1 Introduction

With the wide spread utilization of object technology, it has become more and more important to employ
the object oriented paradigm in distributed environments as well. This raises several inherent issues, such
as references spanning address spaces, the need to bridge heterogeneous architectures, etc. It is the main
goal of this paper to provide an architectural analysis of current software platforms in this area. One of
the obstacles to overcome in order to achieve this aim is the fact that the available descriptions of these
platforms speak different languages. Thus to target the issue, we have decided to employ design patterns
[3,19] as a common denominator which will help us provide an unified view on the platforms analyzed.

We focus on the following key distributed object platforms: CORBA, Java RMI, and COM/DCOM. The
first one, CORBA, is specified by OMG [12], which is the largest consortium in the software industry.
CORBA has undergone an evolution ranging from CORBA 1.0 (1991) and CORBA 2.0 (1995) to CORBA
3.0, which is soon to be released. The Java environment, designed by Sun Microsystems, has probably
experienced the greatest evolution recently. From the broad spectrum of the Java platform segments, we
will focus on Java RMI [22], which targets working with distributed objects. The last platform analyzed
is the Microsoft Component Object Model (COM). This platform has also been evolving gradually along
the milestones OLE, COM, DCOM, and COM + [18]. In this paper, we will focus on COM/DCOM [6],
as this is where Microsoft targets distributed objects.

The paper is structured as follows: Section 2 articulates the general principles of working with distributed
objects. The division of the section reflects our approach to the architectural analysis - basic principles,
basic patterns, provision and employment of a service, and inherent issues. Using the same structuring as
in Sect. 2, we offer analyses of CORBA (Sect. 3), Java RMI (Sect. 4), and COM/DCOM (Sect. 5).



Due to the limited size of the paper, we could not focus on security questions and benefits of code
mobility over the Internet. Also, a thorough evaluation of each platform could not be provided. All of these
areas have become very broad and each of them deserves at least a separate paper.

2 Distributed objects

2.1 Basic principles

2.1.1 Request & response

Under the term distributed objects, we usually understand objects which reside in separate address spaces
and methods of which can be subject of remote method calls (a remote call is issued in an address space
separate to the address space where the target object resides). By convention, the code issuing the call is
referred to as the client; the target object is referred to as the server object (or simply remote object); the
set of methods which implements one of the server object’s interfaces is sometimes designated as a
service that this object provides. Similarly, the process in which the server object is located is referred to
as a server.

An important goal of the client and server abstractions is to make it transparent how "far" the client and
server spaces actually are - whether they reside on the same machine, are on different nodes of a local
network, or even reside on different Internet URLs (thus being "intergalactic"); as a special case, client
and server may share the same address space.

Because it is inherently delivered over a network communication infrastructure, a remote method call is
typically divided into the request (asking the service) and response (bringing results back to the client)
parts. In principle, from the client’s view, the request and the response corresponding to a remote method
call can be done as one atomic action (synchronous call), or they can be separated, where the client issues
the request and than, as a future action, issues a wait for the response (deferred-synchronous call).
Sometimes the response part may be empty (no out parameters and no functional value). In this case, the
corresponding method is usually termed a one-way method. A one-way method can be called
asynchronously, where the client does not have to wait till the call is finished. In a distributed environment
the exactly-once semantics of remote calls is practically impossible to achieve; real distributed platforms
ensure the at-most-once semantics of a synchronous and deferred-synchronous call (exactly-once semantics
in case of a successful call, at-most-once semantics otherwise); best-effort semantics is ensured for a one-
way method.

2.1.2 Remote reference

One of the key issues of remote method calls is referencing of remote objects. Classically, in a "local"
case, in a method call rro.m(p1,p2, ..., pn) , rro contains a reference to the target object, m identifies
the method called, and some of the parameters can contain references to other objects as well; let us
suppose only one of the parameters, say pj, contains a reference. However, in a distributed environment
we face the following issue: rro should identify a remote object over the network, and so should pj. It
is obvious that classical addresses will not do as the references, at least for the following reasons: in
addition to the data record of the target object, a reference has also to identify the node and the server in
which the target object resides. Moreover, the target object may implement more (non polymorphic)
interfaces; thus, rro should also identify the particular interface which the target object implements, and
to which m belongs. By convention, a reference that contains all this information is termed a remote
reference. Hence, a remote reference identifies a service. In addition, representation of a remote reference
has to span the differences in the hardware architectures of the nodes where the objects involved in a



particular remote method call reside.

2.1.3 IDL Interface

In principle, a client’s code and the server object that is subject to a remote call from the client can be
implemented in different languages and can run on heterogenous architectures. To span this kind of
difference, the interfaces of a server object are specified in an architecture-neutral Interface Definition
Language (IDL). Typically, IDL provides constructs for specification of types, interfaces, modules, and
(in some cases) object state. However, there is no means for specifying code of methods. Usually a
mapping from IDL to standard programming languages, such as C++ and Java, is a part of an IDL
definition. CORBA IDL and Microsoft MIDL are examples of IDL languages.

2.1.4 Proxy: local representative

To bridge the conceptual gap between the remote and local style of references, both in the client and
server code, the actual manipulation with remote references is typically encapsulated in wrapper-like
objects known as client-side and server-side proxies. The client-side proxy and the corresponding server-
side proxy communicate with each other to transmit requests and responses. Basically, the client-side proxy
supports the same interface as the remote object does. The key idea behind proxies [17] is that the client
calls a method m of the client-side proxy to achieve the effect of calling m of the remote object. Thus, the
client-side proxy can be considered a local representative of the corresponding remote object. Similarly,
the key task of a server-side proxy is to delegate and transform an incoming request into a local call form
and to transform the result of the call to a form suitable for transmitting to the client-proxy. Thus, a server-
side proxy can be considered as the representative of all potential clients of the remote object.

