
LOOKING UP DATA IN P2P SYSTEMS

Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, Ion Stoica∗

MIT Laboratory for Computer Science

1. Introduction
The recent success of some widely deployed peer-to-peer (P2P)

file sharing applications has sparked new research in this area. We
are interested in the P2P systems that have no centralized control
or hierarchical organization, where the software running at each
node is equivalent in functionality. Because these completely de-
centralized systems have the potential to significantly change the
way large-scale distributed systems are built in the future, it seems
timely to review some of this recent research.

The main challenge in P2P computing is to design and imple-
ment a robust distributed system composed of inexpensive com-
puters in unrelated administrative domains. The participants in a
typical P2P system might be home computers with cable modem
or DSL links to the Internet, as well as computers in enterprises.
Some current P2P systems have reported tens of thousands of si-
multaneously active participants, with half a million participating
machines over a week-long period.

P2P systems are popular and interesting for a variety of reasons:

1. The barriers to starting and growing such systems are low,
since they usually don’t require any special administrative or
financial arrangements, unlike with centralized facilities.

2. P2P systems suggest a way to aggregate and make use of
the tremendous computation and storage resources that oth-
erwise just sit idle on computers across the Internet when
they are not in use.

3. The decentralized and distributed nature of P2P systems
gives them the potential to be robust to faults or intentional
attacks, making them ideal for long-term storage as well as
for lengthy computations.

P2P computing raises many interesting research problems in dis-
tributed systems. In this short paper we will look at one of them,
the lookup problem: How do you find any given data item in a large
P2P system in a scalable manner, without any centralized servers
or hierarchy? This problem is at the heart of any P2P system. It is
not addressed well by most systems in popular use, and it provides
∗University of California, Berkeley.

a good example of how the challenges of designing P2P systems
can be addressed.

The recent algorithms developed by several research groups for
the lookup problem present a simple and general interface, a dis-
tributed hash table (DHT). Data items are inserted in a DHT and
found by specifying a unique key for that data. To implement a
DHT, the underlying algorithm must be able to determine which
node is responsible for storing the data associated with any given
key. To solve this problem, each node maintains information (e.g.,
the IP address) of a small number of other nodes (“neighbors”) in
the system, forming an overlay network and routing messages in
the overlay to store and retrieve keys.

One might believe from recent news items that P2P systems are
good for illegal music swapping and little else, but this would be
a rather hasty conclusion. The distributed hash table, for exam-
ple, is increasingly finding uses in the design of robust, large-scale
distributed applications. It appears to provide a general-purpose
interface for location-independent naming upon which a variety of
applications can be built. Furthermore, distributed applications that
make use of such an infrastructure inherit robustness, ease of op-
eration, and scaling properties. A significant amount of research
effort is now being devoted to investigating these ideas.

2. The lookup problem
The lookup problem is simple to state. Some publisher inserts

an item X , say a file, in the system. At a later point in time, some
consumer wants to retrieve X , in general when the publisher isn’t
online and connected to the system. How does the consumer find
the location of a server that has a replica of X?

One approach is to maintain a central database that maps a
file name to the locations of servers that store the song. Napster
(http://www.napster.com/) adopts this approach for song
titles, but it has inherent reliability and scalability problems that
make it vulnerable to attacks on the database.

Another approach, at the other end of the spectrum, is for the
consumer to broadcast a message to all its neighbors with a request
for X . When a node receives such a request, it checks its local
database. If it has X , it responds with the item. Otherwise, it for-
wards the request to its neighbors, which execute the same protocol.
Gnutella (http://gnutella.wego.com/) has a protocol in
this style with some mechanisms to avoid request loops. However,
this “broadcast” approach doesn’t scale either [7], because of the
bandwidth consumed by broadcast messages and the compute cy-
cles consumed by the many nodes that must handle these messages.
In fact, the day after Napster was shut down, reports indicate that
the Gnutella network collapsed under its own load, created when a
large number of users migrated to using it for sharing music.

