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Abstract

This thesis examines the problem of cache organization for very large-scale distributed
file systems (DFSs). Conventional DFSs, based on the client—server model, suffer
from bottlenecks when the total client load exceeds the server’s capacity. Previous
work has suggested that hierarchical client organizations can ameliorate the problem
somewhat, but at the expense of a substantial increase in client latency.

An analysis of existing DFS workloads reveals that there is considerable regularity
in client file access patterns and that widely shared files lend themselves especially
well to caching techniques. In particular, a large proportion of “cache miss” traffic is
for files that are already copied in another client’s cache. If clients can share these
cached files, the server’s load can be reduced by a potentially large margin, making
larger-scale systems possible.

We introduce the notion of dynamic hierarchical caching, in which adaptive client
hierarchies are constructed on a file - by - file basis. Trace - driven simulation and
workload - driven runs of a prototype file system suggest that dynamic hierarchies can
reduce server load substantially without the client performance penalties associated

with more static schemes.
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Chapter 1

Introduction: Toward Massive

Scale Distributed File Systems

Distributed File Systems (DFSs), such as those described in [27] and [14] have gained
wide acceptance as a convenient and efficient paradigm for sharing data in local area
computer networks. As computing becomes more pervasive, these local networks are
becoming much larger and better inter-connected, with disparate groups of thousands
of administratively autonomous machines rapidly becoming connected to one another.
With this growth of internetworked computing, the DFS paradigm has grown beyond
the local network and is emerging as a useful model for large-scale data sharing as well
as the local area applications for which it was originally envisioned. Unfortunately,
many of the assumptions on which the implementations of current systems are based
break down when applied to these emerging massive-scale applications.

This thesis is concerned with data caching in massive-scale DFSs. In this chapter,
we discuss the history of the DFS model, and identify some of the assumptions on
which current systems are based. In Chapter 2 we describe the instrumentation of
a file system for non-intrusively obtaining user workload traces. In Chapter 3 we
discuss file access patterns observed in a number of different computing environments
and how these patterns affect caching policies. Chapter 4 describes trace driven simu-

lations of conventional “flat” caching schemes and discusses the inherent bottlenecks



CHAPTER 1. INTRODUCTION 2

when these schemes are applied to large-scale systems. In Chapter 5, “hierarchi-
cal” caching schemes which attempt to break these bottlenecks are introduced, and
we explore the new problems and inherent tradeoffs in the use of these approaches.
Chapter 5 also introduces “dynamic hierarchical” caching schemes, which construct
adaptive hierarchies based on usage patterns and address some of the problems with
static schemes. In Chapter 6, we describe a prototype distributed file service based
on dynamic hierarchies, and discuss issues in the design of a massive-scale system.
Finally, in Chapter 7, we conclude with directions for future work in this area.
Some of the results in this thesis have been published previously. The monitoring
tools in Chapter 2 were described in [4]. Parts of the results in Chapters 3 and
4 appeared in [4] and [5]. The dynamic hierarchies of Chapter 5, as well as some

preliminary trace results, were first outlined in [6].

1.1 Motivation and Background

The first computing systems were completely centralized; that is, a single computer
served its users autonomously and from a single location. Users went to the computer,
and the model of interaction was static and lent itself to such tasks as financial
data processing and performing complex scientific calculations. ‘Jobs” had to be
“submitted” to the computer via such media as punched cards or paper tape and only
after a program’s turn came up and the run completed could the user see any results
of the computation. With the development of inexpensive teletype (and, later, CRT)
terminals and timesharing operating systems, however, computing shifted toward a
more interactive, less centralized model. Users were no longer required to physically
go to the computer for service, instead needing only hook up a remote terminal at
their workplace to the central computer. Interactive computing in the workplace led
to applications not possible with batch processing, including word processing, on-line
databases, and electronic mail services. Since the same information could be made
available at terminals located in different places, these systems could be said to be
less centralized and more distributed, at least from the point of view of the user. The

distribution, however, was limited to the number of terminals that could be served
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by a single computer.

As computing systems became less expensive and more pervasive, the workstation
model of computing became a practical alternative to the centralized terminal server
[33]. Rather than terminals, users interact directly with their own computers, sharing
information over a local area network such as Ethernet [19].

Distributed file systems were first developed to provide a convenient and efficient
mechanism for the sharing of data in local networks. In a distributed file system, a
central file server stores the shared files. Machines on the network connect to the
file server to obtain these files as they are needed, and usually present a reasonably
transparent interface to the user that makes files on the server appear as if they really
reside on a local disk.

The number of machines in a local network is inherently rather small, limited by
the number of machines that can be connected within a single building or area. Large
scale in the first distributed file systems was simply not an important consideration.

As internetworking has become more widespread, the desire to share files often
spans across individual local networks. For example, it is now common practice to
share some files among hundreds or thousands of machines on university campuses
and within large corporate entities. With internetworking becoming more global, the
desire to share files often extends to many thousands of machines located thousands
of miles from one another. Issues of scale make the problems of distributed file system
design for such global networks somewhat different from systems that support only
the local network.

Scale requires the absence of service bottlenecks; that is, no single component of
a large scale system should be required to provide service proportional to the size of
the system [3]. If a component must provide service proportional to the size of the
system, it will eventually bottleneck when the size of the system places a demand
that is beyond what we can construct a component to handle. In a distributed file
system, the most obvious bottlenecks are the file server and the network to which it
is connected.

Scale is a multi-faceted concept, and a rather subjective one at that. Whether a

system scales well depends on many factors, not the least of which is what, exactly,
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we mean by “scales well”. We identify and distinguish among several kinds of scale
in this thesis: “population,” “traffic,” “administrative,” and “geographic.” Each
is concerned with a particular aspect of size, and ability to scale in one way does
not guarantee scalability in another. In fact, improving one kind of scalability can
sometimes degrade another.

Population scale is the ability of the system to withstand growth in the total
number of potential clients, irrespective of the actual usage patterns of these clients.
For example, if the file server must maintain persistent state information about each
client (for example, about open or cached files), eventually the number of clients will
exceed the capacity of the server to maintain their state data. Designing stateless
servers is one way to improve population scale, although, as we shall see in subsequent
chapters, this is can have a negative impact on other aspects of scale.

Traffic scale is the ability of the system to handle the total actual workload of
all its clients. A system will not scale well for traffic if all client activity requires
server intervention, since eventually the traffic generated by the clients will exceed the
server’s (or the network’s) capacity. The usual technique for improving traffic scale
involves having each client maintain a cache of previously read files or file blocks.
Again, this is not without cost, since the issue of cache consistency for shared files
makes it difficult to design stateless servers, and in any case, clients eventually require
some server interaction for files not previously read.

The last two aspects of scale, administrative and geographic, concern the ability
of the system to span autonomous entities and cover large physical distance. Ad-
ministrative scale is made difficult by issues of authentication, charging, and system
management. Geographic scale raises questions about the ability of the system to
operate under failure, partition, and under degraded network conditions.

This thesis is concerned with caching in large scale systems, particularly with

respect to population and traffic scale.
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1.2 Related Work

There is much current research in distributed file systems, and some of this work has
matured to the point of becoming commercial products. It is beyond the scope of
this section to conduct and in-depth discussion of the state of distributed file system
research. For an excellent survey, the reader is referred to [16].

For the purposes of this thesis, however, it is useful to discuss two projects that
have evolved into widely-used commercial systems. In some sense these two systems
represent the extremes of a continuum of design decisions for client-server file systems,
and are the “state of the art” for their respective approaches in many ways.

The Sun Network File System (NFS) [27] was the first widely accepted distributed
file system, and can be viewed as the classic example of a stateless server design. It
was originally developed to support local area network workstations, each of which
may or may not also have a local disk. Each client can maintain (usually in-memory)
a cache of previously read file blocks (the “buffer cache”), but must validate with the
server that that file has not changed before each cache use (at file open time). The
NF'S protocol is discussed in Chapter 2 in more detail. NFS does not scale very well
for traffic, since the server must either send a file or verify its status for all client
activity, and server load is therefore proportional to the total client workload. It
does scale well for population, however, since there is no required state information
maintained at the server.

The Andrew File System (AFS) [14] was designed for larger (campus wide) scale.
AF'S makes extensive use of client caches, which are expected to be larger and possibly
disk-based. Server load is greatly reduced (compared with NFS) through the callback
mechanism, which requires the server to maintain state information about the files
cached by its clients. While AFS does do better than NFS in terms of traffic scale, the
server still sees a load proportional to the client activity not handled by the caches,
which is still proportional to total client activity (it just bottlenecks later). The
callback state information also has implications for AFS’s ability to scale for large
populations. AFS is now a commercial product, and it is regarded as among the most

scalable file systems available.
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In Chapter 4, we discuss the inherent limits of the scale of these systems in detail.



Chapter 2

Data Collection: Non-Intrusive

File System Instrumentation

Traces of real workloads form an important part of virtually all analysis of computer
system behavior, whether it is program hot spots, memory access patterns, or file
system activity that is being studied. In the case of file system activity, obtaining
useful traces is particularly challenging. File system workload patterns may span
long time periods, often entailing weeks or even months of continuously collected
trace data. Modification of the file system to collect trace data is often difficult, and
may introduce unacceptable runtime overhead. Distributed file systems exacerbate
these difficulties, especially when the network is composed of a large number of het-
erogeneous machines. As a result, only a relatively small number of traces of real
file system workloads have been conducted, primarily in computing research environ-
ments. Yet much file system research, including this thesis, is based on analysis of
and simulation using real trace data.

This chapter describes our portable toolkit for obtaining workload traces by ob-
serving client and server network traffic generated by the NFS [27] file system. The
non intrusive nature of the toolkit makes it possible to collect long-term traces in

environments where other approaches are infeasible or unacceptable.
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2.1 Tracing Methodologies

2.1.1 Trace Abstractions

There are a number of different approaches to file system tracing, each yielding a
different kind of trace data. Whether a particular methodology is suitable depends,
of course, primarily on what is being studied.

The various tracing methodologies can be distinguished by how abstractly they
view the behavior of the file system and by whether the trace is static or dynamic in
nature.

Static traces are the simplest to conduct; they consist of statistical measurement
of a “snapshot” of a working file system at a fixed point in time. The file system may
be viewed at either a high level (as a set of files) or a lower level (as a set of records,
blocks, disk cylinders, etc). Static analysis is useful to answer questions about such
properties as the distributions of file owners, file sizes, access times (if that is recorded
in the snapshot), block fragmentation and so forth. Obviously, this approach tells
us little about the behavior of the file system over time. If snapshots are taken at
regular intervals, however, some of this dynamic information can be traced. See [29]
for an example of a study that used static analysis to good advantage.

The most difficult problem in conducting a static trace is obtaining a consistent
snapshot without affecting the operation of the file system. If the trace examines all
the data in the file system, it may be necessary to suspend user operations while the
trace is being taken in order to ensure that an internally consistent copy is made.
Obviously, this may not always be practical, especially if the time required to copy
all the file system data is significant. In some cases, it may be possible perform
static analysis on offline backup copies, since these are not ordinarily needed for user
operation. Analysis of backups is only useful, however, if the backup actually contains
the data of interest (the precise location of blocks on the disk, for example, is not
recorded in many backups schemes).

For many studies, we are more interested in the dynamic behavior of the file
system and must look beyond static analysis. A dynamic trace entails logging the

sequence of operations performed on or by a file system during a given period. The
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‘ Abstraction ‘ Unix Interface ‘ Example Operation
Disk Disk Device Driver seek
File System | Vnode Interface getattr
System Call | System Call open
User Standard 1/O Library | fopen

Table 1: Levels of Abstraction in Dynamic File System Traces

operations can be logged at several different levels of abstraction depending on the
nature of the trace being taken. For convenience, we identify four abstractions that
may be logged by a dynamic trace: disk level, file system level, system call level, and
user level. The lowest level trace, the disk trace, is be concerned with the operations
on the physical disk device (seek, read data, write data, etc). A file system level
trace is concerned with the operations performed on the file system by the operating
system. A system call trace logs the file system related system calls issued by user
processes. The highest level trace, the user trace, logs the file system activity as seen
by the user, who usually interacts with the file system through a high-level intertace
built on top of system calls.

In the Unix operating system, these four levels of abstraction map naturally into
four interfaces within that operating system and programming environment. See
Table 1. Looked at in this way, a trace at a particular level of abstraction is a log of
the operations performed on a particular interface.

Clearly, each level of abstraction exposes and hides different kinds of information,
and the volume and granularity of data generated varies with each. Depending on
the particular system being traced and the kind of data collected, it may or may not
be possible to derive the activity at one level of abstraction from a trace of another.
For example, the entries in a file system level trace may not reflect all system call
level activity, since the operating system’s internal caches and buffers may serve some
system calls without file system intervention. If files can be pre-fetched, there may
also be file system activity that does not map directly to any system calls.

For the study and simulation file system caching algorithms, we are concerned
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primarily with system call level traces. Disk level and file system level traces reflect
activity that is highly dependent on the internal architecture and configuration of
the system being traced. User level traces, on the other hand, reflect very high level
activity that may never, in practice, be passed on to the file system. A system
call level trace gives us the actual workload sent to the operating system, and is
therefore readily useful for simulating various cache sizes, replacement rules, and
cache organizations, as well as direct analysis of the user file access patterns that

influence caching performance.

