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Abstract
PlanetLab is a geographically distributed overlay network
designed to support the deployment and evaluation of
planetary-scale network services. Two high-level goals
shape its design. First, to enable a large research com-
munity to share the infrastructure, PlanetLab providesdis-
tributed virtualization, whereby each service runs in an iso-
lated slice of PlanetLab’s global resources. Second, to sup-
port competition among multiple network services, Planet-
Lab decouples the operating system running on each node
from the network-wide services that define PlanetLab, a
principle referred to asunbundled management. This paper
describes how PlanetLab realizes the goals of distributed
virtualization and unbundled management, with a focus on
the OS running on each node.

1 Introduction

PlanetLab is a geographically distributed overlay plat-
form designed to support the deployment and evaluation
of planetary-scale network services [30]. It currently in-
cludes over 350 machines spanning 150 sites and 20 coun-
tries. It supports over 450 research projects focused on a
wide range of services, including file sharing and network-
embedded storage [11, 22, 35], content distribution net-
works [39], routing and multicast overlays [1, 8], QoS over-
lays [38], scalable object location services [2, 33, 34, 37],
anomaly detection mechanisms [9], and network measure-
ment tools [36].

As a distributed system, PlanetLab is characterized
by a unique set of relationships between principals—
e.g., users, administrators, researchers, service providers—
which make the design requirements for its operating sys-
tem different from traditional hosting services or timeshar-
ing systems.

The first relationship is between PlanetLab as an or-
ganization, and the institutions that own and host Planet-
Lab nodes: the former has administrative control over the
nodes, but local sites also need to enforce policies about
how the nodes are used, and the kinds and quantity of net-

work traffic the nodes can generate. This implies a need to
share control of PlanetLab nodes.

The second relationship is between PlanetLab and
its users, currently researchers evaluating and deploying
planetary-scale services. Researchers must have access to
the platform, which implies a distributed set of machines
that must be shared in a way they will find useful. A Planet-
Lab “account”, together with associated resources, must
therefore span multiple machines. We call this abstractiona
slice, and implement it using a technique calleddistributed
virtualization.

A third relationship exists between PlanetLab and those
researchers contributing to the system by designing and
building infrastructure services, that is, services that con-
tribute to the running of the platform as opposed to being
merely applications on it. Not only must each of these ser-
vices run in a slice, but PlanetLab must support multiple,
parallel services with similar functions developed by differ-
ent groups. We call this principleunbundled management,
and it imposes its own requirements on the system.

Finally, PlanetLab exists in relation to the rest of the In-
ternet. Experience shows that the experimental network-
ing performed on PlanetLab can easily impact many ex-
ternal sites’ intrusion detection and vulnerability scanners.
This leads to requirements for policies limiting what traffic
PlanetLab users can send to the rest of the Internet, and a
way for concerned outside individuals to find out exactly
why they are seeing unusual traffic from PlanetLab. The
rest of the Internet needs to feel safe from PlanetLab.

The contribution of this paper is to describe in more de-
tail the requirements that result from these relationships,
and how PlanetLab fulfills them using a synthesis of oper-
ating systems techniques. This contribution is partly one of
design because PlanetLab is a work-in-progress and only
time will tell what infrastructure services will evolve to
give it fuller definition. At the same time, however, this
design is largely the product of our experience having hun-
dreds of users stressing PlanetLab since the platform be-
came operational in July 2002.



2 Requirements

This section defines distributed virtualization and unbun-
dled management, and identifies the requirements each
places on PlanetLab’s design.

2.1 Distributed Virtualization

PlanetLab services and applications run in aslice of the
platform: a set of nodes on which the service receives a
fraction of each node’s resources, in the form of a virtual
machine (VM). Virtualization and virtual machines are, of
course, well-established concepts. What is new in Planet-
Lab is distributed virtualization: the acquisition of a dis-
tributed set of VMs that are treated as a single, compound
entity by the system.

To support this concept, PlanetLab must provide facil-
ities to create a slice, initialize it with sufficient persistent
state to boot the service or application in question, and bind
the slice to a set of resources on each constituent node.
However, much of a slice’s behavior is left unspecified in
the architecture. This includes exactly how a slice is cre-
ated, which we discuss in the context of unbundled man-
agement, as well as the programming environment Planet-
Lab provides. Giving slices as much latitude as possible in
defining a suitable environment means, for example, that
the PlanetLab OS does not provide tunnels that connect the
constituent VMs into any particular overlay configuration,
but instead provides an interface that allows each service to
define its own topology on top of the fully-connected Inter-
net. Similarly, PlanetLab does not prescribe a single lan-
guage or runtime system, but instead allows slices to load
whatever environments or software packages they need.1

2.1.1 Isolating Slices

PlanetLab must isolate slices from each other, thereby
maintaining the illusion that each slice spans a distributed
set of private machines. The same requirement is seen in
traditional operating systems, except that in PlanetLab the
slice is a distributed set of VMs rather than a single process
or image. Per-node resource guarantees are also required:
for example, some slices run time-sensitive applications,
such as network measurement services, that have soft real-
time constraints reminiscent of those provided by multime-
dia operating systems. This means three things with respect
to the PlanetLab OS:

• It mustallocate and schedule node resources(cycles,
bandwidth, memory, and storage) so that the runtime
behavior of one slice on a node does not adversely
affect the performance of another on the same node.

1This is not strictly true, as PlanetLab currently provides aUnix API at
the lowest level. Our long-term goal, however, is to decouple those aspects
of the API that are unique to PlanetLab from the underlying programming
environment.

Moreover, certain slices must be able to request a min-
imal resource level, and in return, receive (soft) real-
time performance guarantees.

• It must eitherpartition or contextualize the available
name spaces(network addresses, file names, etc.) to
prevent a slice interfering with another, or gaining ac-
cess to information in another slice. In many cases,
this partitioning and contextualizing must be coordi-
nated over the set of nodes in the system.

• It mustprovide a stable programming basethat cannot
be manipulated by code running in one slice in a way
that negatively affects another slice. In the context of
a Unix- or Windows-like operating system, this means
that a slice cannot be given root or system privilege.

Resource scheduling and VM isolation were recognized
as important issues from the start, but the expectation was
that a “best effort” solution would be sufficient for some
time. Our experience, however, is that excessive loads
(especially near conference deadlines) and volatile per-
formance behavior (due to insufficient isolation) were the
dominant problems in early versions of the system. The
lack of isolation has also led to significant management
overhead, as human intervention is required to deal with
run-away processes, unbounded log files, and so on.

2.1.2 Isolating PlanetLab

The PlanetLab OS must also protect the outside world from
slices. PlanetLab nodes are simply machines connected
to the Internet, and as a consequence, buggy or malicious
services running in slices have the potential to affect the
global communications infrastructure. Due to PlanetLab’s
widespread nature and its goal of supporting novel network
services, this impact goes far beyond the reach of an appli-
cation running on any single computer. This places two
requirements on the PlanetLab OS.

