

Amr Awadallah and Mendel Rosenblum
Computer Systems Lab, Stanford University

aaa@cs.stanford.edu, mendel@cs.stanford.edu

Abstract

Today most Internet services are pre-assigned to servers
statically, hence preventing us from doing real-time sharing
of a pool of servers across as group of services with dynamic
load. Fluidly copying services in and out of servers remains
a challenge due to the many dependencies that such services
have on software, hardware, and most importantly, people.
In this paper we present a novel solution, which builds on
top of the classic operating systems concept of a virtual
machine monitor (VMM). A VMM allows us to encapsulate
the state of the machine in a virtual machine file, which
could then be activated on any real machine running the
VMM software. This eliminates the software dependencies
problem by allowing us to move the whole machine around
including the operating system, libraries, and third party
modules that the service depends on. It eliminates the
hardware dependencies problem by allowing us to mimic the
hardware that the service expects regardless of the real
hardware of the hosting machine. It also solves the people
dependency problem by presenting the developers and
system administrators with the same isolation model that
they are used too with statically allocated servers. We
describe our vMatrix framework in detail and address how
to load balance the virtual machine services across the real-
machines to maximize utilization efficiency (in terms of
machines and people costs) such that total cost of the system
is reduced without degrading the service performance and
without requiring cost prohibitive code and architectural
changes to existing legacy services. Our solution also offers
additional side benefits like on-demand replication for
absorbing flash crowds (in case of a newsworthy event like a
major catastrophe) and faster failure recovery times.

Keywords: server multiplexing, server switching, load
balancing, virtual machine monitor.

1 Introduction

In this paper we describe a practical solution for sharing a
pool of servers between a number of Internet services with
varying load profiles. The idea is very analogous to the well-
known computer networking tradeoff between circuit-
switching and packet-switching. Today most Internet
services are provisioned in a circuit-switching like fashion
that is a pre-determined number of servers are fully
dedicated to a given service. The advantages of this
approach are isolation and guaranteed performance, and the
disadvantage is possibly wasting a lot of capacity if the
service is not using all the allocated resources all the time,

which typically is the case. A packet-switching like
approach stipulates that the service does not get a pre-
determined number of servers; rather these servers are
allocated on demand based on the load of the service. The
advantage of a server switching approach is that it permits
statistical multiplexing on the shared resource allowing for
very efficient use of the available capacity. In other words, a
smaller number of servers can be used to accommodate the
same number of services, thus reducing total system cost,
both in terms of the cost for the servers, but more
importantly the recurring cost of hardware administrators
since they now need to maintain less hardware. The
disadvantage of a switching approach is that the
performance is not 100% guaranteed, rather its within some
probabilistic bound, since if all of the services peak at the
same time, and we had not kept an adequate buffer of idle
servers, then there might not be enough servers to
accommodate all of them, causing congestion then
eventually what we will call server-loss (i.e. we want
another server, but their aren’t any left).

Today server switching is primarily possible within a few
standardized application server frameworks like ATG
Dynamo, IBM WebSphere, and BEA WebLogic [10] [11]
[12], and even within those frameworks, library versions and
operating system release mismatches can lead to inter-
operability problems. Also non-blessed usage by the system
developers might lead to dependencies external to the
application server framework. But it is even more common
that legacy services do not use such application server
frameworks at the first place. In those cases it becomes even
harder to perform server switching, and the cost of re-
architecting the service and rewriting all of the code to fit
within a standardized application framework is typically
extremely prohibitive, since more frequent than not, internet
service infrastructures grow in an evolutionary fashion rather
than a revolutionary one.

The main reason leading to hardship moving services in and
out of servers is the dependencies that the service code has
on operating systems, libraries, third party modules, server
hardware, and even people. Simply copying the code of the
service is not possible since the target machines need to have
exactly the same environment for the code to run unchanged,
which is not practical. The library versions that work with
one service might cause another service to fail when ran on
the same server.

We propose a novel backward-compatible solution that
builds on top of the classic OS concept of a Virtual Machine
Monitor (VMM) [7] (refer to Appendix A for a brief review

The vMatrix: Server Switching

of Virtual Machines). The observation we make is that a
VMM virtualizes the real machine (RM) at the hardware
layer (CPU, Memory, IO), and exports a virtual machine
(VM), which exactly mimics what a real machine would look
like. This allows us to encapsulate the state of the entire
machine in a VM file, which could then be instantiated on
any RM running the VMM software. This solves the
software dependencies problem since the whole service is
transferred with the OS, libraries, code, modules, and code
that the service depends on. It solves the hardware
dependencies problem since the VMM can lie to the
overlying OS about the hardware resources available to it
(e.g. memory size), hence mimicking the same hardware
environment for that service regardless of the real hardware
of the hosting real machine (though there might be
performance degradation). It also solves the people
dependency problem by presenting the developers and
system administrators with the same isolation model that
they are used too with statically allocated servers.