2.1.5 Marshalling: transmitting request & response

Both the request and response of a call are to be converted into a form suitable for transmitting over the
network communication infrastructure (a message, or a TCP socket connection for transmitting streams
might be an example of the infrastructure). Typically, serialization into a byte stream is the technical base
of such conversion. By convention, this conversion is referred to as marshalling (the reverse process is
unmarshalling). Some authors use these concepts in a narrower sense, where marshalling/unmarshalling
refers only to conversions of the parameters of a remote call.

The key issue of marshalling and unmarshalling is dealing with objects as parameters. The following two
approaches indicate the basic options: passing remote references and passing objects by value. Suppose
rro.m(rp,lp) is a remote call issued by a client C. The rro reference identifies a proxy which
encapsulates a remote reference to a remote object RO in a server S; the rp represents a remote reference,
lp is a reference to a local object which is to be passed by value. Typically, when the request
corresponding to the call is delivered to S, a client-proxy encapsulating rp is automatically created in S.
On the contrary, a copy of the lp object is created in S.

2.2 Combining basic principles: basic patterns

Design pattern are the "smallest recurring architecture in object oriented systems" [24]. For more details
on design patterns (patterns for short) refer, e.g., to Buschmann et al. [1] or Pree [14], and particularly to
the classical catalog of design patterns by Gamma et al. [3]. We will use informally just a few of them
in the following sections to explain the basic ideas behind the architectural concept of the distributed object
platforms.



2.2.1 Broker pattern

The Broker pattern in Fig.1 reflects the classical client/server relationship implementation in distributed
environment. The role of the Client, Client-side Proxy, Server-side Proxy and Server was explained in the
previous sections, so we can focus on the Broker object, which is in this pattern to capture the
communication between Client-side Proxy and corresponding Server-side Proxy. In a loop, the Broker
forwards requests and responses to the corresponding proxies. These requests and responses are encoded
in messages by which the Broker communicates with the proxies. Figure 2 demonstrates a typical scenario
of object interaction for delivering a request and receiving a response. Another scenario (Fig.3), illustrates
how a server registers the service it provides with the Broker object. The Broker pattern, as described so
far, is a Broker with indirect communication between proxies. In the typical modification of the Broker
pattern referred to as Broker with direct communication, the Client-side Proxy and the corresponding
Server-side Proxy communicate directly after a communication channel was initially established. A Bridge
object is used to communicate with other Brokers.

2.2.2 Proxy pattern

The essence of the proxy idea (Sect. 2.1.4, 2.2.1) is captured in Fig.4. Both the Proxy and Original classes
support the same interface defined by AbstractOriginal. A typical scenario of interaction among instances
of these objects is depicted in Fig. 5.

2.2.3 Abstract Factory pattern

In principle, a factory is an object which creates other object; usually a factory is specialized for creating
objects of a particular type. In distributed environments, factories are typically used on the server side
(after a server has been initialized) to create new objects on a client’s demand. The main reason for using
factories by clients is that the usual language tools like "new" cannot be used in distributed environments.
In a routine scenario the client issues a request to an object factory to create a new object; the object
factory returns a remote reference of the newly created object. Typically, the created object resides in the
same server as does the Object Factory involved in the request. The essence of the factory idea is captured
by the Abstract Factory pattern (Fig.6). In particular, it illustrates that a Concrete Factory is devoted to
creation of products of specific types.

2.3 Providing and employing a service

2.3.1 Registering a service with broker

In order to be remotely accessible, any service provided by a server has to be registered with a broker. As
a result of the registration operation, the broker a creates a remote reference to the service (i.e. to a
particular interface of the corresponding remote object). The remote reference is returned to the server and,
e.g., can be registered with a naming and/or trading service (Sections 2.3.2, 2.3.3). Typically, following
the Abstract Factory pattern, an object factory residing in the server would be used to create the new
remote object implementing the service being registered.

2.3.2 Naming

Because the remote references are supplied by brokers in scarcely legible form, and so to enable the use
of ordinary names, a distributed object platform typically provides a naming utility (naming for short).
A naming defines a name space and tools for associating a name with a remote reference. Classical
operations for resolving a name into a remote reference and associating a name with a remote reference
are provided. Typical scenarios for a naming implementation include (a) providing a naming service
accessible via a well-known remote reference, (b) embodying naming in the Broker’s functionality.



2.3.3 Finding a service, trading

For a client, there are two ways to obtain a remote reference which identifies the requested service. First,
it can ask naming to resolve the name the client knows, or, alternatively, the client can ask a trading utility
(an analogy of yellow pages) to provide a list of remote references to the remote services possessing the
properties which the client indicated as the search key. The typical scenario for trading implementation
includes provision of a trading service accessible via a well-known remote reference.

2.3.4 Binding

As mentioned in Sections 2.1.5, 2.3.2, and 2.3.3., the client can receive a remote reference via naming or
trading, or as a result of another remote method call (in fact if naming and trading are implemented as
services, the client always receives remote references as a result of other remote methods calls - except
for well-known remote references of, e.g., naming and trading services). It is a general rule of all the
distributed object platforms that when a client receives a remote reference to a service, a proxy is created
(if it does not already exist) in the client’s address space, and the client is provided with reference to the
proxy. At the latest with the first remote call that the client issues via the proxy, the connection between
the client and the server is established (some authors also say that the client is bound to the server).

2.3.5 Static invocation and delivery

When the client was compiled with the knowledge of the requested service interface (e.g., in the form of
an IDL specification), the remote methods’ calls can be encoded statically in the clients code as calls of
the proxy methods (static invocation). This is done fully in compliance with the proxy pattern (Section
2.2.2). Similarly, if the server code was compiled with full knowledge of a particular service’s interface,
the corresponding server-side proxy can contain statically encoded local calls to service’s methods (static
delivery).

