
iBistro: A Learning Environment for Knowledge Construction in Distributed
Software Engineering Courses

Andreas Braun
Accenture

Maximilianstr. 35
80539 München, Germany

andreas.braun@accenture.com

Allen H. Dutoit, Andreas G. Harrer, and Bernd Brügge
Technische Universität München

Institut für Informatik/ I1, Boltzmannstraße 3
85748 Garching b. München, Germany
{dutoit, harrer, bruegge}@cs.tum.edu

Abstract

We have taught several distributed software engineering
project courses with students and real clients [4]. During
these projects, students in Pittsburgh and Munich, Germany
collaborated on the development of a single system. Our
experiences showed that software development is commu-
nication intensive and requires the collaboration of many
stakeholders. Communication is challenging in distributed
contexts: participants do not all know each other and work
at different times and locations; the number of participants
and their organization change during the project; partic-
ipants belong to different communities. Hence, to deal
with the global market place, it is critical to provide stu-
dents with distributed collaboration skills. To improve the
teaching of collaboration in software engineering, we pro-
pose iBistro [2], an augmented, distributed, and ubiqui-
tous communication space. iBistro aims to overcome prob-
lems resulting from miscommunications and information
loss in informal or casual meetings. iBistro enables dis-
tributed groups to collaborate and cooperate in software
projects and therefore provides an environment for learning
in such diverse aspects as project management, program-
ming skills, and social skills. With the addition of tech-
niques from artificial intelligence, such as student modeling,
and intelligent support mechanisms, such as computer sup-
ported group formation, distributed tutoring becomes feasi-
ble.

1. Teaching Informal Communication

The development of engineering products and software
is becoming increasingly distributed. Participants located
at different geographical sites have to collaborate to spec-
ify, design, realize, and test products, usually across several
time zones and often without meeting each other in person.

There are many reasons for the distribution of product de-
velopment:

� As a result of mergers and acquisitions, corporate
knowledge, person power, and skills are distributed
along historical organizational structures and are rarely
centralized in one location.

� As a result of new technology or new product lines,
participants from different divisions and departments
are required to collaborate on the same project.

� Part of the project must often be collocated with the
deployment site to optimize communication with the
end user.

Distributed projects leverage off tools, such as group-
ware, distributed repositories, and videoconferencing util-
ities, to accumulate and distribute knowledge and artifacts.
Distributed projects, however, introduce many technical and
social barriers. In addition to being geographically dis-
tributed, participants come from different corporate cul-
tures, use different tools, follow conflicting standards, and
often speak different languages. Such challenges are diffi-
cult to meet and often cause the failure of the project. Our
goal in teaching software engineering at Technische Univer-
sität München (TUM) and at Carnegie Mellon University
(CMU) has been to provide a realistic software engineer-
ing experience to students. We have done this by immers-
ing students in a single, team-based, system design project
to build and deliver a complex software system for a real
client. Since Fall 1997, we had the opportunity to teach four
distributed software engineering project courses in TUM
and CMU [4]. Teams of students at CMU and TUM were
taught to collaborate using groupware (e.g., web sites, Lotus
Notes, Email) and configuration management systems (e.g.,
CVS) to design and build a system for a client. Client re-
views and internal reviews were conducted using videocon-
ferencing facilities, enabling each site to present its progress



and obtain feedback from the client and from the other site.
While all four projects were completed successfully and
students acquired a number of skills for dealing with dis-
tribution, we experienced many difficulties in the areas of
communication and collaboration among the sites. In par-
ticular, participants at both sites spent much more effort dur-
ing solving unexpected problems and interface mismatches
than would have been the case in a single site setting. Dis-
tribution made the three following obstacles especially dif-
ficult:

� Inability to find stakeholders quickly. Since partici-
pants were distributed and did not know each other,
finding the author of a piece of code or of a subsystem
could take several days. Similarly, finding a project
participant who had an area of expertise to help with a
specific problem could likewise take several days.

� Inability to access rationale knowledge. Since many
decisions taken by teams were taken during meetings
or informal conversations, participants at the other site
could not easily access the rationale of the system.
Hence, participants encountered unexpected problems
when enhancing or modifying components produced
by the other site. While meetings were documented in
meeting minutes that were available via the groupware,
such records were organized chronologically and were
difficult to search when looking for a specific problem.