To reduce the cost of broadcast messages, one can organize the

nodes in the network into a hierarchy, like the Internet’s Domain
Name System (DNS) does. Searches start at the top of the hierarchy
and, by following forwarding references from node to node, tra-
verse a single path down to the node that contains the desired data.
Directed traversal of a single path consumes fewer resources than
a broadcast. Many of the current popular systems, such KaZaA,
Grokster, and MusicCity Morpheus, which are all based on Fast-
Track’s P2P platform (http://www.fasttrack.nu/), adopt
this approach. The disadvantage of the hierarchical approach is that
the nodes higher in the tree take a larger fraction of the load than
the leaf nodes, and therefore require more expensive hardware and
more careful management. The failure or removal of the tree root
or a node sufficiently high in the hierarchy can be catastrophic.

Symmetric distributed lookup algorithms avoid the drawbacks of
the previous approaches. Searches are carried out by following ref-
erences from node to node until the appropriate node containing
the data is found. Unlike the hierarchy, no node plays a special
role—a search can start at any node, and each node is involved in
only a small fraction of the search paths in the system. As a re-
sult, no node consumes an excessive amount of resources while
supporting searches. These new algorithms are designed to scale
well—they require each node to only maintain information about
a small number of other nodes in the system, and they allow the
nodes to self-organize into an efficient overlay structure with little
effort.

Freenet [2] was one of the first algorithms in this class. Queries
are forwarded from node to node until the desired object is found.
But a key Freenet objective, anonymity, creates some challenges
for the system. To provide anonymity, Freenet avoids associating
a document with any predictable server, or forming a predictable
topology among servers. As a result, unpopular documents may
simply disappear from the system, since no server has the respon-
sibility for maintaining replicas. A search may often need to visit a
large fraction of the Freenet network [7].

The recent crop of P2P lookup algorithms does not pose
anonymity as a primary objective (though it remains an interest-
ing goal, and we believe that these new algorithms provide use-
ful infrastructure to support it). This simplification lets them offer
guarantees that that data can be reliably found in the system.

The rest of this article discusses four recent P2P lookup algo-
rithms that have provable guarantees: CAN, Chord, Pastry, and
Tapestry. These algorithms stress the ability to scale well to large
numbers of nodes, to locate keys with low latency, to handle node
arrivals and departures scalably, to ease the maintenance of per-
node routing tables, and to balance the distribution of keys evenly
amongst the participating nodes.

3. Distributed hash table (DHT)
A hash-table interface is an attractive foundation for a distributed

lookup algorithm because it places few constraints on the structure
of keys or the data they name. The main requirements are that data
be identified using unique numeric keys, and that nodes be willing
to store keys for each other. This organization is in contrast to Nap-
ster and Gnutella, which search for keywords, and assume that data
is primarily stored on the publisher’s node. However, such systems
could still benefit from a distributed hash table—for example, Nap-
ster’s centralized database recording the mapping between nodes
and songs could be replaced by a distributed hash table.

A DHT implements just one operation: lookup(key) yields
the identity (e.g., IP address) of the node currently responsible for
the given key. A simple distributed storage application might use
this interface as follows. Someone who wants to publish a file
under a particular unique name would convert the name to a nu-

meric key using an ordinary hash function such as SHA-1, then call
lookup(key). The publisher would send the file to be stored at
the resulting node. Someone wishing to read that file would ob-
tain its name, convert it to a key, call lookup(key), and ask the
resulting node for a copy of the file. A complete storage system
would have to take care of replication, caching, authentication, and
other issues; these are outside the immediate scope of the lookup
problem.

To implement DHT’s, lookup algorithms have to address the fol-
lowing issues:

Mapping keys to nodes in a load-balanced way. All algorithms
do this in essentially the same way. Both nodes and keys
are mapped using a standard hash function into a string of
digits. (In Chord, the digits are binary. In CAN, Pastry, and
Tapestry, the digits are in a higher order base.) A key hash-
ing to a given digit string s is then assigned to the node with
the “closest” digit string to s (e.g., the one that is the closest
numeric successor to s, or the one with the longest matching
prefix).