2.3.6 Dynamic invocation and delivery

In principle, the client and the server can be compiled separately; thus they might not always be current
with respect to the static knowledge of available interfaces. Moreover, there are specific applications in
which the exact knowledge of the service interfaces is inherently not available at compile time (e.g.,
debugger, viewer, bridge). To overcome this obstacle at the client side, a proxy is usually provided with
an interface (say IRemote) which allows issuing dynamically set-up calls (dynamic invocation). The name
of the corresponding method is typically invoke(). As an example, suppose the rop.m(p1, ..., pn) call
is to be issued dynamically as the signature of m was not known at compile time (rop is a reference to the
proxy of the remote object). So at compile time the client code can contain the following call: rop.invoke
(method_name, paramlist_array). Thus before executing the invoke method we have to assign m to
method_name, and fill paramlist_array with the parameters p1, ..., pn. Usually some kind of
introspection is necessary to obtain/check details on the target interface at run time (types and numbers
of method’s parameters, etc.).

Similarly, new objects can be created in a server with interfaces not known at compile time (e.g., in a
viewer or a bridge). Calls to these objects can be delivered dynamically if these objects are equipped
accordingly. The usual technique employed is the following: Suppose the rop.m(p1,...,pn) call is to
be delivered to the object RO identified by the rop remote reference; however, the object is located in a
server which was compiled without any knowledge of RO’s interfaces - except for the IRemote interface
supported by all remote objects. IRemote contains the invoke() method which accepts dynamically
created calls and forwards them to the actual methods of RO. Thus to be able to accept dynamic calls, RO
has to implement the Invoke method. The server-side proxy associated with RO is very simple - it
supports just the IRemote interface; therefore the code of the server-side-proxy can be very generic and



can be used for any server object supporting the IRemote interface.

Some Broker implementations, e.g. CORBA, even allow for combining static invocation at the client side
with dynamic delivery at the server side and vice versa (combining dynamic invocation with static
delivery).

2.4 Inherent issues

2.4.1 Server objects garbage collection problem

The server objects not targeted by any remote reference can be disposed and should be handled by a
garbage collector. As opposed to the classical techniques used in single address space, garbage collection
in distributed environment is a more complex issue that has been the subject of much research (e.g.,
Ferreira et al.[2]). We identify the following three basic approaches to garbage collection of distributed
objects: (1) Garbage collection is done in the underlaying platform, e.g. at a distributed operating system
level; this approach remains in an experimental stage [23]). (2) The broker evaluates the number of live
references (e.g., derived from the number of live connections). (3) The server keeps track of the number
of references provided to the outside; each of its clients has to cooperate in the sense that if it does not
need a remote reference any more, it should report this to the server. This technique is called cooperative
garbage collection.

The approaches (2) and (3) are based on reference counting: once the reference count drops to zero, the
target object can be disposed of. Despite of its simplicity, reference counting suffers from a serious
problem - cyclic referencing among otherwise unreachable object prevents zeroing of reference counts.

2.4.2 Persistent remote references

Lifecycles of clients and servers are not synchronized. For example, a server can time-out or crash, and
its client can still hold a remote reference to an object located in the server. Thus, remote references can
persist with respect to the server they target. In most of the distributed object platforms, using a remote
reference to an inactive server is solved by an automatic reactivation of the server. Typically, before the
server times-out, it is given a chance to externalize the state of its objects; after the server is reactivated,
its objects can be recreated and their state renewed (some kind of lazy loading can be employed in the
reactivation process).

2.4.3 Transactions

Transaction are an important tool in making distributed object applications robust. Three consequences of
working with distributed objects with respect to transactions should be emphasized: (1) Because of
transitive nature of the client-server relation (Section 2.4.5), nested transactions are almost inevitable.
(2) Employing multiple databases (one type of resources) is inherent to the distributed environment. This
implies that two-phase commit has to be applied (prepare and commit phases). (3) As objects possess state,
they can also be considered as resources taking part in transactions.

It is a well-known problem that if a resource needs another resource in order to finish its prepare phase,
the requests to prepare have to be issued in a specific order (respecting the implied partial ordering of
resources) to avoid deadlock [11,16]. As an example, consider an object A, which when asked to prepare,
is to be stored into a database B. It is obvious that A cannot prepare after B is requested to prepare. Thus,
a transactional system to be used in distributed object applications should provide some support for dealing
with this problem.



2.4.4 Concurrency in server objects

In the basic variant of the Broker pattern (Section 2.2.1), the Server enters a loop and waits for incoming
requests. In this variant, the Server responds to the requests sequentially. However, many implementations
employ multithreading; the following is an example of this approach: the Broker, sharing address space
with the Server, forwards each of the incoming requests to a separate thread in the Server (there can be,
alternatively, a pool of available threads, a thread can be created for each request, etc.). As the Server is
now multithreaded, a server object may be subject to invocation of several of its methods simultaneously.
Naturally, synchronization tools have to be applied in code of the Server’s objects in order to avoid race
conditions, etc. In addition, several threads running in the Server may call the Broker at the same, e.g.,
to register a newly created object. By convention, a Broker supporting this concurrency is called a
multithreaded Broker.

2.4.5 Applying client-server relation transitively

It is very natural for a server S be become a client of another server S’. Simply an object O in S contains
Object Reference to an object O" in S’. Thus any method of O can invoke a method of O’’. This very
likely happens when a remote reference is passed as a parameter in a request to S. In fact, we face a
transitive application of the master/slave pattern [3]. Furthermore, this is also the underlying idea of n-tier
architectures [13]. Similarly, we can also achieve callbacks from a server to its client by passing a remote
reference of the interface, which is to be the subject of a callback from the client to the server (see also
Section 2.5).

2.5 Reactive programming

The advantage of easy passing of remote references as parameters makes it relatively easy to employ even-
based (reactive) programming style without introducing specific callbacks constructs. Most of the
distributed object platforms define some abstractions to support this style of programming with significant
comfort. In principle, all of them are based on the Observer (Publisher-Subscriber) pattern [3]. The basic
idea here is that a listener object (Subscriber) can subscribe to an event source (Publisher) to be notified
about and event (asynchronous signal) occurrence. The Publisher announces what interfaces its listeners
have to honor and what methods of these interfaces will be called to report on an event. This reporting
can be just a notification (one-way method will do), or a callback (some results can be delivered to the
Publisher). One of the key benefits of this approach is that the Publisher does not have to know its
listeners at compile time; listeners subscribe dynamically.

