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Abstract work traffic the nodes can generate. This implies a need to

PlanetLab is a geographically distributed overlay networkShare control of PlanetLab nodes.

designed to support the deployment and evaluation of The second relationship is between PlanetLab and
planetary-scale network services. Two high-level goalsts users, currently researchers evaluating and deploying
shape its design. First, to enable a large research conplanetary-scale services. Researchers must have access to
munity to share the infrastructure, PlanetLab providiss  the platform, which implies a distributed set of machines
tributed virtualization whereby each service runs in an iso- that must be shared in a way they will find useful. A Planet-
lated slice of PlanetLab’s global resources. Second, to sug.ab “account”, together with associated resources, must
port competition among multiple network services, Planettherefore span multiple machines. We call this abstration
Lab decouples the operating system running on each nodglice, and implement it using a technique callgidtributed

from the network-wide services that define PlanetLab, avirtualization

principle referred to agnbundled managemerithis paper . . . .
describes how PlanetLab realizes the goals of distributed A third relationship exists between PlanetLab and those

virtualization and unbundled management, with a focus orLeseqrchers contributing t9 the sy§tem by designing and
: uilding infrastructure servicesthat is, services that con-
the OS running on each node. . : .
tribute to the running of the platform as opposed to being
merely applications on it. Not only must each of these ser-
1 Introduction vices run in a slice, but PlanetLab must support multiple,
_ _ o parallel services with similar functions developed byelif
PlanetLab is a geographically distributed overlay plat-ent groups. We call this principlenbundled management
form designed to support the deployment and evaluatiomnd it imposes its own requirements on the system.
of planetary-scale network services [30]. It currently in- Finallv. PlanetLab exists in relation to th tof the |
cludes over 350 machines spanning 150 sites and 20 coun- inally, Flanetl.ab exists in relation to the rest ot the In-

tries. It supports over 450 research projects focused on fgrnet. fExpeSenceplshov;/E tt?at the exllpe.nmentta | network-
wide range of services, including file sharing and network-![ng pfr.?mj? ton. adnet a:. can deaS||y 'mg.?f many ex-
embedded storage [11, 22, 35], content distribution netzc & SItes intrusion detection and vuineraoiiity s :

works [39], routing and multicast overlays [1, 8], QoS over- -IF;:“S l?ﬁdg to requwement; Iortﬂollmef I'][nt'r:'n? \{[vhat ttraffl q
lays [38], scalable object location services [2, 33, 34, 37] anetLab users can send to the rest ot thé Internet, and a

way for concerned outside individuals to find out exactly

anomaly detection mechanisms [9], and network measure- ) .
ment to)(gls [36] (9] why they are seeing unusual traffic from PlanetLab. The

As a distributed system, PlanetLab is characterizeJeSt of the Internet needs to feel safe from PlanetLab.

by a unique set of relationships between principals— The contribution of this paper is to describe in more de-
e.g., users, administrators, researchers, service svid  tail the requirements that result from these relationships
which make the design requirements for its operating sysand how PlanetLab fulfills them using a synthesis of oper-
tem different from traditional hosting services or timesha ating systems techniques. This contribution is partly dne o
ing systems. design because PlanetLab is a work-in-progress and only

The first relationship is between PlanetLab as an ortime will tell what infrastructure services will evolve to
ganization, and the institutions that own and host Planetgive it fuller definition. At the same time, however, this
Lab nodes: the former has administrative control over thalesign is largely the product of our experience having hun-
nodes, but local sites also need to enforce policies aboudreds of users stressing PlanetLab since the platform be-
how the nodes are used, and the kinds and quantity of netame operational in July 2002.



2 Requirements Moreover, certain slices must be able to request a min-
imal resource level, and in return, receive (soft) real-
This section defines distributed virtualization and unbun-  time performance guarantees.

dled management, and identifies the requirements each
places on PlanetLab’s design. e It must eitherpartition or contextualize the available

name spacefetwork addresses, file names, etc.) to

L . .. prevent a slice interfering with another, or gaining ac-

2.1 Distributed Virtualization cess to information in another slice. In many cases,
this partitioning and contextualizing must be coordi-

PlanetLab services and applications run isliae of the :
nated over the set of nodes in the system.

platform: a set of nodes on which the service receives a
fraction of each node’s resources, in the form of a virtual
machine (VM). Virtualization and virtual machines are, of
course, well-established concepts. What is new in Planet-
Lab isdistributed virtualization the acquisition of a dis-
tributed set of VMs that are treated as a single, compound
entity by the system.

~ To support this concept, .Pla'r1et|._ab must prowdg facil- - Resource scheduling and VM isolation were recognized
ities to create a slice, initialize it with sufficient petsist o important issues from the start, but the expectation was
state to boot the service or application in question, and bin o+ 4 “pest effort” solution would be sufficient for some

the slice to a set of resources on each constituent N0dgme  Our experience, however, is that excessive loads
However, much of a slice’s behavior is left unspecified inggpecially near conference deadlines) and volatile per-
the architecture. This includes exactly how a slice is créformance behavior (due to insufficient isolation) were the

ated, which we discuss in the context of unbundled manyominant problems in early versions of the system. The
agement, as well as the programming environment Planefaci of isolation has also led to significant management
Lab provides. Giving slices as much latitude as possible iy erhead, as human intervention is required to deal with

defining a suitable environment means, for example, thattun-away processes, unbounded log files, and so on.
the PlanetLab OS does not provide tunnels that connect the

constituent VMs into any particular overlay configuration, 219 lati | ab
but instead provides an interface that allows each semwice t 1.2 Isolating PlanetL

define its own topology on top of the fully-connected Inter- The planetLab OS must also protect the outside world from
net. Similarly, PlanetLab does not prescribe a single lansjices. PlanetLab nodes are simply machines connected
guage or runtime system, but instead allows slices to l0agy the Internet, and as a consequence, buggy or malicious
whatever environments or software packages they heed. services running in slices have the potential to affect the
global communications infrastructure. Due to PlanetLab’s
2.1.1 Isolating Slices widespread nature and its goal of supporting novel network
services, this impact goes far beyond the reach of an appli-
PlanetLab must isolate slices from each other, therebyaiion running on any single computer. This places two
maintaining the illusion that each slice spans a distrithute yoquirements on the PlanetLab OS.
set of private machines. The same requirement is seen in
traditional operating systems, except that in PlanetLab th ¢ |t mustthoroughly account resource usagad make
slice is a distributed set of VMs rather than a single process it possible to placdimits on resource consumption
or image. Per-node resource guarantees are also required: so as to mitigate the damage a service can inflict on
for example, some slices run time-sensitive applications,  the Internet. Proper accounting is also required to
such as network measurement services, that have soft real- isplate slices from each other. Here, we are con-
time constraints reminiscent of those provided by multime- cerned both with the node’s impact on the hosting
dia operating systems. This means three things with respect  site (e.g., how much network bandwidth it consumes)

e It mustprovide a stable programming ba®t cannot
be manipulated by code running in one slice in a way
that negatively affects another slice. In the context of
a Unix- or Windows-like operating system, this means
that a slice cannot be given root or system privilege.