2.1.2 Practical Considerations

To trace at the disk, file system, or system call level generally requires modification
of the operating system kernel. Tracing at the user level generally involves modifica-
tion of the user 1/O library (such as Unix’s 1ibc.a). Regardless of the level being
traced, the most difficult problems often concern the management of the volume of
data generated. Since the data will generally be logged to a disk, the designer of a
tracing system must be careful that the trace can keep up with the workload data.
In general, the lower level the trace, the more data will be generated. A parallel
issue is performance; it is usually important that the trace software be sufficiently
transparent to the user that it is not noticed. This is particularly important if the
trace is to be taken over a long time period.

It is beyond the scope of this thesis to discuss the many details of operating system
modification for file system tracing. For a detailed example of these issues, the reader

is referred to [17] and [2].

2.1.3 Distributed File System Tracing

Distributed File Systems, in which the user (the “client”) and the disk (the “server”)
are on different computers, introduce new problems as well as new opportunities
for file system tracing. If we are interested in a system call trace, the problem is
much harder: we must modify each client machine on which the system calls run to

collect trace data. If we are interested in temporal relationships for files accessed from
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more than one machine, the individual client traces must be reconciled and merged
together. If the clients are not identically configured machines, the problems become
even harder.

File system level tracing, however, may actually be easier in a distributed en-
vironment. Since the file system interface is transmitted between client and server
over a network, it may be possible to capture this traffic and reconstruct a trace at
a useful level of abstraction. This approach has the advantage of being completely
independent of the client and server machines; there can be no performance impact
if the network can be monitored in a completely passive manner.

Ethernet [19] based networks lend themselves to this approach particularly well,
since traffic is broadcast to all machines connected to a given subnetwork. A number
of commercially available general-purpose network monitoring tools are available that
“promiscuously” listen to the Ethernet to which they are connected; Sun’s etherfind
[10] is an example of such a tool. The nfswatch package [9] uses similar techniques
to report specific information on NFS packet headers. While these tools are usetul for
observing (and collecting statistics on) specific types of packets, the information they
provide is at too low a level to be useful for building file system traces. File system
operations may span several packets, and may be meaningful only in the context of
other, previous operations.

Some work has been done on characterizing the impact of NFS traffic on network
load. In [13], the results of a study are reported in which Ethernet traffic was moni-
tored and statistics gathered on file system activity. While useful for understanding
traffic patterns and developing models of NFS load patterns, these previous studies
do not use the network traffic to analyze the file access traffic patterns of the system,
focusing instead on developing a statistical aspects of the individual packet sources,
destinations, and types.

In the next section, we describe our toolkit for deriving file system and system

call level traces from NFS [27] activity.
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2.2 NFS Tracing by Passive Network Monitoring

This section describes a toolkit we constructed for collecting traces of NFS file ac-
cess activity by monitoring Ethernet traffic. A “spy” machine with a promiscuous
Ethernet interface is connected to the same network as the file server. Each NFS-
related packet is analyzed and a trace is produced at an appropriate level of detail.
The tool can record the low level NFS calls themselves or an approximation of the
user-initiated system calls (open, close, etc.) that triggered the activity.

We partition the problem of deriving NFS activity from raw network traffic into
two fairly distinct subproblems: that of decoding the low-level NFS operations from
the packets on the network, and that of translating these low-level commands back
into user-level system calls. Hence, the toolkit consists of two basic parts, an “RPC
decoder” (rpcspy) and the “NFS analyzer” (nfstrace). rpcspy communicates with
a low-level network monitoring facility (such as Sun’s NIT [23] or the Packetfilter [20])
to read and reconstruct the RPC transactions (call and reply) that make up each NFS
command. nfstrace takes the output of rpcspy and reconstructs the system calls
that occurred as well as other interesting data it can derive about the structure of the
file system, such as the mappings between NF'S file handles and Unix file names. Since
there is not a clean one-to-one mapping between system calls and lower-level NFS
commands, nfstrace uses some simple heuristics to guess a reasonable approximation

of what really occurred.

2.2.1 The NFS Protocol

It is well beyond the scope of this thesis to describe the protocols used by NFS in
detail; for a detailed description of NFS protocols, the reader is referred to [26],
[35], [22]. What follows is a very brief overview of how NFS activity translates into
Ethernet packets.

An NFS network consists of servers, to which file systems are physically connected,
and clients, which perform operations on remote server file systems as if the disks
were locally connected. A particular machine can be a client or a server or both.

Clients mount remote server file systems in their local hierarchy just as they do local
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file systems; from the user’s perspective, files on NFS and local file systems are (for
the most part) indistinguishable, and can be manipulated with the usual file system
calls.

The interface between client and server is defined in terms of 17 remote proce-
dure call (RPC) operations. Remote files (and directories) are referred to by a file
handle that uniquely identifies the file to the server. There are operations to read
and write bytes of a file (read, write), obtain a file’s attributes (getattr), ob-
tain the contents of directories (lookup, readdir), create files (create), and so
forth. While most of these operations are direct analogs of Unix system calls, notably
absent are open and close operations; no client state information is maintained at
the server, so there is no need to inform the server explicitly when a file is in use.
Clients can maintain buffer cache entries for NFS files, but must verify that the blocks
are still valid (by checking the last write time with the getattr operation) before
using the cached data.

An RPC transaction consists of a call message (with arguments) from the client to
the server and a reply message (with return data) from the server to the client. NFS
RPC calls are transmitted using the UDP/IP connectionless unreliable datagram
protocol [24]. The call message contains a unique transaction identifier which is
included in the reply message to enable the client to match the reply with its call.
The data in both messages is encoded in an “external data representation” (XDR),
which provides a machine-independent standard for byte order, etc.

Note that the NFS server maintains no state information about its clients, and
knows nothing about the context of each operation outside of the arguments to the

operation itself.

2.2.2 rpcspy

rpcspy is the interface to the system-dependent Ethernet monitoring facility; it pro-
duces a trace of the RPC calls issued between a given set of clients and servers. That
is, rpcspy produces a file system level trace for an NFS server. There are versions of
rpcspy for a number of Berkeley Unix-derived systems, including ULTRIX (with the
Packetfilter [20]), SunOS (with NIT [23]), and the IBM RT running AOS (with the
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Stanford enet filter).

For each RPC transaction monitored, rpcspy produces an ASCII record contain-
ing a timestamp, the name of the server, the client, the length of time the command
took to execute, the name of the RPC command executed, and the command- specific
arguments and return data. Currently, rpcspy understands and can decode the 17
NFS RPC commands, and there are hooks to allow other RPC services (for example,
NIS) to be added reasonably easily. The output may be read directly or piped into
another program (such as nfstrace) for further analysis; the format is designed to be
reasonably friendly to both the human reader and other programs (such as nfstrace
or awk).

Since each RPC transaction consists of two messages, a call and a reply, rpcspy
waits until it receives both these components and emits a single record for the entire

transaction. The basic output format is 8 vertical-bar-separated fields:

timestamp | execution-time | server
| client | command-name

| arguments | reply-data

where timestamp is the time the reply message was received, execution-time is
the time (in microseconds) that elapsed between the call and reply, server is the
name (or IP address) of the server, client is the name (or IP address) of the client
followed by the userid that issued the command, command-name is the name of the
particular program invoked (read, write, getattr, etc.), and arguments and
"reply-data" are the command dependent arguments and return values passed to
and from the RPC program, respectively.

The exact format of the argument and reply data is dependent on the specific
command issued and the level of detail the user wants logged. For example, a typical

NFS command is recorded as follows:

2690529992.167140 | 11717 | paramount
| merckx.321 | read
| {"7b1£00000000083c", 0, 8192}
| ok, 1871
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In this example, uid 321 at client "merckx" issued an NFS read command to server
"paramount". The reply was issued at (Unix time) 690529992.167140 seconds; the
call command occurred 11717 microseconds earlier. Three arguments are logged for
the read call: the file handle from which to read (represented as a hexadecimal string),
the offset from the beginning of the file, and the number of bytes to read. In this
example, 8192 bytes are requested starting at the beginning (byte 0) of the file whose
handle is "7b1£00000000083c". The command completed successfully (status "ok"),
and 1871 bytes were returned. Of course, the reply message also included the 1871
bytes of data from the file, but that field of the reply is not logged by rpcspy.
rpcspy has a number of configuration options to control which hosts and RPC
commands are traced, which call and reply fields are printed, which Ethernet inter-
faces are tapped, how long to wait for reply messages, how long to run, etc. While
its primary function is to provide input for the nfstrace program (see below), ju-
dicious use of these options (as well as such programs as grep, awk, etc.) permit
its use as a simple NFS diagnostic and performance monitoring tool. A few screens
of output give a surprisingly informative snapshot of current NFS activity; we have
identified quickly using the program several problems that were otherwise difficult to
pinpoint. Similarly, a short awk script can provide a breakdown of the most active

clients, servers, and hosts over a sampled time period.

2.2.3 rpcspy Implementation Issues

The basic function of rpcspy is to monitor the network, extract those packets con-
taining NFS data, and print the data in a useful format. Since each RPC transaction
consists of a call and a reply, rpcspy maintains a table of pending call packets that
are removed and emitted when the matching reply arrives. In normal operation on a
reasonably fast workstation, this rarely requires more than about two megabytes of
memory, even on a busy network with unusually slow file servers. Should a server go
down, however, the queue of pending call messages (which are never matched with a
reply) can quickly become a memory hog; the user can specify a maximum size the
table is allowed to reach before these “orphaned” calls are searched out and reclaimed.

File handles pose special problems. While all NF'S file handles are a fixed size, the
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number of significant bits varies from implementation to implementation; even within
a vendor, two different releases of the same operating system might use a completely
different internal handle format. In most Unix implementations, the handle contains
a file system identifier and the inode number of the file; this is sometimes augmented
by additional information, such as a version number. Since programs using rpcspy
output generally will use the handle as a unique file identifier, it is important that
there not appear to be more than one handle for the same file. Unfortunately, it is
not sufficient to simply consider the handle as a bitstring of the maximum handle
size, since many operating systems do not zero out the unused extra bits before as-
signing the handle. Fortunately, most servers are at least consistent in the sizes of
the handles they assign. rpcspy allows the user to specify (on the command line or
in a startup file) the handle size for each host to be monitored. The handles from
that server are emitted as hexadecimal strings truncated at that length. If no size is
specified, a guess is made based on a few common formats of a reasonable size.

It is usually desirable to emit IP addresses of clients and servers as their symbolic
host names. An early version of the software simply did a nameserver lookup each
time this was necessary; this quickly flooded the network with a nameserver request
for each NFS transaction. The current version maintains a cache of host names; this
requires a only a modest amount of memory for typical networks of less than a few
hundred hosts. For very large networks or those where NFS service is provided to a
large number of remote hosts, this could still be a potential problem, but as a last
resort remote name resolution could be disabled or rpcspy configured to not translate
IP addresses.

UDP/IP datagrams may be fragmented among several packets if the datagram is
larger than the maximum size of a single Ethernet frame. rpcspy looks only at the
first fragment; in practice, fragmentation occurs only for the data fields of NFS read

and write transactions, which are ignored anyway.
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2.2.4 nfstrace

Although rpcspy provides a trace of the low-level NFS commands, it is not, in and of
itself, sufficient for obtaining system call-level file system traces. The low-level com-
mands do not by themselves directly reflect system call-level activity. Furthermore,
the volume of data that would need to be recorded is potentially enormous, on the
order of megabytes per hour. We would prefer to record the system calls underlying
the NFS activity.

nfstrace is a filter for rpcspy that produces a log of a plausible set of system
calls that could have triggered the monitored activity. A record is produced each
time a file is opened, giving a summary of what occurred. This summary is detailed
enough for analysis or for use as input to a file system simulator.

The output format of nfstrace consists of 7 fields:

timestamp | command-time | direction
| file-id | client | transferred

| size

where timestamp is the time the open occurred, command-time is the length of time
between open and close, direction is either read or write (mkdir and readdir count
as write and read, respectively). file-id identifies the server and the file handle,
client is the client and user that performed the open, transferredis the number of
bytes of the file actually read or written (cache hits have a 0 in this field), and size
is the size of the file (in bytes).

An example record might be as follows:

690691919.593442 | 17734 | read
| basso:7b1£f00000000400f | frejus.321
| 0 | 24576

Here, userid 321 at client frejus read file 761£00000000400f on server basso. The
file is 24576 bytes long and was able to be read from the client cache. The command
started at Unix time 690691919.593442 and took 17734 microseconds at the server to

execute.
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Since it is sometimes useful to know the name corresponding to the handle and the
mode information for each file, nfstrace optionally produces a map of file handles
to file names and modes. When enough information (from lookup and readdir
commands) is received, new names are added. Names can change over time (as files
are deleted and renamed), so the times each mapping can be considered valid is
recorded as well. The mapping information may not always be complete, however,
depending on how much activity has already been observed. Also, hard links can
confuse the name mapping, and it is not always possible to determine which of several
possible names a file was opened under.

What nfstrace produces is only an approximation of the underlying user activity.
Since there are no NFS open or close commands, the program must guess when these
system calls occur. It does this by taking advantage of the observation that NFS is
fairly consistent in what it does when a file is opened. If the file is in the local buffer
cache, a getattr call is made on the file to verify that it has not changed since the
file was cached. Otherwise, the actual bytes of the file are fetched as they are read
by the user. (It is possible that part of the file is in the cache and part is not, in
which case the getattr is performed and only the missing pieces are fetched. This
occurs most often when a demand-paged executable is loaded). nfstrace assumes
that any sequence of NFS read calls on the same file issued by the same user at the
same client is part of a single open for read. The close is assumed to have taken place
when the last read in the sequence completes. The end of a read sequence is detected
when the same client reads the beginning of the file again or when a timeout with no
reading has elapsed. Writes are handled in a similar manner.

