Appears in Proc. of the 6th Symposium on Operating Systems Design and Implementation (OSDI), Dec 2004

Microreboot — A Technique for Cheap Recovery

George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, Armando Fox
Computer Systems Lab, Stanford University

{candea, skawamo, £jk, gregjf, fox}@cs.stanford.edu

Abstract

A significant fraction of software failures in large-scale
Internet systems are cured by rebooting, even when the
exact failure causes are unknown. However, rebooting
can be expensive, causing nontrivial service disruption or
downtime even when clusters and failover are employed.
In this work we separate process recovery from data re-
covery to enable microrebooting — a fine-grain technique
for surgically recovering faulty application components,
without disturbing the rest of the application.

We evaluate microrebooting in an Internet auction sys-
tem running on an application server. Microreboots re-
cover most of the same failures as full reboots, but do so an
order of magnitude faster and result in an order of magni-
tude savings in lost work. This cheap form of recovery en-
genders a new approach to high availability: microreboots
can be employed at the slightest hint of failure, prior to
node failover in multi-node clusters, even when mistakes
in failure detection are likely; failure and recovery can be
masked from end users through transparent call-level re-
tries; and systems can be rejuvenated by parts, without
ever being shut down.

1 Introduction

In spite of ever-improving development processes and
tools, all production-quality software still has bugs; most
of the bugs that escape testing are difficult to track down
and resolve, and they take the form of Heisenbugs, race
conditions, resource leaks, and environment-dependent
bugs [14, 36]. Moreover, up to 80% of bugs that mani-
fest in production systems have no fix available at the time
of failure [43]. Fortunately, it is mostly application-level
failures that bring down enterprise-scale software [32, 13,
35, 36], while the underlying platform (hardware and op-
erating system) is reliable, by comparison. This is in con-
trast to smaller-scale systems, such as desktop computers,
where hardware and operating system-level problems are
still significant causes of downtime.

When failure strikes large-scale software systems, such
as the ones found in Internet services, operators cannot
afford to run real-time diagnosis. Instead, they focus on
bringing the system back up by all means, and then do the
diagnosis later. Our challenge is to find a simple, yet prac-
tical and effective approach to managing failure in large,
complex systems, an approach that is accepting of the fact
that bugs in application software will not be eradicated any

time soon. The results of several studies [39, 19, 34, 12]
and experience in the field [5, 35, 24] suggest that many
failures can be successfully recovered by rebooting, even
when the failure’s root cause is unknown. Not surpris-
ingly, today’s state of the art in achieving high availabil-
ity for Internet clusters involves circumventing a failed
node through failover, rebooting the failed node, and sub-
sequently reintegrating the recovered node into the cluster.

Reboots provide a high-confidence way to reclaim stale
or leaked resources, they do not rely on the correct func-
tioning of the rebooted system, they are easy to imple-
ment and automate, and they return the software to its start
state, which is often its best understood and best tested
state. Unfortunately, in some systems, unexpected reboots
can result in data loss and unpredictable recovery times.
This occurs most frequently when the software lacks clean
separation between data recovery and process recovery.
For example, performance optimizations, such as write-
back buffer caches, open a window of vulnerability during
which allegedly-persistent data is stored only in volatile
memory; an unexpected crash and reboot could restart the
system’s processes, but buffered data would be lost.

This paper presents a practical recovery technique we
call microreboot — individual rebooting of fine-grain ap-
plication components. It can achieve many of the same
benefits as whole-process restarts, but an order of mag-
nitude faster and with an order of magnitude less lost
work. We describe here general conditions necessary for
microreboots to be safe: well-isolated, stateless compo-
nents, that keep all important application state in special-
ized state stores. This way, data recovery is completely
separated from (reboot-based) application recovery. We
also describe a prototype microrebootable system we used
in evaluating microreboot-based recovery.

The low cost of microrebooting engenders a new ap-
proach to high availability, in which microrebooting is al-
ways attempted first, as front-line recovery, even when
failure detection is prone to false positives or when the
failure is not known to be microreboot-curable. If the
microreboot does not recover the system, but some other
subsequent recovery action does, the recovery time added
by the initial microreboot attempt is negligible. In multi-
node clusters, a microreboot may be preferable even over
node failover, because it avoids overloading non-failed
nodes and preserves in-memory state. Being minimally-
disruptive allows microreboots to rejuvenate a system by
parts without shutting down; it also allows transparent
call-level retries to mask a microreboot from end users.

The rest of this paper describes, in Section 2, a design
for microrebootable software and, in Section 3, a proto-
type implementation. Sections 4 and 5 evaluate the pro-
totype’s recovery properties using fault injection and a re-
alistic workload. Section 6 describes a new, simpler ap-
proach to failure management that is brought about by
cheap recovery. Section 7 discusses limitations of mi-
crorebooting, and Section 8 presents a roadmap for gener-
alizing our approach beyond the implemented prototype.
Section 9 presents related work, and Section 10 concludes.

2 Designing Microrebootable Software

Workloads faced by Internet services often consist of
many relatively short tasks, rather than long-running ones.
This affords the opportunity for recovery by reboot, be-
cause any work-in-progress lost due to rebooting repre-
sents a small fraction of requests served in a day. We set
out to optimize large-scale Internet services for frequent,
fine-grain rebooting, which led to three design goals: fast
and correct component recovery, strongly-localized recov-
ery with minimal impact on other parts of the system, and
fast and correct reintegration of recovered components.