3 Distributed objects in CORBA

3.1 Basic principles

3.1.1 Request & response

In CORBA, a client issues a request to execute a method of an object implementation. There is no
constraint imposed on the location of the client and the requested object implementation (remote object);
they can share an address space, can be located in separate address spaces on the same node, or can be
located on separate nodes. A server (process) can contain implementation of several objects or a single
object, or even provide an implementation of one particular method only. However, typically, a
multithreaded server encapsulates implementations of multiple objects.



3.1.2 Remote reference

Remote references are called Object References and the target of an Object Reference must be an object
that supports the CORBA::Object IDL interface (such objects are called CORBA objects).

3.1.3 IDL Interface

CORBA specifies the CORBA IDL Language and its mapping to several programming languages (e.g.,
C++, Java, Smalltalk). The IDL language provides means for interface definitions; there are no constructs
related to object implementation (object state definitions have been proposed recently by OMG).

3.1.4 Proxy: local representative

Using the Broker Pattern terminology, the client-side proxy code is called IDL stub; the server-side proxy
code is referred to as IDL skeleton. However, in CORBA, the concept "proxy" is used to denote an object
created on the client side which contains the IDL stub plus provides some other functionality, e.g. support
for dynamic invocation.

3.1.5 Marshalling: transmitting request & response

Both request and response are delivered in the canonical format defined by the IIOP protocol which is the
base for the CORBA interoperability over the Internet (other protocols are defined in the OMG standard
[12] as well, but IIOP prevails). On the client side, marshalling is done in the IDL stub or via the
functionality of the dynamic invocation interface (Section 3.2). On the server side, unmarshalling is done
in the IDL Skeletons (or in the Dynamic Skeleton Interface, DSI) and partially in the Object Adapter. In
a request (response), Object References can be provided as parameters; remote objects can be passes by
reference. Passing objects by value has been the subject of a resent OMG proposal [7].

3.2 Combining basic principles: CORBA architecture as pattern combination.

The CORBA architecture (Fig.7) very much follows the Broker pattern. The Broker object in the Broker
Pattern is mapped as the ORB Core; it is employed for establishing the connection between a client and
a server. The code of the Client-side Proxy of the Broker pattern is reflected as an IDL stub (and DII stub,
the code for dynamic invocations), and the code of the Server-side Proxy is reflected in POA (Sect. 3.3.1,
IDL skeleton, and DSI skeleton serving for dynamic delivery. More specifically, the direct communication
variant of the Broker pattern is employed in many of the CORBA implementation (e.g., in Orbix), where
the client stubs directly communicate with a POA. The Interface Repository is used for introspection
(particularly in case of a dynamic invocation and dynamic delivery). The Implementation Repository is
used for reactivation of servers. The CORBA Lifecycle Service [9] employs the Abstract Factory pattern:
In addition to a classical factory, the Lifecycle Service defines also factory finder (returns an object factory
able to create object of a given type) and generic factory (which encapsulates the functionality of multiple
factories).

3.3 Providing and employing a service

3.3.1 Registering a service with broker

Registering the object which represents the service is the task of the Object Adapter. Its currently
mandatory version, POA, provides, e.g., the activate_object(), activate() methods to support
registration. In principle, activate_object() registers the object with POA and assigns a new Object
Reference, which will serve for referencing the newly created object; activate() signals that a particular
server (or a particular POA, to be precise) is ready to accept requests. Finally, calling ORB::run() tells



the ORB to enter the main request processing loop.

3.3.2 Naming

Officially there is the CORBA Naming Service which should provide for name spaces and for mappings
among Object References and names. However, in addition to the standard Naming Service, most of the
CORBA implementations provide a vendor specific way to locate objects associated directly with
registering of a service at the server side and a "binding" operation on the client side.

3.3.3 Finding a service, trading

For a client, there are two ways to obtain an Object Reference which identifies the requested service: first,
asking a naming service to resolve a known name into the corresponding Object Reference; second, asking
the CORBA trading service (in analogy to yellow pages) to provide a list of services (Object References)
that possess the properties used as the search key. Some CORBA implementations (e.g. Orbix and
VisiBroker), provide a proprietary location service. In a sense, this service is a hybrid between naming
and trading. In searching for a service, the client provides a partial information on the service (e.g. using
"incomplete names", providing the interface the target object should support, etc.); however, the location
service does not cover the functionality of the CORBA Naming Service or CORBA Trading Service.

3.3.4 Binding

The client is bound to the requested server after it receives one of its Object References (and a
corresponding proxy is created, Section 2.3.4).

3.3.5 Static invocation and delivery

When the client was compiled with knowledge of the requested service IDL specification, the proxy
implements the mapped IDL interface methods. The corresponding code of the proxy is encapsulated in
the IDL stub (Sect. 3.2). Similarly, the corresponding IDL skeleton is the code of the server-side proxy
which implements static delivery.

3.3.6 Dynamic invocation and delivery

For dynamic invocations, the proxy contains the create_request() method which returns a Request

object. There is also a way to submit arguments with the request. When creating a request, the Interface
Repository can be consulted for details about the target interface. The actual dynamic invocation is
initiated by calling invoke(), a method of the Request object.

As far as dynamic delivery is concerned, the server-side proxy contains the Dynamic Skeleton code which
delivers the request via the invoke() method supported by the PortableServer::DynamicImplementation
interface. CORBA allows for combining static invocation at the client side with dynamic delivery at the
server side and vice versa. At the server side, the choice between static and dynamic delivery is made by
the server object itself (it can be determined, e.g., as a part of the registration with POA), regardless of
the way a request was created, i.e., via a dynamic or static invocation.

A half-way between static and dynamic invocation is dynamic downloading of stubs which can be applied
in CORBA clients implemented in Java. In this case, the client code can be compiled without employing
the IDL compiler (just the knowledge about the interface form will do).