Reads that are entirely from the client cache are a bit harder; not every getattr
command is caused by a cache read, and a few cache reads take place without a
getattr. A user level stat system call can sometimes trigger a getattr, as can an
1s -1 command. Fortunately, the attribute caching used by most implementations
of NF'S seems to eliminate many of these extraneous getattrs, and 1s commands
appear to trigger a lookup command most of the time. nfstrace assumes that a
getattr on any file that the client has read within the past few hours represents a

cache read, otherwise it is ignored. This simple heuristic seems to be fairly accurate
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in practice. Note also that a getattr might not be performed if a read occurs very
soon after the last read, but the time threshold is generally short enough that this
is rarely a problem. Still, the cached reads that nfstrace reports are, at best, an
estimate (generally erring on the side of over-reporting). There is no way to determine
the number of bytes actually read for cache hits.

The output of nfstrace is necessarily produced out of chronological order, but
may be sorted easily by a post-processor.

nfstrace has a host of options to control the level of detail of the trace, the lengths
of the timeouts, and so on. To facilitate the production of very long traces, the output
can be flushed and checkpointed at a specified interval, and can be automatically

compressed.

2.2.5 Practical Issues

Clearly, nfstrace is not suitable for producing highly accurate traces; cache hits
are only estimated, the timing information is imprecise, and data from lost (and
duplicated) network packets are not accounted for. When such a highly accurate
trace is required, other approaches, such as modification of the client and server
kernels, must be employed.

The main virtue of the passive-monitoring approach lies in its simplicity. In [2],
Baker, et al, describe a trace of a distributed file system which involved low-level
modification of several different operating system kernels. In contrast, our entire
file system trace package consists of less than 5000 lines of code written by a single
programmer in a few weeks, involves no kernel modifications, and can be installed to
monitor multiple heterogeneous servers and clients with no knowledge of even what
operating systems they are running.

The most important parameter affecting the accuracy of the traces is the ability of
the machine on which rpcspy is running to keep up with the network traffic. Although
most modern RISC workstations with reasonable Ethernet interfaces are able to keep
up with typical network loads, it is important to determine how much information
was lost due to packet buffer overruns before relying upon the trace data. It is also

important that the trace be, indeed, non-intrusive. It quickly became obvious, for
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example, that logging the traffic to an NF'S file system can be problematic.

Another parameter affecting the usefulness of the traces is the validity of the
heuristics used to translate from RPC calls into system calls. This was tested with a
workload generator that performed 1s -1, touch, cp and wc commands randomly
in a small directory hierarchy, keeping a record of which files were touched and read
and at what time. After several hours, nfstrace was able to detect 100% of the
writes, 100% of the uncached reads, and 99.4% of the cached reads. Cached reads
were over-reported by 11%, even though 1s commands (which cause the “phantom”
reads) made up 50% of the test activity. While this test provides encouraging evidence
of the accuracy of the traces, it is not by itself conclusive, since the particular workload
being monitored may fool nfstrace in unanticipated ways.

As in any research where data are collected about the behavior of human sub-
jects, the privacy of the individuals observed is a concern. Although the contents
of files are not logged by the toolkit, it is still possible to learn something about
individual users from examining what files they read and write. At a minimum, the
users of a monitored system should be informed of the nature of the trace and the
uses to which it will be put. In some cases, it may be necessary to disable the name
translation from nfstrace when the data are being provided to others. Commer-
cial sites where filenames might reveal something about proprietary projects can be

particularly sensitive to such concerns.

2.3 Princeton Trace Collection

It was relatively easy to use rpcspy and nfstrace to conduct a week long trace
of file system activity in the Princeton University Computer Science Department.
The departmental computing facility serves a community of approximately 250 users,
of which about 65% are researchers (faculty, graduate students, undergraduate re-
searchers, postdoctoral staff, etc), 5% office staff, 2% systems staff, and the rest guests
and other “external” users. About 115 of the users work full-time in the building and
use the system heavily for electronic mail, netnews, and other such communication

services as well as other computer science research oriented tasks (editing, compiling,
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and executing programs, formatting documents, etc).

The computing facility consists of a central Auspex file server (£s) (to which users
do not ordinarily log in directly), four DEC 5000/200s (elan, hart, atomic and
dynamic) used as shared cycle servers, and an assortment of dedicated workstations
(NeXT machines, Sun workstations, IBM-RTs, Iris workstations, etc.) in individual
offices and laboratories. Most users log in to one of the four cycle servers via X window
terminals located in offices; the terminals are divided evenly among the four servers.
There are a number of Ethernets throughout the building. The central file server
is connected to a “machine room network” to which no user terminals are directly
connected; traffic to the file server from outside the machine room is gatewayed via a
Cisco router. Each of the four cycle servers has a local /, /bin and /tmp file system;
other file systems, including /usr, /usr/local, and users’ home directories are NFS
mounted from fs. Mail sent from local machines is delivered locally to the (shared)
fs:/usr/spool/mail; mail from outside is delivered directly on fs.

The trace was conducted by connecting a dedicated DEC 5000/200 with a local
disk to the machine room network. This network carries NFS traffic for all home
directory access and access to all non-local cycle-server files (including the most of
the actively-used programs). On a typical weekday, about 8 million packets are
transmitted over this network. nfstrace was configured to record opens for read
and write (but not directory accesses or individual reads or writes). After one week
(wednesday to wednesday), 342,530 opens for read and 125,542 opens for write were
recorded, occupying 8 MB of (compressed) disk space. Most of this traffic was from
the four cycle servers. Figure 1 shows the configuration of the departmental network
with the trace machine attached.

No attempt was made to “normalize” the workload during the trace period. Al-
though users were notified that their file accesses were being recorded (and provided
an opportunity to ask to be excluded from the data collection) most users seemed
to simply continue with their normal work. Similarly, no correction is made for any

anomalous user activity that may have occurred during the trace.
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2.3.1 Other Traces

In addition to the traces collected at Princeton and elsewhere using nfstrace, we
were very fortunate to be provided with a trace from Digital Equipment Corporation’s
Systems Research Center (DEC-SRC). This trace was collected on 112 “Firefly” work-
stations over a period of four and one half days. Each client kernel (which used a
Unix-like operating system written in Modula-2+) was modified to record all file sys-
tem calls. The entire trace consisted of over three gigabytes of data, at the “system
call” level.

Since the DEC-SRC trace will be used to produce results that will be compared
with results from the Princeton traces, the data needed to be processed slightly to
facilitate direct comparison. First, since the Princeton trace looked only at file opens,
all but the file open operations were removed from the DEC-SRC data. This also
had the advantage of reducing the volume of data to only about 25 megabytes, which
permitted the entire trace to be stored online. The computing environment at DEC-
SRC was also different from the Princeton environment in that the former assumed
a single workstation per user while the latter relied on four cycle servers with X-
terminals as the user interface. This difference can be reconciled by considering
each user at Princeton to be a separate workstation for the purpose of simulating a
distributed workstation environment like that of DEC-SRC.

The similarity in size and function of the Princeton environment and the DEC-
SRC environment make this trace particularly valuable. If the two traces give similar
results for a given set of file system metrics this is strong evidence that those metrics
are relatively insensitive to slight changes in workload. Furthermore, similar results
from traces collected with these two different methods would suggest that both meth-

ods are reasonably accurate ways to collect file system data.

2.4 Conclusions

File system workload traces are a valuable tool for many kinds of research and per-
formance analysis. The difficulty of collecting trace data limits their use, however,

and relatively few real workloads have been made available to file system researchers.
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Traces of distributed file system activity can collected by passive monitoring of the
network traffic to the file server. It is possible to use these traces to derive an ap-
proximate system call level trace. This chapter described a tool for collecting such

traces from NFS systems.

In the following chapter, the traces described above are analyzed for access pat-

terns that affect caching and scale.



Chapter 3
File Access Patterns and Caching

Scale and performance in distributed file systems are closely related to the effec-
tiveness of the caching scheme used by the clients. In a caching scheme, clients place
recently accessed data likely to be read in the future in a local storage “cache”. When
a read occurs, the cache is checked first, and reads are served without server inter-
vention when the data are already there. Usually, data are inserted in to the cache
when they are read (“demand caching”), and removed when either no longer valid
(“cache invalidation”) or when the cache is full and old data need to be discarded to
make room for other data (the “replacement rule”). The success of a caching scheme
is usually measured by the “hit rate” of the cache — the proportion of data accesses
served by reading from the cache. A number of factors contribute to the hit rate,
including the size of the client cache, the ability of the replacement rule to predict
which data will be read again, and the particular workload presented to the cache.
Workload patterns affect file caching in several ways. Observe that in demand
caching a “miss” will occur only under one of two circumstances. First, trivially,
when a file is read for the first time it must miss in the cache, since there was no
previous opportunity to insert the data into the cache. Second, even if the file has
been read previously, it will miss if the replacement rule or invalidation policy caused
it to be discarded already. Therefore, the hit rate depends on whether the workload
includes multiple reads by the same clients, and whether the pattern of these reads

is one that works well for the client replacement rule. Unfortunately, it is difficult to
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make strong analytical statements about a cache without knowledge of the workload
properties. At one extreme, the hit rate will be 100% if the same data are read over
and over and are never thrown out of the cache. At the other extreme, the hit rate
will be 0% if each read refers to data never before read by the client.

Even with knowledge of the workload properties, experimental techniques such
as trace-driven simulation are generally used to predict the hit rate of a particular
caching scheme. There are no known analytic models that can be used to predict the
hit rate for a given cache size, replacement rule, and access workload pattern. Before
such analytic models could be constructed, we must have a deep insight into how file
access patterns interact with caches.

This chapter attempts to identify a number of access patterns that affect the cache
hit rate. We do not attempt to construct an analytic model for cache performance
nor even to quantify these patterns. Rather, we seek simply to identify in workload
traces a number of common access properties that appear to influence cache hit rates.
Understanding common access patterns is important for several reasons. It facilitates
the construction of accurate workload generators [7] [30] that can be used, in the
absence of real trace data, to drive simulators or measure the performance of real
systems. In the longer term, a better understanding of workloads could lead to useful

analytic cache performance models.

3.1 Previous Work

Most previous work on file access patterns has focused on either statistical data
on static properties (e.g., the distribution of file sizes), or on relatively short term
behavior (e.g., the percentage of files accesses that consist of reading all the bytes of
a file in order). This is partially because of the difficulty of obtaining longer-term
traces, as discussed in the previous chapter.

In spite of the relatively small number of studies of the dynamic behavior of files
over time, a number of file access properties have been observed that are of interest
to the cache designer. First, the distribution of files accesses tends to be skewed

heavily so that a small percentage of files account for the majority of file I/O [31]
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[8] [11] [34]. This is perhaps at the heart of why file system caching is successful at
all; a sufficiently small proportion of the file system that can be stored at the client
comprises the “working set” of file accesses. A caching or replication strategy should
seek to maintain copies of these active files while ignoring the majority of dormant
ones.

Most file accesses have been observed to be sequential and of the entire file [17] [2]
[31], although the this is somewhat dependent on the attribute information associated
with the file [11]. This observation may be partially explained by the limited facilities
in the Unix operating system for non-sequential file I/O. If sequential access is known
to be common, it may be simpler to cache entire files (or large chunks of files) rather
than individual file blocks. Throughput may also be improved by pre-fetching later
blocks of a sequentially accessed file when it is opened.

Files in Unix are very likely to be deleted or overwritten soon after they are created
[17] [2]. This suggests that it is worth buffering files in the client cache for a short
time before writing them back to the server, since the files are likely to be deleted

anyway before they are written back.

3.2 Long-Term Access Patterns

A number of access patterns that influence cache performance were observed in the
workload traces described in Chapter 2. This section describes these traces in more
detail. Later chapters will use these traces to drive simulations of various caching

strategies.

3.2.1 Workload Properties
Traffic vs. Time of Day

In both traces, the volume of read and write traffic (or, more precisely, the number
of opens for read and write per hour) was highly dependent on the time of day.

Figures 2 and 3 plot the hourly read and write traffic in the Princeton and DEC-SRC

traces, respectively. Note that opens for read outnumber opens for write by about 3
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Figure 2: Read and Write Traffic in Princeton Trace

to 1 in the Princeton trace and by about 5 to 1 in the DEC-SRC trace.

Observed Cache Performance

An interesting statistic is the hit rate observed in the machines on which the trace
was taken. This data could not be derived from the DEC-SRC trace but could be
approximated in the Princeton Trace. Each of the four cycle servers allocated ap-
proximately 6 megabytes for the buffer cache. The hit rate observed was surprisingly
low: under 23% over the trace week, and never exceeding 40% in any given hour.
Figure 4 plots cache misses and cache hits over the period of the trace on the four
cycle servers.

Past studies have predicted much higher workstation hit rates than those observed
here. It is likely that the low hit rate can be attributed to the large number of users
logged in to each cycle server and competing for space in the 6 Megabyte cache. This
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Figure 5: Cache Hits and Misses in Private Workstation

hypothesis is supported by the much higher hit rates observed on similarly configured
private workstations on which only one user was logged in. Figure 5 plots the hits and
misses on a typical private workstation in the Princeton trace. On this workstation,

the hit rate was more than double that of the cycle servers, averaging over 52% over

the week.