• It must thoroughly account resource usage, and make
it possible to placelimits on resource consumption
so as to mitigate the damage a service can inflict on
the Internet. Proper accounting is also required to
isolate slices from each other. Here, we are con-
cerned both with the node’s impact on the hosting
site (e.g., how much network bandwidth it consumes)
and remote sites completely unaffiliated with Planet-
Lab (e.g., sites that might be probed from a PlanetLab
node). Furthermore, both the local administrators of a
PlanetLab site and PlanetLab as an organization need
to collectively set these policies for a given node.

• It must make it easy toaudit resource usage, so that
actions(rather than just resources) can be accounted
to slices after the fact. This concern about how users
(or their services) affect the outside world is a novel



requirement for PlanetLab, unlike traditional time-
sharing systems, where the interactions between users
and unsuspecting outside entities is inherently rare.

Security was recognized from the start as a critical is-
sue in the design of PlanetLab. However, effectively limit-
ing and auditing legitimate users has turned out to be just
as significant an issue as securing the OS to prevent mali-
cious users from hijacking machines. For example, a sin-
gle PlanetLab user running TCP throughput experiments
on U.C. Berkeley nodes managed to consume over half
of the available bandwidth on the campus gateway over a
span of days. Also, many experiments (e.g., Internet map-
ping) have triggered IDS mechanisms, resulting in com-
plaints that have caused local administrators to pull the plug
on nodes. The Internet has turned out to be unexpectedly
sensitive to the kinds of traffic that experimental planetary-
scale services tend to generate.

2.2 Unbundled Management

Planetary-scale services are a relatively recent and ongo-
ing subject of research; in particular, this includes the ser-
vices required to manage a global platform such as Planet-
Lab. Moreover, it is an explicit goal of PlanetLab to allow
independent organizations (in this case, research groups)
to deploy alternative services in parallel, allowing users
to pick which ones to use. This applies to application-
level services targeted at end-users, as well asinfrastruc-
ture servicesused to manage and control PlanetLab itself
(e.g., slice creation, resource and topology discovery, per-
formance monitoring, and software distribution). The key
to unbundled management is to allow parallel infrastructure
services to run in their own slices of PlanetLab and evolve
over time.

This is a new twist on the traditional problem of how to
evolve a system, where one generally wants to try a new
version of some service in parallel with an existing ver-
sion, and roll back and forth between the two versions. In
our case, multiple competing services are simultaneously
evolving. The desire to support unbundled management
leads to two requirements for the PlanetLab OS.

• To minimize the functionality subsumed by the
PlanetLab OS—and maximize the functionality run-
ning as services on top of the OS—only local (per-
node) abstractionsshould be directly supported by the
OS, allowing all global (network-wide) abstractions to
be implemented by infrastructure services.

• To maximize the opportunity for services to compete
with each other on a level playing field, the interface
between the OS and these infrastructure services must
be sharable, and hence, without special privilege. In
other words, rather than have a single privileged ap-
plication controlling a particular aspect of the OS, the

PlanetLab OS potentially supports many such man-
agement services. One implication of this interface
being sharable is that it must be well-defined, explic-
itly exposing the state of the underlying OS. In con-
trast, the interface between an OS and a privileged
control program running in user space is often ad hoc
since the control program is, in effect, an extension of
the OS that happens to run in user space.

Of particular note,slice creationis itself implemented
as a service running in its own slice, which leads to the
following additional requirement on the PlanetLab OS:

• It must provide alow-level interface for creating a VM
that can be shared by multiple slice creation services.
It must also host a “bootstrapping” slice creation ser-
vice to create initial slices, including the slices that
other slice creation services run in.

An important technical issue that will influence how the
slice abstraction evolves is how quickly a network-wide
slice can be instantiated. Applications like the ones listed
in the Introduction are relatively long-lived (although pos-
sibly modified and restarted frequently), and hence the pro-
cess of creating the slice in which they run can be a heavy-
weight operation. On the other hand, a facility for rapidly
establishing and tearing down a slice (analogous to creat-
ing/destroying a network connection) would lead to slices
that are relatively short-lived, for example, a slice that cor-
responds to a communication session with a known set of
participants. We evaluate the performance of the current
slice creation mechanism in Section 5. It is not yet clear
what other slice creation services the user community will
provide, or how they will utilize the capability to create and
destroy slices.

The bottom line is that OS design often faces a tension
between implementing functionality in the kernel and run-
ning it in user space, the objective often being to minimize
kernel code. Like many VMM architectures, the Planet-
Lab OS faces an additional, but analogous, tension between
what can run in a slice or VM, and functionality (such as
slice user authentication) that requires extra privilege or ac-
cess but is not part of the kernel. In addition, there is a third
aspect to the problem that is peculiar to PlanetLab: func-
tionality that can be implemented by parallel, competing
subsystems, versus mechanisms which by their very nature
can only be implemented once (such as bootstrapping slice
creation). The PlanetLab OS strives to minimize the latter,
but there remains a core of non-kernel functionality that has
to be unique on a node.

2.3 Evolving Architecture

While unbundled management addresses the challenge of
evolving PlanetLab as a whole, there remains the very prac-
tical issue of evolving the underlying OS that supports un-
bundled management.
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Figure 1: PlanetLab Node Architecture

Simply stated, the research community was ready to use
PlanetLab the moment the first machines were deployed.
Waiting for a new OS tailored for broad-coverage services
was not an option, and in any case without first gaining
some experience, no one could fully understand what such
a system should look like. Moreover, experience with pre-
vious testbeds strongly suggested two biases of application
writers: (1) they are seldom willing to port their applica-
tions to a new API, and (2) they expect a full-featured sys-
tem rather than a minimalist API tuned for someone else’s
OS research agenda.

This suggested the strategy of starting with a full-
featured OS—we elected to use Linux due to its widespread
use in the research community—and incrementally trans-
forming it based on experience. This evolution is guided
by the “meta” architecture depicted in Figure 1.

At the lowest level, each PlanetLab node runs avir-
tual machine monitor(VMM) that implements and isolates
VMs. The VMM also defines the API to which services are
implemented. PlanetLab currently implements the VMM
as a combination of the Linux kernel and a set of kernel
extensions, as outlined in Section 4.

A privileged, “root” VM running on top of the VMM,
called thenode manager, monitors and manages all the
VMs on the node. Generally speaking, the node manager
enforces policies on creating VMs and allocating resources
to them, with services interacting with the node manager
to create new VMs rather than directly calling the VMM.
Moreover, all interactions with the node manager are local:
only services running in some other VM on the node are
allowed to call the node manager, meaning that remote ac-
cess to a specific node manager is always indirect through
one of the services running on the node. Today, most policy
is hard-coded into the node manager, but we expect that lo-
cal administrators will eventually be able to configure the
policies on their own nodes. (This is the purpose of the
local administrator VM shown in Figure 1.)

A subset of the services (slices) running on top of the
VMM can be characterized asprivilegedin some way: they
are allowed to make privileged calls to the node manager
(e.g., to allocate local resources to a VM). We expect all
slices that provide a service to end-users to be unprivi-
leged, while some infrastructure services may need to run
in a privileged slice. To date, three types of infrastruc-

ture services are emerging: (1) brokerage services that are
used to acquire resources and create slices that are bound
to them, (2) environment services that are used to initialize
and maintain a slice’s code base, and (3) monitoring ser-
vices that are used to both discover the available resources
and monitor the health of running services.