3.4 Inherent issues

3.4.1 Server objects garbage collection problem

CORBA addresses the garbage collection problem via the third method (with assistance of the clients’
code, the server is supposed to keep track of the number of references to a given object provided to the
outside of the server). It is assumed that if the client to which the reference was provided does not need
it any more, it lets the server know. For this purpose, every CORBA::Object (proxy and the implementation
object are considered as separate entities - both are CORBA::Objects) possesses the duplicate() method
to be called if new reference to this object is to be created. If the reference is not needed any more, the
release() method of ORB is to be called. However, most of the CORBA implementations employ
slightly modified semantics of these methods: every CORBA::Object is associated with its reference counter,
duplicate() increases and release() decreased the counter. If the counter reaches zero the object (proxy
or the implementation object) is disposed of.

3.4.2 Persistent remote references

Object references themselves should be persistent in principle. In its IIOP format, an Object Reference
contains, in addition to the identification of the target object, the identification of the target machine
(hostname:socket) together with the interface type id. An Object Reference R is valid until the server
deletes the target object of R. However, especially for effectivity reasons, the run of a server S which has
not been answering any request for a time-out period is usually terminated. More specifically, the server’s
loop inherently contained in this operation is terminated after the timeout period expires. Just before being
actually terminated, S can store its state (this also includes some kind externalization of S’s objects, e.g.,
[4]). Thus when a request with R as the target comes via ORB and S has been already terminated, S is
typically reactivated, the target of R is recreated, and its state is internalized again. Currently, the
reactivation of servers is done in a vendor-dependent way (e.g., Orbix uses loaders for this purpose). With
introduction of POA, the reactivation of server has been standardized: a servant manager supplied with
the server assumes the role of reactivating all necessary server objects.

3.4.3 Transactions

There is no implicit support for transactions upon remote objects. On the other hand, the CORBA
Transaction Service (OTS), closely cooperating with the CORBA Concurrency Control Service, has been
specified. The CORBA implementations supporting OTS include Orbix and VisiBroker. The OTS
specification [11] addresses the problem of respecting the partial ordering of resources in the prepare phase
by introducing synchronization objects which are given a chance to store themselves before the very first
prepare action starts.

3.4.4 Concurrency in server objects

In multithreaded servers, standard implementation (language-dependent) synchronization tools are supposed
to be employed in server object to avoid race conditions. Note that the CORBA Concurrency Control
Service is used at different level of granularity - it provides locking only and was designed in particular
to support locking in nested transaction. The other important point is that the implementation of ORB and
POA has to reflect the multithreading in servers. As multithreading inherently complicates the
implementation, some vendors offer their ORB alternatively in single and multithreaded versions (e.g.,
ORBIX).



3.4.5 Applying client-server relation transitively, callbacks

Applying client-server relation transitively is straightforward in CORBA. Implementing a callback from
a server S to its client C (via the approach mentioned in Section 2.4.5) typically requires the code of C
to include also the library code supporting servers. To avoid deadlock when a callback takes place while
responding a request from C, the client C has to be of multithreaded implementation, or the callback is
to be a one-way (asynchronous) call.

3.5 Reactive programming

Reactive programming in CORBA is supported by the CORBA Event Service [10]. This service provides
the event channel abstraction. To an event channel, an object can subscribe as an event supplier or event
listener. A supplier generates an event which can be associated with event data. Both push and pull models
of delivering events to consumers are provided. Thus the CORBA Event Service fully implements the
Observer Pattern. A more sophisticated model of reactive programming, the CORBA Component Model,
(very similar to Java Beans, Section 4.5) is being prepared by OMG [8].

4 Distributed Objects in Java

4.1 Basic principles

Currently, there are two ways to handle distributed objects in the Java environment: (1) Employing the
Java RMI (Remote Method Invocation) service together with the Java Object Serialization service, or (2)
employing the CORBA IIOP protocol, alternatively: (a) in a Java-written client code via stubs which speak
the CORBA IIOP protocol, or (b) directly in a CORBA ORB fully implemented in the Java environment
(e.g., OrbixWeb, VisiBroker)). In this section we limit ourselves to RMI (JDK1.2, [22]).

4.1.1 Request & response

The Java RMI architecture is based on the Broker pattern (Section 2.2.1). In addition to the classical
scenario of a client request targeting a particular interface of a single server object, the RMI architecture
is open to support also, e.g., replication of server objects (transparent to the client request). At present, the
Sun Java RMI implementation includes only simple point-to-point requests and responses based upon the
underlying TCP-based streams; we will further limit ourselves to this variant of RMI. In principle, "server"
means an object extending the RemoteServer class residing in a JVM (Java Virtual Machine) separate (in
general) to the client’s JVM.

4.1.2 Remote reference

Remote references are handles to remote objects (those implementing the Remote interface). Remote
references are not directly accessible; they are encapsulated in proxies (stubs and skeletons, Sect. 4.2). A
key RMI feature is that, from a client’s point of view, a remote reference can always be employed only
via an interface (derived from Remote). This conceptually separates the interfaces and implementations of
objects.

4.1.3 IDL Interface

RMI uses the Java language constructs for interface specification (instead of employing a separate IDL
language). The rmic compiler generates client stub and server skeleton classes to a particular remote object
class from the bytecode.



4.1.4 Proxy: local representative

Anytime a remote reference is provided to a client, a proxy is automatically created (if it does not already
exist). In compliance with the Broker pattern, the proxy supports the same remote interface as the target
interface. The client always works with a local reference to the proxy. As for proxy creating, the basic
strategy (at least in the current Sun Java RMI implementation) is that anytime a remote reference is
brought into a Java address space, a new proxy is created; thus more proxies can coexist in one address
space even though they embed the same remote reference.

4.1.5 Marshalling: transmitting request & response

RMI uses a proprietary internal format for request and response marshalling. As far as parameter passing
in remote calls is concerned, local objects are passed by copy using the Java object serialization (the
objects have to support the Serializable interface). When a remote object is passed as a parameter (a
reference to a proxy is indicated as the parameter) the proxy itself is passed (serialized); this complies with
the idea of multiple proxies in one address space (Section 4.1.4). As the proxy contains the remote
reference, the RMI specification [22] also says "a remote object is passed by reference".