In earlier work we introduced and motivated crash-only
software [9] — programs that can be safely crashed in
whole or by parts and recover quickly every time. The
high-level recipe for building such systems is to structure
them as a collection of small, well-isolated components,
to separate important state from the application logic and
place it in dedicated state stores, and to provide a frame-
work for transparently retrying requests issued to compo-
nents that are temporarily unavailable (e.g., because they
are microrebooting). Here we summarize the main points
of our crash-only design approach.

Fine-grain components: Component-level reboot time
is determined by how long it takes for the underlying plat-
form to restart a target component and for this component
to reinitialize. A microrebootable application therefore
aims for components that are as small as possible, in terms
of program logic and startup time. (There are many other
benefits to this design, which is why it is favored for large-
scale Internet software.) While partitioning a system into
components is an inherently system-specific task, devel-
opers can benefit from existing component-oriented pro-
gramming frameworks, as will be seen in our prototype.

State segregation: To ensure recovery correctness, we
must prevent microreboots from inducing corruption or
inconsistency in application state that persists across mi-
crorebooting. The inventors of transactional databases
recognized that segregating recovery of persistent data
from application logic can improve the recoverability of
both the application and the data that must persist across
failures. We take this idea further and require that microre-
bootable applications keep al/l important state in dedicated
state stores located outside the application, safeguarded
behind strongly-enforced high-level APIs. Examples of
such state stores include transactional databases and ses-

sion state managers [26].

Aside from enabling safe microreboots, the complete
separation of data recovery from application recovery gen-
erally improves system robustness, because it shifts the
burden of data management from the often-inexperienced
application writers to the specialists who develop state
stores. While the number of applications is vast and their
code quality varies wildly, database systems and session
state stores are few and their code is consistently more ro-
bust. In the face of demands for ever-increasing feature
sets, application recovery code that is both bug-free and
efficient will likely be increasingly elusive, so data/process
separation could improve dependability by making pro-
cess recovery simpler. The benefits of this separation can
often outweigh the potential performance overhead.

Decoupling: Components must be loosely coupled,
if the application is to gracefully tolerate a microreboot
(uRB). Therefore, components in a crash-only system
have well-defined, well-enforced boundaries; direct ref-
erences, such as pointers, do not span these boundaries.
If cross-component references are needed, they should be
stored outside the components, either in the application
platform or, in marshalled form, inside a state store.

Retryable requests: For smooth reintegration of mi-
crorebooted components, inter-component interactions in
a crash-only system ideally use timeouts and, if no re-
sponse is received to a call within the allotted time frame,
the caller can gracefully recover. Such timeouts provide
an orthogonal mechanism for turning non-Byzantine fail-
ures into fail-stop events, which are easier to accommo-
date and contain. When a component invokes a currently
microrebooting component, it receives a RetryAfter (t)
exception; the call can then be re-issued after the estimated
recovery time ¢, if it is idempotent. For non-idempotent
calls, rollback or compensating operations can be used.
If components transparently recover in-flight requests this
way, intra-system component failures and microreboots
can be hidden from end users.

Leases: Resources in a frequently-microrebooting sys-
tem should be leased, to improve the reliability of cleaning
up after uRBs, which may otherwise leak resources. In ad-
dition to memory and file descriptors, we believe certain
types of persistent state should carry long-term leases; af-
ter expiration, this state can be deleted or archived out of
the system. CPU execution time should also be leased:
if a computation hangs and does not renew its execution
lease, it should be terminated with a uRB. If requests can
carry a time-to-live, then stuck requests can be automati-
cally purged from the system once this TTL runs out.

The crash-only design approach embodies well-known
principles for robust programming of distributed systems.
We push these principles to finer levels of granularity
within applications, giving non-distributed applications
the robustness of their distributed brethren. In the next
section we describe the application of some of these de-
sign principles to the implementation of a platform for mi-
crorebootable applications.

3 A Microrebootable Prototype

The enterprise edition of Java (J2EE) [40] is a frame-
work for building large-scale Internet services. Motivated
by its frequent use for critical Internet-connected applica-
tions (e.g., 40% of the current enterprise application mar-
ket [3]), we chose to add microreboot capabilities to an
open-source J2EE application server (JBoss [21]) and con-
verted a J2EE application (RUBIS [37]) to the crash-only
model. The changes we made to the JBoss platform uni-
versally benefit all J2EE applications running on it. In this
section we describe the details of J2EE and our prototype.

3.1 The J2EE Component Framework

A common design pattern for Internet applications is the
three-tiered architecture: the presentation tier consists of
stateless Web servers, the application tier runs the applica-
tion per se, and the persistence tier stores long-term data
in one or more databases. J2EE is a framework designed
to simplify developing applications for this model.

J2EE applications consist of portable components,
called Enterprise Java Beans (EJBs), and platform-specific
XML deployment descriptor files. A J2EE application
server, akin to an operating system for Internet services,
uses the deployment information to instantiate an appli-
cation’s EJBs inside management containers; there is one
container per EJB object, and it manages all instances of
that object. The server-managed containers provide the
application components with a rich set of services: thread
pooling and lifecycle management, client session manage-
ment, database connection pooling, transaction manage-
ment, security and access control, etc. In theory, a J2EE
application should be able to run on any J2EE application
server, with modifications only needed in the deployment
descriptors.

