
Reliable Communication
in the Presence of Failures
KENNETH P. BIRMAN and THOMAS A. JOSEPH
Comell University

The design and correctness of a communication facility for a distributed computer system are reported
On. The facility provides support for fault-tolerant process groups in the form of a family of reliable
multicast protocols that can be used in both local- and wide-area networks. These protocols attain
high levels of concurrency, while respecting application-specific delivery ordering constraints, and
have varying cost and performance that depend on the degree of ordering desired. In particular, a
protocol that enforces causal delivery orderings is introduced and shown to be a valuable alternative
to conventional asynchronous communication protocols. The facility also ensures that the processes
belonging to a fault-tolerant process group will observe consistent orderings of events affecting the
group as a whole, including process failures, recoveries, migration, and dynamic changes to group
properties like member rankings. A review of several uses for the protocols in the ISIS system, which
supports fault-tolerant resilient objects and bulletin boards, illustrates the significant simplification
of higher level algorithms made possible by our approach.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems-distributed applications; distributed databases; C.4 [Computer Systems Organization]:
Performance of Systems-reliability, auailability, and serviceability; D.4.1 [Operating Systems]:
Process Management-concurrency; synchronization; D.4.5 [Operating Systems]: Reliability-
fault-tolerante; H.2.2 [Database Management]: Physical Design-recovery and restart

General Terms: Reliahility

Additional Key Words and Phrases: Atomic broadcast, fault-tolerant process groups, reliable broad-
Cast

1. INTRODUCTION

This paper presents a set of communication primitives for supporting distributed
computations in an environment where failures could occur. We are primarily
concerned with hulting failures, whereby a process stops executing without
performing any incorrect actions. Each distributed computation is represented
as a set of events operating on a process state and a partial order on those events,
corresponding to the thread of control. The types of events considered include
local computations by a process, broadcasts from a process to a set of processes,

This work was supported by the Defense Advanced Research Projects Agency (DoD) under ARPA
order 5378, contract MDA903-85-C-0124, and by the National Science Foundation under grant
DCR-8412582.
Authors' address: Department of Computer Science, Cornell University, Ithaca, NY 14853.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0734-2071/87/0200-0047 $00.75

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987, Pages 47-76.

48 K. P. Birman and T. A. Joseph

broadcasts subject to predetermined ordering constraints, process failures, and
process recoveries.

Our premise is that event orderings should be subsumed into the commu-
nication layer of a distributed system. In addition, since increasing concur-
rency generally improves performance in distributed systems, we ask how much
communication-level concurrency can be achieved while still respecting event-
ordering constraints specified by the computations. An important feature of our
approach is that it enables a process to deduce the event orderings that will be
observed by other processes in the system. This simplifies higher level code and
permits distributed computations to be implemented with reduced risk of incon-
sistent actions being taken. The approach is formulated in the context of fault-
tolerant process groups, which consist of a collection of processes that are
cooperating to perform a distributed computation, and interacting using our
communication protocols. In particular, when the term broadcast is used below,
i t refers to the transmission of a message from a process to the members of a
process group (and possibly some additional processes), not to all sites or
processes in the system, as has often been the case in prior work on broadcast
protocols.

An example will illustrate the class of problems that we address here. Consider
a process p that is updating a replicated data item maintained by a set of data
managers. Assume that this update is performed using a reliable broadcast: If any
data manager receives the broadcast and remains operational, all data managers
will receive it. If p fails, a data manager could observe any of several outcomes:

1. The data manager receives the update and then detects the failure.
2. It detects the failure and receives the update later.
3. It detects the failure, and the update is not delivered (anywhere).

In an asynchronous system, a data manager may not be able to differentiate
between the second and third outcomes in finite time. Moreover, if some data
managers experience the first outcome and others the second one, the system
must still behave correctly. One way to address problems such as these is for
each process to run an agreement protocol to decide on what action to take after
it detects a failure [16]. This approach could be slow because it is synchronous,
and expensive because each process has to run such a protocol. Another possibility
is to discard messages that are received by a process after it has learned that the
sender has failed. However, inconsistencies may arise if messages are discarded
by one process but retained by another one that learns of the failure later.
A third alternative, representative of the general approach of this Paper, is to
construct a broadcast protocol that orders messages relative to failure and
recovery events such that these problems do not arise. In the approach we develop
here, the data managers would form a fault-tolerant process group. The com-
munication primitives ensure that every data manager experiences the same
sequence of events; hence a data manager can perform an update immediately
upon receiving the corresponding message. Likewise, i t can take a recovery action
immediately after detecting a failure, because no other data manager will observe
an inconsistent ordering of events.
ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

Reliable Cornrnunication in the Presence of Failures 49

The remainder of this paper is structured as follows: The presumed environ-
ment is discussed in more detail in Section 2. The communication primitives are
described in Section 3, and Section 4 gives protocols to implement them in a
local network. Finally, in Section 5 we show how we applied the primitives to a
fault-tolerant system that we have implemented a t Cornell.

2. SYSTEM CHARACTERISTICS

The type of distributed system that we consider consists of a collection of
processes possessing local states and communicating by messages. Processes do
not share memory or maintain closely synchronized clocks, although they do
have access to timers with which a reasonable notion of "time-out" can be
defined. The term failure denotes a halting failure: A process ceases execution
without taking any (visible) incorrect or malicious actions [14]. No information
survives a failure (by fault tolerance we refer to continued operation in the
presence of failures, not recovery from "stable" storage). If the site at which a
failed process was executing remains operational, we assume that the failure is
detected (e.g., by the operating system) and that any interested parties are
notified. On the other hand, if a site crashes, all the processes executing on it
fail, and processes at other sites can detect this only by time-outs. The commu-
nication system can also fail: It can lose and duplicate messages, or deliver them
out of order. Our protocols may block but do not take erroneous actions if the
system partitions into subgroups of sites within which communication remains
possible, but between which it is degraded or impossible.

In a broader sense, our assumption is that communication networks are
structured hierarchically into clusters of local sites that do not experience internal
partitioning, interconnected by long-hau1 communication links, which may fail
but can be reestablished rapidly. The protocols given in this paper address the
local case first and then show how it can be extended transparently to Cover the
full hierarchical setting.

Clearly, failure detection by time-out cannot be more reliable than the under-
lying communication system: A series of message losses can always mimic a
failure. Moreover, the order in which failures are perceived to have occurred may
vary from process to process. These observations lead us to adopt a logical
approach to failure handling, rather than a physical one. That is, instead of a
process acting directly after it detects a failure, which could lead to inconsistent
actions, a protocol is run to reach agreement with other processes that a failure
event has occurred and to order it with respect to other events. This is meaningful
because we have the freedom to pretend that events like message delivery took
place either before or after the failure, provided that no evidence to the contrary
survived it. The basic property of a logical failure is that, after a process learns
of such an event or observes the relative ordering of such events, it will never
communicate with another process whose state is inconsistent with this infor-
mation. The issue of partitioning is addressed by preventing communication with
a cluster when a majority of its sites have failed. This ensures that there is a t
most a single set of operational sites within a cluster and that this set is in an
internally consistent state.

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

50 K. P. Birman and T. A. Joseph

3. FAULT-TOLERANT PROCESS GROUPS

In fault-tolerant Systems, it is frequently necessary for the members of a group
of processes to be able to monitor one another. They can then take actions based
on failures, recoveries, or changes in the status of group members. As an example,
consider a fault-tolerant Server that is implemented using a group of processes
as follows: A request for the service is broadcast to all the members of the group.
The operational process having the smallest ID responds to the request. For this
implementation to function correctly, it is necessary that all the members of the
group have the Same view of which members are operational and of the IDs
assigned to each member, if these can change. Otherwise, no member may respond
(as may happen if all operational members believe that a failed process with a
smaller ID is still operational), or more than one member may do so (if an
operational member believes that a process with a smaller ID has failed when it
has not). Further, if there has been a change in the status (operational/failed) of
a member, it is necessary for all the processes to agree on whether a request
should be handled before or after the change in status, so that they may
consistently decide On which process should respond to the request. Although
these problems could be addressed by running a protocol each time a failure or
recovery is suspected and/or by executing a protocol to reach Consensus on the
group's state before responding to each request, it would be expensive and
complex to do so. A simpler method, described below, is to provide a process
group abstraction such that changes in the properties of the group (including
failures and recoveries of group members) are ordered with respect to ongoing
broadcasts.

The notion of structuring a distributed system into Sets of cooperating pro-
cesses is not new. The V system [5] and CIRCUS [6] both made use of process
group (or troupe) mechanisms for this purpose. However, the difficult problems
arising when one tries to employ this approach in fault-tolerant applications that
also employ highly asynchronous or concurrent algorithms have not been ad-
dressed in any systematic way.

It is natural to ask whether existing broadcast primitives, such as atomic
broadcast [4, 71 or reliable broadcast [15], can be modified to solve this problem.
This is impractical for several reasons, although one of our protocols is indeed
similar to an atomic broadcast. First, the existing protocols provide for delivery
to all sites in a distributed system, whereas our focus is on delivery to just some
processes, several (or all) of which could reside a t a Single site. In fact, the sender
may not even know the set of processes that should receive a message, since this
could include the members of a process group that was growing when the
broadcast was issued. Second, we wish to provide at least one lightweight
asynchronous communication primitive. Conventional atomic broadcast proto-
cols provide a globally consistent delivery ordering, for which clients pay a
performance penalty. For Chang and Maxemchuk [4] this takes the form of
latency while forwarding the message to a process that has permission to establish
broadcast orderings, whereas in Cristian et al. [7] it delays delivery for a period
determined from bounds On the accuracy with which clocks are synchronized and
On the intersite message delivery latency. The lightweight protocol that we
present below, CBCAST, involves minimal delivery latency and is heavily used
ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

Reliable Communication in the Presence of Failures 51

in the systems discussed in Section 5. Finally, previous protocols have tended to
assume that the network consists of a small set of closely coupled sites, such as
nodes on an Ethernet. Our work can be used in a hierarchical distributed system
as well.