Forwarding a lookup for a key to an appropriate node. Any
node that receives a query for a given key identifier s must
be able to forward it to a node whose ID is “closer” to s.
This will guarantee that the query eventually arrives at the
closest node. To achieve this, each node maintains a routing
table with entries for a small number of carefully chosen
other nodes. If the key ID is larger than the current node, we
can forward to a node that is larger than the current node but
still smaller than the key, thus getting numerically closer (a
converse rule holds if the key ID is smaller than the current
node ID). Alternatively, we can forward to a node whose ID
has more digits “correct” (that is, in common with the key
ID). For example, if a node has ID 7634 and a key has ID
7892, then forwarding to node 7845 brings an additional
digit into agreement with the key ID.

Building routing tables. To forward lookup messages, each node
needs to know about some other nodes. To support the first
forwarding rule of getting numerically closer to the key ID,
each node should know of its successor—the node with the
closest succeeding ID. This successor is a valid forwarding
node for any key ID that is larger than the current node. To
support the second forwarding rule of correcting digits left
to right, each node should be aware of other nodes whose
identifers match in some prefix.

There are substantial differences between how the algorithms
build and maintaining their routing tables as node join and leave.
The discussion of each algorithm is organized around these issues.

4. CAN
CAN [9] uses a d-dimensional Cartesian coordinate space (for

some fixed d) to implement the DHT abstraction. The coordinate
space is partitioned into hyper-rectangles, called zones. Each node
in the system is responsible for a zone, and a node is identified by
the boundaries of its zone. A key is mapped onto a point in the
coordinate space, and it is stored at the node whose zone contains
the point’s coordinates. Figure 1(a) shows a 2-dimensional [0, 1] ×
[0, 1] CAN with six nodes.

Each node maintains a routing table of all its neighbors in coor-
dinate space. Two nodes are neighbors if their zones share a d − 1
dimensional hyperplane.

(0, 0, 0.5, 0.5) (0.75 ,0,
1, 0.5)

(0,0) (1,0)

(1,1)(0,1)

key = (0.8,0.9) stored at
node (0.75, 0.75, 1, 1)

path of “ lookup(0.8, 0.9)”
initiated at node (0, 0, 0.5, 0.5)

(0,0) (1,0)

(1,1)(0,1)

(0, 0.5, 0.5, 1) (0.5, 0.5, 1, 1)

(0.5 ,0.25,
0.75, 0.5)

(0.5 ,0,
0.75, 0.25)

(a) (b)

Figure 1: (a) A 2-dimensional CAN with 6 nodes. The coordi-
nate space wraps (not illustrated here). Each node is assigned a
zone, and a node is identified by the boundaries of its zone. (b)
The path followed by the lookup for key (0.8, 0.9). The lookup
is initiated at node (0, 0, 0.5, 0.5).

The lookup operation is implemented by forwarding the query
message along a path that approximates the straight line in the co-
ordinate space from the querier to the node storing the key. Upon
receiving a query, a node forwards it to the neighbor closest in the
coordinate space to the node storing the key, breaking ties arbi-
trarily. Figure 1(b) shows the path followed by the lookup for key
(0.8, 0.9). Each node maintains O(d) state, and the lookup cost
is O(dN1/d). If d = O(log N), CAN lookup times and storage
needs match the other protocols surveyed in this paper.

To join the network, a new node first chooses a random point
P in the coordinate space, and asks a node already in the network
to find the node n whose zone contains P . Node n splits its zone
in half and assigns one of the halves to the new node. The new
node can easily initialize its routing table, since all its neighbors,
excepting n itself, are amongst n’s neighbors. Once it has joined,
the new node announces itself to its neighbors. This allows the
neighbors to update their routing tables with the new node.