End users interact with a J2EE application through a
Web interface, the application’s presentation tier, encap-
sulated in a WAR — Web ARchive. The WAR component
consists of servlets and Java Server Pages (JSPs) hosted
in a Web server; they invoke methods on the EJBs and
then format the returned results for presentation to the end
user. Invoked EJBs can call on other EJBs, interact with
the back-end databases, invoke other Web services, etc.

An EJB is similar to an event handler, in that it does not
constitute a separate locus of control — a single Java thread
shepherds a user request through multiple EJBs, from the
point it enters the application tier until it returns to the
Web tier. EJBs provide a level of componentization that is
suitable for building crash-only applications.

3.2 Microreboot Machinery

We added a microreboot method to JBoss that can be in-
voked programatically from within the server, or remotely,
over HTTP. Since we modified the JBoss server, microre-
boots can now be performed on any J2EE application;
however, this is safe only if the application is crash-only.
The microreboot method can be applied to one or more

EJB or WAR components. It destroys all extant instances
of the corresponding objects, kills all shepherding threads
associated with those instances, releases all associated re-
sources, discards server metadata maintained on behalf of
the component(s), and then reinstantiates and initializes
the component(s).

The only resource we do not discard on a uRB is
the component’s classloader. JBoss uses a separate class
loader for each EJB to provide appropriate sandboxing be-
tween components; when a caller invokes an EJB method,
the caller’s thread switches to the EJB’s classloader. A
Java class’ identity is determined both by its name and the
classloader responsible for loading it; discarding an EJB’s
classloader upon uRB would unnecessarily complicate the
update of internal references to the microrebooted compo-
nent. Preserving the classloader does not violate any of
the sandboxing properties. Keeping the classloader active
does not reinitialize EJB static variables upon pRB, but
this is acceptable, since J2EE strongly discourages the use
of mutable static variables anyway, as this would prevent
transparent replication of EJBs in clusters.

Some EJBs cannot be microrebooted individually, be-
cause EJBs might maintain references to other EJBs and
because certain metadata relationships can span contain-
ers. Thus, whenever an EJB is microrebooted, we microre-
boot the transitive closure of its inter-EJB dependents as a
group. To determine these recovery groups, we examine
the EJB deployment descriptors; the information on ref-
erences is typically used by J2EE application servers to
determine the order in which EJBs should be deployed.

3.3 A Crash-Only Application

Although many companies use JBoss to run their produc-
tion applications, we found them unwilling to share their
applications with us. Instead, we converted Rice Univer-
sity’s RUBIS [37], a J2EE/Web-based auction system that
mimics eBay’s functionality, into eBid — a crash-only ver-
sion of RUBIS with some additional functionality. eBid
maintains user accounts, allows bidding on, selling, and
buying of items, has item search facilities, customized in-
formation summary screens, user feedback pages, etc.
State segregation: E-commerce applications typically
handle three types of important state: long-term data that
must persist for years (such as customer account activ-
ity), session data that needs to persist for the duration of a
user session (e.g., shopping carts or workflow state in en-
terprise applications), and static presentation data (GIFs,
HTML, JSPs, etc.). eBid keeps these types of state in a
database, dedicated session state storage, and an Ext3FS
filesystem (optionally mounted read-only), respectively.
eBid uses only two types of EIBs: entity EJBs and state-
less session EJBs. An entity EJB implements a persistent
application object, in the traditional OOP sense, with each
instance’s state mapped to a row in a database table. State-
less session EJBs are used to perform higher level opera-
tions on entity EJBs: each end user operation is imple-
mented by a stateless session EJB interacting with several

entity EJBs. For example, there is a “place bid on item X”
EJB that interacts with entity EJBs User, Item, and Bid.
This mixed OO/procedural design is consistent with best
practices for building scalable J2EE applications [10].

Persistent state in eBid consists of user account infor-
mation, item information, bid/buy/sell activity, etc. and is
maintained in a MySQL database through 9 entity EJBs:
IDManager, User, Item, Bid, Buy, Category, OldItem, Re-
gion, and UserFeedback. MySQL is crash-safe and re-
covers fast for our datasets (132K items, 1.5M bids, 10K
users). Each entity bean uses container-managed persis-
tence, a J2EE mechanism that delegates management of
entity data to the EJB’s container. This way, JBoss can
provide relatively transparent data persistence, relieving
the programmer from the burden of managing this data di-
rectly or writing SQL code to interact with the database.
If an EJB is involved in any transactions at the time of
a microreboot, they are all automatically aborted by the
container and rolled back by the database.

Session state in eBid takes the form of items that a user
selects for buying/selling/biddding, her userID, etc. Such
state must persist on the application server for long enough
to synthesize a user session from independent stateless
HTTP requests, but can be discarded when the user logs
out or the session times out. Users are identified us-
ing HTTP cookies. Many commercial J2EE application
servers store session state in middle tier memory, in which
case a server crash or EJB microreboot would cause the
corresponding user sessions to be lost. In our prototype,
to ensure the session state survives pRBs, we keep it out-
side the application in a dedicated session state repository.