Because we expect new facilities to be incorporated into
the architecture over time, the key question is where any
new functionality should be implemented: in an unprivi-
leged slice, in a privileged slice, in the node manager, or in
the VMM? Such decisions are guided by the following two
principles:

• Each function should be implemented at the “high-
est” level possible, that is, running a service in a slice
with limited privileged capabilities is preferred to a
slice with widespread privileges, which in turn is pre-
ferred to augmenting the node manager, all of which
are preferable to adding the function to the VMM.

• Privileged slices should be granted the minimal privi-
leges necessary to support the desired behavior. They
should not be granted blanket superuser privileges.

3 Design Alternatives

The PlanetLab OS is a synthesis of existing operating sys-
tems abstractions and techniques, applied to the new con-
text of a distributed platform, and motivated by the require-
ments discussed in the previous section. This section dis-
cusses how PlanetLab’s requirements recommend certain
approaches over others, and in the process, discusses re-
lated work.

3.1 Node Virtualization

The first challenge of the PlanetLab OS is to provide a vir-
tual machine abstraction for slices; the question is, at what
level? At one end of the spectrum, full hypervisors like
VMware completely virtualize the physical hardware and
thus support multiple, unmodified operating system bina-
ries. If PlanetLab were to supply this low level of virtu-
alization, each slice could run its own copy of an OS and
have access to all of the devices and resources made avail-
able to it by the hypervisor. This would allow PlanetLab to
support OS kernel research, as well as provide stronger iso-
lation by removing contention for OS resources. The cost
of this approach is performance: VMware cannot support
the number of simultaneous slices required by PlanetLab
due to the large amount of memory consumed by each ma-
chine image. Thus far, the PlanetLab community has not
required the ability to run multiple operating systems, and
so PlanetLab is able to take advantage of the efficiency of
supporting a single OS API.

A slightly higher-level approach is to useparavirtualiza-
tion, proposed by so-called isolation kernels like Xen [4]



and Denali [41]. Short of full virtualization of the hard-
ware, a subset of the processor’s instruction set and some
specialized virtual devices form the virtual machine ex-
ported to users. Because the virtual machine is no longer
a replica of a physical machine, operating systems must be
ported to the new “architecture”, but this architecture can
support virtualization far more efficiently. Paravirtualizing
systems are not yet mature, but if they can be shown to
scale, they represent a promising technology for PlanetLab.

The approach we adopted is to virtualize at the system-
call level, similar to commercial offerings like Ensim [14],
and projects such as User Mode Linux [12], BSD’s
Jail [21], and Linux vservers [25]. Such high-level vir-
tualization adequately supports PlanetLab’s goals of sup-
porting large numbers of overlay services, while providing
reasonable assurances of isolation.

3.2 Isolation and Resource Allocation

A second, orthogonal challenge is to isolate virtual ma-
chines. Operating systems with the explicit goal of iso-
lating application performance go back at least as far as
the KeyKOS system [18], which provided strict resource
accounting between mutually antagonistic users. More re-
cently, isolation mechanisms have been explored for multi-
media support, where many applications require soft real-
time guarantees. Here the central problem iscrosstalk,
where contention for a shared resource (often a server pro-
cess) prevents the OS from correctly scheduling tasks. This
has variously been addressed by sophisticated account-
ing across control transfers as in Processor Capacity Re-
serves [27], scheduling along data paths as in Scout [28], or
entirely restructuring the OS to eliminate server processes
in the data path as in Nemesis [23]. The PlanetLab OS
borrows isolation mechanisms from Scout, but the key dif-
ference is in how these mechanisms are controlled, since
each node runs multiple competing tasks that belong to a
global slice, rather than a purely local set of cooperating
tasks.

The problem of distributed coordination of resources, in
turn, has been explored in the context of Condor [26] and
more recently the Open Grid Services Architecture [16].
However, both these systems are aimed at the execution of
batch computations, rather than the support of long-running
network services. They also seek to define complete archi-
tectures within which such computations run. In PlanetLab
the requirements are rather different: the platform must
support multiple approaches to creating and binding re-
sources to slices. To illustrate this distinction, we point
out that both the Globus grid toolkit and the account man-
agement system of the Emulab testbed [42] have been im-
plemented above PlanetLab, as have more service-oriented
frameworks like SHARP [17].

3.3 Network Virtualization

Having settled on node virtualization at the system call
level, the third challenge is how to virtualize the network.
Vertically-structured operating systems like Exokernel and
Nemesis have explored allowing access to raw network de-
vices by using filters on send and receive [6, 13]. The
PlanetLab OS uses a similar approach, providing shared
network access using a “safe” version of the raw socket in-
terface.

Exokernels have traditionally either provided the raw
(physical) device to a single library OS to manage, or con-
trolled sharing of the raw device between library OSes
based on connections. However, in PlanetLab the kernel
must take responsibility for sharing raw access (both re-
ception and transmission of potentially arbitrary packets)
among multiple competing services in a controlled man-
ner according to some administrative policy. Additionally,
it must protect the surrounding network from buggy and
malicious services, an issue typically ignored by existing
systems.

An alternative to sharing and partitioning a single net-
work address space among all virtual machines is tocon-
textualizeit—that is, we could present each VM with its
own local version of the space by moving the demultiplex-
ing to another level. For instance, we could assign a differ-
ent IP address to each VM and allow each to use the entire
port space and manage its own routing table. The prob-
lem is that we simply do not have enough IPv4 addresses
available to assign on the order of 1000 to each node.

3.4 Monitoring

A final, and somewhat new challenge is to support the
monitoring and management of a large distributed infras-
tructure. On the network side, commercial management
systems such as HP OpenView and Micromuse Netcool
provide simplified interfaces to routing functionality, ser-
vice provisioning, and equipment status checks. On the
host management side, systems such as IBM’s Tivoli and
Computer Associates’ UniCenter address the correspond-
ing problems of managing large numbers of desktop and
server machines in an enterprise. Both kinds of systems
are aimed at single organizations, with well-defined appli-
cations and goals, seeking to manage and control the equip-
ment they own. Managing a wide-area, evolving, federated
system like PlanetLab (or the Internet as a whole) poses
different challenges. Here, we are pretty much on our own.

4 Planetlab OS

This section defines the PlanetLab OS, the per-node soft-
ware upon which the global slice abstraction is built.
The PlanetLab OS consists of a Linux 2.4-series kernel
with patches for vservers and hierarchical token bucket



packet scheduling; the SILK (Scout in Linux Kernel) mod-
ule [5, 32] that provides CPU scheduling, network account-
ing, and safe raw sockets; and the node manager, a trusted
domain that contains slice bootstrapping machinery and
node monitoring and management facilities. We describe
the functionality provided by these components and discuss
how it is used to implement slices, focusing on four main
areas: the VM abstraction, resource allocation, controlled
access to the network, and system monitoring.