Hence the problem is reduced to delivering large VM files
within a network of RMs running the VMM software; we
call this network of virtual machines the vMatrix1.

We do not attempt to build a VMM, but rather we reference
existing software for the x86 architecture from VMware,
Inc. [3]. Note that similar VMM software is also available
from Connectix Virtual PC [21] (now owned by Microsoft),
but we choose VMware due to their close relationship with
Stanford University and also because they provide a server
class VMM (Microsoft is scheduled to release a server class
VMM in first half of 2004).

In this paper we present our framework in detail and briefly
address how to load balance the virtual machine services
across the real-machines to maximize utilization efficiency
(in terms of machines and people costs) such that total cost
of the system is reduced without degrading the service
performance (in terms of latency, throughput, and
availability). Another challenge that we touch on is how to
avoid making any significant architecture or software
changes to existing services so that this solution is backward
compatible with legacy services.

We claim that the distinguishing advantages of our approach
are the combination of:

(1) Server switching allowing for efficient use of
machine and human resources, thus leading to
reduced total cost of ownership;

1 The name “The vMatrix” comes from the analogy to the 1999 sci-fi movie
“The Matrix”. In the movie, machines controlled humans by virtualizing all
their external senses; we propose doing the same back to the machines! It is
a virtual matrix of real machine hosts running VMM software, which are
ready to be possessed by guest VMs (ghosts) encapsulating Internet
services.

(2) Presenting the developers and system
administrators with the same machine isolation
model that they are used to;

(3) Backward compatibility leading to very low costs
of converting an existing Internet service to run
within such a framework;

(4) On-demand cloning of servers to absorb sudden
surges of incoming requests; an extreme example
is the CNN.com meltdown on Sept 11th, 2001 [33].

(5) Quick re-activation of services to reduce mean
recovery time in cases of software crashes, thus
leading to higher availability.

In a previous paper [35] we covered additional advantages of
the vMatrix platform that leverage the migration aspects on
an Internet-scale to achieve Dynamic Content Distribution.

In section 2 we present a motivating example. In section 3
we present the vMatrix framework. In section 4 we discuss
how the vMatrix implementation details. In section 5 we
discuss our experiences with two Internet services migrated
to the vMatrix platform. Finally in sections 6 and 7 we cover
related work then conclude.

2 Motivation

Figure 1: Statically Pre-provisioned services.

Yahoo! Inc. (employer of one of the authors) provides many
popular Internet services, lets consider two of them: a
financial service providing information about various stocks
and mutual funds (finance.yahoo.com), and a sports news
service providing information on the latest matches and their
scores (sports.yahoo.com). In the current static pre-
allocation world, a fixed number of servers will be allocated
for each, say 4 for the financial service and 4 for the sports
service, as illustrated in Figure 1. It turns out that the load

Server Load Balancer Server Load Balancer

profile for the financial service is such that it’s busy during
weekday mornings/afternoons, and it’s almost idle on
weekday evenings/nights and weekends. In contrast, the
sports service load profile is such that it’s busy on weekends
and weekday evenings/nights, and that is almost idle on
weekday mornings/afternoons. So if we take a snapshot of
these services on a morning of a weekday we will see that
the financial service is almost using all the capacity of its
servers, while the sports service is using only a small part of
its allocated capacity leading to non-efficient use of the
available resources (those are the servers illustrated by
sleeping dogs in Figure 1. Note that it’s not really that a
number of servers will be completely idle, but rather all
servers will be operating at a portion of their full capacity).

The services are usually statically separated like this because
it’s typically very hard for two different services to co-exist
on the same machine due to the following dependency
issues:

(1) Software dependencies: the OS release/patch, or
the library/module version that makes one service
work, might break the other.

(2) People dependencies: that is the developers and
system administrators responsible for one service
would not like to deal with the consequences of
actions done by the developers and administrators
for the other service. There also might be some
security constraints requiring total isolation so that
programmers cannot access each other’s servers.

(3) Hardware dependencies: the service might make
some assumptions on memory size, hard-disk space
or other hardware resources that might be violated
when another service shares with it the same server
or when we move the service code to a server that
does not satisfy these requirements.

Figure 2: Server Switching (Dynamic Allocation)

In conclusion, the advantage of static pre-allocation is that it
solves the software, administration, and hardware
dependency problems by providing strict isolation at the
hardware level; however, it leads to non-efficient use of the
available resources. Note that this non-efficiency is not just a
matter of more servers, but also the hardware administration
personnel needed to maintain these extra servers (which is a
recurring cost that is most probably more expensive than the
servers themselves).