4.2 Combining basic principles: basic patterns

The RMI architecture is organized in three cooperating layers (bottom-up): transport layer, remote
reference layer, and stub/skeleton layer. This very much follows the Broker pattern - in RMI, the Broker
object is implemented by the transport and remote reference layers.

4.3 Providing and employing a service

4.3.1 Registering a service with broker

A server object can implement multiple Remote interfaces (those inheriting from Remote). Not very much
reflecting the key RMI policy to strictly separate interfaces and their implementations (Section 4.1.2), a
server object is registered together with all the Remote interfaces it implements. The actual registration with
the RMI Broker (with the remote reference layer) is done via the exportObject() method of the
UnicastRemoteObject class (e.g., it can be inherited into the Remote object implementation). The result
of the registration is a proxy supporting all of the Remote interfaces the object implements.

4.3.2 Naming

At every node supporting RMI, there is the daemon process called RMI Registry. In principle, an RMI
Registry is a name server which supports a flat name space and registers pairs <name, proxy> associated
with the Remote objects existing in this node. A Remote object is registered under a chosen name by
calling the operation bind() (or rebind()) of the RMI Registry at a particular node. The RMI Registry
is accessible form the outside of the node via its Internet address.

4.3.3 Finding a service, trading

There is no trading or location service in RMI at present.

4.3.4 Binding

To establish a connection from a client C to a server object SO located on a node N and registered there
under the name name_SO, C contacts the RMI Registry at N and via its operation lookup() resolves
name_SO into the registered proxy of SO; a copy of this proxy is delivered to C as the result of the



lookup() operation. Moreover, via introspection C can get from the proxy the information on all of the
Remote interfaces SO (and thus also the proxy) supports. The client can of course receive a proxy as a
result of another remote call not targeting a RMI registry. The client is bound to a server object at the
moment it receives the proxy.

4.3.5 Static invocation and delivery

If the client was compiled with knowledge of the requested service interface, it can use the methods of
the corresponding proxy via statically encoded calls. Similarly, the corresponding skeleton at the server-
side implements static delivery.

4.3.6 Dynamic invocation and delivery

There is no support for dynamic delivery on the server side. On the client side, however, dynamic
invocation is always possible via the implicit opportunity to use the introspection features provided for any
object to dynamically set up a call of a particular method in one of the proxy’s interfaces. The key benefit
of the Java code mobility is that a proxy code can be always dynamically downloaded into a running
application (no recompilation is necessary).

4.4 Inherent issues

4.4.1 Server objects garbage collection problem

The RMI system uses the second approach mentioned in Section 2.4.1: it keeps track of the live TCP/IP
connections. Basically, each registration of a remote reference in the RMI Registry implies also one live
connection. If the number of live connections reaches zero, the server object is handled as if it was a local
object in the server’s JVM and thus being a subject of the standard local garbage collection process.

4.4.2 Persistent remote references

Remote references can be persistent in the RMI system in the following sense. If a client uses a remote
reference and the connection from its proxy to the target skeleton does not exist any more, the
corresponding server object can be reactivated supposing it is activatable (via the exportObject()

method of the Activatable class). In the current Sun Java RMI implementation, an activatable object AO
can register with the RMID (RMI Daemon) running at its node, and, consequently, a remote reference
to AO will contain also an information on the RMID. In case the remote reference is used and the
corresponding connection to the target skeleton does not exist any more, the RMID indicated in the
reference is contacted instead; the RMID reactivates the server object and provides the client proxy with
an updated remote reference.

4.4.3 Transactions

Recently, the Java Transaction Service (JTS) has been announced. Essentially, JTS is a mapping of the
CORBA Transaction Service (Sect. 3.4.3) to the Java environment.

4.4.4 Concurrency in server objects

Following the Reactor pattern [15] in principle, the RMI system can deliver multiple calls at the same time
to a particular server object and they will executed in separate threads. (Nothing can be assumed about the
actual dispatching strategy.) The standard Java synchronization tools are to be employed to handle
concurrent access/modification to the server object’s state. For this purpose, Java provides, e.g. the
synchronized clauses, and the wait, resp. notify methods.



4.4.5 Applying client-server relation transitively

Applying a client/server relation transitively is straightforward in Java RMI by providing the server with
a remote reference to another server as described in Section 2.4.5. When a callback from a server S to its
client C is implemented this way, deadlock should be avoided by creating a dedicated thread to accept the
callback in the client (there is no guarantee as for the number of the threads available for delivering
requests, Sect. 4.4.4). As an aside, the Java Beans event model (Sect. 4.5) can also be also employed for
callbacks (with a significant comfort).

4.5 Reactive programming

To support the Observer (Publisher-Subscriber) pattern, Java Beans event model is defined in the Java
environment. The basic idea behind these abstraction is that a Publisher (a Bean) announces a set of
"outgoing" interfaces it will call to report on an event (there are event objects defined for this purpose).
A subscriber, event listener, implements some of the "outgoing" interfaces and subscribes with the Bean
[21] to be called on these interfaces. The Bean notifies all of its subscribers by systematically calling the
method, which corresponds to the event being reported, of all these subscribers. The new version of Java
Beans, Glasgow, supports BeanContext services. One the proposed services is the Infobus [20]. The basic
idea of the Infobus is that, a subscriber does not have to know the particular remote reference of the Bean
notifying of the event in which the subscriber is interested. The subscription targets just the common
"event bus" and addresses the event directly (not a specific source of the event).

5 Distributed objects in COM/DCOM

5.1 Basic principles

Microsoft’s distributed object infrastructure is based on its Distributed Component Object Model (DCOM)
[6]. It is an enhancement of the Component Object Model (COM) which is a means for component-based
development in the Windows environment. While COM supports component interaction on local machine,
both in one address space (process) and across separate address spaces, DCOM provides similar
functionality across node boundaries. We focus on COM interaction across separate address spaces and
will emphasize some of the key DCOM’s architectural enhancements to COM. An important part of
Microsoft’s object technology is OLE (Object Linking and Embedding); originally designed to support
compound documents, OLE is mainly a library of predefined interfaces and default implementation of
some of them.