to the PlanetLab OS: and remote sites completely unaffiliated with Planet-
Lab (e.g., sites that might be probed from a PlanetLab
e It mustallocate and schedule node resourgegcles, node). Furthermore, both the local administrators of a

bandwidth, memory, and storage) so that the runtime  pjaneti_ab site and PlanetLab as an organization need
behavior of one slice on a node does not adversely g collectively set these policies for a given node.
affect the performance of another on the same node.
i _ o e It must make it easy taudit resource usageso that
This is not strictly true, as PlanetLab curre_ntly providésréx API at actions(rather than just resources) can be accounted
the lowest level. Our long-term goal, however, is to decetipbse aspects . .
to slices after the fact. This concern about how users

of the API that are unique to PlanetLab from the underlyimmgpamming - _ : )
environment. (or their services) affect the outside world is a novel




requirement for PlanetLab, unlike traditional time- PlanetLab OS potentially supports many such man-
sharing systems, where the interactions between users agement services. One implication of this interface
and unsuspecting outside entities is inherently rare. being sharable is that it must be well-defined, explic-
itly exposing the state of the underlying OS. In con-
Security was recognized from the start as a critical is- trast, the interface between an OS and a privileged
sue in the design of PlanetLab. However, effectively limit- control program running in user space is often ad hoc
ing and auditing legitimate users has turned out to be just  since the control program is, in effect, an extension of
as significant an issue as securing the OS to prevent mali- the OS that happens to run in user space.
cious users from hijacking machines. For example, a sin- ) . o )
gle PlanetLab user running TCP throughput experiments Of particular noteslice creationis itself implemented
on U.C. Berkeley nodes managed to consume over haffS & Service running in .|ts own slice, which leads to the
of the available bandwidth on the campus gateway over following additional requirement on the PlanetLab OS:
span of days. Also, many experiments (e.g., Internet map-
ping) have triggered IDS mechanisms, resulting in com-
plaints that have caused local administrators to pull tbg pl
on nodes. The Internet has turned out to be unexpectedly
sensitive to the kinds of traffic that experimental plangtar
scale services tend to generate.

e It must provide dow-level interface for creating a VM
that can be shared by multiple slice creation services.
It must also host a “bootstrapping” slice creation ser-
vice to create initial slices, including the slices that
other slice creation services run in.

An important technical issue that will influence how the
slice abstraction evolves is how quickly a network-wide
2.2 Unbundled Management slice can be instantiated. Applications like the onesdiste

Planetary-scale services are a relatively recent and ongd? the Introduction are relatively long-lived (althoughspo
ing subject of research; in particular, this includes the se sibly modified and restarted frequently), and hence the pro-
vices required to manage a global platform such as Planegess of creating the slice in which they run can be a heavy-
Lab. Moreover, it is an explicit goal of PlanetLab to allow Weight operation. On the other hand, a facility for rapidly
independent organizations (in this case, research group§ptablishing and tearing down a slice (analogous to creat-
to deploy alternative services in parallel, allowing usersing/destroying a network connection) would lead to slices
to pick which ones to use. This applies to application-that are relatively short-lived, for example, a slice thatc
level services targeted at end-users, as welhfrastruc-  responds to a communication session with a known set of
ture servicesused to manage and control PlanetLab itselfparticipants. We evaluate the performance of the current
(e.g., slice creation, resource and topology discoveny, pe slice creation mechanism in Section 5. It is not yet clear
formance monitoring, and software distribution). The keyWhat other slice creation services the user community will
to unbundled management is to allow parallel infrastructur Provide, or how they will utilize the capability to createdan
services to run in their own slices of PlanetLab and evolvedestroy slices.
over time. The bottom line is that OS design often faces a tension
This is a new twist on the traditional problem of how to between implementing functionality in the kernel and run-
evolve a system, where one generally wants to try a neping itin user space, the objective often being to minimize
version of some service in parallel with an existing ver-Kernel code. Like many VMM architectures, the Planet-
sion, and roll back and forth between the two versions. In-ab OS faces an additional, but analogous, tension between
our case, multiple competing services are simultaneously*hat can run in a slice or VM, and functionality (such as

evolving. The desire to support unbundled managemenglice user authentication) that requires extra privilegaoo
leads to two requirements for the PlanetLab OS. cess but is not part of the kernel. In addition, there is athir

aspect to the problem that is peculiar to PlanetLab: func-

e To minimize the functionality subsumed by the tionality that can be implemented by parallel, competing
PlanetLab OS—and maximize the functionality run- subsystems, versus mechanisms which by their very nature
ning as services on top of the O®rly local (per- can only be implemented once (such as bootstrapping slice

node) abstractionshould be directly supported by the creation). The PlanetLab OS strives to minimize the latter,

0S, allowing all global (network-wide) abstractions to but there remains a core of non-kernel functionality that ha

be implemented by infrastructure services. to be unique on a node.

. T(_) maximize the opportunity fo_r ser_vices to _compete2_3 Evolving Ar chitecture
with each other on a level playing field, the interface
between the OS and these infrastructure services mu$thile unbundled management addresses the challenge of
be sharable and hence, without special privilege. In evolving PlanetLab as a whole, there remains the very prac-
other words, rather than have a single privileged aptical issue of evolving the underlying OS that supports un-
plication controlling a particular aspect of the OS, the bundled management.



Slices (VMs) . ture services are emerging: (1) brokerage services that are

Node manager used to acquire resources and create slices that are bound
— resource allocation . . s

— sensors to them, (2) environment services that are used to inigaliz

— auditing and maintain a slice’s code base, and (3) monitoring ser-

| — slice bootstrapping vices that are used to both discover the available resources
| | Local admin and monitor the health of running services.
VMM: Linux-++ :{fﬂsf’;‘rrgg;;:“‘s Because we expect new facilities to be incorporated into
- the architecture over time, the key question is where any

new functionality should be implemented: in an unprivi-
Figure 1: PlanetLab Node Architecture leged slice, in a privileged slice, in the node manager, or in
the VMM? Such decisions are guided by the following two

) ) principles:
Simply stated, the research community was ready to use

PlanetLab the moment the first machines were deployed. ¢ Each function should be implemented at the “high-
Waiting for a new OS tailored for broad—coverage services est” level possib]e, that is, running a service in a slice
was not an option, and in any case without first gaining with limited privileged capabilities is preferred to a
some experience, no one could fully understand what such  gjice with widespread privileges, which in turn is pre-
a system should look like. Moreover, experience with pre- ferred to augmenting the node manager, all of which

vious testbeds strongly suggested two biases of applicatio  are preferable to adding the function to the VMM.
writers: (1) they are seldom willing to port their applica-

tions to a new API, and (2) they expect a full-featured sys- e Privileged slices should be granted the minimal privi-

tem rather than a minimalist API tuned for someone else’s  leges necessary to support the desired behavior. They