Another disadvantage is no fluidity in assigning new servers
to a given service if demand unexpectedly surges for it, e.g.
a sudden major financial crisis or a catastrophic event. In
today’s static world it takes from a couple of hours to a few
days until enough additional servers are re-allocated from
other services to the surging service, which is usually too
late!

Within the vMatrix we add a VMM separation layer between
the VMs (carrying the OS and code for the services) and
RMs (which are the shared resource). Now the RMs can be
shared between both services; hence reducing the total
number of needed RMs and leading to efficient resource
utilization. Looking at the same snapshot we represented in
Figure 1, which required 8 RMs, we now only need 4 RMs
as is illustrated in Figure 2, however, a 5th RM is still kept as
an idle reserve to serve as a buffer in cases of congestion
where both services might spike together causing higher
than expected demand.

3 The vMatrix Framework

The vMatrix is a network of real machines (RMs) running
virtual machine monitor software (VMM) such that virtual
machine files (VMs) encapsulating a machine for a given
service can be activated on any RM very quickly (on the
order of seconds to minutes depending on the underlying
infrastructure, e.g. local hard-disks versus a fiber-optic
Storage Area Network).

3.1 Main Components

The basic framework for the vMatrix is illustrated in Figure
3. There are 3 main clusters:

1. The Production Cluster: this is where the VMs are
instantiated on dedicated RMs to serve live
operational load. Note that these operational VMs
can be any of the machines in a multi-tier
architecture; they could be the front-end web
servers, the middle application servers, or the back-
end databases. The important distinction is that in
this state the VMs are exposed to operational load.

2. The Loading Chambers: this is where the VMs are
instantiated for maintenance and development
purposes. The system administrators and software

Server Load Balancer

Real
Machines

Virtual
Machines

VMM

developers can get access to the VMs for the
purpose of updating code, applying patches,
upgrading libraries, etc. In this state we can have
more than one VM sharing the same RM, since the
VMs are not really exposed to live load.

3. The Hibernation Nest: this is simply the backend
storage for keeping all the VM files in dormant
suspended state. The VMs are not accessible in this
mode.

The Oracle is the program responsible for maintaining the
state of all VMs and RMs and it supervises the vMatrix
network. As new RMs are added to the network and loaded
with the VMM software, they are subscribed with the
Oracle. Similarly, whenever a new VM is created it is
registered with the Oracle. The Oracle is also responsible for
the matching of VMs to RMs and copying the VM file to
that specific RM then activating it.

In our first simple prototype, the Oracle is a Perl script
which reads configuration files listing all available RMs and
VMs. The Oracle communicates with the RMs to copy VM
files from the storage to them (using scp), and
communicates with the VMM server software on each RM
to boot or suspend VMs (this is done using the VMware Perl
API which is covered in Appendix B).

Figure 3: The vMatrix Framework

3.2 VM Server Lifecycle

The simple state diagram shown in Figure 4 describes the
lifecycle of a VM Server:

Figure 4: Lifecycle of a Virtual Server

4 Implementation Details

As contrasted to previous work (which we cover in section
6), we claim that this solution presents the smallest
switching cost for porting an existing Internet service into
such a dynamic allocation network (i.e. backward
compatibility) and at the same time it keeps most of the key
advantages of static pre-allocation listed in section 2 (mainly
isolating software, people and hardware dependencies). In
section 5 we illustrate this ease of conversion through a
couple of real-life examples.

4.1 Backward Compatibility

Most services could be ported to this framework with
minimal to no code or infrastructure changes; the system
administrators and developers would simply need to install
the OS and service software inside of a VM, same way they
install it inside a RM today. Once that is done the VM is
ready to be instantiated on any RM running the VMM
software. The VM preparation and software installation is
done in the Loading Chambers, where the RMs main
purpose is to host many idle VMs so that system
administrators and programmers can prepare them for
operational deployment. The VMs are not exposed to any
operational load while waiting in the Loading Chambers.

Note that VMM software allows for more than one VM to
share the same RM, however they are fully isolated and each
one can have its own IP address. As far as developers are
concerned when they ssh to a given VM in the Loading
Chambers, they truly believe it’s their own fully assigned
isolated real machine. However, if these machines are
exposed to heavy load, like decompressing a large tar-ball,
then neighboring programmers will sense a sudden slow
down and can start to notice that they are sharing the
machine with somebody else. It must be noted though that
server-class VMM software provides a resources quota
system that prevents VMs from cannibalizing all of the RM
resources (i.e. CPU, Memory, Disk space, IO, Network, etc).

The Oracle:
This is the

main control
program

RM

VMM

VM

RM

VMM

VM

RM

VMM

VM

Hibernation Nest:

VM files are
suspended and
stored here for
later retrieval.