� Inability to identify the latest version of the software
(or of individual components) quickly. Even though
participants used the same repository for tracking ver-
sions of their components, it was difficult to identify
when new versions were checked in and which prob-
lems new versions addressed. Similarly, a site was usu-
ally not aware of whether a new version was under test
and about to be released. Consequently, sites worked
often on outdated versions and produced version con-
flicts by solving problems twice.

Note that all three problems noted above were caused,
at least in part, by some type of communication break-
down. Researchers distinguish between informal and for-
mal communication and recognize their application to dif-
ferent types of issues [12]. Formal communication is typ-
ically non-interactive and impersonal and includes, for ex-
ample, formal specifications, written documentation, struc-
tured meetings. Informal communication is typically peer-
oriented and interactive and includes, for example, hall-
way conversations, lunch breaks, and informal conversa-
tions that follow formal meetings. While formal commu-
nication is useful for coordinating routine work, informal
communication is needed in the face of uncertainty and
unexpected problems. Note that all three problems noted

above were caused, at least in part, by lack of informal com-
munication, typical of distributed projects [1, 5, 8, 12]. To
address these problems in the classroom, we propose to fur-
ther apply our approach of ’learning by doing’. In this pa-
per, we describe iBistro, an experimentation environment
that allows instructors and students to capture, structure,
and retrieve knowledge produced during informal conver-
sations.

iBistro will be used in the distributed project courses
we run to encourage informal (single site or distributed)
meetings and improve their record. By using iBistro, stu-
dents will be directly exposed to distributed issues and made
aware of several options for addressing them. Instructors
will be able to improve their support and guidance for con-
ducting informal meetings. By incrementally developing
iBistro, we believe that instructors and students will collab-
oratively learn to deal increasingly more effectively with the
issues of teaching communication and collaboration skills.
This paper is structured as follows. Section 2 provides an
overview of iBistro and an example scenario. Section 3 de-
scribes in more detail how iBistro can be used to capture,
structure, and retrieve knowledge, and more generally, ad-
dress problems such as the rationale retrieval and the ver-
sion identification we identified above. Section 4 describes
the integration of intelligent support in iBistro for address-
ing the stakeholder identification problem mentioned above.
Section 5 lists our results achieved so far and Section 6 con-
cludes this paper by outlining our experimental plans and
the outlook for iBistro.

2. iBistro - An Augmented and Informal Meet-
ing Space

iBistro is an augmented meeting space for informal col-
laboration and communication in distributed software engi-
neering. iBistro therefore is a source for acquiring informal
knowledge. The capturing and structuring of knowledge
is facilitated by the automatic recording of many different
types of related context. Examples of such context stored in
iBistro include the identity of stakeholders/meeting partici-
pants, the participant’s current activity, the current meeting
topic, time, and location (e.g., the room where the meeting
takes place). iBistro aims at supporting informal meetings
in a distributed environment between two continents, just
over the street, or even within the same room (see Figure 1).
In addition, iBistro supports asynchronous collaboration by
enabling participants to improve the content and the struc-
ture of meeting minutes. iBistro takes advantage of cam-
era observed whiteboards and links to project documents to
provide a seamless transition between the computer and the
physical world. The coffee room provides these resources
in an informal atmosphere while attempting to capture crit-
ical team interactions, allowing us to document some of the



rationale behind and the context surrounding a group de-
cision to create a “group memory”. Individual distributed
developers (as opposed to groups of developers) are inte-
grated from their workstation or wearable digital assistant
with iBistro’s ubiquitous interface for accessing the contex-
tual memory over a network.

Distribution
Boundaries

Same Place

Different Place

Diffe
re

nt

Sam
e

Community

Boundarie
s

t

CCC 2

1

BBBA

A. Same time/ same place informal meetings.
B. Different time/ same place meetings in the same (1)

or different (2) communities.
C. Same time/ different place meeting both in the same

(1) and in different (2) communities.
D. Different time/ different place meetings.

Figure 1. Distribution over space, time, and
communities.