The remainder of this section formalizes the behavior of fault-tolerant process
groups by defining three broadcast primitives: group broadcast (GBCAST), atomic
broadcast (ABCAST), and causal broadcast (CBCAST). Their individual behavior
is first discussed, and then at the end of the section we summarize the composite
behavior that they provide. All the broadcast primitives are atomic; that is, a
broadcast made to a set of processes is eventually received by all operational
destinations, even in the presence of failures. We initially assume that the set of
destinations is known at the time a broadcast is issued; later we show how to
relax this by using a group addressing protocol. Issues relating to asynchronous
use of the protocols are deferred to the end of the section. The discussion assumes
that each broadcast B has a unique identifier, which we denote as ID(B). The
process that initiates a broadcast B is denoted SENDER(B), while the set of
processes to which B is sent is denoted DESTS(B).

3.1 Using the Group Broadcast Primitive to Maintain Process Group Views

A process group view (or just uiew) is a snapshot of the membership and global
properties of a process group at some (logical) instant in time. In this section we
introduce a group broadcast primitive, GBCAST, which can be used to inform
operational group members when another member fails, recovers, joins, or with-
draws voluntarily, or when some other change to a global property of the group
occurs. Our goal is to make it possible for each member to maintain a local copy
of the view, updating it on reception of a GBCAST message, and acting on it
directly without needing any further agreement protocols. This requires that the
receipt of a GBCAST be ordered relative to other events in the same way at each
member. Hence the system "looks" as if reception were indeed simultaneous
(provided that members do not compare the wall clock times at which a particular
GBCAST was delivered).

The group broadcast primitive is invoked as GBCAST(action, G), where action
describes the event that has occurred (i.e., "p has failed" or "the new member
ranking is . . ."). Here, G is a view, and is computed using an iterative address
resolution protocol given in Section 3.6. Additionally, when a process p fails, the
system automatically initiates a GBCAST("p has failed", G) on its behalf. If the
failure involves only a single process, then this GBCAST can be issued by a
supervisory process at the site where the failure occurred. If a site has crashed,
then the software handling failure detection (Section 4.1) initiates GBCASTs for
any processes at the failed site belonging to process groups at other sites.
GBCASTs that transmit failure information are referred to as failure GBCASTs.

GBCAST satisfies the following ordering constraints: First, the order in which
GBCASTs are delivered relative to the delivery of all other sorts of broadcasts
(including other GBCASTs) is the same at all overlapping destinations. Addi-
tionally, we require that a failure GBCAST be delivered after any other messages
sent by the failed process. Thus, once a process is observed to fail, it will never
be heard from again.

ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

52 K. P. Birman and T. A. Joseph

Notice that, if process group members record each new view On stable storage
before using it, then, even if all members of a process group fail, a simple
algorithm based on the one in [17] can be used to determine the last ones to fail,
which are generally the sites with the most up-to-date recovery information.

We know of only one system that has used a GBCAST-like primitive.
ADAPLEX, a database system, employs a protocol called exclude to order
replicated updates in a database system with respect to failure 1111, much as
GBCAST is ordered with respect to other broadcast types. However, no attempt
has been made to apply this idea in a broader context.

3.2 The Atomic Broadcast Primitive

Consider a set of processes that maintain copies of a replicated data structure
representing a queue. If items are inserted into and removed from each copy of
the queue in the Same order, no inconsistencies will arise among copies. The
ABCAST primitive is provided for applications such as this, where the order in
which data are received a t a destination must be the Same as the order a t other
destinations, even though this order is not determined in advance. ABCAST is
invoked as ABCAST(msg, label, dests), where msg is the message to be broadcast,
label is a string of characters, and dests is the set of processes to which the
message must be delivered. ABCASTs are atomic: Every operational destination
receives msg, or none does. In addition, if two ABCASTs with the Same label
have destinations in common, they will be delivered in the Same order a t all such
destinations. The replicated queue described above can thus be implemented by
using ABCASTs to broadcast insert or delete instructions to the various copies,
using a queue ID for the ABCAST label.

An interesting question concerns the behavior of ABCAST if a recipient fails
immediately after delivering a copy of a message: Are the operational destinations
required to employ the Same delivery ordering as was used by the failed process,
or does it suffice for them to just use a mutually consistent order? The protocol
that we present in Section 4 provides only the latter form of consistency, although
the only failure scenario that yields a different ordering is improbable. The
interested reader may wish to construct this scenario as an exercise and devise
an alternative implementation that avoids this problem. (This would require an
additional phase in the protocol.)

3.3 The Causal Broadcast Primitive
For some applications it is not sufficient that broadcasts are received in the Same
order at overlapping destinations; it is also necessary that this order be the Same
as some predetermined one. As an example, consider a computation that first
sets copies of a replicated variable to Zero and later increments the variable.
Here, it is not enough for the two operations to be carried out in the Same order
at all copies; the increment must always occur second. However, if independent
computations were to access such a replicated variable, some other method would
normally be used to synchronize the accesses, making it unlikely that both would
broadcast updates concurrently. In this case, a consistent delivery order is
unnecessary. The causal broadcast primitive, CBCAST(nzsg, clabel, dests) is used
to enforce a delivery ordering when desired, but with minimal synchronization.
Here, clabel is a label that can be compared with other clabels using a system-
ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

Reliable Communication in the Presence of Failures 53

wide algorithm, to yield a partial order on CBCASTs. We write clabeli -̂ Ã clabe12,
if clabell and clabe12 are comparable, and clabeli is less than clabe12. Note that we
allow for clabels to be incomparable, that is, for neither clabell -̂ Ã clabe12 nor
dabei-, -Â£ dabei, to hold. We use CLABELCB) to represent the dabei of broadcast
B, and for brevity write B -̂ B' to mean CLABEL(B) -Â£ CLABEL(B'). An
application uses clabels to indicate the order in which broadcasts should be
delivered.

What constraints do clabels place On the order of broadcast deliveries? Some
orderings specified by clabels are trivially satisfied. For example, if two CBCASTs
have no destinations in common, there is no real constraint on the order of
message delivery, regardless of how their labels may compare. On the other hand,
some specifiable orderings are unenforceable. A CBCAST with a dabei of less
than one that has already been delivered clearly cannot be delivered in the desired
order. This calls for a restriction on allowable clabels. Fortunately, most appli-
cations require an order to be enforced between two broadcasts only if the
outcome of one could causally affect the other. The notion of potential causality
in an asynchronous distributed system in which information is exchanged only
by transmitting messages is studied by Lamport [13]. In such a system, a
broadcast B is said to be potentially causally related to a broadcast B' only if they
were sent by the same process and B' occurred after B, or if B had been delivered
at SENDER(Â§' before B' was sent (or there is a chain of such receivers
and senders linking B to B'). We restrict labels on CBCASTS to disallow
CLABEL(B1) from being less than that of CLABEL(B) if they have the same
sender and B' is sent after B, or if B had been delivered at SENDER(B1) before
B' was sent.l Such orderings cannot be enforced unless the system has knowledge
of which future broadcasts a broadcast must wait for, and because such infor-
mation is usually not available anyway, this is not a major restriction.

It would be possible to design a broadcast primitive that orders any two
broadcasts that are potentially causally related. This is stronger than necessary,
however. Consider a broadcast B made by a process p to update copies of a
replicated variable X. Let this be followed by a broadcast B' by p to update copies
of Y . Even though there is a potential causal relation between B and B' (because
B' occurred after B), there may be no real causal relation between them. In this
case there would be no reason to order the delivery of B before that of B', and to
order such broadcasts unnecessarily is inefficient because it limits the possible
concurrency in the system. The CBCAST primitive uses clabels to identify which
of the potential causal relationships are significant. Essentially, it orders broad-
casts relative to each other if they are potentially causal und if the clabels indicate
that the potential causal relationships are significant.

We now formally define the ordering properties of CBCASTs. Given -̂ Ã as
above, let the relation precedes between CBCASTs be the transitive closure of
the following two relations:

A. B precedes B' if B -c* B' and the same process p sends B before it sends B'.
B. B precedes B' if B S B ' and B is delivered at SENDER(Â§' before B' is sent.

' More accurately, if a broadcast is labeled in this way, the CBCAST primitive does not guarantee
that this order will be observed.

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

54 K. P. Birman and T. A. Joseph

Then CBCASTs have the following properties: They are atomic, and if Bprecedes
B', then B is delivered before B' a t any overlapping destination.

The CBCAST primitive may seem to be too weak because it cannot enforce
orderings that may be desired between broadcasts that are not potentially causal.
Consider a process p that instructs a set of devices, "place wine bottles under
taps," and a process q that orders, "open taps." Clearly, it is desirable that the
first broadcast be delivered everywhere before the second. However, in an
asynchronous system in which there is no upper bound on message delivery
times, the only way this can be implemented is to require that the devices send
q a message when the wine bottles have indeed been placed under the tap. These
messages causally relate the broadcast from p to that from q, and CBCASTs can
then be used to enforce the desired ordering. In general, there will be little or no
occasion to order asynchronous broadcasts that are not potentially causal. Thus
the CBCAST is strong enough for most applications.