Production
Cluster: live

operational VMs,
typically only one

VM per RM

Loading Chambers:
Development

and Maintenance
Cluster, there could
be more than one
VM per RM here.

VM VM

VM VM

VM VM

VM VM

RM

VMM

VM VM VM

RM

VMM

VM VM VM

Hibernation Nest

Loading Chambers

Operational

1. A large number of virtual server files are
stored as dormant files in a SAN or NFS
server. They can be in frozen pre-booted
state for fast re-activation.

2. A number of virtual servers are activated
in shared RMs (i.e. more than one VM per
RM) so that developers and system
administrators can maintain them.

3. A virtual server is activated on a
dedicated RM and exposed to operational
live load.

4.2 Load Balancing

The load-balancing of VMs between RMs (which we refer to
as server switching to avoid confusion with traditional server
load-balancers) is done by building a time-based profile for
how much resources each service consumes on all of its
allocated RMs. This profile can be built by either polling the
OS of the service directly (in a SNMP/MRTG-RRD like
fashion), or by asking the VMM to report the resources
consumed by the VM, which is very handy in cases where
the service OS is not instrumented to report all needed load
metrics (primarily CPU utilization, Memory active-working-
set, Disk space, Disk IO and Network utilization). Appendix
B illustrates the VMware Perl function to return the
resources consumed by a given VM averaged over the last 5
minutes.

In this paper we focus on the case of one-2-one matching for
operational VMs, i.e. only one VM per RM. This
simplification criterion is for the operational front-end VMs
only, but we can still have many VMs per RM in the
Loading Chambers. This restriction reduces the problem to a
simple bottleneck detection and greedy matching algorithm.
In a nutshell the Oracle daemon loops over all operational
VMs for a given service and detects the ones with a
persistent bottleneck (e.g. 100% CPU utilization over last 10
minutes). It then fetches another VM for that service from
the Loading Chambers and activates it on an idle RM (the
network administrator is then alerted to add this new RM to
load balancer rotation, though that can be automated as
well). Conversely, if there are no bottlenecks detected for
any of the operational VMs for a given service, then its time
to move one of the VMs for that service back to the Loading
Chambers and free the RM allocated to it. Once good
historical load profiles are established, the addition of an
operational VM can take place ahead of the bottleneck
occurrence, except for sudden demand spikes, which we
would still need the switching algorithm to detect and
respond to fairly quickly. Finally, the server-switching
algorithm needs to take into account the VM sizes to
minimize VM switching so that the data center LAN is not
overloaded with VM transfers, though this is now less of an
issue with the ever increasing LAN network speeds.

An issue that needs to be considered is de-activating VMs
with active connections. The graceful solution is to take such
servers out of load-balancer rotation, then after detecting that
all existing connections are closed, it can be safely
suspended and removed from the RM (this is actually very
similar to how hardware servers are added and removed in a
static solution, just much faster and does not require humans
touching the physical machines).

It has to be noted that VMware is now beta testing VMotion
[34] technology that can move VMs while maintaining the
active connections. However, this solution requires that the
source and target RMs mount the same disk volume from a

SAN, and that they have CPUs from the same processor
family (e.g. PIII and P4 wont work). However, the
advantage of VMotion is that it can migrate live servers in
less than 2 seconds by doing clever memory deltas using
bitmaps.

4.3 Absorbing flash crowds

A flash crowd is an unpredicted increase of web requests,
such as an unforeseen surge of stock market activity or a
catastrophic newsworthy event. To absorb flash crowds we
need on-demand replication, which can be achieved by one
of two methods:

(1) VM Cloning: by this we mean that a copy of the
VM file is done in real-time and instantiated on a
new RM. The disadvantage of cloning is that it’s
not always achievable without some changes to the
service architecture or code (e.g. need to change the
IP address for the clone, though NAT can be used
for that). Also for multi-tier architectures, the back-
end tiers typically make assumptions about the IP
address or some logical name for the front-ends,
which makes it harder to clone the front-ends
without making some code changes to the existing
back-ends to accept these real-time created front-
ends.

(2) VM Pre-creation: To avoid having to do any code
changes to the existing service code, we can pre-
create all the server VMs needed for the worst case
scenario in the Loading Chambers, and then
shutdown and store all those VMs in the
Hibernation Nest. When demand surges we now
have a large pool of VMs that we can pull from and
activate for this service. The downside of that
solution is the extra hard disk space required to
store all those VMs, but that is not such a large
penalty with the ever-decreasing storage costs. Also
smart differential compression techniques (e.g.
chain coding [23]) can be used between the VM
image files to reduce the total actual hard disk
space required, though this might add some
decompression overhead in pulling the VM files
back from storage. Another downside for this
solution is that the system administrators now have
to manage all of these VMs (e.g. if there is a new
service patch then it will have to be applied to all of
them by activating them in the Loading Chambers).