3.2.2 File “Inertia”

Files in both traces were usually opened in the same mode (read or write) and by
the same user (or workstation) as the previous open on that file. That is, the most
recent operation on a particular file is a good predictor of the next operation on
that file. We can consider each file open to represent a transition between read and
write states for the same user or a different user. Tables 2 and 3 show the observed
probability of switching between states on file opens in the Princeton and DEC-SRC
traces, respectively. Observe that in both traces, between 51% and 70% of reads and
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Next Operation on File
Previous Read by Read by | Write by | Write by
Operation || Same User | New User | Same User | New User
Read 51.7% 36.3% 10.1% 2.0%
Write 18.7% 10.4% 70.0% 0.9%

Table 2: Next Operation vs Previous Operation, Princeton Trace

Next Operation on File
Previous Read by Read by | Write by | Write by
Operation || Same User | New User | Same User | New User
Read 66.2% 28.7% 4.9% 0.2%
Write 30.3% 1.4% 64.0% 4.2%
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Table 3: Next Operation vs. Previous Operation, DEC-SRC Trace

writes are followed by the same operation by the same user. This suggests designs

optimized for sequences of the same kind of operation by the same user.

3.2.3 Temporal Locality

Intuition suggests that recently read files make up a large proportion of read traffic.
In both traces, most opens for read were for files that had already been read by the
same user (or workstation) in the very recent past. This implies that caches that can
store all files read with a relatively short history will be very effective. Figures 6 and 7
show the percentage of opens for reading by time since the file was last read at that
workstation for the Princeton and DEC-SRC traces, respectively. Note that these
graphs are assuming a “cold start” in which files read for the first time in the trace
are counted even though they may have been read just prior to the beginning of the
trace period. The curves indicate the percentage of opens for reading that follow an
open for reading on the same machine within ¢ hours. Observe that only two hours

of cache data will yield a hit rate over 66% in both traces.
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Figure 7: % of Reads of Files Last Read Within T Hours, DEC-SRC Trace



CHAPTER 3. FILE ACCESS PATTERNS AND CACHING 34

:q? 0.2
s
2
c
A=) |
© |
o ]
g ]
< 014 X
o) ]
5
o
..
] ‘wx‘\x..
00 AR St e B GRS ST CHP SR VA VA VSRV SR AN
. T T T T T T T T T T T 4 g g ] X X X X X
0 5 10 15 20

Reads Since Last Write

Figure 8: File Entropy, Princeton Trace

3.2.4 File “Entropy”

The likelihood that a file will be overwritten decreases sharply after it has been
opened for reading several times. In other words, as a file is read repeatedly, it
becomes increasingly likely that the next operation on that file will be an open for
reading rather than an open for write or unlink. We call this property “file entropy,”
since files seem to “move toward” a state of being read-only over time. File entropy
was very strong in the Princeton and DEC-SRC traces; in both traces, files that had
been opened for reading at least four times were overwritten less than 10% as often
as files that had been opened for reading at least once. The vast majority of opens
for write are for files that had been read zero or one times since they were created or
last written. Figures 8 and 9 show the percentage of opens for writing by the number
of previous opens for reading in the Princeton and DEC-SRC traces, respectively.
File entropy allows a reasonable prediction of the “volatility” of a file to be made
based on a simple file-by-file counter of opens for reading since last write. This could
be useful in a system where, for example, it is possible to make the cost of reading
low in exchange for increased write cost for a particular file; entropy suggests that

this could be profitable after only a few reads.
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Figure 9: File Entropy, DEC-SRC Trace

3.2.5 Write Behavior of Shared Files

Files that are widely shared by many machines are good candidates for replication or
caching only if they are not expected to change often. The difficulty of maintaining
consistency among multiple copies is related to how often the copies are expected
to change and under what circumstances. Past studies [18] have examined “micro
level” questions such as the frequency with which files still open at other machines
are updated. It is also interesting to look at the higher-level question of how often
files that have ever been used by multiple users get updated.

In both traces, files used by more than one user or workstation made up a large pro-
portion of read traffic but a small proportion of write traffic. In fact, writes of shared
files drop off exponentially with the number of previous readers. Figures 10 and 11
show the proportion of opens for read and write of files previously opened by n clients.

This property suggests that a caching or replication scheme in which the cost of
writing is proportional to the number of previous readers will do very well. Observe
that caching schemes in which clients get a copy the first time they they read a file
and are notified by the server should the file change follow exactly this cost model.

The large proportion (over 60%) of read traffic for files already read by several

machines is worth noting. This suggests that clients may be able to share cache or
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replication data without going to the server as often. We discuss caching schemes

that exploit this property in subsequent chapters.

3.3 Conclusions

Understanding real file system workload properties is useful for several purposes.
First, common access patterns provide insight for the designers of file system caching
and replication policies. For example, the history of a file may be used to predict
its future write or sharing behavior, which could influence decisions about whether
to cache the file and how to handle consistency. Second, real workload patterns can
be incorporated into synthetic workload generators to produce more realistic simu-
lations and performance studies in the absence of real trace data. Finally, better
understanding of access patterns may lead to improved analytic models of file system
performance, which may replace time-consuming and speculative simulations alto-
gether.

This chapter examined two workload traces taken at research computing environ-
ments. Both sites served similar user populations and were similar in scale and scope,
but had considerably different computing environments. Several properties, Inertia,
Entropy, Temporal Locality and Limited Write Sharing, were common to both envi-
ronments. The reader is cautioned not to over-generalize from this data, since it is
impossible to be certain that these properties apply to other environments or even to
these environments at other times. Still, the similarities between the two traces do
suggest that the properties observed in the traces may be rather fundamental access
patterns, at least among Unix-like systems in research environments. It would be de-
sirable to study sites other than those engaged in computing research to see whether
these properties generalize even further.

The following chapter examines how well suited traditional caching schemes are
to these workload patterns, and examines the limits of cache performance under the

client-server model.



Chapter 4

Flat Caching: Limits of the
Client-Server Model

Distributed File Systems implement the “client-server” model; “client” machines di-
rect their file system requests to a “server” machine to which a file system is physically
connected. In general, file system semantics require that there be a single server asso-
ciated with each file system, or at least that it appear this way to the user. In other
words, all clients should have a consistent view of the file system, and there should
be no doubt as to what constitutes the “valid” version of a file.

The actual implementation of a DFS need not strictly follow the client-server
model, however, as long as it presents these semantics to the user. In fact, all cur-
rent DFSs deviate from a strict client-server implementation somewhat in that clients
may maintain a cache of recently-read files which may be used in lieu of the server.
If the file is not in the local cache, the server is contacted. Although this complicates
the implementation (especially with regard to maintaining consistency), client per-
formance is improved when the cost of reading from the cache is lower than the cost
of fetching a file from the server. Note that both read and write operations may be
cached, although this thesis focuses only on read caches.

This chapter examines the scalability of systems in which all requests are served
either by the clients’ cache or by a single server. We call these “flat” systems, since

all clients are connected to the one server in a flat, non-hierarchical fashion.
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4.1 File System Cost Models

Caching is traditionally thought of as a technique to improve client performance; it
can be argued that this is the ultimate goal of system design once functionality is
established. The usual metrics of client performance are throughput (the number
of operations that can be processed in a given time period) and response time (the
average or worst-case time for an operation). There are many factors that influence
client performance. Some are mostly fixed and static and therefore rather simple to
model coarsely, such as the number of instructions processed per second, the overhead
of a system call, the time required to serve a request out of the cache, the cache size,
and so on. Others are workload dependent, such as the expected hit rate of the cache
and the overhead of maintaining cache consistency, but these can be modeled using
relatively simple simulations. In a small scale distributed system, where the server
is always able to keep up with the client requests, the cost of a cache miss is more
or less fixed and usually low. In these small scale systems, the client hit rate is a
probably the most important factor of concern to the DFS designer.

However, in a large-scale system the costs of cache miss traffic and validation
overhead are not static. Since the server serves many clients, it has the potential to
become a bottleneck when client traffic exceeds server capacity. The client throughput
and response time depend on global server traffic. The scale of the system is limited
by the server’s ability to process those requests not hidden from it by the client
caches. In these large-scale systems, we become less concerned with local client cache
hit rates and more concerned with the global client miss rate, which represents the
load presented to the server. At first glance these figures seem equivalent, since the
hit and miss rates are complementary, yet they represent very different magnitudes.
With sufficiently large caches, client hit rates can reach 90% or more [2]. An increase
in the hit rate to 95% represents a local performance improvement of less than 6% to
the client but a reduction of 50% in the server load. With these high hit rates, even
a modest change in the client’s ability to cache data can have a large impact on the
overall scalability of the system.

The global miss rate does not tell the entire story, however. Cache consistency
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validation also affects server load, and can potentially comprise the bulk of the server’s
work. Validation overhead can manifest itself at the server in two ways: in additional
communication traffic between the server and clients (initiated by either) and in state
information that must be maintained by the server on behalf the clients.

The sections that follow examine the factors that influence global miss rate and
validation overhead, discuss the characteristics of existing systems, and analyze vari-
ous caching schemes through trace driven simulation. The focus of the analysis is on
server load, since that is the bottleneck in large scale systems; no attempt is made
to model client response time directly. Because the trace data used to drive the
simulations is limited to a log of files opened for reading and writing, server load is
measured according to a very simple cost model. Files transferred between server and
client cost f units of server time; overhead messages that do not involve file transfer
are charged a cost of m. Clients can cache a fixed number of files 0 < n < co. Note
that this model is not useful for predicting the exact load on any real system since
the simplifying assumptions hide the difference in cost between transferring small
and large files and the cases where less than the entire file is actually used at the
client. Nor are any real values associated with the costs; in fact, no assumption is
made except that the cost of an overhead message is substantially lower than the cost
of a file transfer. The model is intended only to make rough comparisons between
approaches with large differences in performance. It is not suitable for fine-grained

comparisons between similar algorithms.

4.2 Global Miss Rate: Client Cache Size and Re-

placement Rule

In a flat caching system, the global miss rate represents the amortized file transfer
load presented to the file server. The miss rate is governed by three client parameters:
the size of the cache, the placement policy, and the replacement policy. Cache size is
usually a fixed number of disk blocks (or some other transfer unit); as noted above,

we model this as a fixed number of files for simplicity. The placement policy is the
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algorithm the client uses to decide when to put something in the cache. We consider
only demand caching here, where files are put in the cache only when they are actually
read. To improve response time, clients might pre-fetch data that are likely to be read
in the near future, but this can never achieve a lower miss rate than demand caching.
When data are pre-fetched, either they will be used (in which case the same number
of transfers as the demand case occurs) or they will not (in which case the the extra
transfers are wasted).

The replacement policy is the rule used to select a cache entry for removal when
the cache is full and another item is to be added. In a demand caching scheme where
all misses carry the same cost it has been shown that the optimal replacement rule
(OPT) is one that always replaces the item that will be used the furthest in the
future [1]. This policy can only be implemented in an “off-line” model, where the
entire sequence of operations is known in advance. Since the future file access pattern
is not known, the best that can be done in practice is to use the history of previous
file accesses to guess which item is least likely to be used again soon.

It is worth noting that the replacement rule is important only when the cache size
is non-zero and finite. When cache size is zero, the miss rate is always 100% and when
cache size is infinite, nothing is ever replaced and so the replacement rule is never
triggered. Therefore, an interesting statistic about a replacement rule is how large
the cache must be under the rule in order to begin to converge on the performance
of OPT.

The replacement rules employed in practical systems are generally very simple
and are derived from those in virtual memory systems. The most common rule is to
replace the least recently used (LRU) item. LRU is easy to implement in software
and is believed to perform well in practice.

In trace driven simulations of the LRU and optimal off-line replacement rules,
surprisingly small (per-user) caches are able to achieve low miss rates. Figures 12
and 13 show the simulation results in the Princeton and DEC-SRC traces for optimal
replacement using cache sizes of between 0 and co. These graphs reflect one simulation
day of cache “warm up”. Note that caching only 256 files per user yields a miss rate

of under 16% in both cases, and that the LRU and OPT rules are close to converging
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Figure 12: LRU and OPT Miss Rate vs. Cache Size, Princeton Trace

at a cache size of only 512 files.

Files accessed in both traces were small (mean of about 21KB), so a per-user LRU
cache of only about 10MB can be expected to perform nearly as well as an optimal
infinite cache.

More sophisticated replacement rules have been proposed that use frequency-based
replacement, favoring frequently used files. These algorithms have been shown to
perform up to 20 to 50 percent better (compared against optimal) than LRU for
small caches [25]. Given the very good performance of LRU with moderate-size
caches, however, any improvement in a frequency-based replacement may be offset
by the additional computational and code complexity of the implementation.

The miss rate is theoretically affected slightly by the cache validation scheme in
use (see below). However, here was no significant difference in miss rates with different
validation schemes in the simulations described above. (The graphs shown reflect a
client-driven invalidation scheme; the server-driven invalidate miss rates were within

5% in both simulations).
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Figure 13: LRU and OPT Miss Rate vs. Cache Size, DEC-SRC Trace

4.3 Overhead: Cache Consistency & Server State

The semantics of most file systems require that all reads reflect the latest version
of the data being read. On a non-distributed system or a strictly client-server one
in which the same server always handles all client operations, these semantics oc-
cur rather naturally. When clients in a distributed system cache files that are not
known to be immutable (read-only), however, some protocol is required to ensure
that the reads from the cache return the current data. In this section, we examine
the communications overhead of various cache validation strategies.