We have two options for session state storage. First,
we built FastS, an in-memory repository inside JBoss’s
embedded Web server. The API consists of methods for
reading/writing HttpSession objects atomically. FastS
illustrates how session state can be segregated from the
application, yet still be kept within the same Java virtual
machine (JVM). Isolated behind compiler-enforced barri-
ers, FastS provides fast access to session objects, but only
survives RBs. Second, we modified SSM [26], a clus-
tered session state store with a similar API to FastS. SSM
maintains its state on separate machines; isolated by phys-
ical barriers, it provides slower access to session state, but
survives URBs, JVM restarts, as well as node reboots. The
session storage model is based on leases, so orphaned ses-
sion state is garbage-collected automatically.

Isolation and decoupling: Compiler-enforced inter-
faces and type safety provide operational isolation be-
tween EJBs. EJBs cannot name each others’ internal vari-
ables, nor are they allowed to use mutable static variables.
EJBs obtain references to each other (in order to make
inter-EJB method calls) from a naming service (JNDI)
provided by JBoss; references may be cached once ob-
tained. The inter-EJB calls themselves are mediated by
the application server via the containers and a suite of in-
terceptors, in order to abstract away details of remote in-
vocation and replication in the cases when EJBs are repli-

cated for performance or load balancing reasons.

Besides preservation of state across microreboots, the
segregation of session state in eBid offers recovery de-
coupling as well, since data shared across components by
means of a state store frees the components from having
to be recovered together. Such segregation also helps to
quickly reintegrate recovered components, because they
do not need to perform data recovery following a pRB.

4 Evaluation Framework

To evaluate our prototype, we developed a client emulator,
a fault injector, and a system for automated failure detec-
tion, diagnosis, and recovery. We injected faults in eBid
and measured the recovery properties of microrebooting.

We wrote a client emulator using some of the logic
in the load generator shipped with RUBiS. Human clients
are modeled using a Markov chain with 25 states corre-
sponding to the various end user operations possible in
eBid, such as Login, BuyNow, or AboutMe; transition-
ing to a state causes the client to issue a corresponding
HTTP request. Inbetween successive “URL clicks,” em-
ulated clients have independent think times based on an
exponential random distribution with a mean of 7 seconds
and a maximum of 70 seconds, as in the TPC-W bench-
mark [38]. We chose transition probabilities representa-
tive of online auction users; the resulting workload, shown
in Table 1, mimics the real workload seen by a major In-
ternet auction site [16].

User operation results mostly in... % of all
requests
Read-only DB access (e.g., browse a category) 32%
Initialization/deletion of session state (e.g., login) 23%
Exclusively static HTML content (e.g., home page) 12%
Search (e.g., search for items by name) 12%
Session state updates (e.g., select item for bid) 11%
Database updates (e.g., leave seller feedback) 10%

Table 1: Client workload used in evaluating microreboot-based recovery.

To enable automatic recovery, we implemented failure
detection in the client emulator and placed primitive di-
agnosis facilities in an external recovery manager. While
real end users’ Web browsers certainly do not report fail-
ures to the Internet services they use, our client-side detec-
tion mimics WAN services that deploy “client-like” end-
to-end monitors around the Internet to detect a service’s
user-visible failures [22]. Such a setup allows our mea-
surements to focus on the recovery aspects of our proto-
type, rather than the orthogonal problem of detection and
diagnosis.

We implemented two fault detectors. The first one is
simple and fast: if a client encounters a network-level er-
ror (e.g., cannot connect to server) or an HTTP 4xx or 5xx
error, then it flags the response as faulty. If no such er-
rors occur, the received HTML is searched for keywords
indicative of failure (e.g., “exception,” “failed,” “error”).
Finally, the detection of an application-specific problem

can also mark the response as faulty (such problems in-
clude being prompted to log in when already logged in,
encountering negative item IDs in the reply HTML, etc.)

The second fault detector submits in parallel each re-
quest to the application instance we are injecting faults
into, as well as to a separate, known-good instance on an-
other machine. It then compares the result of the former to
the “truth” provided by the latter, flagging any differences
as failures. This detector is the only one able to identify
complex failures, such as the surreptitious corruption of
the dollar amount in a bid. Certain tweaks were required
to account for timing-related nondeterminism.

We built a recovery manager (RM) that performs sim-
ple failure diagnosis and recovers by: microrebooting
EJBs, the WAR, or all of eBid; restarting the JVM that
runs JBoss (and thus eBid as well); or rebooting the oper-
ating system. RM listens on a UDP port for failure reports
from the monitors, containing the failed URL and the type
of failure observed. Using static analysis, we derived a
mapping from each eBid URL prefix to a path/sequence
of calls between servlets and EJBs. The recovery manager
maintains for each component in the system a score, which
gets incremented every time the component is in the path
originating at a failed URL. RM decides what and when to
(micro)reboot based on hand-tuned thresholds. Accurate
or sophisticated failure detection was not the topic of this
work; our simplistic approach to diagnosis often yields
false positives, but part of our goal is to show that even
the mistakes resulting from simple or “sloppy” diagnosis
are tolerable because of the very low cost of uRBs.