4.1 Node Virtualization

A slice corresponds to a distributed set of virtual machines.
Each VM, in turn, is implemented as avserver[25]. The
vserver mechanism is a patch to the Linux 2.4 kernel that
provides multiple, independently managed virtual servers
running on a single machine. Vservers are the principal
mechanism in PlanetLab for providing virtualization on a
single node, and contextualization of name spaces; e.g.,
user identifiers and files.

As well as providing security between slices sharing a
node, vservers provide a limited root privilege that allowsa
slice to customize its VM as if it was a dedicated machine.
Vservers also correspond to the resource containers used
for isolation, which we discuss in section 4.2.

4.1.1 Interface

Vservers provide virtualization at the system call level
by extending the non-reversible isolation provided by
chroot for filesystems to other operating system re-
sources, such as processes and SysV IPC. Processes within
a vserver are given full access to the files, processes, SysV
IPC, network interfaces, and accounts that can be named in
their containing vserver, and are otherwise denied access
to system-wide operating system resources. Each vserver
is given its own UID/GID namespace, along with a weaker
form of root that provides a local superuser without com-
promising the security of the underlying machine.

Despite having only a subset of the true superuser’s
capabilities, vserverroot is still useful in practice. It
can modify the vserver’s root filesystem, allowing users
to customize the installed software packages for their
vserver. Combined with per-vserver UID/GID names-
paces, it allows vservers to implement their own account
management schemes (e.g., by maintaining a per-vserver
/etc/passwd and runningsshd on a different TCP
port), thereby providing the basis for integration with other
wide-area testbeds such as NetBed [42] and RON [1].

A vserver is initialized with two pieces of persistent
state: a set of SSH keys and a vserver-specificrc.vinit
file. The former allow the owners of the slice to SSH into
the vserver, while the latter serves as a boot script that gets
executed each time the vserver starts running.

Vservers communicate with one another via IP, and not
local sockets or other IPC functions. This strong separation

between slices simplifies resource management and isola-
tion between vservers, since the interaction between two
vservers is independent of their locations. However, the
namespace of network addresses (IP address and port num-
bers) is not contextualized: this would imply either an IP
address for each vserver, or hiding each vserver behind a
per-node NAT. We rejected both these options in favor of
slices sharing port numbers and addresses on a single node.

4.1.2 Implementation

Each vserver on a machine is assigned a uniquesecu-
rity context, and each process is associated with a specific
vserver through its security context. A process’s security
context is assigned via a new system call and inherited by
the process’s descendants. Isolation between vservers is
enforced at the system call interface by using a combina-
tion of security context and UID/GID to check access con-
trol privileges and decide what information should be ex-
posed to a given process. All of these mechanisms are im-
plemented in the baseline vserver patch to the kernel. We
have implemented several utilities to simplify creating and
destroying vservers, and to transparently redirect a user into
the vserver for his or her specific slice using SSH.

On PlanetLab, our utilities initialize a vserver by creating
a mirror of a reference root filesystem inside the vserver us-
ing hard links and the “immutable” and “immutable invert”
filesystem bits. Next we create two Linux accounts with lo-
gin name equal to the slice name, one in the node’s primary
vserver and one in the vserver just created, and sharing a
single UID. The default shell for the account in the main
vserver is set to/bin/vsh , a modifiedbash shell that
performs the following four actions upon login: switching
to the slice’s vserver security context,chroot ing to the
vserver’s root filesystem, relinquishing a subset of the true
superuser’s capabilities, and redirecting into the other ac-
count inside the vserver. The result of this two-account
arrangement is that users accessing their virtual machines
remotely via SSH/SCP are transparently redirected into the
appropriate vserver and need not modify any of their exist-
ing service management scripts.

By virtualizing above a standard Linux kernel, vservers
achieve substantial sharing of physical memory and disk
space, with no active state needed for idle vservers. For
physical memory, savings are accrued by having single
copies of the kernel and daemons, and shared read-only and
copy-on-write memory segments across unrelated vservers.
Disk space sharing is achieved using the filesystem im-
mutable invert bit which allows for a primitive form of
copy-on-write (COW). Using COW on chrooted vserver
root filesystems, vserver disk footprints are just 5.7% of
that required with full copies (Section 5.1). Comparable
sharing in a virtual machine monitor or isolation kernel is
strictly harder, although with different isolation guarantees.

PlanetLab’s application of vservers makes extensive use
of the Linux capability mechanism. Capabilities deter-



mine whether privileged operations such as pinning phys-
ical memory or rebooting are allowed. In general, the
vserverroot account is denied all capabilities that could
undermine the security of the machine (e.g., accessing raw
devices) and granted all other capabilities. However, as dis-
cussed in Section 2.3, each PlanetLab node supports two
special contexts with additional capabilities: thenode man-
agerand theadmin slice.

The node manager context runs with standardroot ca-
pabilities and includes the machinery to create a slice, ini-
tialize its state, and assign resources to it; sensors that ex-
port information about the node; and a traffic auditing ser-
vice. The admin slice provides weaker privileges to site ad-
ministrators, giving them a set of tools to manage the nodes
without providing fullroot access. The admin context has
a complete view of the machine and can, for example, cap
the node’s total outgoing bandwidth rate, kill arbitrary pro-
cesses, and runtcpdump to monitor traffic on the local
network.

4.1.3 Discussion

Virtualizing above the kernel has a cost: weaker guarantees
on isolation and challenges for eliminating QoS crosstalk.
Unlike virtual machine monitors and isolation kernels that
provide isolation at a low level, vservers implement isola-
tion at the system call interface. Hence, a malicious vserver
that exploits a Linux kernel vulnerability might gain con-
trol of the operating system, and hence compromise secu-
rity of the machine. We have observed such an incident, in
which a subset of PlanetLab nodes were compromised in
this way. This would have been less likely using a lower-
level VM monitor. Another potential cost incurred by vir-
tualizing above the kernel is QoS crosstalk. Eliminating all
QoS crosstalk (e.g., interactions through the buffer cache)
is strictly harder with vservers. As described in the next
section, however, fairly deep isolation can be achieved.

The combination of vservers and capabilities provides
more flexibility in access control than we currently use in
PlanetLab. For example, sensor slices (see section 4.4)
could be granted access to information sources that cannot
otherwise easily be shared among clients. As we gain expe-
rience on the privileges services actually require, extending
the set of Linux capabilities is a natural path toward expos-
ing privileged operations in a controlled way.

4.2 Isolation and Resource Allocation

A key feature of slices is the isolation they provide between
services. Early experience with PlanetLab illustrates the
need for slice isolation. For example, we have seen slices
acquire all available file descriptors on several nodes, pre-
venting other slices from using the disk or network; rou-
tinely fill all available disk capacity with unbounded event
logging; and consume 100% of the CPU on 50 nodes by

running an infinite loop. Isolating slices is necessary to
make the platform useful.

The node manager provides a low-level interface for ob-
taining resources on a node and binding them to a local
VM that belongs to some slice. The node manager does
not make any policy decisions regarding how resources are
allocated, nor is it remotely accessible. Instead, a boot-
strap brokerage service running in a privileged slice imple-
ments the resource allocation policy. This policy includes
how many resources to allocate to slices that run other bro-
kerage services; such services are then free to redistribute
those resources to still other slices. Note that resource al-
location is largely controlled by a central policy in the cur-
rent system, although we expect it to eventually be defined
by the node owner’s local administrator. Today, the only
resource-related policy set by the local node administrator
is an upper bound on the total outgoing bandwidth that may
be consumed by the node.