The ability to specify a clabel permits the CBCAST User to exploit the
maximum degree of concurrency and asynchrony possible without compromising
the correctness of a computation. Note that the accuracy with which clabek
represent the dependency between broadcasts could limit concurrency: If B
precedes B', CBCAST will deliver B first even if the semantics of B and B' are
such that they are actually independent. On the other hand, if it is impractical
to deduce or to represent causal relationships concisely, time stamps generated
using a logical clock [13] can be substituted for the dabei and the arithmetic
comparison operator used for -Â£Ã The result is a conservative version of CBCAST
that respects potential causality. Some of our work uses this weakened version
of CBCAST despite the loss of concurrency that it entails.

3.4 Additional Broadcast Primitives
The primitives described above are relatively orthogonal in that they address
different aspects of the ordering problem, although there is a sense in which
ABCAST is stronger than CBCAST because it constrains the delivery order for
all events, not just some. Other primitives that might sometimes be useful include
causal atomic broadcast, which provides a global ordering and also respects
causality, and minimal broadcast, which provides guaranteed delivery, but without
respecting any ordering constraints. A causal atomic protocol could be con-
structed using the ABCAST protocol we give in Section 3, with CBCAST as an
underlying primitive; hence we omit any further discussion of this protocol.
Minimal broadcast results when CBCASTs are invoked with clabek that violate
potential causality.

3.5 Synchronous and Asynchronous Uses of the Primitives
Many systems employ remote procedure calls (RPCs) internally, as a lowest level
primitive for interaction between processes. It should be evident that all of our
broadcast primitives can be used to implement replicated remote procedure calls,
as in [6]: The caller would simply pause until replies were received from all the
participants (observation of a failure constitutes a reply in this case).' We term

Process group members obsewe the failure of other group members when they receive a failure
GBCAST. In other Situations a process uses a monitoring facility described in Section 4.1 to detect
failures of other processes.

ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

Reliable Communication in the Presence of Failures 55

such a use of the primitives synchronous to distinguish it from an asynchronous
broadcast in which no replies, or just one reply, suffice.

In the work we report later, GBCAST and ABCAST are normally invoked
synchronously to implement a remote procedure call by one member on all the
members of its process group. However, CBCAST, which is the most frequently
used overall, is almost never invoked synchronously. Asynchronous CBCASTs
are the source of most concurrency in the ISIS system [2]: Although the delivery
ordering is assured, transmission can be delayed to enable a message to be
piggybacked on another, or to schedule 10 within the system as a whole. Although
the system cannot defer an asynchronous broadcast indefinitely, the ability to
defer it a little, without delaying some computation by doing so, permits load to
be smoothed. Since CBCAST respects the delivery orderings on which a com-
putation might depend and is ordered with respect to failures, the concurrency
introduced does not complicate higher level algorithms. Moreover, the protocol
itself is extremely cheap.

A problem is introduced by our decision to allow asynchronous broadcasts:
The atomic reception property must now be extended to address causally related
sequences of asynchronous messages. If a failure were to result in some broadcasts
being delivered to all their destinations but in others that precede them not being
delivered anywhere, inconsistency might result even if the destinations do not
overlap. We therefore extend the atomicity property as follows: If process s
receives a message m and subsequently sends a message m' to process t before
failing, then, unless t fails as well, m must be delivered to its remaining (opera-
tional) destinations. This is because the state of t may indirectly depend on m.
The costs of the protocols are not affected by this change.

A second problem arises when the pragrnatic implications of asynchrony are
considered. In the event of a failure, a suffix of a sequence of asynchronous
broadcasts could be lost, and the system state would still be internally consistent
according to the above rule. Hence, a process that is about to take some action
that may leave an externally visible side effect will need a way to pause until it
is guaranteed that asynchronous broadcasts that precede it have actually been
delivered. For example, consider a process that asynchronously broadcasts a
checkpoint to a set of backup processes. If it fails while the broadcast is still in
Progress at other sites, it might not be delivered to any backup (see definition of
atomicity), and the rollback action would not occur. One way to address this is
for a sender to send a message requesting acknowledgments from the destinations
and to wait until the destinations are observed to fail or the acknowledgments
are received. Rather than have to do this each time, a flush primitive is provided,
which blocks its caller until all its pending asynchronous broadcasts have been
delivered to their (operational) destinations. Occasional calls to flush do not
eliminate the benefit of using CBCAST asynchronously. Unless the system has
built up a considerable backlog of undelivered broadcast messages, which should
be rare, flush will only pause while transmission of the last few broadcasts
completes.

3.6 Group Addressing
All our protocols require that a sender explicitly name the set of destination
processes for each broadcast. A problem arises if a sender wishes to broadcast to

ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

56 K. P. Birman and T. A. Joseph

all the members of a process group. If the group grows after the broadcast is
initiated but before it is delivered, new members would not receive it. A way to
resolve this is for each process group member to number its process group views
sequentially. Any process can then cache (possibly out-of-date) process group
membership information and view numbers for groups with which it communi-
cates. To transmit a GBCAST, ABCAST, or CBCAST to all members of a group
G, the cached information would be used to compute DESTS(B), and the view
number included in the message. On delivery, if a recipient finds that the process
group view has changed, it rejects the message. Since all recipients have the Same
view when they receive the message, they all reject it if any do so. A rejected
broadcast can then be retransmitted to an updated set of destinations, and the
cache updated. A similar technique was proposed [6] for communication with
process troupes that have been dynamically reconfigured.

The reader may be troubled by the fact that this algorithm does not distinguish
between a situation in which a process receives a broadcast and then fails and
one in which the process fails first and the broadcast is never delivered to it. In
fact, both cases are treated as if atomic delivery had occurred in the view that
existed prior to the failure, because the resulting system states are indistinguish-
able. (Recall that a failure results in the loss of all information a t a site.) This is
consistent with our view of atomic delivery as a logical property rather than a
physical one. This approach is very similar to the one discussed in Section 2 in
connection with site failures.

When updating the cache, some care is needed to ensure that the CBCAST
delivery order is preserved. In particular, consider three CBCASTs A -cÃ B -SÃ C,
and assume that A and B have been transmitted using incorrect destinations. If
the cache is updated promptly after A is rejected, C could be transmitted using
the corrected destinations before B is rejected and retransmitted. C might then
be delivered before the retransmission of B occurs, which would violate the causal
order. This problem is avoided by invoking flush before changing the contents
of a cache.

For technical reasons that we discuss elsewhere [3], an iterated delivery is
undesirable when hierarchical process group relationships are supported, as is
the case in a system that we are currently building. Consequently, our implemen-
tation of GBCAST is such that the addressing protocol never iterates in the
common situation in which a member of a process group broadcasts to the other
members of the group (as opposed to a broadcast originating outside the group).
This is because we lock the view when the group membership is growing, as
described in Section 4.3.3.

3.7 Checkpointing the Group State and Transferring State during Recovery
A common problem faced by the programmer using fault-tolerant process groups
is to manipulate the "current state" of a group, for example, when a checkpoint
must be made or when initializing a process that wishes to join or recover.
Checkpointing is straightforward: Any process can issue a GBCAST to the
membership of the group (including itself), and when this GBCAST is received,
it is safe to make the checkpoint immediately. The resulting checkpoints will be
ACM Transactions on Computer Systems. Vol. 5, No. 1, Febmary 1987.

Reliable Cornmunication in the Presence of Failures 57

Client 1 Client 2 View

: CBCAST 1

-
ABCAST ABCAST B m

GBCAST action

A creates the group

B joins

C joins

A fails

Fig. 1. Clients communicating with a process group.

consistent because they are computed a t the Same instant in (logical) time,
relative to other events.

There are two ways to transfer the state to a recovering process. The most
straightforward solution is to view the recovery GBCAST as a synchronous RPC
that returns a state vector (with a state contribution from each current member
of the group) and has the side effect of changing the view to include the new
member. The state transfer is fault tolerant because it is so redundant: Unless
all current members fail, at least one member will return the present state.
However, if states can be large, as in a database, this approach is impractical.
A more sophisticated mechanism uses what we call a coordinator/cohort scheme
and is motivated by our prior work on resilient objects in ISIS [2]. At the time
the recovery GBCAST is received, one process group member is designated the
coordinator for the state transfer, and the others back it up as its cohorts. The
coordinator uses any convenient protocol (perhaps a stream of CBCASTs) to
transfer its state to the recovering process, and when the transfer is finished, it
uses CBCAST to send a completion message to the other group members. While
the state transfer is under way, the new group member may receive other sorts
of messages, since the view will already have changed to include it. It buffers
these to be processed after the transfer terminates. If the coordinator fails before
completing the transfer, the cohorts will receive a failure GBCAST, and one then
takes over to restart or resume the transfer.

3.8 Example
Figure 1 illustrates the communication patterns that might arise when two clients
communicate with a process group. The figure is drawn to make communication

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

58 K. P. Birman and T. A. Joseph

look synchronous, since recipients will generally be programmed as if this were
the case. Paths taken by reply messages are not shown because the group
mechanism is compatible with a variety of interaction mechanisms. These include
"informatory" interactions in which no reply is needed, coordinator-cohort
interactions where a single reply is sent on behalf of the group as a whole
[2], and process troupe implementations in which all members reply to each
message [6].