We chose the second approach due to its nice backward
compatibility characteristics. Another side advantage is that
VMM software enables the suspension of VMs in a live
state, such that all CPU registers, memory, and IO buffers
are dumped to disk, then the machine could be resumed later
at the same checkpoint that it was suspended at (this is
similar to suspending/hibernating a laptop). This means that
the suspended VMs can be activated in a very short time,

typically around 10 to 30 seconds, instead of booting up the
machine from idle state which tends to take a long time and
consumes more resources. Hence, by pre-booting the service
VMs, before suspending and storing them in the Hibernation
Nest, then when a flash crowd arrives we can activate them
on front-end machines fairly quickly and there is no need to
wait for a full boot to take place. Once the flash crowd flood
is over then the VMs can be suspended back to dormant
state, moved to the Loading Chambers (for software
maintenance) or Hibernation Nest (for storage), and the
front-end host RMs are now freed for some other service.

4.4 Faster recovery time and higher availability

Another advantage for the quick resumption of VM files
from suspended state is improved availability, as a new VM
can be instantiated fairly quickly to take over from a VM
that failed due to a software crash hence significantly
reducing recovery time. In [22] Armando Fox and David
Patterson argue that improving MTTR (mean time to
recovery) is in many cases more beneficial to improving
availability than improving MTTF (mean time to failure, i.e.
more reliable hardware). In Appendix B we list the VMware
Perl function to check for heartbeats from VMs to make sure
they did not crash.

5 Experiences

It is the goal of this work to show that it is possible to
encapsulate legacy Internet services via VMMs, to achieve a
standardized solution for improving the scalability,
interactivity, availability, and efficiency of internet services
without requiring cost prohibitive changes to existing system
architectures. We illustrate that this is a practical solution by
building out a vMatrix prototype, and porting into it a
number of existing Internet services ranging from open
source services (e.g. PHPnuke [24] and osCommerce [25])
to proprietary services in collaboration with Yahoo, Inc.
These services represent the spectrum of practical Internet
service architectures (e.g. single tier, two-tier, write-
once/read-many, write-many/read-many, single-user, and
one-user to many-users).

Our experience confirms that the migration cost is minimal
for both the developers of the service and the system
administrators, i.e. quick migration, short learning curve,
and support for traditional system administration tasks like
troubleshooting, rebooting, monitoring, code updates, etc.

5.1 The Experimental Setup

The lab in which we performed the experiments consists of
three Pentium III servers at 550MHz, 640MB ram and 9GB
hard disks each. The first machine serves as the Production
Cluster, the second machine serves as the Loading
Chambers, and the third machine serves as the Hibernation

Nest and also runs the Oracle software. We used the
VMware ESX server, which is a server-class virtual machine
monitor. The ESX server consumes about 3.5GB of disk
space and 184MB of memory The CPU overhead is typically
less than 5%.

5.2 A Web Portal: PHP-Nuke and osCommerce

PHP-Nuke is one of the most popular web content
publishing open-source platforms written using the popular
PHP web scripting language. It provides many
functionalities for a full fledged portal like news, polls,
message boards, etc. osCommerce is another popular PHP
application that provides an ecommerce store website. It
took us less than a couple of hours to support a server
running both PHP-Nuke and osCommerce within the
vMatrix. We used the Oracle command line interface to
create a VM in the Loading Chambers. We then installed on
it the software components illustrated in Figure 5. The time
it took us to do this is not significantly more than it would
take to just install on a real machine. We did not change a
single line of source code from those applications, and they
became fully supported within the Vmatrix framework as is.

Figure 5: VM for PHP-Nuke and osCommerce

Once we configured the VM for this web portal in the
Loading Chambers, we next instructed the Oracle to activate
the VM, which caused the VM to be suspended and then
copied over to the operational cluster then resumed. Note
that when a VM is suspended in pre-booted state, only 3
files need to be copied, the first is the configuration file for
the VM describing its memory size, Ethernet address, etc.
The second file represents the hard disk of the VM, and the
third file contains the frozen state of the VM (memory, CPU
registers, frame buffer, etc). Once the 3 files are copied over

Real Machine (PIII-550MHz, 640MB RAM, 9GB
hard disk)

VMware ESX VMM Server (consumes 184MB RAM,
3.5GB hard disk and 5% CPU)

Virtual Machine exposes a PIII-550MHz with 512MB
RAM and 5.5GB hard disk.