When a node departs, it hands its zone to one of its neighbors.
If merging the two zones creates a new valid zone, the two zones
are combined into a larger zone. If not, the neighbor node will
temporarily handle both zones. If a node fails, CAN implements
a protocol that allows the neighbor with the smallest zone to take
over. One potential problem is that multiple failures will result in
the fragmentation of the coordinate space, with some nodes han-
dling a large number of zones. To address this problem, CAN runs
a special node-reassignment algorithm in background. This algo-
rithm tries to assign zones that can be merged into a valid zone to
the same node, and then combine them.

CAN proposes a variety of techniques that reduce the lookup
latency. In one such technique, each node measures the network
round-trip time (RTT) to each of its neighbors. Upon receiving
a lookup, a node forwards the message to the neighbor with the
maximum ratio of the progress towards the destination node in the
coordinate space to the RTT.

Another technique, called multiple realities, uses multiple coor-
dinate spaces to simultaneously improve both lookup latency and
robustness of CAN. Here, each node is assigned a different zone in
each coordinate space. The keys are replicated in each space, im-
proving robustness to node failure. To forward a query message, a
node checks its neighbors in each reality and forwards the message
to the closest one.

N1

N8

N14

N38

N42

N51

N48

N21

N32

N56K54

lookup(54)

Figure 2: The path of a Chord lookup for key 54, initiated by
node 8, in an ID space of size 26. Each arrow represents a mes-
sage forwarding a lookup through one of a node’s finger table
entries. For example, node 8 forwards to node 42 because node
42 is the first node halfway around the ID space from 8.

To improve load balance, CAN uses a simple technique that
achieves a more uniform space partitioning. During the join op-
eration, a node checks its neighboring zones before splitting its
zone. If some neighbors have larger zones, the joining node asks
the neighbor with the largest zone to split instead.

CAN is being used to develop a scalable application-level mul-
ticast protocol [10], and a chat application on top of Sun’s JXTA
technology (see http://jxme.jxta.org/Demo.html).

5. Chord
Chord [14] assigns ID’s to both keys and nodes from the same

one-dimensional ID space. The node responsible for key k is called
its successor, defined as the node whose ID most closely follows k.
The ID space wraps around to form a circle, so ID 0 follows the
highest ID.

Chord performs lookups in O(log N) time, where N is the num-
ber of nodes, using a per-node finger table of log N entries. A
node’s finger table contains the IP address of a node halfway around
the ID space from it, a quarter-of-the-way, and so forth in powers
of two. A node forwards a query for key k to the node in its finger
table with the highest ID less than k. The power-of-two structure of
the finger table ensures that the node can always forward the query
at least half of the remaining ID-space distance to k. As a result
Chord lookups use O(log N) messages.

Chord ensures correct lookups despite node failures using a suc-
cessor list: each node keeps track of the IP addresses of the next r
nodes immediately after it in ID space. This allows a query to make
incremental progress in ID space even if many finger table entries
turn out to point to crashed nodes. The only situation in which
Chord cannot guarantee to find the current live successor to a key
is if all r of a node’s immediate successors fail simultaneously, be-
fore the node has a chance to correct its successor list. Since node
ID’s are assigned randomly, the nodes in a successor list are likely
to be unrelated, and thus suffer independent failures. In such a case,
relatively small values of r (such as log N) make the probability of
simultaneous failure vanishingly small.

A new node n finds its place in the Chord ring by asking any
existing node to look-up n’s ID. All that is required for the new
node to participate correctly in lookups is for it and its predecessor
to update their successor lists. Chord does this in a way that en-
sures correctness even if nodes with similar ID’s join concurrently.
The new node, and existing nodes, will have to update their finger

tables; this happens in the background because it is only required
for performance, not correctness. The new node must also acquire
whatever data is associated with the keys it is responsible for; the
successor relationship ensures that all of these keys may be fetched
from the new node’s successor.

Randomness ensures that Chord key and node ID’s are spread
roughly uniformly in ID space, ensuring approximately balanced
load among nodes. Chord allows control over the fraction of the
key space stored on a node by means of virtual nodes. Each phys-
ical node can participate in the Chord system with multiple virtual
node ID’s; increasing the number of such ID’s will increase the
number of keys the node must store.