4. IMPLEMENTATION OF THE COMMUNICATION ABSTRACTION

This section gives implementations for the communication abstraction described
previously, targeted to a collection of computers interconnected by a local
network. We first Cover the case of a cluster of sites within which communication
is assumed to be rapid and partitioning unlikely. We begin by discussing the
transformation of the "raw" environment of a typical cluster into one giving very
uniform failure and communication behavior a t all sites. Next, the ABCAST,
CBCAST, and GBCAST protocols are given, and a garbage collection mechanism
is described. Finally, the section ends by addressing cluster interconnection
issues. Figure 2 illustrates the overall system structure.

4.1 The Intersite Layer

The intersite communication layer converts halting failures and admissible
communication failures (message loss, delayed delivery, and out-of-order deliv-
eG) into a site view abstraction, defined below. The layer provides two primitives:
send(m, dest) for sending message m to site dest, and status(m), which returns
sent if the destination has acknowledged receipt of the message or if a failure
protocol has been started for the destination site, as described below. Intuitively,
a message has been sent if the future behavior of the system will be consistent
with the message having already been delivered.

Processes executing the protocols also use a second interface to the intersite
layer, which provides a process monitoring service. A process invokes this service
when it is waiting for a reply from another process. The service watches for
changes in site views, which can signify the failure of one or more monitored
processes, and also interrogates a process manager on the site where a process is
running if a reasonable delay elapses with no reply from the monitored process.
If a failure is detected, the monitor service generates a failure reply message on
behalf of the failed process and sends it to the process that requested the
monitoring service. The monitor service is integrated into our message delivery
Subsystem in a way that ensures that any reply sent by the failed process will be
delivered before failure messages are generated for it. Throughout the remainder
of this section, when we say that a process detects a failure of another process
and completes a protocol, we refer to this monitoring mechanism.

The intersite layer employs a windowed acknowledgment protocol for ordered,
lossless, site-to-site message transmission. Depending On the properties of the
intersite transport layer, the complexity of this layer will vary. In our current
implementation it consists of a filtering mechanism that is essentially bound to
the network device drivers at each site. To detect failures, each site sends a
"hello" message to all other sites periodically; if a hello message is not received
ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

Reliable Communication in the Presence of Failures 59

Fault-tolerant
programming tools

Resilient Bulletin 1 objects 1 1 boards 1
71 1 Process group manager

buffers

Site-view managernent
Input and output filters

1 Underlying message Transport 1

Presentation Layer

Fault tolerant services

Facilities for
comrnunicating with
process groups

Kernel boundary

Broadcast protocols

Broadcast data structures

Network interface

lntersite cornmunicati'on

Fig. 2. Architecture of the communication subsystem.

from a site within a reasonable period, it is assumed to have failed, triggering a
protocol to change the site view. If a site is slow to send messages, i t may be
considered to have failed and forced to run a recovery protocol (the probability
of error can be made small by picking a large time-out interval or introducing a
protocol phase that allows other sites to prevent execution of the failure algorithm
if they believe that the site in question is actually operational). A site incarnation
number is incremented each time a site recovers; henceforth, the term "site"
always means "incarnation of a site." Messages from a failed incarnation are
discarded by the input filter, and a you are dead message is returned to the
sender. Messages addressed to an incarnation different from the current one are
similarly discarded.

4.2 Site View Management

The site view management layer ensures that each site in the system has a
consistent picture of site failures and recoveries occurring in the system. Each
site has a site view, which is the set of sites it deems to be operational, with their
respective incarnation numbers. A site view is changed when a site fails or
recovers. A site uiew sequence, denoted VO, Vi, . . . is a sequence of site views,
reflecting these changes. The site view management protocol described in this
section ensures that each operational site goes through the Same sequence of site
views. Later, the protocols take advantage of this to recover from failures without
first running any special agreement protocols.

ACM Transactions on Computer Systems, Vol. 5, No. I, Febmary 1987.

60 K. P. Birman and T. A. Joseph

Each site maintains a copy of the site view sequence, initialized in some
consistent way when the system cold-starts. The sites in a view can be ordered
uniquely according to the view in which they first became operational, with ties
broken by site ID. The "oldest" site in this ordering is called the uiew manager
and is responsible for initiating the view management protocol when it detects a
site failure or recovery. If a site determines that all sites older than itself have
failed, it takes over as the new view manager. Note that the sequence of view
managers is a stable property: Extensions to the view sequence extend the
sequence of managers without changing the subsequence On which sites have
already agreed.

The view management protocol is based on a two-phase commit protocol. Let
Vo, Vi, . . . , Vl be the current site view sequence.

(1) On detecting failures or recoveries, the view manager computes a proposed
view extension Vl+i, Vl+i, . . . , (If no failures occur during the execution
of the protocol, the length of the extension is 1; that is, contains all the
changes to the current site view. Failures occurring during the execution of
the protocol may cause the site view sequence to be extended by more than
one view, as described shortly.) It ceases to accept messages from site
incarnations not in and sends the proposed view extension to the sites
in Vhk.

(2) On receiving a proposed view extension, a site first ceases to accept messages
from site incarnations not in Vl+k.

(a) If the site has not previously received a proposed extension, or the new
one includes all the changes (failures and recoveries) recorded in the old
one, the site saves the new proposed extension. Then, it replies to the
view manager with a positive acknowledgment.

(b) Otherwise, the site has previously received a proposed view extension
recording events that are not included in the new one. It replies with a
negative acknowledgment, giving the events that were missing.

(3) The view manager collects acknowledgments.

(a) If all the acknowledgments were positive, it sends a commit message for
the proposed extension to all sites in Vl+k.

(b) If additional failures or recoveries have been detected, or negative ac-
knowledgments were received, the view manager updates its proposed
extension and reexecutes from step 1. If the view manager falls, a new
site takes over as view manager and proceeds as follows.

(4) If this new view manager has an uncommitted view extension, the previous
view manager may have sent some commit messages before failing. It appends
a new site view containing the failure of the old view manager to its pending
extension and starts the protocol from step 1.

(5) If the new view manager has received a committed extension and has no
pending one, it must assume that some sites did not receive the commit. I t
appends a new view to the most recently committed extension and continues
from step 1. Participants ignore a committed prefix of a proposed extension.

ACM Transactions on Computer Systems, Val. 5, No. l , Febmary 1987.

Reliable Communication in the Presence of Failures 61

To establish the correctness of the protocol, consider the cases that can arise:

(1) If the view manager does not fail, all sites obtain the Same committed view
extensions.

(2) If the view manager fails and any site has a committed view extension, then
all sites have acknowledged that extension. The new view manager will
eventually commit the extension everywhere.

(3) If the view manager fails after it has distributed a proposed extension to a
subset of sites and that proposed extension is not known to the new view
manager, then any site knowing the extension will send a negative acknowl-
edgment to the new coordinator when the protocol is restarted, and the
coordinator will then distribute it during an additional protocol phase.

The following issues arise because sites may detect failures and recoveries of
other sites at different times and in arbitrary order. First, the order in which
view managers commit site views becomes the order accepted by the system, even
if individual sites may have detected failures and recoveries in a different order.
Second, a view manager may erroneously decide that a site has failed (because it
is slow to respond). In this case all sites consider the site in question to have
failed3 and respond to any message from it with a "you are dead" message. Such
a site is said to be killed, as it is forced to undergo recovery with a new incarnation
number. Third, it is possible for a site a to believe that a site b has failed, for b
to believe that a has failed, and for each of them to consider themselves as the
view manager. In this situation, one or both will be killed; otherwise, some site
would have to acknowledge two contradictory views from two different view
managers, which cannot happen.

Below, we use the site view in the GBCAST protocol (Section 4.3.3) and during
garbage collection of the associative store (Section 4.4). Although failures that
change the site view can be tolerated, the site view should not grow to include
recovered sites while these protocols are running. This problem can be solved by
introducing locks on the site view data structure. Prior to initiating the view
management protocol for a recovery (but not for failures), a write-lock must be
acquired. Similarly, the GBCAST and garbage collection protocols must acquire
read-locks.

Note that, if it is desired that the system be able to recover if all sites fail, a
simplified protocol based on the one in [17] can be run to reconstruct the view
sequence from copies saved On nonvolatile storage.

4.3 The Protocols

This section gives implementations for ABCAST, CBCAST, and GBCAST,
deferring garbage collection issues to Section 4.4. The broadcast protocols order
messages addressed to a process as necessary and place them on the delivery
queue for the process, as illustrated in Figure 3. A process removes messages

This is true unless the network becomes partitioned; that is, a group of sites remains operational,
but becomes unable to communicate with the other sites. If network partitioning can occur, erroneous
actions can be prevented by requiring that sites cease to operate if the number of operational sites in
a view drops below a quorum.

ACM Transactions an Computer Systems, Val. 5, No. 1, Febmary 1987.

62 K. P. Birman and T. A. Joseph

ABCAST queue /'
ABCAST arrives

\ .

CBCAST arrives .

Fig. 3. Data stmctures used by ABCAST and CBCAST primitives.

from its delivery queue in first-in, first-out (FIFO) order. The other queues are
used to buffer messages before they are placed On the delivery queue.

4.3.1 ABCAST Protocol. Our ABCAST protocol is based on a two-phase
protocol by D. Skeen (unpublished communication, Feb. 1985). The protocol
maintains a set of priority queues for each process, one for each ABCAST label,
in which it buffers messages before placing them on the delivery queue. We
assume that priority values are integers, with a process ID appended as a suffix
to disambiguate the priorities assigned by different processes. Each message in
the buffers is tagged deliverable or undeliverable. The protocol to implement
ABCAST(mg, label, dests) is as follows:

(1) The sender transmits msg to its destinations.
(2) Each recipient adds the message to the priority queue associated with label,

tagging it as undeliverable. It assigns this message a priority larger than the
priority of any message that was placed in the queue, with the process ID of
the recipient as a suffix. I t then informs the sender of the priority that it
assigned to the message.