Cache validation can be initiated either by the client or the server. In fact, valida-
tion can be viewed as a continuum from strictly client-driven to strictly server-driven,

with some algorithms falling somewhere in between.

4.3.1 “Stateless” Servers: Client-Driven Invalidation

The simplest schemes are those in which the client verifies the validity of the cache
entries as they are used. That is, for each cache hit, the client verifies that the
data has not changed or otherwise become invalid since the time at which it was

cached. This requires either that the server maintain a list of cached copies, or, more
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commonly, that the server include a “last updated” timestamp with any data it sends
to a client. The client can verify the consistency of a copy by asking the server for the
current timestamp for the data and comparing it with the cached copy. The server
operates in a completely reactive mode to client requests and need maintain no state
information about its clients. Such servers are said to be stateless.

Caching with client-driven invalidation is worthwhile for reducing server load and
improving client performance only when the cost of the validation transaction is
significantly lower than the cost of fetching the data from the server. The probability
that the cached data will, in fact, be valid must also be high, since invalid data must
be transferred to the client again anyway.

Observe that the amount of overhead traffic in a client-driven invalidation scheme
is directly proportional to the client hit rate.

Client-driven invalidation can be made more attractive by relaxing the consistency
requirements slightly. For example, clients could be guaranteed that cached data will
never be returned that is more than some time-bound out of date, or that the data
were valid at file open time but not necessarily at the time the data are actually read.

NFS [27] is a good example of a relaxed-consistency client-driven invalidation
system. Clients query the server for the last update time of a file when a cached file
is opened; directory information is verified if the cached data was obtained more than
a short time (usually 30 seconds) in the past.

Client-invalidate schemes and stateless server systems have a number of useful
properties. The statelessness of the server implies that clients need not “synchronize”
with the server; if a server fails, the client can simply wait until the server becomes
available again and continue with the next operation. At the same time, the server
need not keep track of any information on behalf of its clients (beyond verifying
their authority to perform operations on a particular file system). Adding clients is a
relatively simple matter. Both client and server code are simple, since all transactions
are initiated by the client. Fairly strong statements can be made with regard to

consistency, since the client verifies the cache contents at well-defined times.
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4.3.2 “Stateful” Servers: Server-Driven Invalidation

Despite the attractive qualities of stateless client-invalidate systems, the large amount
of traffic they generate and the heavy load this places on the server can make them
impractical for larger-scale systems. If widely shared files are expected to change very
infrequently (as observed in the previous chapter), less traffic would be generated if
the server assumes responsibility for invalidating the client caches at write time. That
is, the invalidation can be server-driven, rather than client-driver.

Server-driven invalidation is not without cost, however. If the network connection
between client and server fails, a client could miss an invalidation message, making
consistency potentially unreliable and ill-defined. Write performance suffers when
many clients must be invalidated, in proportion to the number of previous readers.
Write response time can be particularly poor when the server must wait for time outs
caused by network or machine failure of one of the clients. Server- invalidation is also
much more complex. The server must also maintain a list of clients with cached copies
of each file, which imposes potentially large storage requirements, bounded only by
the number of potential readers. The clients must be able to handle messages initiated
by the server, and the server must have a recovery procedure for when it cannot reach
a client with an invalidation message. Similarly, clients require a protocol to verify
that they have not lost a message from the server, particularly after a crash.

AFS [14] is perhaps the best-known example of a server invalidate system. Servers
maintain a record for each client with a cached copy and issue a callback when the file is
overwritten. AFS avoids a number of the pitfalls of strict server-driven invalidation,
however. Clients may be guaranteed a consistent copy for only a fixed time, after
which they must verify the data upon use. If too many clients have copies of a
particular file, the server may issue callbacks to reduce the amount of state it must
maintain. This makes AFS something of a hybrid client- and server- invalidation
system. AFS performs a number of other optimizations based on known file access
patterns, such as caching large (64KB) “chunks” of files rather than individual disk
blocks, since most programs use entire files anyway.

A number of other systems, including [18] and [32], also attempt to balance sim-

plicity with performance by striking a balance between strict stateless and strict
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statefulness. The fundamental tradeoffs, however, remain the same.

4.3.3 Limiting Server State

One of the problems with server-invalidated systems is that the amount of state
information the server must maintain is potentially very large. One way to limit the
server state is to put a bound on the number of client-file pairs the server is willing
to store. This could be on a file by file or global basis. When the state capacity of a
file or file system is reached and a new client wants to cache a file, the server selects
another client and first “breaks” its promise to invalidate the file for it. Note that
this can only increase the server’s load; the total number of messages it processes is
equal or more than the number in a boundless state system. In fact, the total number
of messages in the worst-case is double that of a boundless state system, since each
read the server processes could entail invalidating another client. However, the load is
spread out more evenly, and write response time is bounded by the maximum number
of clients to be invalidated.

Another way to limit server state does not put a direct bound on the number of
clients invalidated per file but limits the time that the server guarantees it will provide
invalidation messages. The server provides a lease [12] on the file when a client makes
a cached copy during which time it guarantees that it will “break the lease” if a write
occurs. Leases are typically very short (measured in seconds or minutes), and are
used primarily in practice to improve the performance of otherwise stateless schemes.
Recovery from crashes or unreachable clients is very simple in a short-term leased
system, since all the server need do is block writes until any unbreakable leases have
expired.

Finally, consider an optimal-off line scheme in which no server state need be
maintained and no validation overhead is sent. Such as scheme could be modeled by
a lease scheme in which the lease term always expires just before the file is actually
overwritten. Obviously such a scheme could not be implemented in practice, although
history information could be used to attempt to guess when the file will be overwritten.
A “predictive lease” scheme must balance a simple tradeoff: if the lease term is set

too long, server state builds up and more invalidation messages must be sent at write
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time; if the term is too short, the system reverts to client-invalidation. In [5], a simple
predictive lease algorithm outperformed either client- or server- driven invalidation

by a small margin.

4.3.4 Validation Overhead Traffic

Since the spectrum of validation schemes runs from strictly client- to strictly server-
driven, it is worthwhile to compare the two extremes. Since we are concerned with
scale, we model issues of server traffic rather than client response time.

In trace driven simulation of both the Princeton and DEC-SRC traces, overhead
traffic was found to be quite large, as expected, for client-driven invalidation with
all but the smallest caches. The overhead of server-driven invalidation, on the other
hand, is insensitive to client cache size and was very small. The overhead traffic with
server-driven invalidation was insignificant compared with the file transfer (miss)
traffic even with the largest client caches.

Figures 14 and 15 show the number of overhead messages sent in the Princeton
and DEC-SRC simulations for pure client- and pure- server driven schemes with LRU
and OPT replacement (after one simulation day of cache warm-up). An overhead
message is defined as any message exchange (regardless of direction) not involving an
actual file transfer.

It files are known to be immutable, validation can be ignored completely, since
cached files are can never be out of date. This approach is often taken for the wide
distribution operating system files (which change rarely) among machines in a local

network, for example.

4.4 Flat Caching and Scale

A computing system can be said to be scalable only to the extent that that there
are no bottlenecks that prevent growth. In the case of client-server distributed file
systems, the server (with the network to which it is connected) has the potential to

be such a bottleneck. The server must process any request that cannot be handled by
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the client caches; the scale of the system is limited by the server’s ability to handle
the client traffic. When the server becomes a bottleneck, either the server’s hardware
must be improved or its load reduced to a more manageable level. Technological and
economic limitations often preclude the former approach, and file server hardware is
generally among the fastest available. In general, load reduction is the only practical
approach toward larger scale. In a flat system, the server load can be reduced by
increasing the size of the client caches, by improving the replacement rule used by
the caches, and by employing low-overhead cache validation protocols.

Even with large client caches, inexpensive protocols, and good replacement rules,
the load on the server is high in flat systems. Figures 16 and 17 show the results
of a simulation of total server load in a typical configuration using the Princeton
and DEC-SRC trace data. Simulations of LRU replacement with client- and server-
invalidation are shown, as well as a zero-overhead optimal offline scheme for reference.
In these simulations, it was assumed that a packet can hold a maximum transfer unit
of up to 8192 bytes, and that all packets incur the same cost regardless of actual
size; invalidation messages occupy one packet each and file transfers occupy [n/8192]
packets for n byte files. These parameters represent those used in a typical Ethernet-
based [19] system. Other common packet sizes result in substantially similar graphs,
although they are not shown here. The simulations approximate server load with
the number of packets processed by the server compared with a completely uncached
system in which the server handles all client I/O. (As before, these simulations reflect
data collected after one day of cache warm-up).

These simulation results suggest that server- invalidation imposes about half the
load of client- invalidation and very close to the performance of the optimal system as
cache size — oco. That is, a modern scale-oriented system such as AFS with moderate
size disk-based client caches will perform almost as well (in terms of server load) as
the theoretical optimum.

Unfortunately, the theoretical optimum for these flat systems is not very encour-
aging for scale. Observe that even in the best case — no validation overhead and
infinite client cases — the server handles 8 to 12% of the traffic that it would handle

if the clients were doing no caching at all. While this may be a reasonable margin
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for a system with several hundred clients, it can become a serious limitation as the

number of clients increases.

4.5 Conclusions

Client caches have a large impact on the server load, which is why all practical
systems employ client caching to some extent. Caching only a few hundred files
and using very straightforward replacement rules results, in trace driven simulation,
in cache hit rates that approach the theoretical optimum. As memory becomes less
expensive and as local disks become more commonplace on client machines, miss rates
of below 90% can be expected, given current workload patterns. Cache validation,
with reasonable consistency, can be performed with very low overhead by making the
server responsible for notifying clients when their cached files have changed. Several
existing commercial DFS architectures make use of these strategies.

Yet the limits of the flat client-server model appear to render truly large scale
impossible. In the next chapter, we explore alternatives to flat systems that allow
client miss traffic to be handled by sources other than the file server. These architec-
tures have the potential to reduce server load by a large factor, and may provide a

framework for building much larger systems.



Chapter 5
Hierarchical Caching

Very large scale in distributed file systems requires that enough client activity be hid-
den from the server that it does not become a bottleneck. Flat client-server systems,
although a convenient abstraction for the user, fail to scale beyond the point where
the server can handle the total cache miss traffic of all the clients.

In the previous chapter, we saw that (under at least some workloads) even mod-
erate size client caches and very simple replacement rules approach the theoretical
optimum cache miss rate. At first glance, this would seem to imply that there very
little room for additional scale; that is simply not possible to construct large-scale
distributed file systems that have global miss traffic beyond what a single server can
handle. Even when the the server can handle the total client miss traffic, there is the
matter of client cache consistency, which places a further load on the server under a
large number of clients. (This additional load takes the form of either overhead mes-
sage traffic for proportional to the client cache hit rate or server state proportional
to the number of clients). Clearly, the server becomes a bottleneck as the number of
clients scales up. If server data are available from more than one source, however, this
single-server bottleneck might be broken. This chapter explores DFS architectures
that maintain the client-server abstraction but do not route all client miss traffic to

the central server.

33



CHAPTER 5. HIERARCHICAL CACHING 54

5.1 Hierarchical Server Organizations

5.1.1 Hierarchical Replication

A simple way to divide the work of the server is to replicate the server files among
several secondary servers, with each client communicating only with a single sec-
ondary server and updates propagating from the primary to the secondaries. If each
secondary server has adequate capacity for its clients, and the primary server has ade-
quate capacity for its secondaries, such an organization will do well. This model could
be extended to a multi-level hierarchy of secondary servers in an obvious manner.

In fact, it could be argued that this is precisely the model under which large
scale software distribution takes place today, with the replication of the files handled
outside the file system by distributing magnetic tapes or manually transferring the
files over a network.

In a simple hierarchy of servers it is necessarily to replicate a complete and con-
sistent copy of the server data on each secondary server. Obviously, this entails
considerable overhead of disk space, since multiple copies are maintained even of files
that are rarely or never shared. Consistency becomes difficult to maintain as the num-
ber of secondary servers increases. For example, when a file changes, the new version
must propagate to each secondary copy; this can make writing prohibitively expen-
sive in a large network. Full replication at secondary servers is attractive primarily
for those files of known wide interest that are known in advance to change rarely,
such as large read-only databases and software distributions. Under full hierarchical

replication, changing a file is potentially very expensive.

5.1.2 Multi-Level Caching — Static Cache Hierarchies

When more conventional file system semantics are desired for files shared by a po-
tentially large number of clients, a hierarchical model based on caching rather than
replication may be a reasonable alternative. Under caching, a replica is made only
when a local client has actually read the file, and the the copy does not have an

infinite lifetime. Update propagation is simpler, involving simple validation messages
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rather than the transfer of entire files. The Deceit File System [28] allows groups of
local clients to be organized into cells in which remote files are operated on using the
ordinary NFS protocols from a local cell server, which provides caching and consis-
tency services. If the file is not in the local cell cache, it is fetched from the remote
server.