The recovery manager uses a simple recursive recov-
ery policy [8] based on the principle of trying the cheapest
recovery first. If this does not help, RM reboots progres-
sively larger subsets of components. Thus, RM first mi-
croreboots EJBs, then eBid’s WAR, then the entire eBid
application, then the JVM running the JBoss application
server, and finally reboots the OS; if none of these actions
cure the failure symptoms, RM notifies a human admin-
istrator. In order to avoid endless cycles of rebooting,
RM also notifies a human whenever it notices recurring
failure patterns. The recovery action per se is performed
by remotely invoking JBoss’s microreboot method (for
EJB, WAR, and eBid) or by executing commands, such
as kill -9, over ssh (for JBoss and node-level reboot).

We evaluated the availability of our prototype using a
new metric, action-weighted throughput (7%,,). We view
auser session as beginning with a login operation and end-
ing with an explicit logout or abandonment of the site.
Each session consists of a sequence of user actions. Each
user action is a sequence of operations (HTTP requests)
that culminates with a “commit point”: an operation that
must succeed for that user action to be considered success-
ful as a whole (e.g., the last operation in the action of plac-
ing a bid results in committing that bid to the database).

An action succeeds or fails atomically: if all opera-
tions within the action succeed, they count toward action-
weighted goodput (“good T3,,”); if an operation fails, all

operations in the corresponding action are marked failed,
counting toward action-weighted badput (“bad 7},,”). Un-
like simple throughput, 73,, accounts for the fact that both
long-running and short-running operations must succeed
for a user to be happy with the service. T, also captures
the fact that, when an action with many operations suc-
ceeds, it generally means the user did more work than in a
short action. Figure 1 gives an example of how we use T,
to compare recovery by pRB to recovery by JVM restart.

5 Evaluation Results

We used our prototype to answer four questions about mi-
crorebooting: Are uURBs effective in recovering from fail-
ures? Are pRBs any better than JVM restarts? Are pRBs
useful in clusters? Do pRB-friendly architectures incur a
performance overhead? Section 6 will build upon these
results to show how microrebooting can change the way
we manage failures in Internet services.

We used 3GHz Pentium machines with 1GB RAM
for Web and middle tier nodes; databases were hosted
on Athlon 2600xp+ machines with 1.5 GB of RAM and
7200rpm 120GB disks; emulated clients ran on a variety
of multiprocessor machines. All machines were intercon-
nected by a 100 Mbps Ethernet switch and ran Linux ker-
nel 2.6.5 with Sun Java 1.4.1 and Sun J2EE 1.3.1.

5.1 Is Microrebooting Effective?

Despite J2EE’s popularity, we were unable to find any
published systematic studies of faults occurring in pro-
duction J2EE systems. In deciding what faults to inject
in our prototype, we relied on advice from colleagues in
industry, who routinely work with enterprise applications
or application servers [13, 14, 24, 32, 35, 36]. They found
that production J2EE systems are most frequently plagued
by deadlocked threads, leak-induced resource exhaustion,
bug-induced corruption of volatile metadata, and various
Java exceptions that are handled incorrectly.

We therefore added hooks in JBoss for injecting artifi-
cial deadlocks, infinite loops, memory leaks, JVM mem-
ory exhaustion outside the application, transient Java ex-
ceptions to stress eBid’s exception handling code, and cor-
ruption of various data structures. In addition to these
hooks, we also used FIG [6] and FAUmachine [7] to in-
ject low-level faults underneath the JVM layer.

eBid, being a crash-only application, has relatively little
volatile state that is subject to loss or corruption — much of
the application state is kept in FastS / SSM. We can, how-
ever, inject faults in the data handling code, such as the
code that generates application-specific primary keys for
identifying rows in the DB corresponding to entity bean
instances. We also corrupt class attributes of the stateless
session beans. In addition to application data, we corrupt
metadata maintained by the application server, but acces-
sible to eBid code: the JNDI repository, that maps EJB
names to their containers, and the transaction method map
stored in each entity EJB’s container. Finally, we corrupt

data inside the session state stores (via bit flips) and in the
database (by manually altering table contents).

We perform three types of data corruption: (a)
set a value to null, which will generally elicit a
NullPointerException upon access; (b) set an invalid
value, i.e., a non-null value that type-checks but is invalid
from the application’s point of view, such as a userID
larger than the maximum userID; and (c) set to a wrong
value, which is valid from the application’s point of view,
but incorrect, such as swapping IDs between two users.

After injecting a fault, we used the recursive policy de-
scribed earlier to recover the system. We relied on our
comparison-based failure detector to determine whether a
recovery action had been successful or not; when failures
were still encountered, recovery was escalated to the next
level in the policy. In Table 2 we show the worst-case
scenario encountered for each type of injected fault. In
reporting the results, we differentiate between resuscita-
tion, or restoring the system to a point from which it can
resume the serving of requests for all users, without neces-
sarily having fixed the resulting database corruption, and
recovery — bringing the system to a state where it functions
with a 100% correct database. Financial institutions often
aim for resuscitation, applying compensating transactions
at the end of the business day to repair database incon-
sistencies [36]. A = sign in the rightmost column indi-
cates that additional manual database repair actions were
required to achieve correct recovery after resuscitation.