(3) The sender collects responses from recipients that remain operational. It
then computes the maximum value of all the priorities it received, and sends
this value back to the recipients.

(4) The recipients change the priority of the message to the value they receive
from the sender, tag the message as deliverable, and re-sort their priority
queues. They then transfer messages from the priority queue to the delivery
queue in order of increasing priority, until the priority queue becomes empty
or the message with the lowest priority is undeliverable. In the latter case no
more messages are transferred until the message at the head of the queue
becomes deliverable.

If a failure occurs, any site that has a message tagged undeliverable from a
failed sender detects this using the monitoring mechanism and can then take
over as the new coordinator to complete the protocol. I t does so by interrogating
participants about the status of the message. A participant being interrogated
either has never received the message or responds with the priority and tag. The
new coordinator collects responses. If any process has marked the message
deliverable, the new coordinator distributes the corresponding priority to the
other processes (step 3). Otherwise, it resumes from step 1. Note that this scheme
ACM Transactions on Computer Systems, Vol. 5, No. 1, F e b ~ a r y 1987.

Reliable Communication in the Presence of Failures 63

requires that each process retain Information about messages even after they are
placed on the delivery queue; garbage collection is discussed in Section 4.4.

CORRECTNESS. The protocol is atomic because, before any recipient tags a
message as deliverable, all destinations must have received copies of it. If a failure
occurs after that, a destination that has a copy tagged undeliverable will complete
the protocol. Thus, if the message is delivered at any destination, it will be
delivered at all of them.

We now show that every message is delivered in the Same order a t all
overlapping destinations. If the final priorities of any two messages were assigned
by the Same process, they cannot be equal. If they were assigned by different
processes, the process ID that is suffixed can be used to order them should the
priority values be equal. Thus every deliverable message has a unique priority
assigned to it. Messages addressed to overlapping destinations are delivered
everywhere in this order. Because the final priority is the maximum of all assigned
priorities, the priority of an undeliverable message never becomes smaller than
that of a message that has already been delivered. Thus, if the message at the
head of the queue is tagged as deliverable, it can always be safely delivered. D

4.3.2 CBCAST Protocol. OUT CBCAST protocol operates by ensuring that,
whenever a message B is sent from a process p to a process q, a copy of every
undelivered message B' that precedes B (as in Section 3.3) is also sent to q with
B, even if q is not a destination for B'. Thus a message may travel from process
to process before it reaches a destination, and multiple copies could be delivered
by different routes (duplicates are discarded). It follows that, if a message B is
delivered to a process q, then copies of all messages addressed to q that precede
B also arrive with B or have arrived earlier. Messages addressed to q can there-
fore be delivered in order. We first describe a simple but inefficient CBCAST
implementation, then show how its efficiency may be improved.

For each process P, there is a message buffer BUFp, which contains copies of
messages sent to and from p, as well as copies of messages that arrive a t p
en route to other processes. Every message B in BUFp has fields ID(B) and
REM-DESTS(B) associated with it. When p performs a CBCAST(msg, clabel,
dests), the message is placed in BUFp, and REM-DESTS(B) is initialized to
dests. If p E REM-DESTS(B), a copy of the message is placed on the drilivery
queue for p, and p is removed from REM-DESTS(B). The process p can then
continue as if the message had already been sent. Messages in BUFp are later
scheduled for transmission to BUFg for each destination q. The decision as to
when this occurs can be based on advice from higher level algorithms (a message
that requires a response would presumably be transmitted as soon as possible to
minimize waiting time, while asynchronous messages for which no replies are
needed could be delayed longer) or on factors like the load on the network. We
assume only that all messages are scheduled for transmission within finite time.
For now, we also assume that a copy of any message placed in BUFp remains in
the buffer indefinitely.

A message B is transmitted from BUFn at site s to BUF, a t site t as follows:

(1) A transfer packet (Bi, Bs, . . .) is first created and includes all messages B'
in BUFp such that B' -c* B and REM-DESTS(B1) is nonempty. The messages
are sorted so that, if Bi -2Ã B,, then i C j.

ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

64 K. P. Birman and T. A. Joseph

(2) The transfer packet is then transmitted from site s to site t.
(3) When the packet has been sent, for each Bi that it contained, q is deleted

from REM-DESTS(Bi), if it was listed there.

When process q receives a packet (Bl, Bz, . . .), the following is done for each
t , in increasing order of i:

(4) If ID(Bi) is already associated with a message in BUFq, then Bi is a duplicate
and is discarded.

(5) If q G REM-DESTS(Bi), Bi is placed on the delivery queue for q, q is removed
from REM-DESTS(Bi), and a copy of Bi is placed in BUK.

(6) Otherwise, Bi is a message in transit to another process, and it is simply
placed in BUFq.

CORRECTNESS. Any process q that receives a message adds a copy of it to
BUFq. Since all messages in BUFq are scheduled for transmission within finite
time, it follows that, if any site has received a message and does not fail, the
message will eventually be delivered to all the destinations that remain opera-
tional. Thus the protocol is atomic.

To show that messages are delivered in the correct order, it suffices to show
that, for every pair of messages B and B' delivered to q, if B precedes B', then B
is placed on the delivery queue before B'. We first prove that a copy of B will
have been placed in BUFSENDER(~,) when B' was first placed there. Then any
transfer packet that contains B' will also contain B, and B will be ordered before
B' in it. Thus, when the first transfer packet containing B' arrives at q, a copy
of B will also be received. If B has not arrived in an earlier packet (in which case
it has already been placed on the delivery queue), B will now be placed on the
delivery queue before B'.

It follows from the definition of the relation precedes that, if B precedes B',
there is a sequence of CBCASTS B = Bo, Bi, . . . , B,, = B' such that, for all i,
0 < i :Â n, Bi-i -̂ Bi, SENDER(Bi) E REM-DESTS(Bi-i), and Bi-i is received
at SENDER(Bi) before Bi is sent. The proof that a copy of B will have been
placed in BUFSENDER(B*) when B' is first placed there is by induction on n, the
length of the shortest sequence satisfying the properties above. If n = 0, B = B',
and the result follows immediately. Assume that the hypothesis is valid for
n = k. If n = k + 1, consider the messages B and Bk. By the induction hypothesis,
a copy of B will have been placed in BUF~ENDER(B~) when Bk was first placed
there. Hence any transfer packet carrying a copy of Bk will also carry a copy of
B. We know that Bk -cÃ Bk+l, SENDER(Bk+l) E REM-DESTS(Bk), and Bk is
received at SENDER(Bk+l) before Bk+l is sent. Hence a copy of B will arrive at
SENDER(Bk+J and be placed in BUFs~NDER(Bi+,) before Bk+l is delivered. This
gives us the required result. D

There are a number of ways in which the protocol above can be optimized:

(1) Although the protocol was stated in terms of packets sent from process to
process, these packets cou'ld be combined to form larger intersite packets. One
intersite packet could suffice to transfer messages from a set of processes at one
site to all destination processes at another. The packet reception rules would be
ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

Reliable Communication in the Presence of Failures 65

ABCAST arrives

GBCAST arrives

CBCAST arrives

\ ABCAST queue 1 ~ 1 _ _ l [Delivery
, , queue queue

+ Process p 0

Fig. 4, Data structures used during GBCAST protocol,

amended to deliver all the messages in a packet that have local destinations at
once and to update the associated PBUFs correctly.

(2) Instead of keeping a copy of a message in the buffer of each process a t a
site, the buffers could contain pointers into a common message pool for all
processes at the Same site. Then each message would be represented at most once
at each site.

(3) To avoid sending a copy of the same message from process p to process q
more than once, a field SENT-TO(B) can be associated with each message B
and updated each time a packet containing the message is sent. The packet
generation rules can then be further amended to include B in a packet to a site
only if it has not already been sent there. If desired, it would also be possible to
transmit SENT-T0 information from site to site periodically so that other sites
can avoid sending duplicates.

The problem of deleting a message after it has reached all its destinations
(REM-DESTS becomes empty) is discussed in Section 4.4.

4.3.3 GBCAST Protocol. A GBCAST(action, G) must be ordered relative to
other GBCASTs to G, as well as relative to ABCASTs and CBCASTs. In addition
failure GBCASTs must be delivered after every message from the failed process.
These aspects are treated as separate problems in the description of the protocol,
then optimizations yielding a more efficient implementation are given. Figure 4
shows the additional data structures needed to support the GBCAST protocol.

The first part is carried out only for failure GBCASTs and ensures that all
messages from a failed process are ordered before the GBCAST. Say that the
process that failed is f.

1.1) The process p running the protocol acquires a read-lock on its copy of the
site view. It then sends a message to all processes in the system, informing
them of the start of the failure GBCAST for f.

(1.2) A process q receiving this message schedules for transmission any message
B in BUK sent by f that includes a member of G in REM-DESTS(B). It
then waits until the status of these messages turns to sent.

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

66 K. P. Birman and T. A. Joseph

(1.3) If q belongs to G, q waits until all ABCASTs from f have become deliverable.
This will happen eventually because some process (perhaps q itself) will
take over to complete the ABCAST protocol.

(1.4) The process q then sends an acknowledgment top. When acknowledgments
have been received from all operational processes, p releases its read-lock.
The lock is implicitly released if p fails prior to doing so.

The second part of the protocol is based on the ABCAST protocol, and orders
GBCASTs to the Same group relative to one another, GBCASTs relative to
ABCASTs.