In this paper, we describe the features of iBistro for same
place informal meetings, whether they occur synchronously
or not and in the same community or not (Cells A, B�, and
B� in Figure 1). The same place/ different time meeting sce-
nario describes the resumption of a meeting using iBistro’s
services. In this case, iBistro would provide participants
with the agenda, stakeholders, topics, argumentation, ratio-
nale, or decisions of a preceded meeting. Once we under-
stand same place meetings sufficiently well, we will refine
iBistro’s features to support distributed meetings (Cells C�,
C�, and D in Figure 1).

The simplest form of a meeting within iBistro is the same
time/ same place meeting (see A in Figure 1). Assume three
meeting participants who are developing scenarios during
a requirements elicitation session: Alice is a student who
works in system development for this lab. Bob is the su-
pervisor of the software development course and has some
further domain specific knowledge. Claire represents the
customer of the project. Using the electronic badges (such
as the Active Badge Location System [18]) given to each
of the participants at the beginning of the course iBistro
knows about the presence of the individual stakeholders and
is able to deal with a varying number of meeting partici-
pants. This is important to allow for the assignment of the
content (e.g., a single requirement) to the individual stake-
holders during the post-meeting process. Moreover, the sys-
tem must not know about the participants in advance. This

also fosters the informal character of the meeting. In our
scenario, Claire is late for the meeting and arrives in iBistro
after Alice and Bob have already started. Knowledge ac-
quisition is done by capturing the audio and video of the
meeting as well as by capturing any sketches, notes, and
drawings made throughout the meeting. By allowing for the
manual orientation of the whiteboard camera, meeting par-
ticipants may use a whiteboard (including electronic white-
boards), a laptop computer, paper, or even napkins to draw
or to write on. For this scenario, suppose that our meeting
community uses an electronic whiteboard, such as SMART
BoardsTM[16]. As the whiteboards’ content is captured in
a movie in iBistro (as opposed to whiteboard-capture sys-
tems such as Zombieboard [14], which use static images),
the history of drawings or notes is saved in a sequence of
images. Back to our scenario, Alice, Bob, and Claire are
able to talk easily about the requirements of their project.
However, they can also be sure that critical team interaction
is saved and available for later processing and structuring.
During the course of the meeting, two different application
concepts are developed. The first one is a context sensi-
tive computer advisor who guides the user by offering sug-
gestions based on the state of their accounts with the bank.
The second one, is a computer catalog that enables users to
browse and search through the complete range of products
offered by the bank. At a critical point during the meet-
ing, Claire, the client decides to set aside the catalog con-
cept in favor of the advisor concept. Alice decides to take
a snapshot of the current state of both mockups by point-
ing the camera to a piece of paper on which they drawed
some sketches. The whiteboard is then erased and the re-
mainder of the meeting is dedicated to the advisor concept.
After the meeting, during the post-processing, Alice nav-
igates through the meeting record along its timeline using
the MINUTEGENERATOR tool. However, the time needed
for post-processing the meeting is shortened drastically by
offering any contextual event as well as subsequent chang-
ing content of the whiteboard as an index into the captured
meeting1. From Claire’s late arrival to the meeting, Alice
can easily distinguish between the strategy topics first dis-
cussed with Claire and the domain specific topics discussed
after Claire’s arrival. Also, by noticing the event associated
with wiping the whiteboard, Alice is able to isolate the dis-
cussion associated with the two application concepts. She
creates two option events representing each a concept and
a decision event that she associates with the video segment
when Claire made her decision. During this process, Alice
creates the knowledge base for that meeting by evaluating
the captured videos, therefore translating the lower- level
captured information (such as audio and video streams and
whiteboard snapshots) into higher level content (such as re-

1The acceptance of the time needed for post-meeting processing largely
depends on the user group (consultants vs. students).



quirements and their rationale). One crucial point during
that phase is that every information interpreted that way is
linked automatically with its originating source and related
contextual information, e.g., a stakeholder (identity) to al-
low for the later sorting of knowledge by different criteria
(e.g., author, time of occurrence, type of event).