Operating System: Red Hat Linux 9

Apache Web Server MySQL Database

PHP (Hyper Text Processor)

PHP-Nuke and osCommerce Internet Services

to a dedicated RM in the operational cluster, it is resumed
and exposed to live load. The Oracle periodically polls all
active VMs to check whether they are still on or if they
crashed; however this is simply a redundant check since
most websites already have more sophisticated pings in
place using monitoring tools like Nagios [26].

An expansion of this service that we could not do in our
small lab setting is to convert the application into a two-tier
architecture, specifically having the MySQL server run in a
separate VM. In this case both the front-end PHP server and
the backend MySQL server will be hosted in different VMs
and there can be more than one front-end PHP server frozen
in the Hibernation Nest and ready to be activated to absorb
any flash crowds if they occur.

5.3 Yahoo! Autos Search

Yahoo! Autos allows users to search for cars being sold
from a number of sources. In this part we took the Yahoo!
Autos Search functionality and installed it within the
Vmatrix framework as illustrated in Figure 6. This is a
typical Yahoo! Autos Search backend server, which
provides the front-ends with the ability to call into it with
certain search criteria (e.g. car manufacturer, model, year,
color, price range, etc), then it performs this search using a
custom Yahoo! Search indexing service (known as YSS,
short for Yahoo Structured Search). The YSS code is built
on top of YLIB, which is custom Yahoo C/C++ libraries.
Most of the Yahoo servers use FreeBSD (instead of Linux),
so this was a good exercise to show that operating systems
other than Linux can work within this platform.

Again, as we demonstrated in previous section, the Yahoo!
Autos Search service was installed within the Vmatrix
framework in about a few hours and no coding changes what
so ever were required to get it up and running. We were then
able to perform the migration and cloning functions that
otherwise would have required extensive code rewriting on
other frameworks.

Another trick that we did in this setup was to lie to the
underlying VM as to how much physical memory is really
present (so that we can match the memory requirements it
needs). Even though the real machine only had around
456MB of available free physical memory, we used the
VMM virtualization functions to virtualize the remaining
568MB on disk. The result was that the FreeBSD VM really
thought it had 1024MB of physical memory available. Of
course it will run a bit slower due to this, so it’s not an
optimal situation, but it demonstrates how the services can
be moved even between non-heterogeneous hardware
servers.

Note that performance analysis of VMware virtualization
overheads is not the goal of these experiments; rather it’s the
illustration of the ease of converting an existing service into

this framework without requiring any coding or architectural
changes. However, we attempted to give brief estimates in
Figure 5 and Figure 6, which illustrate that the CPU
performance overhead is usually about 5%, and the memory
overhead is about 184MB. Also the resulting VM file size
was about 4GB, which takes about 10 minutes to transfer on
100MBit Ethernet, and takes under a minute on Gigabit
Ethernet. So the activation time to add servers, in case of
flash crowds, can be very reasonable and on the order of a
few minutes as opposed to a few hours that a manual
provisioning would imply.

Figure 6: VM for Yahoo! Autos Search

6 Related Work

Previous work in the area of server switching suffers from a
common disadvantage, which is requiring the Internet
service developers to recode their applications within a new
framework or adhere to a set of strict guidelines. In other
words, they are not backward compatible. This represents a
huge impediment for developers, since it requires them not
only to learn how to use a new framework, but also to port
all their existing code to this new framework. This is not
cost effective since the salary of system programmers is
typically much higher than any of the network or server
costs to justify such a migration.

Application Servers live ATG Dynamo [10], IBM
WebSphere [11], BEA WebLogic [12], and JBoss [27]
provide a strict API for system services, and hence it is
feasible to move the application between different servers
running the same application server. However, programmers
do not strictly adhere to these APIs, which prevents
application mobility. Also Application servers fail to provide
the strict isolation model that developers expect from a
dedicated machine. Java servlets [5] can be moved between

Real Machine (PIII-550MHz, 640MB RAM, 9GB
hard disk)

VMware ESX VMM Server (consumes 184MB RAM,
3.5GB hard disk and 5% CPU)

Virtual Machine exposes a PIII-550MHz with
1024MB RAM and 5.5GB hard disk.

Operating System: Yahoo FreeBSD 4.8

YLIB (Yahoo C/C++ Libraries)

YSS (Yahoo Structured Search)

Yahoo! Autos Search Network API

servers running the Java virtual machine, but this approach
suffers from performance degradation due to the real-time
byte-code translation that Java requires. Also it requires that
existing applications be rewritten within the Java
environment, which again presents a high switching cost.
Similarly, both Xenoservers [18] and Denali [20] require
developers to write their code under a specialized OS
optimized for encapsulation and migration.