Although a hierarchical scheme would seem to solve the problem of limiting server
state while also limiting server traffic, there is still an important tradeoff. If a client
low in the hierarchy accesses a file not in the local cache, it must wait as the read is
propagated up to a cache that has the data. Only after each cache between it and the
server is searched does the request actually reach the server. While a hierarchy has
the potential to lower server traffic considerably for widely shared files likely to be in
many caches below the server in the hierarchy, it also has the potential to introduce
considerable delay for access to files with a lower degree of sharing.

The simplest form of cache hierarchy can be modeled by having all client requests
go through an intermediary which maintains its own cache. If a file is already in the
intermediate cache, the server never sees the request; when a write occurs, it is sent
directly to the server, which sends an invalidation message to the intermediate server.
The intermediate server propagates the message down to the its clients.

The benefits of an intermediate cache that handles all file requests are surprisingly
small, according to one experiment. Muntz and Honeyman [21] used the DEC-SRC
trace data to simulate a two level cache hierarchy. All 112 clients interacted with an
intermediate cache server instead of the actual server. The intermediate server acted
as a “proxy” for the clients, maintaining an infinite-size cache of files previously read
and written. While this did cause a reduction in server traffic, from the client’s
perspective the intermediate cache was rarely used, even when the client cache was
small. Depending on the size of the client caches, the hit rate at the intermediate
cache was between 7% and 70%, falling off very rapidly (to about 10%-20%) for even
small client cache sizes. So although there was a modest benefit to the server, the
intermediate cache actually introduced a substantial delay for the clients, since most
requests not satisfied by the client’s own cache were not in the intermediate cache

either, and had to be fetched from the file server anyway. We found similar results
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when restricting ourselves to the open and unlink operations from the same data. (A
more encouraging result is obtained by eliminating home directory accesses from the
intermediate cache, yielding an intermediate server hit rate of above 45%). Based on
these results, a multi-layer hierarchy of finite caches used for all client file accesses
could be expected to yield an even smaller reduction in server load at an even higher
cost to the clients.

It is also worth considering the asymptotic behavior of a single intermediate cache,
however. Observe that if the intermediate cache is infinite and actually handles all
client operations, the only time it will miss is when a file is read for the first time
by some client. Once all the files have been accessed at least once by any client, the
intermediate cache will always hit (until the file is invalidated). So as time goes to
00, the intermediate cache miss rate goes to 0. In fact, [21] observed the intermediate
hit rate go up continuously throughout the simulation; clearly, the reason it did not
reach a much higher rate is due only to the limited time span of the trace data. If
the intermediate cache had been finite, however, and if there had been a multi-layer
hierarchy of intermediate servers, we would see the asymptotic intermediate hit rate
more quickly. However, the experiment does demonstrate an important pitfall of
hierarchical caching.

A multilevel cache hierarchy illustrates a tradeoff between client response time
and server load. To minimize server load, each client should contact the server only
as a last resort, after first querying other client caches for the file. This extra step
increases response time for that client, potentially by a large amount. (It also puts
a heavy load on the network, assuming inexpensive broadcasting is not available).
To minimize response time, each client is better off being served by either its own
cache or directly by the server. This places a heavy burden on the server, however,
which indirectly increases overall client response time. It is something of a “free-rider
paradox” where the local optimization strategy can degrade global performance. The
solution, then, is to find a strategy that causes a significant reduction in server load

with only a marginal direct increase in client response time.
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5.2 Dynamic Hierarchical Caching

5.2.1 Sharing in Cache Miss Traffic

Although the general use of multi-level caching can lead to inefficiencies as described
above, Unix file access patterns suggest that there may still be considerable advantage
to be gained from some kind of cache hierarchy.

A measure of the potential for a multi-level caching scheme is the proportion
of client cache misses that are for files that exist in another client’s cache. This
can be seen in a simulation of a simple flat caching scheme with the DEC-SRC and
Princeton traces. Each client maintained a fixed sized (in terms of the number of
files) cache, using server-driven invalidation and an LRU replacement policy. Each
client cached any file it read or wrote. (Caching written as well as read files is an
important optimization, cutting the miss rate in half). Access to non-shared (or not
widely shared) hierarchies, such as /tmp and user’s home directories, were considered
to be on a local disk and not counted, though such files did occupy space in the client
cache. With warm client caches (simulated by eliminating the first trace-day from
the statistics), about 60% (in the DEC-SRC trace) or 80% (in the Princeton trace) of
client cache misses were of files that existed in another cache. Surprisingly, this was
fairly insensitive to the actual size of the client cache (we simulated client caches that
held between 16 and oo files). Figure 18 shows the percentage of these “redundant”
cache misses by cache size in the two traces. Note that even when home directories
were included, the shared miss traffic remained above 30%.

This simulation, while crude, is encouraging. It suggests that if clients can share
cached files without excessive communication cost to locate the data, traffic to the

shared-file server can be reduced by a factor of two to five.

5.2.2 Dynamic Client Hierarchies

The problem, of course, is that although there may be a high probability that a file

exists in another cache, the client must determine where it is. Clearly, broadcasting
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Figure 18: Percentage of Cache Misses of Files Already in Another Client Cache

a request to all other clients does not scale, especially when the clients are geograph-
ically distant from one another. Organizing the clients into a static hierarchy, with
clients “nearest” the server either relaying requests to the server or serving them
out of their own caches, will suffer the same (or worse) performance problems as the
infinite-intermediate server discussed in the previous section, and the question of how
to best organize such a hierarchy is not at all obvious.

An ideal solution would be one that allows those files used by only a few clients
to be cached in the conventional way, but with more widely used files going through
a hierarchy. A dynamic hierarchy, different for each file depending on its access
patterns, would solve the problem of identifying a priori the widely shared files and
the best place for the intermediate caches.

The server can assist the clients in locating likely sources of relevant cache data.
Consider a simple scheme in which the server serves the early readers of a file in the
conventional way, but “sheds” its load to the other clients when a file starts to become

more “popular”. Fach client maintains a conventional fixed-size LRU file cache of files
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it reads or writes. In addition, it maintains a separate name cache indexed by file
name. The name cache contains a record for each file read giving the source of the file
(the parent, which may be another client or the actual file server) and a list of up to
A children that must be notified if the file is changed. The name cache must be large
enough to accommodate at least the files in the file cache. The server also maintains
a record of children with copies of each file that it must notify should the file change.
When client reads a file, it looks for the file in the file cache; if the file is present, it is
read in the usual manner (we assume whole-file caching). If the file is not in the file
cache, the name cache is checked; if there is a record for the file in the name cache,
the file is requested from the parent. If no record is found in the name cache, the file
is requested from the server. The reply consists of either the file requested or a list
of clients that already have cached copies. In the latter case, one is selected from the
list (either randomly or according to some criteria such as proximity) and the request
is repeated to that machine, which also will respond with either the file or a list of
its children. The procedure is repeated until the file is finally received, at which time
the client creates a name cache entry for the file with the address of the parent, if
none existed already. The process is guaranteed to eventually terminate when the
“bottom” of the tree is reached with a client serving fewer than A other clients. The
algorithm for fetching a file (without error correction) is formalized in Figure 19.
Each client (as well as the file server) must run a server daemon to process requests
from other clients. When a client (or server) receives a request for a file, it first checks
whether the requester is already in the child list for that file. If not, and the number
of children already on the list is equal to the pre-determined parameter A, the list
of children is sent to the requester instead of the file contents. Otherwise, the file
is sent and the requester is added to the child list for that file. If the requester was
already on the child list or was just added to it, the file just sent to it and no further
action is taken. Note that when a file needs to be sent from one client to another,
it is possible that the file is not in the “parent’s” cache anymore, in which case it
is fetched from the parent’s parent first, using the same algorithm described in the

previous paragraph. The server daemon algorithm is formalized in Figure 20.
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if InFileCache(FileName)
return CacheContents(FileName)

if InNameCache(FileName, server) then
GetFile(FileName, server, FileBuf)
AddToFileCache(FileName,FileBuf)
return FileBuf

endif

server := file_server_address

top:

reply := ask_for_file(FileName, server,

SvrList, FileBuf)

if reply = REDIRECT_MSG then

server := SelectServer(SvrList)

goto top
endif
AddToFileCache(FileName,FileBuf)
AddToNameCache(FileName,server)
return FileBuf

Figure 19: Client File Fetch Algorithm

top:

GetMessage(Client, FileName)

if AlreadyAClient(Client, FileName) then
GetCopy(FileName)
SendFile(FileName, Client)

else if ClientsServed(FileName) <= DELTA then
AddToClientList(FileName, Client)
GetCopy(FileName)
SendFile(FileName, Client)

else SendClientList(FileName, Client)

goto top

note: GetCopy reads a copy of the file into the local cache if a client, and is a NoOp on the

server.

Figure 20: Server and Client Daemon Process
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Writes are always done directly through the server, which sends invalidation mes-
sages to each client on its child list, who in turn send invalidation messages to each of
their children for the file. Note that since the list of children is kept in the name cache,
invalidation messages must be sent out to each child whenever a name cache entry is
replaced. (It is possible to use a different write policy which may be more desirable
for performance purposes, but this thesis only considers the simple server-based write
scheme).

This scheme forms a hierarchy for each file which can be viewed as a tree of
maximum degree A. The first A readers of a file communicate directly with the
server, in the conventional way. Other clients wanting to read more widely shared
files (those with more than A readers) communicate with the earlier readers (or their
children). Thus, the server need only keep track of (and serve requests from) the first
A readers, plus the additional traffic caused by new clients who want to read the file

for the first time and must be given the list of existing children.

5.2.3 Trace-Driven Simulation

This simple dynamic hierarchy was simulated using the DEC-SRC and Princeton
traces. A single server was assumed for the shared hierarchies; each client used another
server (not simulated) for more local files such as /tmp and home directories, although
these files did occupy client cache space. We simulated a logically connected network
in which all clients can communicate at equal cost, and clients used a uniformly
distributed random function for selection of a parent when re-directed by the server.
The performance of the system is influenced by two major parameters: the client file
cache size n and the maximum degree A. We measured values of n from 64 files
to infinite, and values of A from 2 to co. (Since there were at most 250 machines
in the trace data, A values of 250 or more are for all practical purposes infinite
and equivalent to a conventional, flat scheme.) A third parameter, the client name
cache size, turned out to be very small in practice, and sizes above about 100k bytes
per client were for all practical purposes infinite in the simulation. We measured a
number of parameters, including the number of file transfers handled by the server and

overall in the network, and the number of overhead messages (invalidation messages
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and messages redirecting clients to children) sent by the server and in the overall
network. We would expect decreasing A to decrease the traffic at the server but raise
it in the overall network, since some client requests must be routed through more
than one downstream client to be satisfied. Server traffic is a measure of server cost,
while overall network traffic can be viewed as a measure of client access time and
processing cost. The question is whether the increased client access cost is justified
by the decrease in server traffic cost.

The simulation results suggest that dynamic hierarchies may work well in practice.
For all cache sizes, decreasing the value of A (increasing the depth of the tree) greatly
reduced the transfers at the server, always by at least a factor of two for A = 2.
Although the overall number of transfers did increase, the increase was always smaller
than the corresponding decrease in server transfers and was under 25% for n > 128
files. Figures 21 and 22 show the number of file transfers at the server (solid curves)
and in the network (dotted curves) for various values of n and A after one day of
cache warm-up (the figures for cold start are similar but slightly higher). The axies on
theses graphs have infinite A at the left; infinite A is equivalent to a non-hierarchical,
flat scheme.

Decreasing A is not without cost to the server, however, since although the number
of invalidation messages it must transmit in the event a file is overwritten decreases,
it must send lists of children to clients it does not wish to service. The number of
these overhead messages is not dependent on client cache size (since the transmitter
of the message does not know whether the file is still in the receiver’s cache and so
must always send the message), but is dependent on A. Tables 4 and 5 show the
number of overhead messages handled by the server and in the network as a whole
for various values of A.

Based on these simulations, it would appear that the impact of the dynamic
hierarchy depends on the relative cost of a file transfer compared with an invalidation
or redirection message. This is influenced strongly by the underlying network topology
and protocols, the maximum basic transfer unit, the sizes of the files transferred, and
so on. Files transferred in our simulation averaged around 11k bytes. The non-

communication costs (such as reading a file from disk as opposed to checking an
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Figure 21: File Transfers in Dynamic Hierarchy Simulation, Princeton Trace

Overhead Traffic

A | Server | Total
2| 23381 42196
41 13405 27251
3| 12236 21442
16 | 13228 17802
32 | 13933 15616
64 | 14092 14574
oo | 14119 14119

Table 4: Dynamic Hierarchy Overhead Messages, Princeton Simulation
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Figure 22: File Transfers in Dynamic Hierarchy Simulation, DEC-SRC Trace

Overhead Traffic

A | Server | Total
21 11939 17907
4 3638 9045
8 758 5375

16 410 3922
32 410 2476
64 410 942
00 410 410

Table 5: Dynamic Hierarchy Overhead Messages, DEC-SRC Simulation
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entry in an in-core table) come into play as well, although we do not consider them
directly here. It is probably reasonable to assume that the cost of transferring a
file greatly exceeds the cost of the other messages; if this were not true client-driven
invalidation, which is used by NFS, would carry no benefit. If the cost of an overhead
message is even as high as 10% of the cost of a file transfer, the overhead traffic cost

is negligible in our simulation

5.2.4 Failure Models and Consistency

The simulation described in the previous section assumed that all hosts are well
connected, reliable, and remain available to all other hosts at all times. Obviously,
such assumptions are not likely to be valid in actual systems, particularly the large-
scale systems for which such a scheme is designed. We identify two problems that
must be addressed: non-connectivity in network topology, and network or server

failure.