In COM, the key concept is COM object. Here "object" is not a classical object, it is a component
composed of (classical) objects and providing a set of interfaces to the outside. Using the terminology of
Sect. 2, a client residing in one address space calls a remote method of an interface of a COM Object
residing in a server (in this paper: server COM object, or server object for short). Each interface of the
server COM object corresponds to one service provided by this object.

5.1.1 Request & response

The COM/DCOM architecture is based on the Broker pattern. In COM, a client issues a request targeting
a particular interface of a server object; the server object can reside in the same process as the client does
(inprocess server), in a separate process (local server) but on the same node as the client. DCOM supports
clients and servers residing on separate nodes (remote server). In both COM and DCOM, remote method
calls are synchronous. In COM, request and responses are delivered via the Lightweight Remote Procedure



Calls (LRPC); DCOM uses the Object-Oriented RPCs (ORPCs) developed upon the base of DCE remote
procedure calls from OSF.

5.1.2 Remote reference

Remote references are handles to server objects’ interfaces. Each of the separate interfaces of a server
object is associated with its own remote reference. Remote references are stored in proxy objects. When
used for remote calls, remote references are referred to as binding information, which can contain, for
example, information on the transport protocol, host address, and the port number. When transferred as
a parameter of a remote call, a remote reference is referred to as an Object Reference (OBJREF). In
DCOM. an Object Reference is a tuple <OXID, OID, IPID, binding_info_on_OXID_resolver>. Briefly,
OXID (Object Exporter Identifier is identification of the server, OID identifies the target object, IPID
identifies the target interface, binding_info_on_OXID_resolver identifies the resolver process which can
resolve the rest of the tuple into the corresponding binding information.

5.1.3 IDL Interface

The IDL language used by COM/DCOM is called MIDL. Interface specifications are compiled by the
standard Microsoft IDL Compiler (also denoted as MIDL), which creates the code of sever stubs and client
proxies. However, the code of stubs and proxies is generated by other Microsoft compilers as well (e.g.,
by Visual C++). It should be emphasized that the binary form of generated interfaces (the physical layout)
is predefined in COM. In addition, MIDL can generate type libraries (analogous to interface repository
entries in CORBA).

5.1.4 Proxy: local representative

Anytime a remote reference is provided to a client, a proxy object is automatically created (if it does not
already exist) in the client’s process. Naturally, in compliance with the Broker pattern, the proxy object
supports the same interface as the target of the remote reference. The client always works with a local
reference to the proxy object. The basic philosophy is that anytime a new remote reference is brought into
a process, a proxy object is created; in principle, there is a proxy object per each interface of a server
object.

5.1.5 Marshalling: transmitting request & response

COM uses a proprietary internal format for request and response marshalling. As far as parameter passing
of remote calls is concerned (with DCOM on mind), data are marshalled in a platform independent format
called network data representation. When a reference to a server object’s interface is passed as a parameter
(a reference to a proxy object is indicated as the parameter), the corresponding tuple <OXID, OID, IPID,
binding_info_on_OXID_resolver> is passed as explained in Section 5.1.2. During this process, the
necessary stub and proxy objects (Section 5.2) are always created automatically.

5.2 Combining basic principles: basic patterns

COM/ DCOM closely follows the Broker pattern. The client-side proxy of the Broker pattern is reflected
in a proxy object, and the server-side proxy in a stub object. More specifically, the direct communication
variant of the Broker pattern is employed, as proxies directly communicate with corresponding stubs. The
Abstract Factory pattern plays a very important role in COM/DCOM: In servers, new objects are
instantiated with the help of object factories. In a server, each of the server COM object (component)
classes is associated with an object factory instance residing in the server which creates new server objects
based on this particular class. (To follow the COM convention, we refer to "object factory" as class
factory.)



5.3 Providing and employing a service

5.3.1 Registering a service with broker

Compared to CORBA and JAVA RMI, the basic philosophy of remote references in COM/DCOM is
different: they are not expected to persist; they are not intended to be directly used for reactivation of
servers (the persistent information necessary do reactivate a server can be delegated to a moniker - Sects.
5.3.2, 5.4.2). The basic strategy of working with remote objects is that the client asks a remote factory
residing also in the server for a remote object creation and at the same time indicates the interface used
for accessing the object. During this process the corresponding stub and proxy objects are created. The
proxy object contains the linking information to that particular interface of the server object. If the proxy
object’s reference were not passed as a parameter of another remote call, no registration with "Broker"
would be necessary - the linking information in the proxy object would do. However, if such proxy
object’s reference passing takes place, the corresponding Object Reference has to be passed instead (i.e.,
<OXID, OID, IPID, binding_info_on_OXID_resolver>). In its target node, this tuple has to be resolved
into the linking information. Therefore, a server (object exporter) has to be registered with the OXID
Resolver Process running at its node.

5.3.2 Naming

There are two separate name spaces used in COM/DCOM, each of them dedicated to a particular purpose.
The first name space is global and contains the GIUDs (globally unique identifiers) used (a) to identify
classes of COM objects (these identifiers are called CLSIDs) and (b) to identify interfaces of COM objects
(these identifiers are IIDs). The second, also global name space, names of monikers, contains names of
monikers (persistent objects used to internalize and externalize the state of COM objects). The names of
monikers are based on indication of the URL together with the logical path to data stored on a permanent
storage (e.g., a file of or an object in a COM structured storage).

5.3.3 Finding a service, trading

There is no trading service available in COM/DCOM. However, there is an option one could call
emulation service: a class can emulate the functionality of a set of classes being generic or parametrized
via an "emulation configuration".