OS research agenda. should not be granted blanket superuser privileges.
This suggested the strategy of starting with a full-

featqred OS—we elected to use Linux QUe toitswidespread pDeg gn Alternatives

use in the research community—and incrementally trans-

forming it based on experience. This evolution is guidedThe PlanetLab OS is a synthesis of existing operating sys-
by the “meta” architecture depicted in Figure 1. tems abstractions and techniques, applied to the new con-
At the lowest level, each PlanetLab node runsim  text of a distributed platform, and motivated by the require
tual machine monito(VMM) that implements and isolates ments discussed in the previous section. This section dis-
VMs. The VMM also defines the API to which services are cusses how PlanetLab’s requirements recommend certain
implemented. PlanetLab currently implements the VMM approaches over others, and in the process, discusses re-
as a combination of the Linux kernel and a set of kernellated work.
extensions, as outlined in Section 4.
A privileged, “root” VM running on top of the VMM, 31 Node Virtualization
called thenode managermonitors and manages all the
VMs on the node. Generally speaking, the node managerhe first challenge of the PlanetLab OS is to provide a vir-
enforces policies on creating VMs and allocating resourcesual machine abstraction for slices; the question is, atwha
to them, with services interacting with the node managetevel? At one end of the spectrum, full hypervisors like
to create new VMs rather than directly calling the VMM. VMware completely virtualize the physical hardware and
Moreover, all interactions with the node manager are localthus support multiple, unmodified operating system bina-
only services running in some other VM on the node areries. If PlanetLab were to supply this low level of virtu-
allowed to call the node manager, meaning that remote aclization, each slice could run its own copy of an OS and
cess to a specific node manager is always indirect throughave access to all of the devices and resources made avail-
one of the services running on the node. Today, most policyble to it by the hypervisor. This would allow PlanetLab to
is hard-coded into the node manager, but we expect that lasupport OS kernel research, as well as provide stronger iso-
cal administrators will eventually be able to configure thelation by removing contention for OS resources. The cost
policies on their own nodes. (This is the purpose of theof this approach is performance: VMware cannot support
local administrator VM shown in Figure 1.) the number of simultaneous slices required by PlanetLab
A subset of the services (slices) running on top of thedue to the large amount of memory consumed by each ma-
VMM can be characterized gsivilegedin some way: they chine image. Thus far, the PlanetLab community has not
are allowed to make privileged calls to the node managerequired the ability to run multiple operating systems, and
(e.g., to allocate local resources to a VM). We expect allso PlanetLab is able to take advantage of the efficiency of
slices that provide a service to end-users to be unprivisupporting a single OS API.
leged, while some infrastructure services may need to run A slightly higher-level approach is to uparavirtualiza-
in a privileged slice. To date, three types of infrastruc-tion, proposed by so-called isolation kernels like Xen [4]



and Denali [41]. Short of full virtualization of the hard- 3.3 Network Virtualization

ware, a subset of the processor’s instruction set and some . o
specialized virtual devices form the virtual machine ex-Having settled on node virtualization at the system call

ported to users. Because the virtual machine is no longdfV€l: the third challenge is how to virtualize the network.
a replica of a physical machine, operating systems must bgertlcal_ly-structured operatlng systems like Exokermed a
Nemesis have explored allowing access to raw network de-

ported to the new “architecture”, but this architecture can' ) " :
support virtualization far more efficiently. Paravirtuatig ~ ViceS by using filters on send and receive [6, 13]. The
systems are not yet mature, but if they can be shown tflanetLab OS uses a similar approach, providing shared

scale, they represent a promising technology for PIanetLat?e?’Vork access using a “safe” version of the raw socket in-
erface.

The appr'ogch we adoptedils to "'Tt“a"z.e at th? SYstem- gy okemels have traditionally either provided the raw
call Ievel_, similar to commercial oﬁerlng_s like Ensim [14] (physical) device to a single library OS to manage, or con-
and projects such as User Mode Linux [12], BSD'Sy 04 sharing of the raw device between library OSes

Jail_[21.], and Linux vservers [25]. Such ﬁigh—level vir- based on connections. However, in PlanetLab the kernel
tualization adequately supports PlanetLab’s goals of sup

| b P | ) hil idi must take responsibility for sharing raw access (both re-
porting large numbers o overiay Services, while provi Ingception and transmission of potentially arbitrary packets
reasonable assurances of isolation.

among multiple competing services in a controlled man-
ner according to some administrative policy. Additionally
it must protect the surrounding network from buggy and
. . malicious services, an issue typically ignored by existin
3.2 Isolation and Resource Allocation systems. ypiEay g Y J
_ _ _ An alternative to sharing and partitioning a single net-
A Second, Ol‘thogonal Cha.”enge is to isolate virtual mawork address space among all virtual machines isoto-
chines. Operating systems with the explicit goal of iso-textualizeit—that is, we could present each VM with its
lating application performance go back at least as far agwn local version of the space by moving the demultiplex-
the KeyKOS system [18], which provided strict resourceing to another level. For instance, we could assign a differ-
accounting between mutually antagonistic users. More réent |p address to each VM and allow each to use the entire
Cently, isolation mechanisms have been eXplored for multi'port space and manage its own routing table. The prob_
media support, where many applications require soft realiem is that we simply do not have enough IPv4 addresses

time guarantees. Here the central problencnssstalk  available to assign on the order of 1000 to each node.
where contention for a shared resource (often a server pro-

cess) prevents the OS from correctly scheduling tasks. This

has variously been addressed by sophisticated accouns-4 Monitoring
ing across control transfers as in Processor Capacity Re- _. _
serves [27], scheduling along data paths as in Scout [28], dor‘ fm_al,.and somewhat new challenge IS tq suppqrt the
entirely restructuring the OS to eliminate server proc:ﬁessemon'tor'ng and management of a large distributed infras-

in the data path as in Nemesis [23]. The PlanetLab Oéructture. Onhthe rLeéwgrk S'S.e’ comdmlt\e/lr'ual manaﬁert'nen}
borrows isolation mechanisms from Scout, but the key gif-SyStems such as t penview an icromuse Netcoo
; erowde simplified interfaces to routing functionality,rse
each node runs multiple competing tasks that belong to |cet prowsmnlng,tan(? equuiment star;cus Clgi;:,ks_'r. Oln thg
global slice, rather than a purely local set of cooperatin ost management si ,e, Systems such as s tivolian
tasks. omputer Associates’ UniCenter address the correspond-
o o _ ing problems of managing large numbers of desktop and
The problem of distributed coordination of resources, ingerver machines in an enterprise. Both kinds of systems
turn, has been explored in the context of Condor [26] andyre aimed at single organizations, with well-defined appli-
more recently the Open Grid Services Architecture [16].cations and goals, seeking to manage and control the equip-
batch computations, rather than the support oflong—rLgmmsystem like PlanetLab (or the Internet as a whole) poses