Connectivity Failure

The first problem is simply that, depending on the underlying network, not every
host can always communicate with every other host, even if one host (the file server)
can communicate with all of them. (In internet style networks, this can be caused
by routing failures, and other networks, such as those with secure gateways, do not
always guarantee symmetric connectivity). This is an issue since requests for files
may be re-directed to other clients. If a client cannot communicate with any of the
hosts a server directed it to, it must re-contact the server. At this point, the server
can either replace one of the clients on the child list with the new client, or it can
simply increase the number of clients it serves. If it chooses the former option, it
must invalidate the old child first, which may trigger additional traffic when that
client (or one of its children) reads the file again. If it chooses the latter option, it
increases the size of its A. A third option is to maintain two A values, a soft one and
a hard one. New clients are still re-directed when the value exceeds the soft A, but

will be added to the child list if they fail to contact any of the existing children. New
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clients can be added under these circumstances until the hard A is exceeded, at which
point old children are invalidated and replaced. The cost of doing this depends on
the connectivity of the network, of course. In the simulations above, only a logically

fully-connected network was modeled.

Consistency

Consistency is the problem of guaranteeing that the clients’ views of the system can
differ by at most some criteria. In discussing file system cache consistency seman-
tics, it 1s worthwhile to distinguish between the consistency provided under normal
operation and the worst case under failure.

Under normal operation, consistency is determined entirely by the granularity of
the cache validation messages; for example, client caches may be guaranteed to be up
to date only at file open time or for the individual read and write operations.

A server or network failure can lead to inconsistency if a client does not receive
an invalidation message for an over-written cached file. Although the problem of
consistency in partitioned distributed systems is known to be a difficult one, a client
can query the server from time to time (“keepalive” messages) to ensure that it is still
alive and no messages are lost. Clearly, if such messages are too frequent, the benefits
of caching are minimal; if the messages are not frequent enough, inconsistency can
result.

An in-depth study of cache consistency issues is beyond the scope of this thesis;
this section aims only to informally discuss the consistency issues that are unique to
a dynamic hierarchical environment and to suggest directions for more formal work
in this area.

To determine the minimum frequency of keepalive messages, one must identify
the kind of consistency required. At one end of the spectrum, there is what has
come to be known as single-machine “Unix semantics”; if a file changes, all future
reads reflect the change immediately. Clearly, to maintain strict Unix semantics in
any cached distributed file system requires client-driven invalidation, since there is
no other way to guarantee that no server invalidate messages were lost and that the

cache is current if the connection to the server is lost. Strictly speaking, in fact,
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these client validation messages must be issued for each individual 1/O operation,
and not just, say, at open time, making true Unix semantics very expensive. In
practice, most systems relax their consistency requirements in favor of performance;
NFS, for example, checks only at file open time. Interestingly, under server-driven
invalidation, the consistency under normal operation can be tighter (a cache entry
may be invalidated as soon as the callback message is received at write-time), but
degrades under failure, since a callback message may be lost if the network fails.

A high degree of consistency under failure can be maintained without resorting to
client-driven invalidation, however. We identify two kinds of consistency semantics
that a client may wish to maintain. The first, time-bounded Uniz semantics maintains
temporal constraints on inconsistency, and the second, serializability, maintains a
logical constraint on inconsistency.

Time-bounded Unix semantics are simple to maintain under server-driven invali-
dation; clients check with the server whenever they have not otherwise communicated
within some real-time bound, guaranteeing that cache reads are never more than this
bound out of date. If it cannot reach the server, the read fails.

Another metric of consistency may be defined which similar to the database con-
cept of one-copy serializability (1-SR). This requires simply that the global sequence
of reads and writes be equivalent to some serial schedule on a single machine file
system. Observe that if there is only one shared file server providing invalidation
messages (and all writes always go synchronously through the server), this degree of
consistency is automatic, since if the link between server an client is broken, the data
in the client’s cache is logically consistent as of the time it last communicated with
the server. All reads from the cache, even if the data is temporally out of date. may
be logically considered to have occurred just before the link with the server failed. If
the client attempts to write data based on out of date reads from its cache, either
the write will fail (because the link is down), or, if the link has returned, any queued
invalidation messages can be logically considered to have occurred just after the write.

If there is more than one file server, or the clients have a cache hierarchy, it is
still fairly inexpensive to maintain 1-SR. Observe that it is sufficient to ensure that

once data written by a client is read by a remote machine, future reads by the writer
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must be current as of just after the write. That is, only after writing data that may
be read by other clients does a client need to be certain that it has not missed any
invalidation messages. In a cache hierarchy, this may be accomplished for almost
no overhead under normal operation by having the server maintain a list of failed
callback attempts.

In a hierarchy, a client can loose an invalidation message if any machine from which
it received a file has failed or if any machine from which those machines received the
file have failed. Observe that the list of machines that could deny an invalidation
message to the client is the list of machines from which it received “redirection”
messages for each file currently in its cache. Once a client writes externally readable
data, it must verify that each machine in the “invalidation path” for each file in the
cache has not failed to propagate an invalidation message. Assuming that writes block
until complete, a simple way to do this is for each client to notify the server when
it cannot propagate an invalidation message to another client. The server maintains
a list of these “dead” clients which it sends to future writers on their next write to
any file. After writing and receiving the dead client list, the client removes any files
currently in the cache dependent on any client on the list. A global clock (such as that
described in [15]) is helpful for serializing the times of the failures among the clients.
Note that with this scheme there is no overhead in the case where no failures have
occurred, and overhead is proportional to the number of failures times the number of

writers.

5.3 Conclusions

This section described a number of strategies for reducing bottlenecks by allowing
clients to receive cache miss services from more than one machine. Static strategies,
such as a simple hierarchy of clients or a hierarchy of secondary servers, reduce the
server’s load but at a high latency cost to the clients for unshared files. A dynamic
hierarchy, in which only those files which are actually widely shared are propagated
through the hierarchy, appears to avoid these latency penalties. Based on trace-driven

simulations, a dynamic hierarchy can reduce the load on the server by a factor of three
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to five, with very low added client latency.

It is tempting to infer that this means that a dynamic hierarchy allows a file server
to serve three times as many clients as it would otherwise be able to, or that file servers
for dynamic hierarchies need have only a third the processing power as those serving
flat caching schemes. Obviously, the applicability of these results to scalable systems
is highly dependent on the workload; these traces studied just one week of activity
on less than 250 clients. It would be desirable to conduct experiments on workloads
of larger systems, over longer time periods, and in computing environments outside
research laboratories. However, intuition suggests that as traces cover longer periods
and more clients, the proportion of cache misses of files present in other caches will
increase, making the effects of dynamic hierarchies even more pronounced.

It is important to view any simulation based on traces of existing systems with
some caution when applying them to large-scale systems, since no truly large-scale
systems exist to measure yet. It is, however, probably reasonable to expect that that
the overall trend of widely shared files becoming read-only to apply to an even greater
extent to large scale systems. Such systems will likely be used to support file distri-
bution of infrequently changing files, such as those in /bin directories. Obviously,
the applications of the future will have a strong impact on the file access patterns,
and the best we can do is make educated guesses based on current workloads.

To make dynamic hierarchies practical, several other issues must be addressed.
Security is obviously an important consideration, since clients will often require some
assurance that the cached copy they are reading is a valid replica of the “official”
copy. It is possible that digital signatures provide a solution to this problem, but this
thesis does not address this issue. It may also be desirable to include some sort of
load-balancing facility, such that clients can move themselves down in the hierarchy if
they cannot themselves afford to serve other clients. Again, this may be an interesting
direction for future work.

The following chapter discusses a simple prototype dynamic hierarchical file sys-
tem, and provides real time data to augment the simulation studies described in this

chapter.



Chapter 6
Prototype Implementation

In the previous chapter we saw, through trace-driven simulation, that dynamic hierar-
chies have the potential to substantially reduce file server traffic and thereby improve
client performance in large-scale distributed file systems. Trace-driven simulation
alone, however, is not sufficient to show that dynamic hierarchies would be practi-
cal in a real system. Simulations, while useful for making rough predictions about
performance, do not always tell the entire story. There is no guarantee that the cost
models used in a simulation accurately reflect the costs incurred in practice, and the
models used in the simulations of the previous chapter were particularly primitive in
that they count only messages and file transfers. Even when very complex simulation
cost models are used that count costs in all aspects of system performance, there is no
guarantee that an actual implementation could be constructed that follows the same
model. Furthermore, simulation results tell us nothing about the “software engineer-
ing” complexity of constructing a real implementation; it is possible that a system
might be so complex to preclude building a practical or even prototype implemen-
tation, even if the algorithms themselves are easy to simulate. Finally, simulation
tells us nothing about the aspects of the system not considered in the simulation; for
example, the semantics of the system may be unacceptable to real users, regardless
of the performance.

This chapter describes a prototype implementation of a dynamic hierarchical file

system. The aim of the implementation is as a “proof of concept” of the algorithms
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described in the previous chapter and to provide additional, real time, performance
data to augment our simulation results. In Section 6.4, we are able to compare the

simulation predictions directly with the observed server performance.

6.1 Implementation Design Goals and Principles

A prototype differs from a production system in several ways, particularly with regard
to performance and reliability. Prototype implementations need not be concerned
with carefully tuned performance or platform-dependent optimization issues that are
not directly related to the concepts the prototype is being built to test. Reliability is
often perhaps the greatest area of divergence between prototype and production; while
a production system must generally be carefully designed and tested to avoid failure,
data loss, or incorrect results under unusual conditions, in a prototype implementation
it is often sufficient to simply be aware of the conditions under which the prototype
does not perform properly.

The motivation for the prototype file system arises out of our desire to gain simple
real time data and provide a proof-of-concept rather than to build a file system for

day-to-day use by real users. Our goals were therefore simple:

e Support of basic file system operations, including the creation and deletion
of files, reading and writing file data, and basic directory and file attribute
operations. More sophisticated file system functions, such as links (hard and
symbolic), access control and authentication, device access, special files, atomic
locking and rename operations, and so forth, are of only secondary interest and
are not required in the initial prototype. (Most of these secondary features were

not, in fact, included in the implementation).

e Simple interface. The interface to the file system should be simple but should
model, to some extent, the interface to a “real” file system. Ideally, programs
should require no modifications to use the prototype, and the underlying oper-

ating system should require little or no change.
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e Realistic performance. In this case, realistic means that the performance should
be good enough that real users are willing to use it (for at least some appli-
cations) and that the response time and throughput are at least within small
constant factors of what could be expected from a carefully tuned production

system.

e Reliability under normal operation. The prototype system should not be subject
to sudden failure or data loss under normal operation. Normal operation is
defined as when all nodes and the network are up and when all clients are using
their interfaces legally. Some failure or data loss, however, is tolerable when a

node fails or if a client abuses its interface in some way.

In designing the prototype, we tried to be guided by principles that would facilitate
realization of these goals, even at the expense of performance. In particular, we

attempt to:

o Use existing software where possible. This can be restated as “use existing
interfaces where possible”. Note that there is some performance penalty here,

since existing interfaces may not provide the most efficient way to do something.

o Use existing protocols. In particular, we favor protocols for which existing
simple interfaces exist that provide reliable data transfer (such as TCP/IP) over
those that require application level detection of lost data (such as UDP-based
RPC implementations).

o Use specialized high level tools, languages, and protocols. For example, we favor
the use of such protocols as NFS or ftp to transfer file data over a more efficient,

general purpose protocol that has a more complex interface.

o Avoid the kernel. Real file systems are generally implemented inside the Unix
kernel for performance reasons. Unfortunately this adds to the complexity of
implementation and makes performance profiling much harder. Kernel based
implementations also require that the system support a complete Unix vnode

interface, which may entail a more sophisticated prototype than desired.
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These “minimalist” principles are appropriate to prototype design for two reasons.
First, of course, they require less engineering effort to produce the prototype than
would be required by a performance-oriented approach. Second, and perhaps more
importantly, the prototype is more likely to be correct if its components consist of

well understood parts put together in a straightforward way.

6.2 Prototype File System Architecture

This section describes the design of PFS, the Prototype dynamic hierarchical File
System. (PFS may also be taken to stand for “Parasitic File System”, since clients
“latch on” to the caches of other clients rather like a parasite takes root in a host
organism. )

Recall that in a dynamic hierarchy, a client may obtain a particular file from
either the file server or another client’s cache. In fact, the only difference between
the services provided by clients and those provided by the server is that the server
always has a local copy of every file, while other clients may need to first obtain a
fresh copy of a file before completing some requests. Therefore, the server structure
is almost a proper subset of that of the client.

Each client maintains a cache of files as well as a name cache containing sources
of files and invalidation obligations. The procedure for obtaining a file is similar to
the algorithms described in the previous chapter: first check the data cache, then the
name cache for the source of the file if it has been previously read, otherwise try to
obtain the file from the server. The server may either supply the file, or, if A clients
have previously cached the file, it sends the list of previous clients instead, in which
case the procedure is repeated with one of the clients on the list. Each client runs a
server which processes these requests from other clients. All writes go directly to the
server, which propagates invalidation messages to the clients on its name list, who
propagate the messages to their clients, and so on.

Whole file caching is used in the prototype implementation. As soon as any bytes
of a file are read, the entire file is fetched. A real implementation would probably use

a large chunk of the file rather than the whole file, so that very large random access
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files do not cause pathological behavior.