(2.1) The process p distributes the message action to the members of the process
group G.

(2.2) A recipient q places copies of the message on all ABCAST priority queues,
tagging them undeliverable. We assume that there is always a (possibly
empty) queue for every possible ABCAST label. It assigns it a priority
greater than that of any message that has been placed On any of the
ABCAST queues, and sends this priority value back t o p (all copies receive
the Same priority).

(2.3) After collecting the responses, p sends the maximum of all the values it has
received to the members of G, which change the priority accordingly and
re-sort their queues. Unlike what happens in the ABCAST protocol, the
messages are not tagged deliverable at this time. Thus, when a GBCAST
message reaches the head of an ABCAST priority queue, further delivery
of messages from that queue will be suspended.

(2.4) When the GBCAST message reaches the head of all ABCAST queues, the
next part is begun.

The third part orders GBCASTs relative to CBCASTs. We assume that the
CBCAST protocol is modified to maintain a list IDlist* for each process p,
containing IDs for CBCAST messages that have been placed On the delivery
queue of p. For now, assume that the list includes the IDs of all such messages.
The goal of the protocol is for processes in G to agree on a list of CBCAST
messages to be ordered before the GBCAST and to deliver messages accordingly.
The third phase executes as follows:

(3.1) The process p initiating the protocol contacts all members of G.
(3.2) A participant q establishes a FIFO wait queue (unless one already exists).

Until the GBCAST protocol completes, messages that would have been
placed On the delivery queue at q by the CBCAST protocols are placed On
this queue instead.

(3.3) If any message B in IDlistn is in PBUFn and the remaining destinations of
B include sites in G, q must assume that those sites have not yet received
a copy of B. Any such message is scheduled for transmission to the
destinations in REM-DESTS(B) n G, and q waits until the messages have
been sent. I t then sends IDlistg to P.

(3.4) After collecting these messages,p merges all the lists it has received, calling
this the before list. It sends the before list to all participants. When a
participant q receives this list, any message that was transmitted during

ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

Reliable Communication in the Presence of Failures 67

step 3.3 must have arrived and is On the wait queue, unless it has already
been delivered. Similarly, during step 1.2 all CBCAST messages from a
failed process were either placed On the wait queue or delivered.

Finally, messages are transferred in order to the delivery queue, and normal
delivery resumes:

(4.1) Each participant q does the following: For each CBCAST B in its wait
queue, if B is in the before list, or if there is some B' in the before list and
B -̂ B', or if the GBCAST is for a failure of process f and SENDER(5) =
f, then B is added to the list.

(4.2) Any messages in the wait queue that are also in the before list are now
transferred to the delivery queue, presewing their relative order. The
GBCAST message is then placed On the delivery queue.

(4.3) If there are no other GBCAST protocols in progress,p appends the contents
of the wait queue to the delivery queue and deletes the wait queue.

(4.4) The GBCAST messages are removed from the heads of the ABCAST
queues, allowing ABCAST messages to be delivered.

If a failure occurs, any participant can restart the protocol from the beginning.
As with ABCAST, participants reply using the deliverable priority of the
GBCAST message if they know it; all other steps of the protocol are idempotent
and can be repeated without ill effect.

CORRECTNESS. GBCAST is atomic because no participant can deliver a
GBCAST message until all have received it; hence, if any delivers it, all can
restart the protoc01.~

GBCASTs to the Same process group are ordered in the Same way at every
member because each GBCAST is assigned a unique priority value (step 2.3) and
is delivered in this order.

GBCASTs are ordered consistently with respect to ABCASTs because a copy
of the message is placed On each ABCAST queue, and the second part of the
GBCAST protocol is the Same as the ABCAST protocol.

To show that GBCASTs are ordered in the Same way relative to CBCASTs,
we must show that, if a CBCAST is delivered before the GBCAST at a member
of G, it will be delivered before the GBCAST at any other member that it is sent
to. The CBCASTs delivered before a GBCAST at a process q are those placed in
the delivery queue before the wait queue is established, as well as the CBCASTs
in the before list that are placed in the delivery queue during step 4.2. Now, any
CBCAST in the delivery queue before the wait queue is established must be in
IDlist, in step 3.2 and is hence in the before list. Also, any message delivered in
step 4.2 is in the before list or precedes some message in the before list. It suffices
to show that any message delivered by q arrives in the wait queue of any other
destinations in G before step 4.2 is executed there. This, however, is immediate
because a copy of any such message will have been in PBUF, during step 3.3;
hence q did not respond until it had confirmed its delivery.

' By the Same reasoning, if one member of a process group initiates a checkpoint using a GBCAST
(Section 3.7), all members that stay operational long enough will do so as well.

ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

68 K. P. Birman and T. A. Joseph

Selecting some of the messages from the wait queue to be delivered ahead of
others could conceivably upset the CBCAST delivery order. But assume that
CBCAST B is before B' on some wait queue and that B' is delivered during step
4.2, but B is not. Clearly, YB -cÃ B', since step 4.1 would otherwise have added B
to the before list. Thus the CBCAST delivery constraints are respected.

Finally, observe that, because of the flush performed during part 1, the protocol
does not begin executing until all messages from a failed process f have been
delivered to their destinations. Hence such messages are either on the delivery
queue for the destinations or on a wait queue, if some other GBCAST protocol
was executing a t the time. Step 4.1 then ensures that the GBCAST is delivered
after any other message from f. This completes the proof. D

Optimizations. The GBCAST protocol can be optimized simply by merging
steps together. Moreover, the flush that is done in part 1 could be invoked directly
from the view management protocol; then, instead of doing this on a per-process
basis, which would be extremely costly, it would occur on a per-site basis, a t
relatively low cost. If this were done, a two-round protocol would result, not
counting the cost of the flush, and performance should be acceptable. A method
for controlling the length of IDlists is given below.

Lockingprocess group uiews. Recall from the end of Section 3 that it is desirable
for a process group member to be able to transmit atomically to all other members
of its group with the assurance that the transmission will not iterate in the
addressing protocol. GBCAST can readily be changed to provide this behavior.
To do so, it is necessary to associate a lock with the process group view; while
the view is locked, new GBCAST, ABCAST, and CBCAST operations cannot be
initiated. During the first phase of a GBCAST operation that increases the group
membership, this lock would be acquired; if it cannot be acquired (because some
other GBCAST has done so), the GBCAST would be interrupted and retried. It
is not necessary to lock the view for GBCASTs that do not increase the group
membership. Once the view is locked, it suffices to order all pending ABCAST
and CBCAST events before the GBCAST, using the mechanisms discussed above.
The view lock would then be released when the GBCAST delivery takes place.
Recall that broadcast participants learn about the failure of a coordinator using
the monitoring mechanism, which is independent of the process group view
mechanism. Thus the presence of these locks does not change the way in which
these protocols terminate after failure of the coordinator.

4.4 An Associative Store and Distributed Garbage Collection Facility
We now define an associative store mechanism, which is used by the above
protocols to manage the information associated with message IDs. Each site s
maintains a local store denoted STOREs. The contents of a store are tuples
(id, alist), where id is a broadcast ID and ulkt is a list of Zero or more attributes.
A set of operations is defined on the store for each site (there is no facility for
accessing the store at a remote site). The operation st_add(id) creates an empty
list for the designated ID, st-insert(id, aname, value) adds an attribute with
name aname and value ualue to the list, st-find(id, aname) looks up an attribute,
and st-delete(id, aname) deletes an attribute (but not the ID). The special
ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

Reliable Communication in the Presence of Failures 69

attribute DISPOSABLE is inserted when an entry will no longer be referenced.
In the ABCAST and GBCAST protocols, an ID becomes DISPOSABLE at a site
running (or completing) the protocol after it transmits commit messages. In the
CBCAST protocol, an ID becomes DISPOSABLE at a site when the correspond-
ing REM-DESTS field is empty.

We now give a method for deleting information associated with a message ID
after the ID is marked as DISPOSABLE by some site. The method defines a
delete action, which is taken when an ID is discarded; a t the end of the section
we give these delete actions. Since copies of messages may be transmitted to a
site while it is running the garbage collection protocol, and message IDs are used
to avoid delivery of duplicate copies of messages, some care must be taken to
ensure that copies of a message will not be received after its ID is deleted.
Accordingly, the algorithm employs an additional field associated with each
message ID in the store, DONT-SEND, which is initially null and subsequently
lists sites that have run the protocol.

(1) Periodically, each site a makes a list of tuples, (ID, DONT-SEND) for
DISPOSABLE IDs. It invokes the delete action for each listed ID, and then,
to each site s in the site view, transmits a list (ID;) containing any ID; that
is DISPOSABLE such that s is not in DONT-SEND;. It acquires a read-
lock on the site view while doing this.

(2) On receiving a list (IDo, IDi, . . .), site b takes the following actions

(a) If IDi is not already in STORE*, it is added.
(b) The REM-DESTS field associated with the ID is made empty and it is

marked as DISPOSABLE. This ensures that b will not send additional
copies of the message and that the ID will eventually be deleted from
STOREb.

(C) It adds a to the DONT-SEND field associated with this ID in STORE*.

After processing the list, b sends an acknowledgment to a.

(3) After receiving acknowledgments from all operational sites, a deletes the ID,
the DONT-SEND field, and other information associated with the ID from
STOREÃ£ The DONT-SEND field prevents a site from adding an ID to its
store after deleting it, that is, when some other site executes the protocol to
delete the ID from its own store. Site a then releases its read-lock on the site
view.