3. Knowledge Capture, Structure, and Re-
trieval in iBistro

3.1. The iBistro Architecture

The iBistro architecture is based on the blackboard
model [15]. The blackboard model is originally used in
opportunistic problem-solving to deal with non-computable
and diverse problems in AI. We propose a blackboard-
based architecture, called a distributed concurrent black-
board model as an approach to deal with the variety of
events and context that occur during (informal) meetings
[3]. In our architecture, various capture components record
contextual events (such as people entering or leaving the
meeting room) as well as audio, video, and whiteboard con-
tent. Several specialized knowledge sources seize the cap-
tured events to create new types of information or knowl-
edge, for instance a hypothesis or a solution. This process
of knowledge construction creates an abstraction hierarchy
of knowledge (see Figure 3) that is stored in several lay-
ers of abstraction within the blackboard. While the con-
trol component notifies knowledge sources and schedules
knowledge source invokation, the strategy component takes
care of the “big picture” to direct knowledge acquisition.
Figure 2 displays the simplified architecture for iBistro.

Knowledge Source

Blackboard

Control

1

1 

*

AbstractionLayer

1..n

Strategy

Capture Component*

*

Knowledge View*

Figure 2. Simplified blackboard-based archi-
tecture for iBistro (UML class diagram).

3.2. Knowledge Capture and Storage

Knowledge acquisition and storage in iBistro is strictly
event-based. Any type of knowledge in iBistro is stored ac-
cording to its timely occurrence. Thus, the flow of events
in a single meeting follows a common timeline. Incidents

captured later, such as the manual post-interpretation of the
whiteboard video, which might result in a (single) require-
ment, are added with a timestamp representing their post-
meeting creation. Surrounding contextual information is
linked to the event to indicate the originator (the identity of
the person who mentioned the requirement), the time when
the requirement was first mentioned, location, and so forth
is linked along with the event in the database. The ability
of context and event interlinkage aims at reflecting that “an
activity happens within a context” [6] and vice versa.

Versioning of knowledge is handled similar to the linking
of knowledge with related context. Each individual event
might have several versions – successors and predecessors,
e.g., different wording for a requirement. Each version,
again, might have its own surrounding context, such as cre-
ation time, author, and location. This is relevant since work
in iBistro can be distributed between several locations. This
also implies links between distributed iBistros and will re-
sult in several distribution issues. Figure 3 depicts the event
hierarchy used by iBistro together with its versioning mech-
anism.

CaptureEvent

Identity Artifact Activity Time Location

Video Snapshot Question Option Criteria Assessment Decision

*

*
Meeting Minute

DataItem

** Version

Link*

Hypothesis

RationaleTopic

Solution

Source-File

Figure 3. Knowledge database and content
linkage for a single meeting (UML class dia-
gram).

3.3. Knowledge Acquisition

Due to the result-oriented character of meetings in
iBistro, the post-mortem structuring of captured knowledge
is crucial. In general, this takes place after the client and
user left a brainstorming session during requirements elici-
tation. The post-meeting structuring is typically performed
by a person, called “meeting editor”, (e.g., a consultant or
developer). During the post-meeting, the editor annotates
the captured audio and video stream with higher level infor-
mation to provide an index into the raw material. In iBistro,
we use the Question, Option, Criteria paradigm (QOC, [13])
as a basis for these annotations. The editor identifies topics
that were discussed by attaching a Question event to a seg-
ment of the video. Within that segment, the editor identi-
fies different alternatives with different Option events. The



editor documents a decision, such as the selection of an al-
ternative or the discarding of others, by creating a Decision
event. Since History events, like all other iBistro events,
have an attribute identifying the originator of the event (in
this case the person who suggested the option or who made
the decision), traceability to human sources is ensured. In
addition to History events, the editor can also attach other
types of information using Link events, such as references
to other material, for example, a problem statement from
the client, scenarios, and questions generated by REQuest2,
or a class diagram generated by a CASE tool. Note that the
editor does not need to view the entire record of the meeting
to create useful meeting minutes. Moreover, other meeting
participants could assume the role of editor afterwards and
refine the minutes iteratively. The meeting editor idea orig-
inated from the experiences with knowledge management
at Accenture, where a knowledge champion is responsi-
ble for saving relevant domain or project knowledge to Ac-
centure’s internal knowledge databases, called Knowledge
XchangeTM (KX). KX is Accenture’s worldwide knowledge
management system. It became the backbone of the firm’s
global knowledge capital. Launched in 1992, the system to-
day is the largest Lotus Notes installation worldwide with
more than 65,000 users in 2000. However, iBistro brings
this idea to a different level of granularity (knowledge cap-
ture per meeting vs. per project/ sub-project) and focuses on
the kind of meetings typically omitted in KX. As these in-
formal meetings are normally (intentionally) quite unstruc-
tured, the importance of the structuring process and a suit-
able tool-support is evident. Figure 4 shows a screen-shot
of the MINUTEGENERATOR tool.