network services. They also seek to define complete archjifferent challenges. Here, we are pretty much on our own.
tectures within which such computations run. In PlanetLab

the requirements are rather different: the platform must

support multiple approaches to creating and binding re4 Planetlab OS

sources to slices. To illustrate this distinction, we point

out that both the Globus grid toolkit and the account man-This section defines the PlanetLab OS, the per-node soft-
agement system of the Emulab testbed [42] have been inware upon which the global slice abstraction is built.
plemented above PlanetLab, as have more service-orientdthe PlanetLab OS consists of a Linux 2.4-series kernel
frameworks like SHARP [17]. with patches for vservers and hierarchical token bucket



packet scheduling; the SILK (Scout in Linux Kernel) mod- between slices simplifies resource management and isola-
ule [5, 32] that provides CPU scheduling, network accounttion between vservers, since the interaction between two
ing, and safe raw sockets; and the node manager, a trustedervers is independent of their locations. However, the
domain that contains slice bootstrapping machinery anchamespace of network addresses (IP address and port num-
node monitoring and management facilities. We describders) is not contextualized: this would imply either an IP
the functionality provided by these components and discusaddress for each vserver, or hiding each vserver behind a
how it is used to implement slices, focusing on four mainper-node NAT. We rejected both these options in favor of
areas: the VM abstraction, resource allocation, contiolle slices sharing port numbers and addresses on a single node.
access to the network, and system monitoring.

412 Implementation

4.1 Node Virtualization Each vserver on a machine is assigned a unisgeu-

A slice corresponds to a distributed set of virtual machinesfity context and each process is associated with a specific
Each VM, in turn, is implemented asvaerver[25]. The  Vvserver through its security context. A process’s security
vserver mechanism is a patch to the Linux 2.4 kernel thagontext is assigned via a new system call and inherited by
provides multiple, independently managed virtual serverghe process’s descendants. Isolation between vservers is
running on a single machine. Vservers are the principagnforced at the system call interface by using a combina-
mechanism in PlanetLab for providing virtualization on ation of security context and UID/GID to check access con-
single node, and contextualization of name spaces; e.gtrol privileges and decide what information should be ex-
user identifiers and files. posed to a given process. All of these mechanisms are im-
As well as providing security between slices sharing aPlemented in the baseline vserver patch to the kernel. We
node, vservers provide a limited root privilege that allavs have implemented several utilities to simplify creatinglan
slice to customize its VM as if it was a dedicated machine destroying vservers, and to transparently redirect a nger i

Vservers also correspond to the resource containers usdde vserver for his or her specific slice using SSH.
for isolation, which we discuss in section 4.2. On PlanetLab, our utilities initialize a vserver by cregtin

a mirror of a reference root filesystem inside the vserver us-
ing hard links and the “immutable” and “immutable invert”
filesystem bits. Next we create two Linux accounts with lo-
Vservers provide virtualization at the system call levelgin name equal to the slice name, one in the node’s primary
by extending the non-reversible isolation provided byvserver and one in the vserver just created, and sharing a
chroot for filesystems to other operating system re-single UID. The default shell for the account in the main
sources, such as processes and SysV IPC. Processes withiserver is set tdbin/vsh |, a modifiedbash shell that
a vserver are given full access to the files, processes, Sysperforms the following four actions upon login: switching
IPC, network interfaces, and accounts that can be named to the slice’s vserver security contexfyroot ing to the
their containing vserver, and are otherwise denied accessserver’s root filesystem, relinquishing a subset of the tru
to system-wide operating system resources. Each vserveuperuser’s capabilities, and redirecting into the otleer a
is given its own UID/GID namespace, along with a weakercount inside the vserver. The result of this two-account
form ofroot that provides a local superuser without com- arrangement is that users accessing their virtual machines
promising the security of the underlying machine. remotely via SSH/SCP are transparently redirected into the

Despite having only a subset of the true superuser'sppropriate vserver and need not modify any of their exist-
capabilities, vserveroot is still useful in practice. It ing service management scripts.
can modify the vserver’s root filesystem, allowing users By virtualizing above a standard Linux kernel, vservers
to customize the installed software packages for theiachieve substantial sharing of physical memory and disk
vserver. Combined with per-vserver UID/GID names-space, with no active state needed for idle vservers. For
paces, it allows vservers to implement their own accounphysical memory, savings are accrued by having single
management schemes (e.g., by maintaining a per-vserveopies of the kernel and daemons, and shared read-only and
letc/passwd  and runningsshd on a different TCP  copy-on-write memory segments across unrelated vservers.
port), thereby providing the basis for integration witheth Disk space sharing is achieved using the filesystem im-
wide-area testbeds such as NetBed [42] and RON [1].  mutable invert bit which allows for a primitive form of

A vserver is initialized with two pieces of persistent copy-on-write (COW). Using COW on chrooted vserver
state: a set of SSH keys and a vserver-spegifignit root filesystems, vserver disk footprints are just 5.7% of
file. The former allow the owners of the slice to SSH into that required with full copies (Section 5.1). Comparable
the vserver, while the latter serves as a boot script that gesharing in a virtual machine monitor or isolation kernel is
executed each time the vserver starts running. strictly harder, although with different isolation guatees.

Vservers communicate with one another via IP, and not PlanetLab’s application of vservers makes extensive use
local sockets or other IPC functions. This strong sepamatio of the Linux capability mechanism. Capabilities deter-

41.1 Interface



mine whether privileged operations such as pinning physfunning an infinite loop. Isolating slices is necessary to
ical memory or rebooting are allowed. In general, themake the platform useful.
vserverroot account is denied all capabilities that could The node manager provides a low-level interface for ob-
undermine the security of the machine (e.g., accessing rataining resources on a node and binding them to a local
devices) and granted all other capabilities. However,&s di VM that belongs to some slice. The node manager does
cussed in Section 2.3, each PlanetLab node supports twat make any policy decisions regarding how resources are
special contexts with additional capabilities: tieele man-  allocated, nor is it remotely accessible. Instead, a boot-
agerand theadmin slice strap brokerage service running in a privileged slice imple
The node manager context runs with standamt ca-  ments the resource allocation policy. This policy includes
pabilities and includes the machinery to create a slice, inihow many resources to allocate to slices that run other bro-
tialize its state, and assign resources to it; sensors xhat ekerage services; such services are then free to redigribut
port information about the node; and a traffic auditing serthose resources to still other slices. Note that resource al
vice. The admin slice provides weaker privileges to site adlocation is largely controlled by a central policy in the cur
ministrators, giving them a set of tools to manage the nodegent system, although we expect it to eventually be defined
without providing fullroot access. The admin context has by the node owner’s local administrator. Today, the only
a complete view of the machine and can, for example, capesource-related policy set by the local node administrato
the node’s total outgoing bandwidth rate, Kill arbitrarppr is an upper bound on the total outgoing bandwidth that may
cesses, and ruttpdump to monitor traffic on the local be consumed by the node.
network.