Chord can route queries over low-latency paths by taking advan-
tage of the fact that multiple finger table entries are typically avail-
able to take a query closer to its destination. Each such entry has a
known cost (latency in the underlying net) and benefit (progress in
ID space); Chord incorporates heuristics to trade-off between these.

The main emphasis in Chord’s design is robustness and correct-
ness, achieved by using simple algorithms with provable properties
even under concurrent joins and failures. Chord is in use as a part
of the experimental CFS [3] wide-area file store, and as part of
the Twine [1] resource discovery system. A public distribution of
Chord can be found at http://www.pdos.lcs.mit.edu/
chord/.

6. Pastry
Pastry [11] gives each node has a randomly chosen ID, which

conceptually indicates its position on an identifier circle. Pastry
routes messages with a key to the live node with node ID numeri-
cally closest to the key. The digits in the ID space are in base 2b,
where b is an algorithm parameter typically set to 4 with 128-bit
ID’s.

Pastry uses a prefix-based forwarding scheme. Each node n
maintains a leaf set L, which is the set of |L|/2 nodes closest to
n and larger than n, and the set of |L|/2 nodes closest to n and
smaller than n. The correctness of this leaf set is the only thing
required for correct forwarding; correct forwarding occurs unless
|L|/2 nodes with adjacent IDs fail simultaneously. The leaf set is
conceptually similar to Chord’s successor list.

To optimize forwarding performance, Pastry maintains a routing
table of pointers to other nodes spread in the ID space. A conve-
nient way to view this information is as dlog

2b Ne rows, each with
2b−1 entries each. Each entry in row i of the table at node n points
to a node whose ID shares the first i digits with node n, and whose
i+1st digit is different (there are at most 2b −1 such possibilities).

Given the leaf set and the routing table, each node n forwards
queries as follows. If the sought key is covered by n’s leaf set, then
the query is forwarded to that node. In general, of course, this will
not occur until the query reaches a point close to the key’s ID. In
this case, the request is forwarded to a node from the routing table
that has a longer shared prefix (than n) with the sought key.

Sometimes, the entry for such a node may be missing from the
routing table or that node may be unreachable from n. In this case,
n forwards the query to a node whose shared prefix is at least as
long as n’s, and whose ID is numerically closer to the key. Such
a node must clearly be in n’s leaf set unless the query has already
arrived at the node with numerically closest ID to the key, or at its
immediate neighbor.

If the routing tables and leaf sets are correct, the expected num-
ber of hops taken by Pastry to route a key to the correct node is
at most dlog

2b Ne. This is because each step via the routing table
increases the number of common digits between the node and the
key by 1, and reduces the set of nodes with whose IDs have a longer

prefix match by 2b. Finally, once the query hits in the leaf set, only
one more hop is needed.

Pastry has a join protocol that attempts to build the routing tables
and leaf sets by obtaining information from nodes along the path
from the bootstrapping node and the node closest in ID space to
the new node. It may be simplified by maintaining the correctness
of the leaf set for the new node, and building the routing tables
in the background, as in Chord. This approach is used in Pastry
when a node leaves; only the leaf sets of nodes are immediately
updated, and routing table information is corrected only on demand
when a node tries to reach a non-existent one and detects that it is
unavailable.

Finally, Pastry implements heuristics to route queries according
to a proximity metric. It is likely to forward a query to the nearest
(in the network sense) one among k possible nodes. To do this,
each node maintains a neighborhood set of other nodes nearest
to it accoding to a network-proximity metric (e.g., number of IP
hops). The routing table is initialized such that each entry refers
to a “nearby” node with the appropriate prefix, among all such live
nodes.

Pastry is being used to develop two P2P services: PAST, a stor-
age facility [12], and SCRIBE, an event notification facility. More
information is available at http://www.cs.rice.edu/CS/
Systems/Pastry/.