Based on these results, we conclude that EJB-level or
WAR-level microrebooting in our J2EE prototype is effec-
tive in recovering from the majority of failure modes seen
in today’s production J2EE systems (first 19 rows of Ta-
ble 2). Microrebooting is ineffective against other types
of failures (last 7 rows), where coarser grained reboots
or manual repair are required. Fortunately, these failures
do not constitute a significant fraction of failures in real
J2EE systems. While certain faults (e.g., INDI corruption)
could certainly be cured with non-reboot approaches, we
consider the reboot-based approach simpler, quicker, and
more reliable. In the cases where manual actions were
required to restore service correctness, a JVM restart pre-
sented no benefits over a component LRB.

Rebooting is a common way to recover middleware in
the real world, so for the rest of this paper we compare
EJB-level microrebooting to JVM process restart, which
restarts JBoss and, implicitly, eBid.

5.2 Is a Microreboot Better Than a Full Reboot?

With respect to availability, Internet service operators care
mostly about how many user requests their system turns
away during downtime. We therefore evaluate microre-
booting with respect to this end-user-aware metric, as cap-
tured by 73,. We inject faults in our prototype and then
allow the recovery manager (RM) to recover the system
automatically in two ways: by restarting the JVM pro-
cess running JBoss, or by microrebooting one or more
EJBs, respectively. Recovery is deemed successful when

Injected Fault Type Reboot level +
Deadlock EJB
Infinite loop EJB
Application memory leak EJB
Transient exception EJB
set null EJB
Corrupt primary keys invalid EJB
wrong EJB ~
set null EJB
Corrupt JNDI entries invalid EJB
wrong EJB
Corrupt transaction :set n1.111 EJB
method map invalid EJB
wrong EJB ~
. set null unnecessary
Corrupt stateless session = -
. invalid unnecessary
EJB attributes wrong ETB+WAR ~
set null WAR
Corrupt data inside FastS invalid WAR
wrong WAR ~
.. corruption detected via checksum;
Corrupt data inside SSM bad oll))ject automatically discarded
Corrupt data inside MySQL database table repair needed
Memory leak intra-JVM JVM/IBoss
outside application extra-JVM OS kernel
Bit flips in process memory JVM/IBoss =~
Bit flips in process registers JVM/IBoss =~
Bad system call return values JVM/IBoss

Table 2: Recovery from injected faults: worst case scenarios. Aside from
EJB, JBoss, and operating system reboots, some faults require microre-
booting eBid’s Web component (WAR). In two cases no resuscitation is
needed, because the injected fault is “naturally” expunged from the sys-
tem after the first call fails. In the case of recovering persistent data, this
is either done automatically (transaction rollback), or, in the case of in-
jecting wrong data, manual reconstruction of the data in the DB is often
required (indicated by /= in the last column). We used the comparison-
based fault detector for all experiments in this table.

end users do not experience any more failures after recov-
ery. Figure 1 shows the results of one such experiment, in
which we injected three different faults every 10 minutes.
Session state is stored in FastS. We ran a load of 500 con-
current clients connected to one application server node;
for our specific setup, this lead to a CPU load average of
0.7, which is similar to that seen in deployed Internet sys-
tems [29, 15]. Unless otherwise noted, we use 500 con-
current clients per node in each subsequent experiment.

Overall, using uRBs instead of JVM restarts reduced
the number of failed requests by 98%. Visually, the impact
of a failure and recovery event can be estimated by the
area of the corresponding dip in good T, with larger dips
indicating higher service disruption. The area of a T4,
dip is determined by its width (i.e., time to recover) and
depth (i.e., the throughput of requests turned away during
recovery). We now consider each factor in isolation.

Microreboots recover faster. The wider the dip in T},
the more requests arrive during recovery; since these re-
quests fail, they cause the corresponding user actions to
fail, thus retroactively marking the actions’ requests as
failed. We measured recovery time at various granulari-
ties and summarize the results in Table 3. In the two right
columns we break down recovery time into how long the

Action-weighted throughput

-
. 120 Correctly satisfied requests —=— E
[%) Failed requests ——— [
g 100 — [%2]
2 w
> 80 b OO
8 0 2
s 40 w
20 3
. 0x o
0 o

0 5 10 15 20 25 30 35 40

Correctly satisfied requests —=—
Failed requests ——

Taw [resp/sec]
MICROREBOOT

0 5 10 15 20 25 30 35 40
Timeline [minutes]

Figure 1: Using Tk to compare JVM process restart to EJB microreboot.
Each sample point represents the number of successful (failed) requests
observed during the corresponding second. At t=10 min, we corrupt the
transaction method map for EntityGroup, the EJB recovery group that
takes the longest to recover. At ¢t=20 min, we corrupt the JNDI entry for
RegisterNewUser, the next-slowest in recovery. At ¢t=30 min, we inject a
transient exception in BrowseCategories, the entry point for all browsing
(thus, the most-frequently called EJB in our workload). Overall, 11,752
requests (3,101 actions) failed when recovering with a process restart,
shown in the top graph; 233 requests (34 actions) failed when recovering
by microrebooting one or more EJBs. Thus, the average is 3,917 failed
requests (1,034 actions) per process restart, and 78 failed requests (11
actions) per microreboot of one or more EJBs.

target takes to crash (be forcefully shut down) and how
long it takes to reinitialize. EJBs recover an order of mag-
nitude faster than JVM restart, which explains why the
width of the good T3, dip in the uRB case is negligible.