4.2.1 Interface

4.1.3 Discussion The node manager denotes the right to use a set of node re-
sources as gesource capabilitfrcap)—a 128-bit opaque
e\§alue, the knowledge of which provides access to the as-

(L)Jn ||_skolat_|(t)n zlind cﬂgllenges_tfor eI|n("|j|r_1at||n<t;_ onS Crolsssslktsociated resources. The node manager provides privileged
niike virtual machineé monitors and 1Solation Kerneis that gj;-qq yith the following operation to create a resource ca-

provide isolation at a low level, vservers implement iSO|a'pabiIity:
tion at the system call interface. Hence, a malicious vserve
that exploits a Linux kernel vulnerability might gain con- rcap < acquire(rspec)
trol of the operating system, and hence compromise secu-
rity of the machine. We have observed such an incident, ifT his operation takes source specificatiofrspec) as an
which a subset of PlanetLab nodes were compromised iargument, and returns acap should there by sufficient re-
this way. This would have been less likely using a lower-sources on the node to satisfy ttepec. Each node man-
level VM monitor. Another potential cost incurred by vir- ager tracks both the set of resources available on the node,
tualizing above the kernel is QoS crosstalk. Eliminatirg al and the mapping between committed resources and the cor-
QoS crosstalk (e.g., interactions through the buffer cacherespondingcaps; i.e., thercap serves as an index into a
is strictly harder with vservers. As described in the nexttable ofrspecs.
section, however, fairly deep isolation can be achieved. The rspec describes a slice’s privileges and resource

The combination of vservers and capabilities providegeservations over time. EaaBpec consists of a list of
more flexibility in access control than we currently use inreservations for physical resources (e.g., CPU cyclek, lin
PlanetLab. For example, sensor slices (see section 4.4andwidth, disk capacity), limits on logical resource wsag
could be granted access to information sources that cannég.g., file descriptors), assignments of shared name spaces
otherwise easily be shared among clients. As we gain expd€.g., TCP and UDP port numbers), and other slice priv-
rience on the privileges services actually require, extend ileges (e.g., the right to create a virtual machine on the
the set of Linux capabilities is a natural path toward exposnode). Therspec also specifies the start and end times
ing privileged operations in a controlled way. of the interval over which these values apply.

Once acquiredcaps can be passed from one service to
another. The resources associated withrtag are bound

4.2 |solation and Resource Allocation to a virtual machine (vserver) at slice creation time using

L . . : the following operation:
A key feature of slices is the isolation they provide between gop

services. Early experience with PlanetLab illustrates the  pind(slice_name, rcap)

need for slice isolation. For example, we have seen slices

acquire all available file descriptors on several nodes, preThis operation takes a slice identifier andraap as argu-
venting other slices from using the disk or network; rou-ments, and assuming thispec associated with thecap
tinely fill all available disk capacity with unbounded event includes the right to create a virtual machine, creates the
logging; and consume 100% of the CPU on 50 nodes byserver and binds the resources described byr¢hp to



it. Note that the node manager supports other operations tor them is a subject of ongoing work.
manipulatercaps, as described more fully elsewhere [10]. CPU scheduling is implemented by the SILK kernel
module, which leverages Scout [28] to provide vservers
422 Implementation with CPU guarantees and fairness. Replacing Linux's CPU
scheduler was necessary because, while Linux provides ap-
Non-renewable resources, such as memory pages, digffoximate fairness between individual processes, it canno
space, and file descriptors, are isolated using per-slicgnforce fairness between vservers; nor can it provide guar-
reservations and limits. These are implemented by wrapantees. PlanetLab’s CPU scheduler uses a proportional
ping the appropriate system calls or kernel functions to insharing (PS) scheduling policy to fairly share the CPU.
tercept allocation requests. Each request is either amttept |t incorporates the resource container [3] abstraction and
or denied based on the slice’s current overall usage, anghaps each vserver onto a resource container that possesses
if it is accepted, the slice’s counter is incremented by thesome number of shares. Individual processes spawned by
appropriate amount. the vserver are all placed within the vserver's resource con
For renewable resources such as CPU cycles and linfainer. The result is that the vserver’s set of processes re-
bandwidth, the OS supports two approaches to providingeives a CPU rate proportional to the vserver’s shares di-
isolation: fairnessand guarantees Fairness ensures that vided by the sum of shares of all active vservers. For ex-
each of theN slices running on a node receives no lessample, if a vserver is assigned 10 shares and the sum of
than /N of the available resources during periods of con-shares of all active vservers (i.e., vservers that contain a
tention, while guarantees provide a slice with a reserveqdunnable process) is 50, then the vserver with 10 shares
amount of the resource (e.g., 1Mbps of link bandwidth).gets 10’50 = 20% of the CPU.
PlanetLab provides CPU and bandwidth guarantees for The PS scheduling policy is also used to provide min-
slices that request them, and “fair best effort” service forimum cycle guarantees by capping the number of shares
the rest. In addition to isolating slices from each other, re and using an admission controller to ensure that the cap
source limits on outgoing traffic and CPU usage can protecis not exceeded. The current policy limits the number of
the rest of the world from PlanetLab. outstanding CPU shares to 1000, meaning that each share
The Hierarchical Token Buckehtb) queuing discipline  is a guarantee for at least 0.1% of the CPU. Additionally,
of the Linux Traffic Control facility {c) [24] is used to cap  the PlanetLab CPU scheduler provides a switch to allow
the total outgoing bandwidth of a node, cap per-vserveg vserver to proportionally share the excess capacity, or to
output, and to provide bandwidth guarantees and fair sefiimit it to its guaranteed rate (similar to the Nemesis sehed
vice among vservers. The node administrator configuresler [23]). In the previous example, the vserver with 10
the root token bucket with the maximum rate at which theshares received 20% of the CPU because it was allowed to
site is willing to allow traffic to leave the node. At vserver proportionally share the excess; with this bit turned dff, i
startup, a token bucket is created that is a child of the roofyould be rate-capped at 10000= 1% of the CPU.
token bucket; if the service requests a guaranteed band-
width rate, the token bucket is configured with this rate
otherwise it is given a minimal rate (5Kbps) for “fair best
effort” service. Packets sent by a vserver are tagged iWe have implemented a centrally-controlled brokerage ser-
the kernel and subsequently classified to the vserver's tovice, called PlanetLab Central (PLC), that is responsible
ken bucket. Théitb queuing discipline then provides each for globally creating slices [31]. PLC maintains a database
child token bucket with its configured rate, and fairly dis- of principals, slices, resource allocations, and polices
tributes the excess capacity from the root to the childrera central server. It exports an interface that includes op-
that can use it in proportion to their rates. A bandwidtherations to create and delete slices; specify a boot script,
cap can be placed on each vserver limiting the amount ofet of user keys, and resources to be associated with the
excess capacity that it is able to use. By default, the ratslice; and instantiate a slice on a set of nodes. A per-node
of the root token bucket is set at 100Mbps; each vserver isomponent of PLC, called gesource managemruns in a
capped at 10Mbps and given a rate of 5Kbps for “fair bestprivileged slice; it is allowed to call thacquire operation
effort” service. on each node. The resource manager on each node period-
In addition to this general rate-limiting facilitiytb can  ically communicates with the central PLC server to obtain
also be used to limit the outgoing rate for certain classepolicy about what slices can be created and how many re-
of packets that may raise alarms within the network. Forsources are to be bound to each.
instance, we are able to limit the rate of outgoing pings (as PLC allocates resources to participating institutions and
well as packets containing IP options) to a small numbetheir projects, but it also allocates resources to other bro
per second; this simply involves creating additional childkerage services for redistribution. In this way, PLC serves
token buckets and classifying outgoing packets so that thegis a bootstrap brokerage service, where we expect more
end up in the correct bucket. Identifying potentially trou- sophisticated (and more decentralized) services to evolve
blesome packets and determining reasonable output rateser time. We envision this evolution proceeding along two