ABCAST and GBCAST have no special delete action; the priority information
that they saved is discarded automatically when the protocol completes. The
delete action for CBCAST is to remove the message ID from the IDlist of any
processes that have received a copy of it, and to delete the message itself from
PBUFp for any processes p at the site. Thus the length of an IDlist will be
determined by the number of active broadcasts, which should be small.

CORRECTNESS. This follows because no site deletes a message ID until all
operational sites have sent acknowledgments in step 2, but after step 2c, dupli-
cates of a message will no longer be sent to a site that has run the protocol. D

ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

70 K. P. Birman and T. A. Joseph

4.5 CBCAST Flush Implementation

Flush is invoked in two ways, each having a slightly different implementation.
When a process invokes flush, the CBCAST algorithm is such that, if any
CBCAST B is active, a copy of B will be present in PBUFp for any process p that
might take actions causally dependent on the delivery of B. Hence it suffices to
schedule all messages in PBUFp for transmission and then wait until all have
been sent, in the sense of Section 4.1.

If flush is invokedfor a group address change, a stronger condition is needed,
namely, the fact that there is no active CBCAST that could still be rejected. This
is satisfied by doing a CBCAST requesting that group members return an
acknowledgment. If this CBCAST is ordered after all messages that have been
sent previously, the acknowledgment will not be received until the messages in
question have all been accepted.

4.6 Wide-Area Networks

The above protocols do not address intercluster communication but can be
extended to do so. Our approach assumes that in a large network the notion of a
site view is meaningful only in the context of a particular cluster. Accordingly,
we do not attempt to extend the failure agreement protocol to include sites
outside a cluster. Instead we require that a process monitoring an external process
(that is, external to its cluster) learn about the failure of that process indirectly
from a monitoring facility actually resident in the remote cluster. The monitoring
facility of Section 4.1 can be extended to implement this transparently. Next, we
limit the extent to which CBCAST messages can propagate through the system
by requiring that a CBCAST be sent directly to its external destinations, instead
of being piggybacked, while still respecting the transmission ordering mies given
above (since precedes is acyclic, CBCAST messages can always be transmitted in
the order corresponding to a topological sort on their clabels without doing any
piggybacking). Because CBCAST messages are sent directly to their external
destinations, the flush phase that precedes a failure GBCAST need only be run
within the cluster where a failed process or site resided. Finally, we require that
messages from the first phase of a GBCAST or ABCAST protocol, as well as all
CBCAST messages, be sent to local sites before the first transmission to an
external site is initiated. This implies that the local participants all know of the
protocol before any external participant learns of it. Thus, even though the flush
phase of a failure GBCAST is carried out locally, it will definitely flush pending
broadcasts when it starts, unless all local participants have failed. Moreover, in
the case of GBCAST and ABCAST this permits a performance optimization
whereby the new coordinator can be located in the same cluster as the initial
one. The protocols are otherwise unchanged, and process groups that extend over
cluster boundaries can be supported transparently. Notice also that it is now
possible to run the garbage collection algorithm within a cluster. Although it
remains necessary to inform external sites when information associated with an
ID can be deleted, those sites are never sources of piggybacked CBCAST mes-
sages; hence they can initiate the delete action for an ID immediately upon
learning that it is deletable, and the DONT-SEND mechanism is not needed.
ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

Reliable Cornrnunication in the Presence of Failures 71

Thus, with minor modifications, fault-tolerant process groups can be supported
transparently in hierarchical wide-area networks. The local protocols are unaf-
fected; hence the approach will take advantage of communication locality. Tuning
the I/O scheduling policies for a network of this sort represents a challenging
problem for future investigation.

4.7 Liveness

In the interest of brevity, we omit a formal proof that the protocols given above
are free of deadlock and livelock.

5. APPLICATIONS

A local-area implementation of the communication subsystem proposed here is
being undertaken as part of the ISIS project at Cornell. ISIS is a distributed
computing system that provides several forms of support for fault-tolerant
computing. A prototype that was completed in January 1985 transforms nondis-
tributed abstract type specifications into fault-tolerant, distributed implementa-
tions, called resilient objects [2]. Resilient objects achieve fault tolerance by
replicating the code and data managed by the object a t more than one site. The ,

resulting components synchronize their actions to provide the effect of a single-
site object. In the presence of failures, any ongoing operation a t a failed compo-
nent is continued by an operational one. Also, a resilient object continues to
accept and process new operations as long as a t least one component is opera-
tional. Finally, failed components recover automatically when the site at which
they reside is restarted.

The initial version of ISIS used a simple communication layer that provided
an atomic broadcast with no ordering properties. This was unsatisfactory for two
reasons. First, the implementation grew very complex because of the need to
include, in various parts of the system, protocols to preclude orderings that might
lead to inconsistencies, especially in the presence of failures. Second, the high
degree of synchronization resulting from these protocols lowered system per-
formance. When reimplemented using a preliminary version of the primitives
presented here, the system became much simpler, and performance improved
owing to the highly concurrent nature of the primitives.

The overall structure of the new system is layered (see Figure 2). The lowest
levels, which we view as part of the kernel, include the site view manager, input
filter, and output filter described earlier. Also included in the kernel are the
associative store and the per-process buffer pool. A special kernel process is run
a t high priority to implement the protocols. Client processes communicate with
one another either directly using the protocols described here, or indirectly using
resilient objects and fault-tolerant bulletin boards [3]. The latter provide an
asynchronous interface to shared data structures On which information can be
"posted," with varying levels of consistency, depending On the intended use (this
paradigm will be familiar to readers from the artificial intelligence community).
High-level support for process groups includes a process group manager, which
assists in creation, destruction, and communication with process groups, and a
communication switchboard that facilitates connection establishment.

ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

72 K. P. Birman and T. A. Joseph

The communication primitives are used a t all levels of our current work. In
the interest of brevity, however, we restrict ourselves to a survey of just a few
ways in which they are employed.

5.1 Updating Replicated Data

When replicated data are updated, care must be taken to ensure that the updates
occur in the Same order a t all copies. Otherwise, the copies can become incon-
sistent. In an environment where no broadcast ordering properties are guaran-
teed, this is done by preceding an update to a local copy by a broadcast to the
remote copies and waiting for confirmation from the remote copies that the
update has been carried out before allowing another local update to occur. This
kind of synchronization means that the rate a t which updates can occur is limited
by the time it takes for a message to travel a round trip, which can be unacceptably
high. If CBCASTs are instead used to instruct remote copies to perform updates,
an update can be considered complete when the local update is carried out. No
further synchronization is required, because the properties of CBCASTs guar-
antee that all the copies receive the update, and do so in the required order [12].
The rate at which updates can now be performed is now the rate a t which local
updates can be done, which is usually much higher than the previous case. At
the Same time, the protocol for carrying out a replicated update is much simpler,
as it consists of a single CBCAST.

5.2 Coordinator-Cohort Computations

In ISIS, one of the components of a resilient object is designated as the coordinator
for the execution of a particular operation. The others, its cohorts, act as passive
backups. If the coordinator fails, a cohort takes over and restarts the request.

The process group abstraction facilitates the implementation of coordinator-
cohort computations. The components of a resilient object are placed in the Same
process group, and each request to perform an operation is transmitted to all the
components using CBCAST. Since each component has the Same process group
view, the components can independently decide on a unique coordinator for the
request by using the Same algorithm, without running an agreement protoc01.~

The GBCAST ordering properties prevent inconsistencies from arising when
failures or recoveries occur. After a failure, cohorts can pick a new coordinator
consistently, and because all have received the Same messages from the previous
coordinator, the object data are in a consistent state a t all components. When a
component recovers, it uses GBCAST to rejoin the group; hence all the opera-
tional components receive the GBCAST in the Same state, and any one can
transfer data to reinitialize the recovering component.

5.3 Managing Locks On Replicated Data

Lock-based concurrency control is the most common method for obtaining
serializability [1, 101. The usual locking method for replicated data is to obtain
write-locks on all copies and read-locks on only one. This means that, if the site

'In ISIS this is done as follows: If a request arrives frorn site s, the coordinator is the site t in the
process group view minimizing abs(t - s). This normally locates the coordinator for a computation
at the Same site as the site where the request originated, which improves response time.

ACM Transactions on Computer Systems, Vol. 5, No. 1, Febmary 1987.

Reliable Communication in the Presence of Failures 73

at which a read-lock is obtained were to fail, all information about this read-lock
would be lost. In the ISIS recovery scheme, as in many that use a saved state for
recovery, it is necessary for the executions to be deterministic, and a change in
serialization order after failure would violate this. This implies that, for ISIS to
provide roll-forward executions after failure, information about read-locks must
be replicated as well. Unfortunately, whereas replicating write-locks is reasonable,
acquiring read-locks at all sites would be terribly inefficient. Instead, the ordering
properties of the broadcast primitives are used to obtain an equivalent effect.

A read-lock is first obtained locally. Then, a read-lock registration message is
CBCAST to the other copies of the data item. The sender immediately continues
execution, as if its read-lock were already replicated, although the message may
not actually have been delivered anywhere. If the sender fails before any message
leaves the site, the effect is as if the read never occurred (recall that a failure
destroys all information at a site). If, on the other hand, a site has received any
message m sent after the lock acquisition, the GBCAST protocol for the failure
will ensure that the read-lock registration message is delivered before the failure
is detected by the processes managing the lock. Thus the read-lock behaves like
a fully replicated one.

Unlike a read-lock, a write-lock must be explicitly granted by all components
of an object. However, a deadlock could occur if concurrent write-lock requests
on the same data item are granted in different orders by different components.
This problem can be avoided by using ABCASTs for write-lock acquisition
requests. If the data item name is used as an ABCAST label, write-lock requests
on the same data item are ordered in the same way at all components, and
deadlock is avoided.