As described in Section 3, some EJBs have inter-
dependencies, captured in deployment descriptors, that re-
quire them to be microrebooted together. eBid has one
such recovery group, EntityGroup, containing 5 entity
EJBs: Category, Region, User, Item, and Bid — any time
one of these EJBs requires a pRB, we microreboot the en-
tire EntityGroup. Restarting the entire eBid application is
optimized to avoid restarting each individual EJB, which
is why eBid takes less than the sum of all components to
crash and start up. For the JVM crash, we use operating
system-level kill -9.

All reboot-based recovery times are dominated by ini-
tialization. In the case of JVM-level restart, 56% of the
time is spent initializing JBoss and its more than 70 ser-
vices (transaction service takes 2 sec to initialize, em-
bedded Web server 1.8 sec, JBoss’s control & manage-
ment service takes 1.2 sec, etc.). Most of the remaining
44% startup time is spent deploying and initializing eBid’s
EJBs and WAR. For each EJB, the deployer service veri-
fies that the EJB object conforms to the EJB specification
(e.g., has the required interfaces), then it allocates and ini-
tializes a container, sets up an object instance pool, sets up
the security context, inserts an appropriate name-to-EJB
mapping in JNDI, etc. Once initialization completes, the
individual EJBs’ start () methods are invoked. Remov-
ing an EJB from the system follows a reverse path.

Microreboots reduce functional disruption during re-
covery. Figure 1 shows that good T3, drops all the way to

puRB time | Crash Reinit

Component name
(msec) (msec) (msec)
AboutMe 551 9 542
Authenticate 491 12 479
BrowseCategories 411 11 400
BrowseRegions 416 15 401
BuyNow* 471 9 462
CommitBid 533 8 525
CommitBuyNow 471 9 462
CommitUserFeedback 531 9 522
DoBuyNow 427 10 417
EntityGroup* 825 36 789
IdentityManager* 461 10 451
LeaveUserFeedback 484 10 474
MakeBid 514 9 515
OldItem* 529 10 519
RegisterNewItem 447 13 434
RegisterNewUser 601 13 588
SearchltemsByCategory 442 14 428
SearchltemsByRegion 572 8 564
UserFeedback* 483 11 472
ViewBidHistory 507 11 496
ViewUserInfo 415 10 405
Viewltem 446 10 436
WAR (Web component) 1,028 71 957
Entire eBid application 7,699 33 7,666
JVM/JBoss process restart 19,083 ~0 | =~ 19,083

Table 3: Average recovery times under load, in msec, for the individual
components, the entire application, and the JVM/JBoss process. EJBs
with a * superscript are entity EJBs, while the rest are stateless ses-
sion EJBs. Averages are computed across 10 trials per component, on
a single-node system under sustained load from 500 concurrent clients.
Recovery for individual EJBs ranges from 411-601 msec.

zero during a JVM restart, i.e., the system serves no re-
quests during that time. In the case of microrebooting,
though, the system continues serving requests while the
faulty component is being recovered. We illustrate this
effect in Figure 2, graphing the availability of eBid’s func-
tionality as perceived by the emulated clients. We group
all eBid end user operations into 4 functional groups —
Bid/Buy/Sell, Browse/View, Search, and User Account
operations — and zoom in on one of the recovery events
of Figure 1.

Client-perceived availability

=
o
Bid/Buy/Sell | =
1)
Browse/View %
(]
Search (%}
3]
User Account le)
T T T T T T T T T E

1195 1200 1205 1210 1215 1220 1225 1230 1235
Bid/Buy/Sell 5
o
Browse/View E
S
Search %
User Account s

T T T T T T T T T
1195 1200 1205 1210 1215 1220 1225 1230 1235
Timeline [seconds]

Figure 2: Functional disruption as perceived by end users. For each point
t along the horizontal axis, a solid vertical line/bar indicates that, at time
t, the service was not perceived as unavailable by any end user. A gap in
an interval [t1,t2] indicates that some request, whose processing spanned
[t1,t2] in time, eventually failed, suggesting the site was down.

While the faulty component is being recovered by mi-
crorebooting, all operations in other functional groups
succeed. Even within the “User Account” group itself,
many operations are served successfully during recovery
(however, since RegisterNewUser requests fail, we show
the entire group as unavailable). Fractional service degra-
dation compounds the benefits of swift recovery, further
increasing end user-perceived availability of the service.

Microreboots reduce lost work. In Figure 1, a number
of requests fail after JVM-level recovery has completed;
this does not happen in the microreboot case. These fail-
ures are due to the session state having been lost during
recovery (FastS does not survive JVM restarts). Had we
used SSM instead of FastS, the JVM restart case would
not have exhibited failed requests following recovery, and
a fraction of the retroactively failed requests would have
been successful, but the overall good T3,, would have been
slightly lower (see Section 5.4). Using uRBs in the FastS
case allowed the system to both preserve session state
across recovery and avoid cross-JVM access penalties.