7. Tapestry
Tapestry [4] is based on a lookup scheme developed by Plaxton

et al. [8]. Like all the other schemes, Tapestry maps node and key
identifiers into strings of numbers, and forwards lookups to the cor-
rect node by “correcting” a single digit at a time. For example, if
node number 723948 receives a query for item number 723516,
whose first 3 digits match the node’s identifier, it can forward that
query to a “closer” node such as 723584, which has 4 initial digits
matching the query. To support this forwarding, a node needs to
keep track, for each prefix of its own identifier, of nodes that match
that prefix but differ in the next digit. For example, node 723948
would keep track of nodes with prefixes 71, 73, 74, and so on to
allow it to correct the second digit of a query, of nodes with prefixes
721, 722, 724, 725, and so on to let it correct the third digit of a
query, and so on.

What perhaps most distinguishes Tapestry from the other ap-
proaches we discuss is its focus on proximity. As a query hops
around the network, it is preferable for that query to visit nodes
close (in the underlying network) to the node doing the query, as
this will reduce the latency involved in performing the query. If
there are multiple copies of a desired item, it would be desirable
for the closest copy to be found. Under certain models of the topol-
ogy of the network, it can be proven that the Tapestry scheme will
indeed find an approximately nearest copy of any sought key.

The gain in proximity comes at the cost of increased complex-
ity. Because of the sensitivity of its proximity data structures, the
original Tapestry data structure, which worked very well in a static
environment, was unable to support dynamic joins and departures
of nodes. Later versions added support for such dynamic oper-
ations, but the emphasis on proximity makes them complex. In
contrast, other systems such as Chord and Pastry focus initially on
ensuring that data items are found, ignoring cost. This allows for
relatively simple lookup, join, and leave operations. Heuristics can
then be placed on top of the simple operations in an attempt to sup-
port proximity search. The question of how central a role proximity
should play in a P2P system remains open.

8. Summary and open questions

CAN Chord Pastry Tapestry
Node state d log N log N log N

Lookup dN1/d log N log N log N

Join dN1/d + d log(N) log2 N log2 N log2 N

Figure 3: Summary of the costs of the algorithms. The Per-
node State line indicates how many other nodes each node
knows about. The Lookup and Join lines indicate how many
messages (i.e. Internet packets) are required for each opera-
tion. N is the total number of nodes in the system. d is CAN’s
number-of-dimensions parameter. All figures indicate asymp-
totic performance.

The lookup algorithms described here are all still in develop-
ment. Their current strengths and weaknesses reflect the designers’
initial decisions about the relative priorities of different issues, and
to some extent decisions about what to stress when publishing al-
gorithm descriptions. Some of these issues are summarized below
to help contrast the algorithms and highlight areas for future work.

Operation costs. Figure 3 summarizes the costs of fundamen-
tal operations. Chord, Pastry, and Tapestry are identical to within
a constant factor. On the other hand, CAN’s routing tables have
constant size regardless of the system size, though the lookup cost
grows faster than in the other systems. A key area for future work
and evaluation is the effect of relatively frequent node joins and
departures in large systems; even relatively modest costs for these
operations could end up dominating overall performance.

Fault tolerance and concurrent changes. Most of the al-
gorithms assume single events when considering the handling of
nodes joining or failing out of the system. Chord and recent work
on Tapestry also guarantee correctness for the difficult case of con-
current joins by nodes with similar IDs, as well as for simultane-
ous failures. Some recent research focuses on algorithms that im-
prove efficiency under failures by avoiding timeouts to detect failed
nodes [5, 6, 13].

Proximity routing. Pastry, CAN, and Tapestry have heuristics
to choose routing table entries that refer to nodes that are nearby
in the underlying network; this decreases the latency of lookups.
Chord chooses routing table entries obliviously, so it has limited
choice when trying to choose low-delay paths. Since a lookup in a
large system could involve tens of messages, at dozens of millisec-
onds per message, reducing latency may be important. More work
will likely be required to find latency reduction heuristics that are
effective on the real Internet topology.