No special provisions are made for recovery; the prototype assumes that clients do
not go down in the middle of operations and actually do propagate their invalidation
messages when they say they do.

All messages and requests are sent via remote procedure calls implemented on top

of TCP/IP.

6.2.1 Server Architecture and Implementation

The server must simply process requests from clients and propagate invalidation mes-
sages when a file is overwritten. It assumes that all writes occur “in band”; writes
not done through the server do not cause invalidate messages to be sent.

All files are stored under the standard Unix file system. The server also maintains
(in a standard file) a client database, which is directory of clients with cached copies
for each file.

The basic structure of the server is shown in Figure 23. The file manager provides
the interface to the file system (and client database). It sends invalidation messages
to clients when a file is overwritten or deleted and manages concurrency issues. The
server daemon listens for requests from clients on the network interface and either
sends the file data or the list of previous clients from the client database. The server
daemon blocks until a request is complete, and therefore can process only one client
request at a time. (In principle, multiple copies of the server daemon can be run to
yield better concurrency, but this is not completely supported by the implementation
of the file manager in the prototype implementation.) A configuration file is used
to determine which file system to provide service for, the value of A, the size and
location of the client database, and which clients to serve. No sophisticated access
control or authentication is included in the prototype.

The prototype server was implemented under 4.3 BSD (AOS) Unix on the IBM-
RT/PC. It consists of just over 1500 lines of C code, and runs entirely at user level.



CHAPTER 6. PROTOTYPE IMPLEMENTATION 75

(invalidaton
messages - out)
(requsts from
other clients)

v File
server

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
manager x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

daemon

a%eleu| YJoMPN

Figure 23: Prototype File System Server Architecture

6.2.2 Client Architecture and Implementation

The client’s job is functionally similar to that of the server, but with additional
requirements and constraints. The basic structure of the client includes most of the
server’s design, although several components have been changed slightly and a number
of additional components are included.

The basic client design is shown in Figure 24. The server daemon is identical to
that of the server. The client also must be accept invalidation messages when cached
copies are out of date; this is handled by the validation daemon, which listens for and
accepts these messages in the form of RPCs from the network interface. The interface
to the actual user programs is via the NFS server. The NFS server implements a
subset of the NFS protocol [22] and waits for messages on the localhost interface. The
client kernel uses this interface by issuing a standard NFS mount command on its
localhost interface. Client programs can then use the server just as they would any
other remote NFS file system (although several features are lacking, including hard

and symbolic links).
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Like the server, copies of all files and client data are stored under the standard
Unix file system. Unlike the server, however, these are maintained as fixed size caches;
an entry is not guaranteed to be present when required, and adding an entry may
first entail the deletion of an existing one. The cache manager is analogous to the
server’s file manager, with the additional capacity to manage a cache instead of a file
system and with several interfaces added. When a request for a file comes in (either
from the server daemon or the NFS server), the cache manager first looks for the file
in the data cache; if it is not present there, it checks for a previous source for the
file in the name cache. It an entry for the file is present in the name cache, requests
it from the host specified there, otherwise the file is fetched from the server, subject
to redirection as described in the previous chapter. When the copy of the file finally
arrives, the cache manager makes a copy in the data cache, after first selecting an
entry for replacement if needed. When a file is invalidated (either through a write
from the NFS server or a message from the validation daemon), the file is deleted
from the data cache if it is still present and any clients for that file in the name cache
are notified.

No provision is made for the possibility that a message cannot be delivered due
to network failure; if a message times out, it is simply lost, leading to a possible
inconsistency.

Like the server, the client is implemented under 4.3 BSD (AOS) on the IBM-RT.
It is more complex than the server code although still small, consisting of about 4500
lines of C (including the NFS server, which is almost half of the total code). Again,
configuration files are used to set the size of the caches (in files), the value of A, etc.
The client is configured to use the server via an entry in /etc/fstab pointing to the
localhost interface and the use of the standard NFS mount command. Clients cannot

also be used as standard NF'S servers because of conflicting use of port numbers.

6.3 Basic Implementation Performance

The performance of the system proved to be adequate for the purposes of the pro-

totype although probably not sufficient for day to day use. We measured the basic
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Time (ms)
Operation Client (CPU) | Server (CPU) | Response (Real)
Overhead Msg 14.4 3.1 21.5
0K File Xfer 16.8 8.1 49.8
1K File Xfer 18.9 10.0 52.2
14K File Xfer 56.8 37.3 153.1
40K File Xfer 153.2 101.6 366.1

Table 6: Prototype Performance

performance of the system in three ways: the CPU time (user+system) used at the
client side, the CPU time used at the server side, and the real response time of an
operation from start to finish on an otherwise unloaded client, server, and network.
Several operations were measured, including overhead (invalidation and redirection)
messages and various size file transfers. These statistics were taken with client and
server running on IBM-RT model 135 workstations. All measurements represent the
average over 1000 operations (in a loop), and all code was first put in real memory
to avoid paging times. The measurements are given in Table 6. All times are in
milliseconds.

Observe that the real time latency of an overhead message is about half that of
a OK file transfer, and about one eighth that of a 14K transfer. 14K file transfers
are shown because that is approximately the median size of files transferred in the
Princeton and DEC-SRC traces; 1K and 40K are the 80th and 20th percentiles of
file sizes, respectively. Note that these times are for the PFS code only; they do not
include latency or CPU time introduced by the client side NFS code, and do not
include context switches into and out of of other software. Note also that the times
given include actual disk I/O; the buffer caches were cleared before running the tests,

and no file names were re-used.
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6.4 Trace-Driven Workload Analysis

While the numbers given in the previous section are helpful for evaluating the absolute
quality of the implementation, they do not themselves provide a basis for comparison
with other file system techniques. In the previous chapter, we saw simulation results
based on the number of files and messages transferred using various caching techniques
with user trace data. In this section, we compare the real-time performance under
these traces of the prototype implementation with a A of 2 and with a A of co. That
is, this tells us how well dynamic hierarchies do compared with an equivalent-quality
implementation of a conventional server-invalidate file system.

We used the Princeton and DEC-SRC traces to generate workloads for the proto-
type. Seven IBM-RTs were used as client machines and one was used as the server.
Since the DEC-SRC trace has 112 clients and the Princeton trace had over 250, clients
randomly shared physical machines, although each client ran a private copy of the
client software and all client—client communication went through the network inter-
face. To keep the clients synchronized with respect to the original traces, “sync”
points were introduced whenever a client read must occur after another client’s op-
eration. Clients were otherwise free to issue their next operation as soon as the
previous one completed; this kept server utilization near 100%, and allowed the one
week traces to complete in a little less than one day. (This high server utilization
is a bit artificial, but makes the results relevant to large-scale systems, where server

utilization is expected to be high).

6.4.1 Server Load

The total CPU time used by the server during the trace driven runs allows a direct
comparison between the implementation and the simulation results. The simulation
told us how many file transfers and overhead messages would be performed for a
given workload, but did not directly tell us what the server load would be. The best
we can do with the simulation results is multiply the number of server messages by
the measured server CPU time for a message plus the number of server file transfers

by the median file size server transfer time. This figure is only an approximation
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Figure 25: Total Server Run Time — Princeton Workload

of actual server load, however. Fluctuations in the sizes of files actually transferred
as well as delays introduced by the environment (paging and context switches, for
example) could result in differences between the predicted and observed server loads.
In fact, the simulations were slightly optimistic in predicting server load, by about
20%, although this was roughly constant for all data points. Figures 25 and 26 give
the actual and and predicted server load for the Princeton and DEC-SRC workloads,
respectively. The solid curves indicate actual load and the dotted curves indicate
predicted load calculated by the simple multiplication above. Runs were made with

A = 0o and A = 2 for various cache sizes. Times are given in milliseconds.

6.4.2 Client Load

We measured the total client response time for each of the two workloads; that is, the
time from the start of the run to the last client completing its last operation. Time
required for any application processing of the files was not included; clients simply

throw away the data once read and move on to the next operation. Two sets of runs
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Figure 26: Total Server Run Time — DEC-SRC Workload

were made for each workload, one with A = 2 (full dynamic hierarchy) and another
with a A = 0o (conventional flat system). Runs were made with various client cache
sizes from 32 files to oo files.

Figure 27 shows the overall client response time for the Princeton workload; Figure
28 shows the response time for the DEC-SRC workload. All times are given in
milliseconds.

Observe that in both workloads and for various cache sizes, the A = 2 run had
an overall time of about half that of the conventional flat run. This is consistent
with the simulation results of the same workloads in the previous chapter. (Other,
intermediate, values of A were tested as well, but not for all data points, so they are
not presented as graphs here. The results are consistent with the simulations in the
previous chapter, and are never better than A = 2).

These workload-driven runs help answer the most important question left unan-
swered by the simulations: how well do dynamic hierarchies do in practice? The

simulation tells us only how many files and messages are transferred, which is only
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indirectly relevant to real question of interest — actual client performance. The sim-
ulation did not tell us, for example, the impact of the slightly increased client load
(caused by serving other clients) or whether the model of counting messages is rele-
vant to client response time. From these runs, we see that the shift of two thirds of
the server file transfer traffic to other clients (from the simulations) translated into a
factor of two reduction in overall client response time.

The reader is cautioned not to conclude that the use of dynamic hierarchies will
always result in a dramatic improvement in client performance. In particular, observe
that the entire reason for the reduction in client latency is related to the reduction
in the load of a server with near 100% utilization. If server utilization is not high,
dynamic hierarchies will not improve performance at all, since work would be simply

shifted from a lightly-loaded server to other clients.

6.5 Conclusions

This chapter described a simple prototype of dynamic hierarchical file system. Al-
though probably unsuitable for actual production use, it is a functional working file
system with reasonable, if sub-optimal, performance. The main purpose of the pro-
totype is to help validate the simulation results of the previous chapter.

Workload-driven runs of the prototype were encouraging. The real-time results,
compared with a conventional flat-caching file system, showed about a factor of two
improvement, which is approximately what was predicted by simulations. This is
important for two reasons. First, it tell us that, indeed, dynamic hierarchies have
practical potential for reducing client response time in large, high utilization file sys-
tems. Secondly, it tells us that very simple simulation models (counting file transfers
and messages) appear to be useful for predicting the performance of actual file sys-
tems.

In the next, final chapter, we discuss future directions for building practical very

large-scale distributed file systems using a dynamic hierarchical approach.



Chapter 7
Conclusions

The preceding chapters have examined one aspect of the problem of building a
massive-scale distributed file system. In systems built upon the client-server model,
a natural service bottleneck occurs when the client workload exceeds the server’s ca-
pacity. Client caching is a well-known technique for improving client performance,
reducing server load, and increasing the maximum number of clients that can be
served without bottlenecks. Only when a client cannot find a file in the cache is the
server involved, and so the server load can be reduced substantially. Previous stud-
ies suggest that sufficiently large client caches can reduce server load by as much as
80%—-90%. But server load remains proportional to client workload in such systems,
and so, as the system scales up, the server will eventually become a bottleneck.

In this thesis we have identified a number of file access properties in Unix-based
systems that suggest that server load can be reduced beyond what is possible in a
conventional client-server implementation. In simulations based on workloads taken
at two different sites, we found that a large proportion of client cache miss traffic
is for files that have already been read by other clients and are still active in those
other clients’ caches. By exploiting this property, clients may be able to substantially
reduce the load they place on the server, potentially enabling larger-scale systems to
be constructed. In other words, clients may be able to reduce server load by sharing
their caches. The chief problem is for clients to determine when to contact the server

and when and where to go to another client for service. One approach is to organize
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clients into a hierarchy, with the server at the root.

In Chapter 5, we saw that static hierarchies (and, equivalently, intermediate
caches) do reduce server load but introduce substantial client latency when the hier-
archy is searched for files that are not yet there. To reduce this latency, we propose
a dynamic hierarchical scheme that creates a client hierarchy for each file based on
usage patterns. Simulations suggest that this can reduce server load by a factor of
two to three, with greatly reduced client latency compared with a static scheme. In
Chapter 6, we describe an implementation of a file system based on dynamic hier-
archies. Under workloads that generate high server utilization, this implementation
showed an improvement in overall client response time of a factor of about two.

Perhaps the most important unresolved issue is how well dynamic hierarchies
would perform under truly massive-scale workloads. These workloads, of course, do
not yet exist to measure, so we can only speculate as to the impact of dynamic
hierarchical approaches on such systems. It is possible, however, that it may actually
be the case that the reduction in server load actually increases as the number of clients
and client activity scales up. Observe that the number of “alternative” machines
from which a client may receive service is the depth of the dynamic tree, which is
approximately log, of the number of past readers. It is reasonable to conjecture
that as this number goes up, so, too, does the probability that the server will not be
reached, and so the percentage of client activity seen by the server could be inversely
proportional to the log of the number of clients. This is, of course, only conjecture,
and only experience with real massive scale workloads will tell.

Scale in distributed file systems is a complex problem, with unresolved issues in
many areas including naming, security, semantics, consistency, network management,
and system performance. All these areas pose problems in the design of truly large
scale systems, although the latter, which was our focus, is perhaps the most quanti-
tatively measurable. This does not diminish the importance of these other problems,
however, and there remains considerable work to be done before a massive scale sys-
tem could be practical. In that light, the most important contribution of this thesis

is to identify an approach that should be incorporated into such systems.
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