Position Slider

Video Control WindowMeeting Generator Window

Context events and rationale,
displays as temporal view

Figure 4. Meeting generator tool for post-
meeting structuring.

2REQuest [7] is a Web-based tool for rationale-based use case speci-
fication. REQuest enables users propose requirements and their justifica-
tions, to review and to discuss them using the QOC paradigm.

After the post-mortem processs, the hierarchy of infor-
mation and knowledge now stored in the meeting minutes
can be translated to a three-dimensional model as shown
in Figure 5. The three axes represent the timeline (x-axis),
level of abstraction (represented in the blackboard layer, y-
axis), and version or knowledge-interlinkage (z-axis).

Con
ce

pt
? 

: Q
ue

sti
on

Snapshot: Artifact

Snapshot: Artifact

Time

Level of Maturity/
Abstraction Layer

Ver
sio

n/
 H

ist
or

y

[.........]
Level 0

Level 1

Level n

[.........]

Adv
iso

r?
 : 

Opt
ion

Cat
alo

g?
 : 

Opt
ion

: D
ec

isi
on

: D
ec

isi
on

.2

New Version of 
Decision.1, 
potentially created 
in another meeting.

Figure 5. Information in iBistro seen as a 3D-
model of knowledge.

3.4. Knowledge Retrieval

The meeting minutes stored in the repository represent
the natural flow of the meeting, including external anno-
tations from other sites or an individual’s personal com-
puter. A self-evident way to view such a meeting is to
playback the meeting as a multimedia archive, thus en-
abling non-participants to access the raw information. In
iBistro, the SMIL-MEETINGVIEWER generates on-demand
a SMIL3 [17] file (or data stream) to represent the meet-
ing along with the captured requirements, context, ratio-
nale, and so on. This allows interested people to navigate
through a meeting using any SMIL compliant video player,
such as RealPlayerTM or Quicktime’s Movie Player to view
the meeting. As the content of the meeting follows a com-
mon timeline, the ’Clip Position slider is used to navigate
through the captured audio, video, as well as other content
such as requirements. Alternatively, the History events can
be used to jump to specific segments of the meeting min-
utes, for example, navigating an option will move the posi-
tion slider to the frame where the option was first suggested.
Graphical views of requirements or rationale can be dis-
played using HTML or by generating bitmaps on demand.
However, displaying multi-dimensional components, such
as context-links between stored entries which allow naviga-
tion, is non-trivial. Thus, the next-generation meeting view
(which actually doesn’t replace the SMIL view, but will
live side-by-side, solving different needs) will facilitate the

3SMILTM (pronounced “smile”) enables simple authoring of multime-
dia presentations over the Web. A SMIL presentation can be composed of
streaming audio, streaming video, images, text or any other media type.



n-dimensional navigation through the captured knowledge
from various sites. As currently implemented in the MIN-
UTEGENERATOR, the knowledge base must be searchable
by any type of context, e.g., by stakeholders, location, topic,
versions, and so on. Hence, in addition to the raw context
information captured during the meeting, the user also sees
all the annotations and structure that were added during the
post-processing.

3.5. Meeting Minute Navigation

As knowledge in iBistro is stored along with its related
contextual information, navigation is possible using various
types of input. As shown in Figure 3, meeting minutes con-
sist of contextual information (e.g., location, identity, activ-
ity, history, and time) which can serve as keys for searching.
For example, a minute may be sorted by requirements au-
thored by a certain participant, by time, or any other key.
Navigation is possible on any of those keys: the stakeholder
of an issue is found by clicking on that issue. Related infor-
mation, like time or location where the meeting took place,
is displayed accordingly and might be used for further nav-
igation. Thus, iBistro’s database can be used to find stake-
holders over various meetings or even projects. While a
MEETINGVIEW provides a meeting-based index into the
knowledge base, other knowledge sources can provide an
artifact-based view into the knowledge base. For example,
we plan to modify the REQuest requirements engineering
tool so that developers can also browse meeting segments
based on a specific scenario or use case. By providing a
seamless integration between meetings, models, and docu-
ments, the value of iBistro will be more visible to the meet-
ing participants.