5.3.4 Binding

A client can bind to remote service (an interface of a server COM object) in two ways. First, it can ask
a known class factory to create a server object and provide access to its particular interface, reflecting the
basic strategy of work with remote objects. The creation is done by calling the
CreateInstance(...,iid,...) method of the corresponding class factory; iid indicates the required
interfaces of the created COM object. Second, it can use the method BindToObject() of a Moniker
associated with externalized state of a remote object. This method either creates a new COM object and
internalizes its state, or recognizes that such a COM object already exists. In both cases, the final effect
is that the client is provided with a reference to a proxy object supporting the required interface of the
server COM object.

5.3.5 Static invocation and delivery

When the client code was compiled with knowledge of the requested service interface, the remote calls
can be encoded statically as calls of the proxy object’s methods. Recall that in COM/DCOM the
granularity of proxies is such that there is a proxy object per each interface of a server object (Section



5.1.4). Similarly, static delivery is done by statically encoded calls executed in the corresponding Stub
object..

5.3.6 Dynamic invocation and delivery

As far as dynamic invocation is concerned, COM/DCOM follows very much the approach described in
Sect. 2.3.6. A COM object can support an IDispatch interface (predefined in OLE), the implementation
of which is associated with an "indirect interface" (our concept). As an aside, a description of this
interface’s methods is available through a type library. IDispatch contains the Invoke() method; via its
parameter of type DISPID, a method of the indirect interface can be called (the call is delegated in the
implementation of invoke()). The DISPID value can be obtained from the type library. Similarly, another
parameter of Invoke(), a variant record, supplies the parameters of the delegated call. The supplied
parameters are to be provided in an encoded form (there are rules for encoding both the simple and
composite types).

As opposed to CORBA, in COM the client decides if the delivery of a call will be dynamical or statical.
However, if the call is to be delivered statically, the server object has to support a "classical" interface;
if the call is to be delivered dynamically, the server object has to support an IDispatch interface the
implementation of which delegates calls to the "classical" interface. However, the server COM object does
not have to support both interfaces at the same time. If it supports only the IDispatch interface, the client
is forced to use only dynamic invocation, even though it knows the "classical" interface at compile time.
To achieve flexibility (and to improve efficiency), COM defines dual interfaces. In principle, a dual
interface combines both the "classical" interface and the corresponding IDispatch interface. The dynamic
invocation is in OLE referred to as automation.

5.4 Inherent issues

5.4.1 Server objects garbage collection problem

The cooperative garbage collection technique is employed in COM/DCOM (Section 2.4.1). The reference
counting may be, alternatively, applied on a COM object as one entity, or separately for each of its
interfaces. The first variant is the usual approach. However, some of the COM object’s interface
implementation can be associated with large data structures - in a similar case separate reference counting
may be applied in order to dispose the interface implementation as soon as possible.

5.4.2 Persistent remote references

In COM/DCOM remote references are not persistent. The way to approximate persistence of remote
references and their target server objects is to associate a server COM object with a moniker object and
renew the reference via the moniker’s BindToObject() method as described in Sect. 5.3.4.

5.4.3 Transactions

Through the Microsoft Transaction Server (MTS), transparent addition of transactional capabilities to a
COM object is possible; references to other COM objects are automatically detected and the target COM
objects are made transactional components as well (transitive closures of related COM objects are
evaluated). Nested transaction are supported. The hart of the MTS, the MTS Executive, maintains a pool
of threads to handle requests from clients to (a potentially large) number of transactional COM objects.
There is another pool of threads to handle database connections. As an aside, COM structural storage
operations have been announced to be subject to simple transactions in Windows NT 5.0.



5.4.4 Concurrency in server objects

In COM, there are two basic models of threading related to access to the objects made externally available
by servers (to server objects): the apartment model and the free threading model. For a server object, being
in an apartment means that there is only one thread to call its methods in response to the requests
incoming from clients; in other words, the methods of all its interfaces are implicitly mutually excluded
and no synchronization is necessary. On the contrary, if the free threading model is applied to the address
space a server object resides, the methods of all its interfaces can be called and executed simultaneously
by any number of threads. Appropriate synchronization has to be applied in implementation of these
methods to handle the concurrent access/modification to the server object’s state.

5.4.5 Applying client-server relation transitively

Applying client-server relation transitively is straightforward in COM/DCOM. To avoid deadlock while
emulating a callback from a server S to its client C (via the approach mentioned in Sect. 2.4.5), the
client C has to be of a multithreaded implementation (the free threading model has to be applied at the
client side).

5.5 Reactive programming

To support the Observer (Publisher-Subscriber) pattern, COM/DCOM provides connection points and
outgoing interfaces. The basic idea behind these abstraction is that a Publisher announces a set of
interfaces it will call to report on an event (although no event object is defined). Each of these "outgoing"
interfaces has to implemented by a separate connection point object. A subscriber, sink object, implements
some of the outgoing interfaces and subscribes with the particular connection point(s). When asked by
Publisher, the connection point notifies all of its subscribers by systematically calling the method that
corresponds to the event being reported in all of its subscribers.

To become a publisher, a COM object implements the IConnectionPointContainer interface and creates
at least one connection point object (which implements the IConnectionPoint interface).

6 Conclusion

We have provided an architectural overview of current distributed technologies. In principle, our attempt
for architectural analysis, based on a relatively small number of design patterns, has illustrated what is
intuitively obvious but hard to grasp when looking on each of the distributed object platforms separately:
These platforms are based on the same principles and have to solve similar issues; however their
descriptions often speak different languages.

In this overview, we did not target all of the issues related to the distributed object technologies and
platforms. Beyond the basic principles, basic patterns, provision and employment of a service, and
inherent issues we focused on, attention should also be given to security and benefits of code mobility over
the Internet. Both of these areas have become very broad and deserve at least a separate paper.
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Fig 1 Broker pattern

Fig 3 Service registration scenario

Fig 2 Request delivery scenario

Fig 4 Proxy pattern



Fig 7 CORBA architecture (stubs are IDL stubs, DII denotes DII stub, skelet. are IDL skeletons, DSI
denotes DSI skeleton)
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