Malicious nodes. Pastry uses certificates secured in smart cards
to prove node identity, which allows strong defenses against mali-
cious participants. The cost, however, is trust in a central certificate
authority. All of the algorithms described can potentially perform
cross-checks to detect incorrect routing due to malice or errors,
since it is possible to verify whether progress in the ID space is
being made. Authenticity of data can be ensured cryptographically,
so the worst a malicious node can do is convincingly deny that data
exists. The tension between the desire to avoid restricting who can
participate in a P2P system and the desire to hold participants re-
sponsible for their behavior appears to be an important practical
consideration.

Indexing and keyword search. The distributed hash table al-
gorithms outlined here retrieve data based on a unique identifier.
In contrast, the widely deployed P2P file sharing services, such as
Napster and Gnutella, are based on keyword search. While it is

expected that distributed indexing and keyword lookup can be lay-
ered on top of the distributed hash model, it is an open question if
indexing can be done efficiently.

In summary, these P2P lookup systems have many aspects in
common, but comparing them also reveals a number of issues that
will need further investigation or experimentation to resolve. They
all share the DHT abstraction in common, and this has been shown
to be beneficial in a range of distributed P2P applications. With
more work, DHT’s might well prove to be a valuable building block
for robust, large-scale distributed applications on the Internet.

References
[1] BALAZINSKA, M., BALAKRISHNAN, H., AND KARGER, D.

INS/Twine: A Scalable Peer-to-Peer Architecture for Intentional
Resource Discovery. In Proc. Intl. Conf. on Pervasive Computing
(Zurich, Switzerland, Aug. 2002).

[2] CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W.
Freenet: A distributed anonymous information storage and retrieval
system. In Proc. ICSI Workshop on Design Issues in Anonymity and
Unobservability (Berkeley, California, June 2000).
http://freenet.sourceforge.net.

[3] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND

STOICA, I. Wide-area cooperative storage with CFS. In Proc. 18th
ACM Symposium on Operating Systems Principles (SOSP ’01) (Oct.
2001).

[4] HILDRUM, K., KUBATOWICZ, J. D., RAO, S., AND ZHAO, B. Y.
Distributed Object Location in a Dynamic Network. In Proc. 14th
ACM Symp. on Parallel Algorithms and Architectures (Aug. 2002).

[5] MALKHI, D., NAOR, M., AND RATAJCZAK, D. Viceroy: A scalable
and dynamic emulation of the butterfly. In Proceedings of Principles
of Distributed Computing (PODC 2002) (July 2002).

[6] MAYMOUNKOV, P., AND MAZIERES, D. Kademlia: A peer-to-peer
information system based on the XOR metric. In Proc. 1st
International Workshop on Peer-to-Peer Systems (Mar. 2002).

[7] ORAM, A., Ed. Peer-to-Peer: Harnessing the Power of Disruptive
Computation. O’Reilly & Associates, 2001.

[8] PLAXTON, C., RAJARAMAN, R., AND RICHA, A. Accessing
nearby copies of replicated objects in a distributed environment. In
Proceedings of the ACM SPAA (Newport, Rhode Island, June 1997),
pp. 311–320.

[9] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND
SHENKER, S. A scalable content-addressable network. In Proc. ACM
SIGCOMM (San Diego, CA, August 2001), pp. 161–172.

[10] RATNASAMY, S., HANDLEY, M., KARP, R., AND SHENKER, S.
Application-level Multicast using Content-Addressable Networks. In
Proceedings of NGC 2001 (Nov. 2001).

[11] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, distributed
object location and routing for large-s cale peer-to-peer systems. In
Proceedings of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2001) (Nov. 2001).

[12] ROWSTRON, A., AND DRUSCHEL, P. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage utility.
In Proc. 18th ACM Symposium on Operating Systems Principles
(SOSP ’01) (Oct. 2001).

[13] SAIA, J., FIAT, A., GRIBBLE, S., KARLIN, A., AND SAROIU, S.
Dynamically fault-tolerant content addressable networks. In Proc. 1st
International Workshop on Peer-to-Peer systems (Mar. 2002).

[14] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND

BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup service
for Internet applications. In Proc. ACM SIGCOMM (San Diego, Aug.
2001).