4. Domain Expert Knowledge and Intelligent
Support for iBistro

With techniques from intelligent tutoring systems (ITS)
and computer supported collaborative learning (CSCL) sys-
tems we can enhance the learning environment with many
facilities for support of working and learning processes: the
means for this encompassing support are the use of student
models, the explicit representation of expert knowledge in
the problem domain (in our case software engineering), and
the analysis of event traces to create higher-level informa-
tion. Student or user models enable us to address one of the
problems described in the introduction, that is the inability
to find stakeholders quickly. With a combination of self-
assessment from the user’s side and diagnosis of the user’s
problem solving behavior we can get a representation of the
user’s capabilities, expertise and weaknesses, that is a user
model or profile. This can be used to help the users find-
ing stakeholders and experts in certain areas much more

quickly, just by requesting help from the system to get a
recommendation which person should be contacted. For ex-
ample a student in the software-engineering course, whose
task is the implementation of a subsystem, runs into prob-
lems with the design the team planned. At that moment he
needs the help of a design expert in the team. Based on self-
assessment of the students and on diagnosis of the previous
work, iBistro could recommend a team member meeting the
criteria the other student asks for. The process for finding
specific stakeholders or roles is very similar to that in Op-
portunistic Group Formation [10], a well-known procedure
in the field of computer supported collaborative learning.
With the explicit representation of expert domain knowl-
edge (here with the topic of software-engineering, like pro-
cess models, rationale, design, and its refactoring) the learn-
ing environment iBistro may also provide intelligent sup-
port on its own, if a human expert is not available (due to
asynchronous work or different time zones). The fundament
of that expert knowledge is the definition of an ontology of
the domain, which defines all the important terms and re-
lations of the expert domain. At the moment we design an
authoring tool for the definition of concept maps and on-
tologies. For the user-interface of the artificial domain ex-
pert we propose the technique of synthetic interviews and
synthetic agents [11], that provide an artificial anthropo-
morphic partner for the human group members. In that way
the iBistro learning environment can support the students
directly as a learning partner, especially in the distributed
time scenarios when human partners are not available. An-
other point where artificial intelligence (AI) techniques can
augment the iBistro environment is the analysis of captured
event traces: As presented in Section 3.2, iBistro creates a
trace of the events happening within the enviroment. These
rather low-level data can be processed and abstracted into
higher level information, such as the degree of participation
of specific members in a community or the diagnosis, that
usually a member takes a specific role, like mediator. Such
an analysis is also used in intelligent distributed learning en-
vironments [9] for the creation of high-level student model
information. Such an automated analysis makes the post-
processing much easier for the meeting editor, because he
can rather focus on the essential aspects of the meeting than
caring about bookkeeping of statistical information, such
as participation of individual members, which can be auto-
matically computed and processed by the environmnt. The
process of minute generation is with that support less of a
burden for the meeting editor. These additional uses of tech-
niques from artificial intelligence, which have already been
applied to intelligent tutoring systems and CSCW-systems,
could provide a much more encompassing support than con-
ventional groupware systems give.



5. Results and Current Status

iBistro is currently tested and improved in a small dis-
tributed software development project at TU München and
the National University of Singapore. This setup revealed
some technical difficulties and deficiencies, especially re-
garding audio and video quality due to limited bandwidth
and camera and orientation problems. This shows the im-
portance of local post-meeting processing, while commu-
nication then is based the electronic meeting minutes. The
architectural model which has been developed for iBistro,
however, prooved to be suitable for both experimentation
with context-aware devices and a model-view-controller
(MVC) based approach to knowledge retrieval and naviga-
tion.

The distributed setup also showed the strengths of iBistro
compared to simpler electronic communication (such es
email), as related material (source files, snapshots, . . . ) and
surrounding information and knowledge (rationale, stake-
holders, . . . ) are directly available to remote participants.