The Portable Channel Representation [4] is an XML/RDF
data model that encapsulates OS and library dependencies to
facilitate the copying of a service across different systems.
Again it requires the programmers to learn a new framework
and port their existing work in to it, and it also does not
provide isolation between software belonging to different
services. Package manger tools like Debian’s APT
(Advanced Packaging Tool [28]) or Red Hat’s RPM [29] can
facilitate the movement of internet service code between
servers, however they do not provide any kind of isolation
and the aforementioned library version collisions can happen
between services installed on same machine. Computing on
the Edge [36] also falls in this category and suffers from the
same disadvantages.

Disk imaging (aka ghosting) and diskless workstations
booting from SANs has been used for years to quickly
repurpose hardware to new services. However that approach
suffers from inability to concurrently run more than one VM
per RM, which is needed in the Loading Chambers so that
software developers can maintain their packages and
continue to be presented with the same dedicated machine
isolation model that they are used to.

OS virtualization, e.g. Ejasent [17] and Ensim [19], traps all
OS calls, hence allowing applications to be moved across
virtual operating systems. The downside of this solution is
that it is OS dependent and imposes strict guidelines on what
the applications can and can’t do. Zap [37] sits some where
between OS virtualization and application virtualization, but
does share the same downside of being tied to the OS.

Finally it has to be noted that a number of computer system
manufacturers are addressing the server switching space
with their own implementations, e.g. IBM is offering
OnDemand [30], SUN provides the N1 system [31], and HP
has the Utility Data Center [32].

7 Conclusion

In this paper we presented a novel solution for server
switching. The solution is a network of real machines
running virtual machine monitor software, hence allowing
server virtual machines to be switched between the real
machines. We described our approach in detail and provided
real-life examples. The advantages of our approach are
efficient resource utilization, backward compatibility, flash
crowd real-time absorption, and faster recovery times.

Acknowledgments

We would like to acknowledge the help of Abe Taha from
Yahoo! Search Technologies for installing the Yahoo! Autos
search service within the Vmatrix.

Appendix A

This brief section provided for the benefit of our readers
who are not very familiar with VMM technology. A VMM
is a thin layer of software that runs on top of a real machine
and exports an abstraction of the real machine [7]. This
abstraction is a virtualized (mimicked) view of all hardware
in the machine (e.g. CPU, Memory, IO) as shown in Figure
7. VMMs allow multiple guest virtual machines with a full
OS and applications to run in separate isolated virtual
machine spaces, such that they cannot affect each other.
Note that unlike a Java Virtual Machine [9], binary code
translation, and machine emulation, the instructions in the
VM run natively on the processor of the host RM with
almost no change, and hence the performance of code
running inside of a VM is almost as fast as the code running
directly in a RM.

Figure 7: Virtual Machine Monitor

VMMs were introduced in the 1970s by IBM [8] to arbitrate
access to hardware of an expensive mainframe machine
between a number of client operating systems, and to
provide their customers with a forward migration path to
newer mainframes. VMMs faded in the 1980s, as the PC
became mainstream and computer hardware prices dropped,
but were resurrected recently for the x86 architecture by
VMware, Inc. [3]. In a well-designed VMM, the code is
entirely fooled into believing its mimicked environment such
that it cannot detect whether it is running inside a virtual
machine or a real machine.

VMware VMM software also provides remote control over
the keyboard, monitor, mouse, floppy-drive and CDROM
drive of the virtualized machine. This allows owners of the
VM to remotely install new software or power cycle the VM
without worrying where the machine is physically
instantiated, in a sense replacing the popular

Real Machine: CPU, Memory, Disks, Display, Network

VIRTUAL MACHINE MONITOR

Virtual Machine 1
CPU, Memory, Disks, Display,

Network

Virtual Machine 2
CPU, Memory, Disks, Display,

Network

OS1: Windows 2000 OS2: Linux

IIS Oracle Apache MySQL

keyboard/video/mouse (KVM) remote switches (also known
as boot boxes).

Appendix B

This section is intended to briefly describe VMware’s Perl
API to communicate with a VMM server.

use VMware::Control;
use VMware::Control::Server;
use VMware::Control::VM;

my $VMMserver = VMware::Control::Server
::new($hostname, $port, $user,
$password);

$VMMserver->connect();

my $VM = VMware::Control::VM
::new($server, $vmconfig);

$VM->connect();

To get a list of all VMs on a server
my @vmlist = $VMMserver->enumerate();

To register a new VM on a server
$VMMserver->register($vmconfig);

To start and stop a VM
$VM->start();
$VM->stop();

To suspend and resume a VM
$VM->suspend();
$VM->resume();

To get CPU, Memory, Net, IO stats
$VM->get(“Status.Stats.vm.cpuUsage”,
5*60);

Check if VM is running (heart-beat)
$VM->get(“Status.Power”);

References

[1] “TIBCO Rendezvous Messaging System”, TIBCO Software Inc.

http://www.tibco.com/products/rv/index.html
[2] “Vignette Advanced Deployment Server”, Vignette Inc.

http://www.vignette.com/CDA/Site/0,2097,1-1-1329-2067-1345-
2198,00.html

[3] “VMware Secure Transportable Virtual Machines”, VMware Inc.
http://www.vmware.com

[4] Beck, Moore, Abrahamsson, Achouiantz and Johansson. “Enabling
Full Service Surrogates Using the Portable Channel Representation”,
10th Intl. WWW Conference.