4.2.1 Interface

The node manager denotes the right to use a set of node re-
sources as aresource capability(rcap)—a 128-bit opaque
value, the knowledge of which provides access to the as-
sociated resources. The node manager provides privileged
slices with the following operation to create a resource ca-
pability:

rcap← acquire(rspec)

This operation takes aresource specification(rspec) as an
argument, and returns anrcap should there by sufficient re-
sources on the node to satisfy therspec. Each node man-
ager tracks both the set of resources available on the node,
and the mapping between committed resources and the cor-
respondingrcaps; i.e., thercap serves as an index into a
table ofrspecs.

The rspec describes a slice’s privileges and resource
reservations over time. Eachrspec consists of a list of
reservations for physical resources (e.g., CPU cycles, link
bandwidth, disk capacity), limits on logical resource usage
(e.g., file descriptors), assignments of shared name spaces
(e.g., TCP and UDP port numbers), and other slice priv-
ileges (e.g., the right to create a virtual machine on the
node). Therspec also specifies the start and end times
of the interval over which these values apply.

Once acquired,rcaps can be passed from one service to
another. The resources associated with thercap are bound
to a virtual machine (vserver) at slice creation time using
the following operation:

bind(slice name, rcap)

This operation takes a slice identifier and anrcap as argu-
ments, and assuming therspec associated with thercap
includes the right to create a virtual machine, creates the
vserver and binds the resources described by thercap to



it. Note that the node manager supports other operations to
manipulatercaps, as described more fully elsewhere [10].

4.2.2 Implementation

Non-renewable resources, such as memory pages, disk
space, and file descriptors, are isolated using per-slice
reservations and limits. These are implemented by wrap-
ping the appropriate system calls or kernel functions to in-
tercept allocation requests. Each request is either accepted
or denied based on the slice’s current overall usage, and
if it is accepted, the slice’s counter is incremented by the
appropriate amount.

For renewable resources such as CPU cycles and link
bandwidth, the OS supports two approaches to providing
isolation: fairnessand guarantees. Fairness ensures that
each of theN slices running on a node receives no less
than 1/N of the available resources during periods of con-
tention, while guarantees provide a slice with a reserved
amount of the resource (e.g., 1Mbps of link bandwidth).
PlanetLab provides CPU and bandwidth guarantees for
slices that request them, and “fair best effort” service for
the rest. In addition to isolating slices from each other, re-
source limits on outgoing traffic and CPU usage can protect
the rest of the world from PlanetLab.

The Hierarchical Token Bucket (htb) queuing discipline
of the Linux Traffic Control facility (tc) [24] is used to cap
the total outgoing bandwidth of a node, cap per-vserver
output, and to provide bandwidth guarantees and fair ser-
vice among vservers. The node administrator configures
the root token bucket with the maximum rate at which the
site is willing to allow traffic to leave the node. At vserver
startup, a token bucket is created that is a child of the root
token bucket; if the service requests a guaranteed band-
width rate, the token bucket is configured with this rate,
otherwise it is given a minimal rate (5Kbps) for “fair best
effort” service. Packets sent by a vserver are tagged in
the kernel and subsequently classified to the vserver’s to-
ken bucket. Thehtb queuing discipline then provides each
child token bucket with its configured rate, and fairly dis-
tributes the excess capacity from the root to the children
that can use it in proportion to their rates. A bandwidth
cap can be placed on each vserver limiting the amount of
excess capacity that it is able to use. By default, the rate
of the root token bucket is set at 100Mbps; each vserver is
capped at 10Mbps and given a rate of 5Kbps for “fair best
effort” service.

In addition to this general rate-limiting facility,htb can
also be used to limit the outgoing rate for certain classes
of packets that may raise alarms within the network. For
instance, we are able to limit the rate of outgoing pings (as
well as packets containing IP options) to a small number
per second; this simply involves creating additional child
token buckets and classifying outgoing packets so that they
end up in the correct bucket. Identifying potentially trou-
blesome packets and determining reasonable output rates

for them is a subject of ongoing work.
CPU scheduling is implemented by the SILK kernel

module, which leverages Scout [28] to provide vservers
with CPU guarantees and fairness. Replacing Linux’s CPU
scheduler was necessary because, while Linux provides ap-
proximate fairness between individual processes, it cannot
enforce fairness between vservers; nor can it provide guar-
antees. PlanetLab’s CPU scheduler uses a proportional
sharing (PS) scheduling policy to fairly share the CPU.
It incorporates the resource container [3] abstraction and
maps each vserver onto a resource container that possesses
some number of shares. Individual processes spawned by
the vserver are all placed within the vserver’s resource con-
tainer. The result is that the vserver’s set of processes re-
ceives a CPU rate proportional to the vserver’s shares di-
vided by the sum of shares of all active vservers. For ex-
ample, if a vserver is assigned 10 shares and the sum of
shares of all active vservers (i.e., vservers that contain a
runnable process) is 50, then the vserver with 10 shares
gets 10/50= 20% of the CPU.

The PS scheduling policy is also used to provide min-
imum cycle guarantees by capping the number of shares
and using an admission controller to ensure that the cap
is not exceeded. The current policy limits the number of
outstanding CPU shares to 1000, meaning that each share
is a guarantee for at least 0.1% of the CPU. Additionally,
the PlanetLab CPU scheduler provides a switch to allow
a vserver to proportionally share the excess capacity, or to
limit it to its guaranteed rate (similar to the Nemesis sched-
uler [23]). In the previous example, the vserver with 10
shares received 20% of the CPU because it was allowed to
proportionally share the excess; with this bit turned off, it
would be rate-capped at 10/1000= 1% of the CPU.

4.2.3 Discussion

We have implemented a centrally-controlled brokerage ser-
vice, called PlanetLab Central (PLC), that is responsible
for globally creating slices [31]. PLC maintains a database
of principals, slices, resource allocations, and policieson
a central server. It exports an interface that includes op-
erations to create and delete slices; specify a boot script,
set of user keys, and resources to be associated with the
slice; and instantiate a slice on a set of nodes. A per-node
component of PLC, called aresource manager, runs in a
privileged slice; it is allowed to call theacquire operation
on each node. The resource manager on each node period-
ically communicates with the central PLC server to obtain
policy about what slices can be created and how many re-
sources are to be bound to each.

PLC allocates resources to participating institutions and
their projects, but it also allocates resources to other bro-
kerage services for redistribution. In this way, PLC serves
as a bootstrap brokerage service, where we expect more
sophisticated (and more decentralized) services to evolve
over time. We envision this evolution proceeding along two



dimensions.
First, PLC currently allows the resources bound to a slice

to be specified by a simple(share, duration) pair, rather
than exposing the more detailedrspec accepted by the
node manager. Theshare specifies a relative share of each
node’s CPU and link capacity that the slice may consume,
while duration indicates the period of time for which this
allocation is valid. PLC policy specifies how to translate
the share value given by a user into a validrspec pre-
sented to the node manager. Over time we expect PLC to
expose more of therspec structure directly to users, im-
posing less policy on resource allocation decisions. We de-
cided to initially hide the node manager interface because
its semantics are not well-defined at this point: how to di-
vide resources into allocatable units is an open problem,
and to compensate for this difficulty, the fields of therspec
are meaningful only to the individual schedulers on each
node.