'4.2.3 Discussion



dimensions. outgoing packets are filtered to make sure that the local ad-
First, PLC currently allows the resources bound to a slicedresses in the headers match the binding of the socket. Safe
to be specified by a simpishare, duration) pair, rather  raw sockets support network measurement experiments and
than exposing the more detailedpec accepted by the protocol development on PlanetLab.
node manager. Thghare specifies a relative share of each ~ Safe raw sockets can also be used to monitor traffic
node’s CPU and link capacity that the slice may consumeyithin a slice. A “sniffer” socket can be bound to any port
while duration indicates the period of time for which this that is already opened by the same VM, and this socket re-
allocation is valid. PLC policy specifies how to translate ceives copies of all packet headers sent and received on that
the share value given by a user into a valigpec pre-  port. Additionally, sufficiently privileged slices can apa
sented to the node manager. Over time we expect PLC tepecial administrative sniffer socket that receives copfe
expose more of thespec structure directly to users, im- all outgoing packets on the machine tagged with the con-
posing less policy on resource allocation decisions. We detext ID of the sending vserver, this administrative socket i
cided to initially hide the node manager interface becauseised to implement the traffic monitoring facility described
its semantics are not well-defined at this point: how to di-in Section 4.4.
vide resources into allocatable units is an open problem,
and to compensate for this difficulty, the fields of tspec 431 Interface

are meaningful only to the individual schedulers on each _ ) )
node. A standard Linux raw socket captures all incoming IP pack-

Second, there is significant interest in developingets and allows writing of arbitrary packets to the network.

market-based brokerage services that establish resourffcontrast, a safe raw socket is bound to a specific UDP or
value based on demand, and a site’s purchasing capacifycP Port and receives only packets matching the protocol
based on the resources it contributes. PLC currently has and port to which it is bound. Outgoing packets are filtered
simple model in which each site receives an equal numbei° ensure that they are well-formed and that source IP and
of shares that it redistributes to projects at that site. pLCYDP/TCP port numbers are not spoofe_d. _

also allocates shares directly to certain infrastructere s~ Saie raw sockets use the standard Linux socket AP1 with

vices, including experimental brokerage services that ar@inor semantic differences. Just as in standard Linux,

allowed to redistribute them to other services. In the longfir'St & raw socket must be created with tecket = sys-

term, we envision each site administrator deciding to em€m call, with the difference that it is necessary to spec-

ploy different, or possibly even multiple, brokerage ser-Ify IPPROTQTCPor IPPROTQUDPIN the protocol field.
vices, giving each some fraction of its total capacity. (In!t must then be bound to a particular local port of the
effect, site administrators currently allocate 100% ofrthe SPecified protocol using the Linuxind system call. At
resources to PLC by default.) this point the socket can send and receive data using the
To date, PLC supports two additional brokerage sertSudlsendto , sendmsg, recvirom , recvmsg , and
vices: Emulab and SHARP. Emulab supports short-lasting€/€ct _ calls. The data received includes the 1P and
network experiments by pooling a set of PlanetLab re- CP/UDP headers, but not the link Iayer_header. The
sources and establishing a batch queue that slices are atj|gt2 Sent. by default, does not need to include the IP
to use to serialize their access. This is useful during time eader; a slice that wants to include the IP header sets the
of heavy demand, such as before conference deadlines. -HDRINCLsocket option on the socket. .
SHARP [17] is a secure distributed resource management ICMP packets can also be sent and received through safe

framework that allows agents, acting on behalf of sites, tdaw sockets. Each safe raw ICMP socket is bound to either

exchange computational resources in a secure, fully deceft local TCP/UDP port or an ICMP |dent|f|er', depe_ndmg
the type of ICMP messages the socket will receive and

tralized fashion. In SHARP, agents peer to trade resourced”

with peering partners using cryptographically signedestat send. To get ICMP packets gssqciated with a specific lo-
ments about resources. cal TCP/UDP port (e.g., Destination Unreachable, Source

Quench, Redirect, Time Exceeded, Parameter Problem),

the ICMP socket needs to be bound to the specific port.
4.3 Network Virtualization To exchange ICMP messages that are not associated with

a specific TCP/UDP port—e.g., Echo, Echo Reply, Times-
The PlanetLab OS supports network virtualization by pro-tamp, Timestamp Reply, Information Request, and Infor-
viding a “safe” version of Linux raw sockets that servicesmation Reply—the socket has to be bound to a specific
can use to send and receive IP packets without root privitCMP identifier (a 16-bit field present in the ICMP header).
leges. These sockets are safe in two respects. First, eafnly messages containing the bound identifier can be re-
raw socket is bound to a particular TCP or UDP port andceived and sent through a safe raw ICMP socket.
receives traffic only on that port; conflicts are avoided by PlanetLab users can debug protocol implementations
ensuring that only one socket of any type (i.e., standarer applications using “sniffer” raw sockets. Most slices
TCP/UDP or raw) is sending on a particular port. SecondJack the necessary capability to put the network card into