6. Conclusion

In this paper, we motivated the need to support infor-
mal communication in teaching software engineering. We
also emphasized the importance of informal meetings in the
context of enhancing an organizational memory. We pro-
pose to address some of the issues surrounding informal
communication by supporting the efficient capture, struc-
ture, and navigation of meeting minutes and their integra-
tion into the long term project memory embedded in tools
and documents. We described iBistro, a research and teach-
ing environment for experimenting with technologies and
techniques for achieving these goals. We will address or
avoid obstacles encountered by other related efforts by 1.
focusing on working (brainstorming) meetings, 2. by in-
crementally developing guidance and tool support with real
users, and 3. by leveraging off context-based devices to en-
rich the meeting record and simplify the post-processing of
meeting minutes.

References

[1] A. Al-Rawas and S. Easterbrook. Communication problems
in requirements engineering: A field study. In Proc. First
Westminster Conf. Professional Awareness in Software En-
gineering, Univ. Westminster, London, 1996.

[2] A. Braun, B. Bruegge, and A. H. Dutoit. Supporting infor-
mal requirements meetings. In 7th International Workshop
on Requirements Engineering: Foundation for Software
Quality. (REFSQ’2001), volume 7, Interlaken, Switzerland,
June 2001.

[3] A. Braun, B. Bruegge, A. H. Dutoit, T. Reicher, and
G. Klinker. Experimentation in context-aware applications.
Submitted to HCI Journal for publication in special issue on
context-aware computing, 2000.

[4] B. Bruegge, A. H. Dutoit, R. Kobylinski, and G. Teubner.
Transatlantic project courses in a university environment. In
7th Asia-Pacific Software Engineering Conference, Singa-
pore, Dec. 2000. APSEC.

[5] B. Curtis, H. Krasner, and N. Iscoe. A field study of the soft-
ware design process for large systems. In Communications
of the ACM, volume 31(11), Nov. 1988.

[6] P. Dourish. What we talk about when we talk about context.
Submitted to HCI Journal for publication in special issue on
context-aware computing, 2001.

[7] A. H. Dutoit and B. Paech. Developing guidance and tool
support for use case-based specification. In Proceedings of
the 7th International Workshop on Requirements Engineer-
ing: Foundation for Software Quality. (REFSQ’2001), vol-
ume 7, Interlaken, Switzerland, June 2001.

[8] R. Grinter, J. Herbsleb, and D. Perry. The geography of
coordination: Dealing with distance in r& d work. In Com-
munications of the ACM, 1999.

[9] A. Harrer. Analysis of social interaction for construction of
group models. In Proceedings of AI-ED 2001, San Antonio,
TX, USA, 2001.

[10] M. Ikeda, G. Shogo, and R. Mizoguchi. Opportunistic group
formation. In Proceedings of AI-ED 1997, pages 167–174,
Kobe, Japan, 1997.

[11] L. Johnson, editor. Instructional Uses of Synthetic Agents,
LeMans, France, 1999.

[12] R. Kraut and L. Streeter. Coordination in software develop-
ment. In Communications of the ACM, volume 38(3), Mar.
1995.

[13] A. MacLean, R. M. Young, V. M. Bellotti, and T. P. Moran.
Questions, Options, and Criteria: Elements of Design Space
Analysis, chapter 3, pages 53–106. Design Rationale: Con-
cepts, Techniques, and Use. Lawrence Erlbaum Associates,
Hillsdale, NJ, first edition, 1996.

[14] T. Moran, B. van Melle, and E. Saund. Walls at Work –
Physical and Electronic Walls in the Workplace, pages 191–
208. Deutsche Verlags Anstalt, Stuttgart, 1999.

[15] P. Nii. Blackboard systems: The blackboard model of prob-
lem solving and the evolution of blackboard architectures.
In AI Magazine, volume 7(2), pages 38–53, 1986.

[16] SMART Board, 2000.
[17] W3C. SMIL. Technical report, World Wide Web Consor-

tium, 1998.
[18] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active

badge location system. In ACM Transactions on Information
Systems, volume 10(1), pages 91–102, 1992.