Second, there is significant interest in developing
market-based brokerage services that establish resource
value based on demand, and a site’s purchasing capacity
based on the resources it contributes. PLC currently has a
simple model in which each site receives an equal number
of shares that it redistributes to projects at that site. PLC
also allocates shares directly to certain infrastructure ser-
vices, including experimental brokerage services that are
allowed to redistribute them to other services. In the long
term, we envision each site administrator deciding to em-
ploy different, or possibly even multiple, brokerage ser-
vices, giving each some fraction of its total capacity. (In
effect, site administrators currently allocate 100% of their
resources to PLC by default.)

To date, PLC supports two additional brokerage ser-
vices: Emulab and SHARP. Emulab supports short-lasting
network experiments by pooling a set of PlanetLab re-
sources and establishing a batch queue that slices are able
to use to serialize their access. This is useful during times
of heavy demand, such as before conference deadlines.
SHARP [17] is a secure distributed resource management
framework that allows agents, acting on behalf of sites, to
exchange computational resources in a secure, fully decen-
tralized fashion. In SHARP, agents peer to trade resources
with peering partners using cryptographically signed state-
ments about resources.

4.3 Network Virtualization

The PlanetLab OS supports network virtualization by pro-
viding a “safe” version of Linux raw sockets that services
can use to send and receive IP packets without root privi-
leges. These sockets are safe in two respects. First, each
raw socket is bound to a particular TCP or UDP port and
receives traffic only on that port; conflicts are avoided by
ensuring that only one socket of any type (i.e., standard
TCP/UDP or raw) is sending on a particular port. Second,

outgoing packets are filtered to make sure that the local ad-
dresses in the headers match the binding of the socket. Safe
raw sockets support network measurement experiments and
protocol development on PlanetLab.

Safe raw sockets can also be used to monitor traffic
within a slice. A “sniffer” socket can be bound to any port
that is already opened by the same VM, and this socket re-
ceives copies of all packet headers sent and received on that
port. Additionally, sufficiently privileged slices can open a
special administrative sniffer socket that receives copies of
all outgoing packets on the machine tagged with the con-
text ID of the sending vserver; this administrative socket is
used to implement the traffic monitoring facility described
in Section 4.4.

4.3.1 Interface

A standard Linux raw socket captures all incoming IP pack-
ets and allows writing of arbitrary packets to the network.
In contrast, a safe raw socket is bound to a specific UDP or
TCP port and receives only packets matching the protocol
and port to which it is bound. Outgoing packets are filtered
to ensure that they are well-formed and that source IP and
UDP/TCP port numbers are not spoofed.

Safe raw sockets use the standard Linux socket API with
minor semantic differences. Just as in standard Linux,
first a raw socket must be created with thesocket sys-
tem call, with the difference that it is necessary to spec-
ify IPPROTOTCPor IPPROTOUDPin the protocol field.
It must then be bound to a particular local port of the
specified protocol using the Linuxbind system call. At
this point the socket can send and receive data using the
usualsendto , sendmsg , recvfrom , recvmsg , and
select calls. The data received includes the IP and
TCP/UDP headers, but not the link layer header. The
data sent, by default, does not need to include the IP
header; a slice that wants to include the IP header sets the
IP HDRINCLsocket option on the socket.

ICMP packets can also be sent and received through safe
raw sockets. Each safe raw ICMP socket is bound to either
a local TCP/UDP port or an ICMP identifier, depending
on the type of ICMP messages the socket will receive and
send. To get ICMP packets associated with a specific lo-
cal TCP/UDP port (e.g., Destination Unreachable, Source
Quench, Redirect, Time Exceeded, Parameter Problem),
the ICMP socket needs to be bound to the specific port.
To exchange ICMP messages that are not associated with
a specific TCP/UDP port—e.g., Echo, Echo Reply, Times-
tamp, Timestamp Reply, Information Request, and Infor-
mation Reply—the socket has to be bound to a specific
ICMP identifier (a 16-bit field present in the ICMP header).
Only messages containing the bound identifier can be re-
ceived and sent through a safe raw ICMP socket.

PlanetLab users can debug protocol implementations
or applications using “sniffer” raw sockets. Most slices
lack the necessary capability to put the network card into



promiscuous mode and so cannot runtcpdump in the
standard way. A sniffer raw socket can be bound to a
TCP or UDP port that was previously opened in the same
vserver; the socket receives copies of all packets sent or re-
ceived on the port but cannot send packets. A utility called
plabdump opens a sniffer socket and pipes the packets to
tcpdump for parsing, so that a user can get full tcpdump-
style output for any of his or her connections.

4.3.2 Implementation

Safe raw sockets are implemented by the SILK kernel mod-
ule, which intercepts all incoming IP packets using Linux’s
netfilter interface and demultiplexes each to a Linux
socket or to a safe raw socket. Those packets that de-
multiplex to a Linux socket are returned to Linux’s pro-
tocol stack for further processing; those that demultiplex
to a safe raw socket are placed directly in the per-socket
queue maintained by SILK. When a packet is sent on a safe
raw socket, SILK intercepts it by wrapping the socket’s
sendmsg function in the kernel and verifies that the ad-
dresses, protocol, and port numbers in the packet headers
are correct. If the packet passes these checks, it is handed
off to the Linux protocol stack via the standard raw socket
sendmsg routine.

SILK’s port manager maintains a mapping of port as-
signments to vservers that serves three purposes. First, it
ensures that the same port is not opened simultaneously by
a TCP/UDP socket and a safe raw socket (sniffer sockets
excluded). To implement this, SILK must wrap thebind ,
connect , andsendmsg functions of standard TCP/UDP
sockets in the kernel, so that an error can be returned if an
attempt is made to bind to a local TCP or UDP port al-
ready in use by a safe raw socket. In other words, SILK’s
port manager must approve or denyall requests to bind to
a port, not just those of safe raw sockets. Second, when
bind is called on a sniffer socket, the port manager can
verify that the port is either free or already opened by the
vserver attempting the bind. If the port was free, then af-
ter the sniffer socket is bound to it the port is owned by
that vserver and only that vserver can open a socket on that
port. Third, SILK allows the node manager described in
Section 4.2.1 to reserve specific ports for the use of a par-
ticular vserver. The port manager stores a mapping for the
reserved port so that it is considered owned by that vserver,
and all attempts by other vservers to bind to that port will
fail.