promiscuous mode and so cannot ngpdump in the traceroute , and so needs to send ICMP packets and
standard way. A sniffer raw socket can be bound to dJDP packets with the IP TTL field set. Scriptroute also re-
TCP or UDP port that was previously opened in the samejuires the ability to generate TCP SYN packets containing
vserver; the socket receives copies of all packets sent or relata to performsprobe -style bottleneck bandwidth esti-
ceived on the port but cannot send packets. A utility callednation. Safe raw sockets allowed Scriptroute to be quickly
plabdump opens a sniffer socket and pipes the packets tgorted to PlanetLab by simply adding a few calldbtod .
tcpdump for parsing, so that a user can get full tcpdump-Other users of safe raw sockets are the modified versions of
style output for any of his or her connections. traceroute  andping that run in a vserver (on Linux,
these utilities typically run with root privileges in order
open a raw socket). Safe raw sockets have also been used
to implement user-level protocol stacks, such as variants
Safe raw sockets are implemented by the SILK kernel modef TCP tuned for high-bandwidth pipes [20], or packet re-
ule, which intercepts all incoming IP packets using Linux’s ordering when striping across multiple overlay paths [43].
netfilter interface and demultiplexes each to a Linux A BSD-based TCP library currently runs on PlanetLab.
socket or to a safe raw socket. Those packets that de- Safe raw sockets are just one example of how PlanetLab
multiplex to a Linux socket are returned to Linux’s pro- services need to be able to share certain address spaces.
tocol stack for further processing; those that demultiplexAnother emerging example is that some slices want to cus-
to a safe raw socket are placed directly in the per-sockefomize the routing table so as to control IP tunneling for
queue maintained by SILK. When a packet is sent on a safgheir own packets. Yet another example is the need to share
raw socket, SILK intercepts it by wrapping the socket’s access to well-known ports; e.g., multiple services want to
sendmsg function in the kernel and verifies that the ad- run DNS servers. In the first case, we are adopting an ap-
dresses, protocol, and port numbers in the packet headegsoach similar to that used for raw sockets: partition the
are correct. If the packet passes these checks, it is handeddress space by doing early demultiplexing at a low level
off to the Linux protocol stack via the standard raw socketin the kernel. In the second case, we plan to implement
sendmsg routine. a user-level demultiplexor. In neither case is a single ser-
SILK’s port manager maintains a mapping of port as-vice granted privileged and exclusive access to the address
signments to vservers that serves three purposes. First,dpace.
ensures that the same port is not opened simultaneously by
a TCP/UDP socket and a safe raw socket (sniffer socket: e
excluded). To implement this, SILK must wrap thiad , 24 Monitoring
connect , andsendmsg functions of standard TCP/UDP Good monitoring tools are clearly required to support a dis-
sockets in the kernel, so that an error can be returned if atributed infrastructure such as PlanetLab, which runs on
attempt is made to bind to a local TCP or UDP port al-hundreds of machines worldwide and hosts dozens of net-
ready in use by a safe raw socket. In other words, SILK’swork services that use and interact with each other and the
port manager must approve or deaiy requests to bind to Internet in complex and unpredictable ways. Managing
a port, not just those of safe raw sockets. Second, whethis infrastructure—collecting, storing, propagatinggiag
bind is called on a sniffer socket, the port manager cargating, discovering, and reacting to observations abaut th
verify that the port is either free or already opened by thesystem’s current conditions—is one of the most difficult
vserver attempting the bind. If the port was free, then afchallenges facing PlanetLab.
ter the sniffer socket is bound to it the port is owned by Consistent with the principle of unbundled management,
that vserver and only that vserver can open a socket on thage have defined a low-leveknsor interfacéor uniformly
port. Third, SILK allows the node manager described inexporting data from the underlying OS and network, as
Section 4.2.1 to reserve specific ports for the use of a pamell as from individual services. Data exported from a
ticular vserver. The port manager stores a mapping for thgensor can be as simple as the process load average on a
reserved port so that it is considered owned by that vservenode or as complex as a peering map of autonomous sys-
and all attempts by other vservers to bind to that port willtems obtained from the local BGP tables. That is, sensors

4.3.2 Implementation

fail. encapsulate raw observations that already exist in many dif
ferent forms, and provide a shared interface to alternative
4.33 Discussion monitoring services.

The driving application for safe raw sockets has been th%A.l
Scriptroute [36] network measurement service. Scrip-
troute provides users with the ability to execute measureA sensor provides pieces of information that are available
ment scripts that send arbitrary IP packets, and was origfor can be derived) on a local node.s&nsor serveaggre-
inally written to use privileged raw sockets. For exam-gates several sensors at a single access point, thereby pro-
ple, Scriptroute implements its own versionspaig and  viding controlled sharing of sensors among many clients

Interface



(e.g., monitoring services). To obtain a sensor reading, ®ne could easily imagine a variant bandwidth , for
client makes a request to a sensor server. Each sensor oetxample, that both streams the bandwidth consumed by the
puts one or more tuples of untyped data values. Every tuplslice over that last 5 minute period, updated once every five
from a sensor conforms to the same schema. Thus, a seminutes, or returns a table of the laseadings it had made.
sor can be thought of as providing access to a (potentially In contrast, a more complex sensor server will shortly

infinite) database table. become available that reports information about how the
Sensor semantics are divided into two typesapshot local host is connected to the Internet, including pathrinfo
andstreaming Snapshot sensors maintain a finite size ta-mation returned byraceroute , peering relationships

ble of tuples, and immediately return the table (or somedetermined by a local BGP feed, and latency information

subset of it) when queried. This can range from a single tureturned byping . This sensor server illustrates that some

ple which rarely varies (e.g. “number of processors on thissensors may be expensive to invoke, possibly sending and

machine”) to a circular buffer that is constantly updated, o receiving messages over the Internet before they can re-

which a snapshot is available to clients (for instance, “thespond, and as a result may cache the results of earlier invo-

times of 100 most recent connect system calls, togethetations.

with the associated slices”). Streaming sensors follow an

event model, and deliver their data asynchronously, a tuplg 4.3 Discussion

at a time, as it becomes available. A client connects to a

streaming sensor and receives tuples until either it or th&/sing the sensor abstraction, and an emerging collection of

sensor server closes the connection. sensor implementations, an assortment of monitoring ser-
More precisely, a sensor server is an HTTP [15] com-Vices are being deployed. Many of these services are mod-

pliant server implementing a subset of the specificatiorgled as distributed query processors, including PIER [19],

(GET and HEAD methods only) listening to requests fromSophia [40], and IrisNet [29].

localhost  on a particular port. Requests come in the The long-term goal is for these monitoring services to
form of uniform resource identifiers (URIs) in GET meth- detect, reason about, and react to anomalous behavior be-