[5] “Java Servlet Specification v2.3”, Javasoft, Sun Microsystems,
2000.

[6] M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggarwal. “A
Dynamic Object Replication and Migration Protocol for Internet

Hosting Service”, 19th International Conference on Distributed
Computing Systems, Austin, Texas, June 1999, IEEE.

[7] R. P. Goldberg. “Survey of Virtual Machine Research”, IEEE
Computer, June 1974.

[8] IBM Virtual Machine 370, 1972. IBM Corporation
http://www-1.ibm.com/ibm/history/history/year_1970.html

[9] Tim Lindholm and Frank Yellin. “Java Virtual Machine
Specification, 2nd Edition”, 1999, Addison-Wesley.

[10] ATG Dynamo Application Server, ATG.
 http://www.atg.com/en/products/das.jhtml

[11] IBM WebSphere Application Server. IBM Corporation.
http://www.ibm.com/software/webservers/appserv

[12] BEA Systems WebLogic Application Server , BEA Systems.
http://www.beasys.com/products/weblogic

[13] “RFC1918: Address Allocation for Private Intranets”
[14] “RFC1631: The IP Network Address Translator”
[15] “RFC2764: A Framework For IP Based Virtual Private Networks”
[16] “RFC2709: Security Model with Tunnel-mode IPSec for NAT

Domains”
[17] “Ejasent: Making the Net Compute”, Ejasent Inc.

http://www.ejasent.com
[18] Steven Hand, Tim Harris, Evangelos Kotsovinos, and Ian Pratt.

“Controlling the XenoServer Open Platform”, IEEE OPENARCH'03.
[19] “Ensim: Hosting Automation Solutions”, Ensim Inc.

http://www.ensim.com
[20] Andrew Whitaker, Marianne Shaw, Steven D. Gribble. “Scale and

Performance in the Denali Isolation Kernel”, USENIX OSDI 2002.
[21] Connectix Virtual PC. Microsoft Corporation.

http://www.microsoft.com/windowsserver2003/evaluation/trial/virtual
server.mspx

[22] Armando Fox and David Patterson. “When Does Fast Recovery
Trump High Reliability?”, 2nd Workshop on Evaluating and
Architecting System Dependability, 2002.

[23] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim
Chow, Monica S. Lam, and Mendel Rosenblum. “Optimizing the
Migration of Virtual Computers”, USENIX OSDI 2002.

[24] PHP-Nuke: Open Source Advanced Content Management
System: http://www.phpnuke.org

[25] OsCommerce: Open Source eCommerce platform:
http://www.oscommerce.com

[26] Nagios: Open Source Host, Service and Network monitoring
program: http://www.nagios.org

[27] JBoss: Open Source Java Application Server (J2EE).
http://www.jboss.org

[28] APT: Debian’s Advanced Package Tool:
http://www.debian.org/doc/manuals/apt-howto

[29] RPM: Red Hat’s Package Manager: http://www.rpm.org
[30] IBM OnDemand Operating Environment: http://www-

3.ibm.com/software/info/openenvironment/
[31] Sun N1: http://www.sun.com/n1
[32] HP Utility Data Center:

http://ww.hp.com/solutions1/infrastructure/solutions/utilitydata/
[33] William LeFebvre. “CNN.com: Facing A World of Crisis”,

Invited talk at USENIX LISA, San Diego, CA, Dec 2001.
[34] “Building Virtual Infrastructure with VMware VirtualCenter”,

white paper, VMware Inc. http://www.vmware.com/pdf/vc_wp.pdf
[35] Amr Awadallah and Mendel Rosenblum. “The vMatrix: A

network of virtual machine monitors for dynamic content
distribution”, Seventh International Workshop on Web Content
Caching and Distribution, August 2002.

[36] Michael Rabinovich, Zhen Xiao, and Amit Aggarwal.
“Computing on the Edge: A Platform for Replicating Internet
Applications”, Eighth International Workshop on Web Content
Caching and Distribution, Sept 2003.

[37] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh.
“The Design and Implementation of Zap: A System for Migrating
Computing Environments”, USENIX OSDI 2002.