4.3.3 Discussion

The driving application for safe raw sockets has been the
Scriptroute [36] network measurement service. Scrip-
troute provides users with the ability to execute measure-
ment scripts that send arbitrary IP packets, and was orig-
inally written to use privileged raw sockets. For exam-
ple, Scriptroute implements its own versions ofping and

traceroute , and so needs to send ICMP packets and
UDP packets with the IP TTL field set. Scriptroute also re-
quires the ability to generate TCP SYN packets containing
data to performsprobe -style bottleneck bandwidth esti-
mation. Safe raw sockets allowed Scriptroute to be quickly
ported to PlanetLab by simply adding a few calls tobind .
Other users of safe raw sockets are the modified versions of
traceroute andping that run in a vserver (on Linux,
these utilities typically run with root privileges in orderto
open a raw socket). Safe raw sockets have also been used
to implement user-level protocol stacks, such as variants
of TCP tuned for high-bandwidth pipes [20], or packet re-
ordering when striping across multiple overlay paths [43].
A BSD-based TCP library currently runs on PlanetLab.

Safe raw sockets are just one example of how PlanetLab
services need to be able to share certain address spaces.
Another emerging example is that some slices want to cus-
tomize the routing table so as to control IP tunneling for
their own packets. Yet another example is the need to share
access to well-known ports; e.g., multiple services want to
run DNS servers. In the first case, we are adopting an ap-
proach similar to that used for raw sockets: partition the
address space by doing early demultiplexing at a low level
in the kernel. In the second case, we plan to implement
a user-level demultiplexor. In neither case is a single ser-
vice granted privileged and exclusive access to the address
space.

4.4 Monitoring

Good monitoring tools are clearly required to support a dis-
tributed infrastructure such as PlanetLab, which runs on
hundreds of machines worldwide and hosts dozens of net-
work services that use and interact with each other and the
Internet in complex and unpredictable ways. Managing
this infrastructure—collecting, storing, propagating, aggre-
gating, discovering, and reacting to observations about the
system’s current conditions—is one of the most difficult
challenges facing PlanetLab.

Consistent with the principle of unbundled management,
we have defined a low-levelsensor interfacefor uniformly
exporting data from the underlying OS and network, as
well as from individual services. Data exported from a
sensor can be as simple as the process load average on a
node or as complex as a peering map of autonomous sys-
tems obtained from the local BGP tables. That is, sensors
encapsulate raw observations that already exist in many dif-
ferent forms, and provide a shared interface to alternative
monitoring services.

4.4.1 Interface

A sensor provides pieces of information that are available
(or can be derived) on a local node. Asensor serveraggre-
gates several sensors at a single access point, thereby pro-
viding controlled sharing of sensors among many clients



(e.g., monitoring services). To obtain a sensor reading, a
client makes a request to a sensor server. Each sensor out-
puts one or more tuples of untyped data values. Every tuple
from a sensor conforms to the same schema. Thus, a sen-
sor can be thought of as providing access to a (potentially
infinite) database table.

Sensor semantics are divided into two types:snapshot
andstreaming. Snapshot sensors maintain a finite size ta-
ble of tuples, and immediately return the table (or some
subset of it) when queried. This can range from a single tu-
ple which rarely varies (e.g. “number of processors on this
machine”) to a circular buffer that is constantly updated, of
which a snapshot is available to clients (for instance, “the
times of 100 most recent connect system calls, together
with the associated slices”). Streaming sensors follow an
event model, and deliver their data asynchronously, a tuple
at a time, as it becomes available. A client connects to a
streaming sensor and receives tuples until either it or the
sensor server closes the connection.

More precisely, a sensor server is an HTTP [15] com-
pliant server implementing a subset of the specification
(GET and HEAD methods only) listening to requests from
localhost on a particular port. Requests come in the
form of uniform resource identifiers (URIs) in GET meth-
ods. For example, the URI:

http://localhost:33080/nodes/ip/name

is a request to the sensor named “nodes ” at the sensor
server listening on port 33080. The portion of the URI after
the sensor name (i.e.,ip/name ) is interpreted by the sen-
sor. In this case, the nodes sensor returns comma-separated
lines containing the IP address and DNS name of each reg-
istered PlanetLab node. We selected HTTP as the sensor
server protocol because it is a straightforward and well-
supported protocol. The primary format for the data re-
turned by the sensor is a text file containing easy-to-parse
comma separated values.

4.4.2 Implementation

An assortment of sensor servers have been implemented
to date, all of which consist of a stripped-down HTTP
server encapsulating an existing source of information.
For example, one sensor server reports various informa-
tion about kernel activities. The sensors exported by this
server are essentially wrappers around the/proc file sys-
tem. Example sensors includememinfo (returns infor-
mation about current memory usage),load (returns 1-
minute load average),load5 (returns 5-minute load aver-
age),uptime (returns uptime of the node in seconds), and
bandwidth(slice) (returns the bandwidth consumed
by aslice , given by a slice id).

These examples are simple in at least two respects. First,
they require virtually no processing; they simply parse and
filter values already available in/proc . Second, they nei-
ther stream information nor do they maintain any history.

One could easily imagine a variant ofbandwidth , for
example, that both streams the bandwidth consumed by the
slice over that last 5 minute period, updated once every five
minutes, or returns a table of the lastn readings it had made.

In contrast, a more complex sensor server will shortly
become available that reports information about how the
local host is connected to the Internet, including path infor-
mation returned bytraceroute , peering relationships
determined by a local BGP feed, and latency information
returned byping . This sensor server illustrates that some
sensors may be expensive to invoke, possibly sending and
receiving messages over the Internet before they can re-
spond, and as a result may cache the results of earlier invo-
cations.

4.4.3 Discussion

Using the sensor abstraction, and an emerging collection of
sensor implementations, an assortment of monitoring ser-
vices are being deployed. Many of these services are mod-
eled as distributed query processors, including PIER [19],
Sophia [40], and IrisNet [29].

The long-term goal is for these monitoring services to
detect, reason about, and react to anomalous behavior be-
fore it becomes disruptive. However, PlanetLab has an im-
mediate need of responding to disruptions after the fact.
Frequently within the past year, traffic generated by Planet-
Lab researchers has caught the attention of ISPs, academic
institutions, Web sites, and sometimes even home users. In
nearly all cases, the problems have stemmed from naı̈ve
service design and analysis, programmer errors, or hyper-
sensitive intrusion detection systems. Examples include
network mapping experiments that probe large numbers of
random IP addresses (looks like a scanning worm), services
aggressivelytraceroute ’ing to certain target sites on dif-
ferent ports (looks like a portscan), services performing
distributed measurement to a target site (looks like a DDoS
attack), services sending large numbers of ICMP packets
(not a bandwidth problem, but renders low-end routers un-
usable), and so on. Addressing such complaints requires
anauditing tool that can map an incident onto a responsi-
ble party.

Specifically, a traffic auditing service runs on every
PlanetLab node, snooping all outgoing traffic using the ad-
ministrative raw sniffer socket provided by the SILK mod-
ule that tags each packet with the ID of the sending vserver.
From each packet, the auditing service logs the time it was
sent, the IP source and destination, protocol, port numbers,
and TCP flags if applicable. It then generates Web pages
on each node that summarize the traffic sent in the last hour
by IP destination and slice name. The hope is that an ad-
ministrator at a site that receives questionable packets from
a PlanetLab machine will type the machine’s name or IP
address into his or her browser, find the audit-generated
pages, and use them to contact the experimenters about
the traffic. For example, an admin who clicks on an IP



address in the destination summary page is shown all of
the PlanetLab accounts that sent a packet to that address
within the last hour, and provided with links to send email
to the researchers associated with these accounts. Another
link directs the admin to the network traffic database at
www.planet-lab.org where back logs are archived, so
that he or she can make queries about the origin of traffic
sent earlier than one hour ago.