5.4 Performance Issues
A prototype communication layer similar to the one described here has been in
operation since January 1985 [2]. Instrumentation of a collection of resilient
objects yielded performance measures that shed light on the way in which these
primitives can affect a real distributed system. One, the response time for a
typical request, measures the critical path before a reply can be issued to a caller.
We considered a fault-tolerant file object distributed to three sites (SUN work-
stations). A request that acquires a replicated write-lock, updates a replicated
data item, and then responds to its caller sends its reply after about 0.3 second;
additional updates delay the response by 0.1 second each (the difference reflects
the one-time cost of concurrency control). When ISIS is run in a synchronous
mode, verifying that each update has actually completed before the coordinator
undertakes any subsequent operations, such a computation requires 0.85 second,
with additional updates requiring 0.5 second each. Moreover, the performance of
the synchronous version degrades as the number of sites increases, whereas the
concurrent version gives the same performance regardless of the number of
participating sites. Thus, concurrent communication primitives can have a sub-
stantial impact On performance.

When a high level of concurrency is achieved in a distributed computation, it
can remain active after replying to the process that initiated it. To isolate the
effect of concurrency on the above figures, the total elapsed time between the

ACM Transactions on Computer Systems, Vol. 5, No. I, February 1987.

74 K. P. Birman and T. A. Joseph

issuing of the request and the true termination of the operation can be measured.
In ISIS, we find that a single asynchronous update terminates about 0.2 second
after returning a result, with additional updates delaying termination by about
0.05 second each, and with linear degradation as the number of sites increases.
In practical terms, when a resilient calendar application was executed on two
SUN terminals sitting side by side, a calendar update caused both screens to
refresh essentially simultaneously. Considering that this version of UNIX6 on
the SUN 2 is not known for blinding Speed, the performance we have achieved
is completely satisfactory.

Finally, we examined the effect of piggybacking On the performance of the ISIS
prototype. To do this, we placed the file object under a "distributed load,"
presenting operations to i t a t multiple sites and measuring the mean delay before
a response was computed and returned. As the load rises, a backlog of asynchro-
nous updates begins to form, and the CBCAST implementation takes advantage
of this to begin piggybacking multiple messages on each packet. Because the
computing time in a simple object such as this is largely spent reading request
messages, and only a small percentage of these require a response, efficiency can
rise dramatically if a single incoming packet carries several messages. Precisely
this effect was observed: For objects distributed over small numbers of sites (two
to six), performance under relatively heavy loads (a load of 7 operations per
tecond) was nearly as good as that for a nondistributed object under a very light
load (<I operation per second) and far better than that for a nondistributed
object under the Same heavy load. This is because the concurrent update algo-
rithm concentrates the real processing at a coordinator (cohorts do very little).
Thus, if different requests have different coordinators, each does less work than
a single coordinator performing both requests. Moreover, the benefit of replica-
tion more than outweighs the overhead associated with asynchronously broad-
casting the updates to cohort processes. Thus, in ISIS at least, the primitives are
tremendously valuable.

To summarize, for a yariety of distributed applications in ISIS, and no doubt
in other systems as well, the communication primitives described in this paper
permit extremely good performance-but with the ability to tolerate failure as
well. Moreover, they actually simplify the design of distributed software and
reduce the probability that subtle synchronization or concurrency related bugs
will arise. The fault-tolerant process group approach to distributed computing
appears to be a major improvement over alternative programming methodologies
for this domain.

6. LIMITATIONS

One weakness of the work described in this paper is its tendency to block in the
presence of partitioning failures when two or more subgroups of operational sites
form, within which communication remains possible, but between which it is
degraded or impossible. We are now investigating the adaptation of methods
from EI Abbadi and Toueg [8] and EI Abbadi et al. [9] to address this issue. We
are also examining the possibility of integrating communication primitives with

UNIX is a trademark of AT&T Bell Laboratories.

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

Reliable Communication in the Presence of Failures 75

synchronized clocks for use in shared memory systems and tightly coupled
multiprocessors.

A second limitation is our implicit assumption that within each cluster failures
and recoveries will be sufficiently infrequent to permit the site view protocol to
terminate. We believe that these assumptions hold in most existing distributed
systerns. In less benign environments, however, where this form of stabilization
might not occur, it is not clear that our approach to fault tolerante would perform
satisfactorily.

7. CONCLUSIONS

The experience of implementing a substantial fault-tolerant system left us with
insights into the properties to be desired from a communication subsystem. The
broadcast primitives described in this paper present a simple interface, achieve
a high level of concurrency, can be used in both local- and wide-area networks,
and are applicable to software ranging from distributed database systems to the
fault-tolerant objects and bulletin boards provided by ISIS. Because they are
integrated with failure-handling mechanisms and respect desired event orderings,
they introduce a desirable form of determinism into distributed computation
without compromising efficiency. A consequence is that high-level algorithms are
greatly simplified, reducing the probability of error. We believe that this is a very
promising and practical approach to building large fault-tolerant distributed
systerns, and the only one that leads to confidence in the correctness of the
resulting software.

ACKNOWLEDGMENTS

The evolution of this paper has been influenced by many of our colleagues, to
whom we are deeply grateful. Particular thanks go to Amr E1 Abbadi, Ozalp
Babaoglu, Eric Cooper, Thomas Raeuchle, and Pat Stephenson for their many
detailed comments. We are also indebted to Jay Misra and Mani Chandy for
discussions and comments about a very early draft of this paper, to Dale Skeen,
who helped found the ISIS group and was responsible for the ordering algorithm
used in the ABCAST protocol, and to the members of the ANSA project in
Cambridge, England, for stimulating discussions about the issues raised herein.
Finally, the comments of the referees are gratefully acknowledged.

REFERENCES
1. BERNSTEIN, P. A., AND GOODMAN, N. concurrency control in distributed database systems.

ACM Comput. Suru. 13,2 (June 1981), 185-221.
2. BIRMAN, K. Replication and availability in the ISZS system. In Proceedings of the 10th ACM

Symposium on Operating Systems Principles, Oper. Syst. Reu. 19, 5 (Dec. 1985), 79-86.
3. BIRMAN, K., JOSEPH, T., SCHMUCK, F., AND STEPHENSON, P. Programming with shared

bulletin boards in asynchronous distributed systems. Tech. Rep. TR 86-772, Dept. of Computer
Science, Cornell Univ., Aug. 1986.

4. CHANG, J., AND MAXEMCHUK, N. F. Reliable broadcast protocols. ACM Trans. Comput. Syst. 2,
3 AU^. 1984), 251-273.

5. CHERITON, D. R., AND ZWAENEPOEL, W. Distributed process groups in the V kernel. ACM
Trans. Comput. Syst. 3, 2 (May 1985), 77-107.

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

76 K. P. Birrnan and T. A. Joseph

6. COOPER, E. Replicated distributed programs. In Proceedings of the 10th ACM Symposium on
Operating Systems Principles; Oper. Syst. Rev, 19, 5 (Dec. 1985), 63-78.

7. CRISTIAN, F., AGHILI, H., STRONG, R., AND DOLEV, D. Atomic broadcast: From simple message
diffusion to Byzantine agreement. IBM Tech. Rep. RJ 4540 (48668), Oct. 1984.

8. EL ABBADI, A., AND TOUEG, S. Availability in partitioned, replicated databases. In Proceedings
of the 5th ACM Symposium on Principles of Database Systems (Boston, Mass., Mar.). ACM, New
York, 1986.

9. EL ABBADI, A., SKEEN, D., AND CRISTIAN, F. An efficient algorithm for replicated data
management. In Proceedings of the 4th ACM Symposium on Principles of Database Systems
(Portland, Oreg., Mar.). ACM, New York, 1985, pp. 215-229.

10. GRAY, J. Notes on database operating systems. In Operating Systems: An Advanced Course,
G. Goos and J. Hartmannis, Eds. Lecture Notes in Computer Science, vol. 60. Springer-Verlag,
New York, 1978.

11. GOODMAN, N., SKEEN, D., CHAN, A., DAYAL, U., Fox, S., AND RIES, D. A recovery algorithm
for a distributed database system. In Proceedings of the 2nd ACM Symposium on Principles of
Database Systems (Atlanta, Ga., Mar.). ACM, New York, 1983, pp. 8-15.

12. JOSEPH, T., AND BIRMAN, K. Low cost management of replicated data in fault-tolerant
distributed systems. ACM Trans. Comput. Syst. 4, 1 (Feb. 1986), 54-70.

13. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21, 7 (July 1978), 558-565.

14. SCHLICHTING, R. D., AND SCHNEIDER, F. B. Fail-stop processors: An approach to designing
fault-tolerant computing systems. ACM Trans. Comput. Syst. 1, 3 (Aug. 1983), 222-238.

15. SCHNEIDER, F., GRIES, D., AND SCHLICHTING, R. Fault-tolerant broadcasts. Sei. Comput.
Program. 4, 1 (Mar. 1984), 1-15.

16. SKEEN, D. Crash recovery in distributed database systems. Ph.D. dissertation, Dept. of Electri-
cal Engineering and Computer Science, Univ. of California, Berkeley, 1980.

17. SKEEN, D. Determining the last process to fail. ACM Trans. Comput. Syst. 3, 1 (Feb. 1985),
15-30.

Received September 1985; revised August 1986; accepted August 1986

ACM Transactions on Computer Systems, Vol. 5, No. 1, February 1987.