ods. For example, the URI: fore it becomes disruptive. However, PlanetLab has an im-
mediate need of responding to disruptions after the fact.
Frequently within the past year, traffic generated by Planet
is a request to the sensor nametbdes ” at the sensor Lab researchers has caught the attention of ISPs, academic
server listening on port 33080. The portion of the URI afterinstitutions, Web sites, and sometimes even home users. In
the sensor name (i.dp/name ) is interpreted by the sen- nearly all cases, the problems have stemmed froivena
sor. In this case, the nodes sensor returns comma-separatsstvice design and analysis, programmer errors, or hyper-
lines containing the IP address and DNS name of each regensitive intrusion detection systems. Examples include
istered PlanetLab node. We selected HTTP as the sensaetwork mapping experiments that probe large numbers of
server protocol because it is a straightforward and wellrandom IP addresses (looks like a scanning worm), services
supported protocol. The primary format for the data re-aggressivelyraceroute  ’ing to certain target sites on dif-
turned by the sensor is a text file containing easy-to-parsterent ports (looks like a portscan), services performing
comma separated values. distributed measurement to a target site (looks like a DDoS
attack), services sending large numbers of ICMP packets
(not a bandwidth problem, but renders low-end routers un-
usable), and so on. Addressing such complaints requires
An assortment of sensor servers have been implementegh auditing tool that can map an incident onto a responsi-
to date, all of which consist of a stripped-down HTTP ble party.
server encapsulating an existing source of information. Specifically, a traffic auditing service runs on every
For example, one sensor server reports various informaPlanetLab node, snooping all outgoing traffic using the ad-
tion about kernel activities. The sensors exported by thisninistrative raw sniffer socket provided by the SILK mod-
server are essentially wrappers around/fitec  file sys-  ule that tags each packet with the ID of the sending vserver.
tem. Example sensors inclugeeminfo (returns infor-  From each packet, the auditing service logs the time it was
mation about current memory usagé&ad (returns 1- sent, the IP source and destination, protocol, port numbers
minute load averagelpad5 (returns 5-minute load aver- and TCP flags if applicable. It then generates Web pages
age),uptime (returns uptime of the node in seconds), andon each node that summarize the traffic sent in the last hour
bandwidth(slice) (returns the bandwidth consumed by IP destination and slice name. The hope is that an ad-
by aslice , given by a slice id). ministrator at a site that receives questionable packes fr
These examples are simple in at least two respects. Firsa, PlanetLab machine will type the machine’s name or IP
they require virtually no processing; they simply parse andaddress into his or her browser, find the audit-generated
filter values already available fproc . Second, they nei- pages, and use them to contact the experimenters about
ther stream information nor do they maintain any history.the traffic. For example, an admin who clicks on an IP

http://localhost:33080/nodes/ip/name
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address in the destination summary page is shown all ovar , each vserver root filesystem mirrors the reference
the PlanetLab accounts that sent a packet to that addressot filesystem while only requiring 29 MB of disk space,
within the last hour, and provided with links to send email 5.7% of the original root filesystem size. This 29 MB con-
to the researchers associated with these accounts. Anothgists of 17.5 MB for a copy ofvar , 5.6 MB for a copy of
link directs the admin to the network traffic database at'etc , and 5.9 MB to create 1408 directories (4 KB per di-
www.planet-lab.org where back logs are archived, so rectory). Given the reduction in vserver disk footprints af
that he or she can make queries about the origin of traffiforded by COW, we have been able to create 1,000 vservers
sent earlier than one hour ago. on a single PlanetLab node. In the future, we would like to
Our experience with the traffic auditing service has beerpush disk space sharing even further by using a true filesys-
mixed. On the one hand, the PlanetLab support team haem COW and applying techniques from systems such as
found it very useful for responding to traffic queries: after the Windows Single Instance Store [7].
receiving a complaint, they use the Web interface to iden- Kernel resource limits are a secondary factor in the scal-
tify the responsible party and forward the complaint on toability of vservers. While each vserver is provided with
him. As a result, there has been a reduction in overall inthe illusion of its virtual execution environment, theral st
cident response time and the time invested by support stafemains a single copy of the underlying operating system
per incident. On the other hand, many external site adminand associated kernel resources. Under heavy degrees of
istrators either do not find the web page or choose not t@oncurrent vserver activity, it is possible that limits ark
use it. For example, when receiving a strange packet fronmel resources may become exposed and consequently limit
planetlab-1.cs.princeton.edu , most sites respond system scalability. (We have already observed this with file
by sending email tabuse@princeton.edu  ; by the time  descriptors.) The nature of such limits, however, are no
the support team receives the complaint, it has bouncedifferent from that of large degrees of concurrency or re-
through several levels of university administration. Weyma source usage within a single vserver or even on an unmod-
be able to avoid this indirection by providing reverse DNSified Linux kernel. In both cases, one solution is to simply
mappings for all nodes taodenamsgplanet-lab.org , extend kernel resource limits by recompiling the kernel. Of
but this requires effort from each site that sponsors Planettourse, simple scaling up of kernel resources may be in-
Lab nodes. Finding mechanisms that further decentralizeufficient if inefficient algorithms are employed within the
the problem-response process is ongoing work. kernel (e.g.,O(n) searches on linked lists). Thus far, we
Finally, although our experience to date has involvedhave yet to run into these types of algorithmic bottlenecks.
implementing and querying read-only sensors that can
be safely accessed by untrusted monitoring services, o . .
could easily imagine PlanetLab also supporting a setef r§_2 Slice Creation
tuatorsthat only trusted management services could use tehjs section reports how long it takes the node manager
control PlanetlLab. For example, there might be an actuag create a vserver on a single node. The current imple-
tor that terminates a slice, so that a Sophia expression cafientation of PLC has each node poll for slice creation in-
be written to kill a slice that has violated global bandwidth stryctions every 10 minutes, but this is an artifact of piggy
consumption limits. Today, slice termination is not exgbse hacking the slice creation mechanism on existing software
as an actuator, but is implemented in the node managejpdate machinery. It remains to be seen how rapidly a slice
it can be invoked only by the trusted PLC service, or ancan pe deployed on a large number of nodes.
authenticated network operator that remotely logs into the ¢ create a new slice on a specific node, a slice creation
node manager. service must complete the following steps at that node:

5 Evaluation 1. the slice creation service contacts a port mapping ser-
vice to find the port where the node manager's XML-

This section evaluates three aspects of slice creation and RPC server is listening for requests;

initialization. . . :
2. the slice creation service performs a node manacter
quire RPC to obtain amcap for immediate rights to a
5.1 Vserver Scalability vserver and best-effort resource usage;

The scalability of vservers is primarily determined by 3. the slice creation service performs a node manager
disk space for vserver root filesystems and service-specific  pind RPC to bind the ticket to a new slice name:;

storage. On PlanetLab, each vserver is created with a

root filesystem that points back to a trimmed-down ref- 4. the node manager, after completing the RPCs, creates
erence root filesystem which comprises 1408 directories  the new vserver and notifies the necessary resource
and 28003 files covering 508 MB of disk. Using vserver’s schedulers to effect the newly added resource bind-
primitive COW on all files, excluding those ietc and ings for the new slice; and



5. the node manager calladduser to instantiate the design allows network services to run in a slice of Planet-
vserver and then callgserver-init to start execution Lab’s global resources, with the PlanetLab OS provid-
of software within the new vserver. ing only local (per-node) abstractions and as much global

. ) ) (network-wide) functionality as possible pushed onto in-
Running on a 1.2GHz Pentium, the first three steps coMp a4y cture services running in their own slices. Onlgesli

plete in 0.15 seconds, on average. How long the fourth, o aion (coupled with resource allocation) and slice term

and fifth steps takes depends on how the user wants to injation run as a global privileged service, but in the long-

tialize the slice. At a minimum, the vserver creation andgrm e expect a set of alternative infrastructure sesvice
initialization takes an additional 9.66 seconds on average, emerge and supplant these bootstrap services

However, this does not include the time to load and initial-
ize any service software such sshd or other packages.
It also assumes a hit in a warm cache of vservers. CreatinfRefer ences

a new vserver from scratch takes over a minute. _
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