Our experience with the traffic auditing service has been
mixed. On the one hand, the PlanetLab support team has
found it very useful for responding to traffic queries: after
receiving a complaint, they use the Web interface to iden-
tify the responsible party and forward the complaint on to
him. As a result, there has been a reduction in overall in-
cident response time and the time invested by support staff
per incident. On the other hand, many external site admin-
istrators either do not find the web page or choose not to
use it. For example, when receiving a strange packet from
planetlab-1.cs.princeton.edu , most sites respond
by sending email toabuse@princeton.edu ; by the time
the support team receives the complaint, it has bounced
through several levels of university administration. We may
be able to avoid this indirection by providing reverse DNS
mappings for all nodes tonodename.planet-lab.org ,
but this requires effort from each site that sponsors Planet-
Lab nodes. Finding mechanisms that further decentralize
the problem-response process is ongoing work.

Finally, although our experience to date has involved
implementing and querying read-only sensors that can
be safely accessed by untrusted monitoring services, one
could easily imagine PlanetLab also supporting a set ofac-
tuatorsthat only trusted management services could use to
control PlanetLab. For example, there might be an actua-
tor that terminates a slice, so that a Sophia expression can
be written to kill a slice that has violated global bandwidth
consumption limits. Today, slice termination is not exposed
as an actuator, but is implemented in the node manager;
it can be invoked only by the trusted PLC service, or an
authenticated network operator that remotely logs into the
node manager.

5 Evaluation

This section evaluates three aspects of slice creation and
initialization.

5.1 Vserver Scalability

The scalability of vservers is primarily determined by
disk space for vserver root filesystems and service-specific
storage. On PlanetLab, each vserver is created with a
root filesystem that points back to a trimmed-down ref-
erence root filesystem which comprises 1408 directories
and 28003 files covering 508 MB of disk. Using vserver’s
primitive COW on all files, excluding those in/etc and

/var , each vserver root filesystem mirrors the reference
root filesystem while only requiring 29 MB of disk space,
5.7% of the original root filesystem size. This 29 MB con-
sists of 17.5 MB for a copy of/var , 5.6 MB for a copy of
/etc , and 5.9 MB to create 1408 directories (4 KB per di-
rectory). Given the reduction in vserver disk footprints af-
forded by COW, we have been able to create 1,000 vservers
on a single PlanetLab node. In the future, we would like to
push disk space sharing even further by using a true filesys-
tem COW and applying techniques from systems such as
the Windows Single Instance Store [7].

Kernel resource limits are a secondary factor in the scal-
ability of vservers. While each vserver is provided with
the illusion of its virtual execution environment, there still
remains a single copy of the underlying operating system
and associated kernel resources. Under heavy degrees of
concurrent vserver activity, it is possible that limits on ker-
nel resources may become exposed and consequently limit
system scalability. (We have already observed this with file
descriptors.) The nature of such limits, however, are no
different from that of large degrees of concurrency or re-
source usage within a single vserver or even on an unmod-
ified Linux kernel. In both cases, one solution is to simply
extend kernel resource limits by recompiling the kernel. Of
course, simple scaling up of kernel resources may be in-
sufficient if inefficient algorithms are employed within the
kernel (e.g.,O(n) searches on linked lists). Thus far, we
have yet to run into these types of algorithmic bottlenecks.

5.2 Slice Creation

This section reports how long it takes the node manager
to create a vserver on a single node. The current imple-
mentation of PLC has each node poll for slice creation in-
structions every 10 minutes, but this is an artifact of piggy-
backing the slice creation mechanism on existing software
update machinery. It remains to be seen how rapidly a slice
can be deployed on a large number of nodes.

To create a new slice on a specific node, a slice creation
service must complete the following steps at that node:

1. the slice creation service contacts a port mapping ser-
vice to find the port where the node manager’s XML-
RPC server is listening for requests;

2. the slice creation service performs a node managerac-
quire RPC to obtain anrcap for immediate rights to a
vserver and best-effort resource usage;

3. the slice creation service performs a node manager
bind RPC to bind the ticket to a new slice name;

4. the node manager, after completing the RPCs, creates
the new vserver and notifies the necessary resource
schedulers to effect the newly added resource bind-
ings for the new slice; and



5. the node manager callsvadduser to instantiate the
vserver and then callsvserver-init to start execution
of software within the new vserver.

Running on a 1.2GHz Pentium, the first three steps com-
plete in 0.15 seconds, on average. How long the fourth
and fifth steps takes depends on how the user wants to ini-
tialize the slice. At a minimum, the vserver creation and
initialization takes an additional 9.66 seconds on average.
However, this does not include the time to load and initial-
ize any service software such assshd or other packages.
It also assumes a hit in a warm cache of vservers. Creating
a new vserver from scratch takes over a minute.

5.3 Service Initialization

This section uses an example service, Sophia [40], to
demonstrate how long it takes to initialize a service once
a slice exists. Sophia’s slice is managed by a combination
of RPM,apt-get , and custom slice tools. When a Sophia
slice is created, it must be loaded with the appropriate en-
vironment. This is accomplished by executing a boot script
inside each vserver. This script downloads and installs the
apt-get tools and a root Sophia slice RPM, and starts an
update process. Usingapt-get , the update process pe-
riodically downloads the tree of current packages specific
for the Sophia slice. If a newer package based on the RPM
hierarchy is found, it and its dependencies are download
and installed. With this mechanism, the new versions of
packages are not directly pushed to all the nodes, but are
published in the Sophia packages tree. The slice’s update
mechanism then polls (potentially followed with an action
request push) the package tree and performs the upgrade
actions.

In the current setting, it takes on average 11.2 seconds
to perform an empty update on a node; i.e., to download
the package tree, but not find anything new to upgrade.
When a new Sophia “core” package is found and needs to
be upgraded, the time increases to 25.9 seconds per node.
These operations occur in parallel, so the slice upgrade
time is not bound by the sum of node update times. How-
ever, the slice is to be considered upgraded only when all
of its active nodes are finished upgrading. When run on
180 nodes, the average update time (corresponding to the
slowest node) is 228.0 seconds. The performance could be
much improved, for example, by using a better distribution
mechanism. Also, a faster alternative to the RPM package
dependencies system could improve the locally performed
dependency checks.

6 Conclusions

Based on experience providing the network research com-
munity with a platform for planetary-scale services, the
PlanetLab OS has evolved a set of mechanisms to support
distributed virtualization and unbundled management. The

design allows network services to run in a slice of Planet-
Lab’s global resources, with the PlanetLab OS provid-
ing only local (per-node) abstractions and as much global
(network-wide) functionality as possible pushed onto in-
frastructure services running in their own slices. Only slice
creation (coupled with resource allocation) and slice termi-
nation run as a global privileged service, but in the long-
term, we expect a set of alternative infrastructure services
to emerge and supplant these bootstrap services.
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