5.3 Is Microrebooting Useful in Clusters?

In a typical Internet cluster, the unit of recovery is a full
node, which is small relative to the cluster as a whole.
To learn whether tRBs can yield any benefit in such sys-
tems, we built a cluster of 8 independent application server
nodes. Clusters of 2-4 J2EE servers are typical in enter-
prise settings, with high-end financial and telecom appli-
cations running on 10-24 nodes [15]; a few gigantic ser-
vices, like eBay’s online auction service, run on pools of
clusters totaling 2000 application servers [11].

We distribute incoming load among nodes using a
client-side load balancer LB. Under failure-free operation,
LB distributes new incoming login requests evenly be-
tween the nodes and, for established sessions, LB imple-
ments session affinity (i.e., non-login requests are directed
to the node on which the session was originally estab-
lished). We inject a uRB-recoverable fault from Table 2 in
one of the server instances, say Npaq; the failure detectors
notice failures and report them to the recovery manager.
When RM decides to perform a recovery, it first notifies
LB, which redirects requests bound for Ny,4 uniformly to
the good nodes; once Ny,,q has recovered, RM notifies LB,
and requests are again distributed as before the failure.

Failover under normal load. We first explored the
configuration that is most likely to be found in today’s
systems: session state stored locally at each node; we use
FastS. During failover, those requests that do not require
session state, such as searching or browsing, will be suc-
cessfully served by the good nodes; requests that require
session state will fail. We injected a fault in the most-
frequently called component (BrowseCategories) and ran
the experiment in four clusters of different sizes; the load
was 500 clients/node.

The left graph in Figure 3 shows the results. When re-
covering Np,q with a JVM restart, the number of user re-
quests that fail is dominated by the number of sessions that

Relative number of failures
4 T

Node Failover + Recovery

T T T T T T T
‘E 3 Failed requests —%— % Process restart —i—
g 10000 | Sessions failed over —=— g 3| EJB microreboot —@— _|
o ™ % =3
3 L * * * @
o 1000 Process restart E Z2
o I = =) =) al I
5 L ——F— 2
-‘EJ 100 F Microreboot 7 bl 1
3 | B’/AE)’——B\E] * o

10F, 1 1 13 1 1 1 1

2 4 6 8 2 4 6 8

Number of nodes in cluster Number of nodes in cluster

Figure 3: Failover under normal load. On the left we show the number
of requests and failed-over sessions for the case of JVM restart and uRB,
respectively. On the right we show what fraction of total user requests
failed in our test’s 10-minute interval, as a function of cluster size.

were established at the time of recovery on Ny,q. In the
case of EJB-level microrebooting, the number of failed re-
quests is roughly proportional to the number of requests
that were in flight at the time of recovery or were sub-
mitted during recovery. Thus, as the cluster grows, the
number of failed user requests stays fairly constant. When
recovering with JVM restart, on average 2,280 requests
failed; in the case of microrebooting, 162 requests failed.

Although the relative benefit of microrebooting de-
creases as the number of cluster nodes increases (right
graph in Figure 3), recovering with a microreboot will al-
ways result in fewer failed requests than a JVM restart,
regardless of cluster size or of how many clients each clus-
ter node serves. Thus, it always improves availability. If
a cluster aimed for the level of availability offered by to-
day’s telephone switches, then it would have to offer six
nines of availability, which roughly means it must satisfy
99.9999% of requests it receives (i.e., fail at most 0.0001%
of them). Our 8-node cluster served 33.8 x 10* requests
over the course of 10 minutes; extrapolated to a 24-node
cluster of application servers, this implies 53.3 x 109 re-
quests served in a year, of which a six-nines cluster can
fail at most 53.3 x 103. If using JVM restarts, this number
allows for 23 single-node failovers during the whole year;
if using microreboots, 329 failures would be permissible.

We repeated some of the above experiments using SSM.
The availability of session state during recovery was no
longer a problem, but the per-node load increased dur-
ing recovery, because the good nodes had to (temporarily)
handle the Ny ,q-bound requests. In addition to the in-
creased load, the session state caches had to be populated
from SSM with the session state of N},,q-bound sessions.
These factors resulted in an increased response time that
often exceeded 8 sec when using JVM restarts; microre-
booting was sufficiently fast to make this effect unobserv-
able. Overload situations are mitigated by overprovision-
ing the cluster, so we investigate below whether microre-
booting can reduce the need for additional hardware.

Microreboots preserve cluster load dynamics. We
repeated the experiments described above using FastS,
but doubled the concurrent user population to 1000
clients/node. The load spike we model is very modest
compared to what can occur in production systems (e.g.,
on 9-11, CNN.com faced a 20-fold surge in load, which

caused their cluster to collapse under congestion [23]). We
also allow the system to stabilize at the higher load prior to
injecting faults (for this reason, the experiment’s time in-
terval was increased to 13 minutes). Since JVM restarts
are more disruptive than microreboots, a mild two-fold
change in load and stability in initial conditions favor full
process restarts more than uRBs, so the results shown here
are conservative with respect to microrebooting. Figure 4
shows that response time was preserved while recovering
with uRBs, unlike when using JVM restarts.

2 nodes 4 nodes

o T T T T T T T T T T T T
@ 12000 | Process restart —— ~| 2500 |- Process restart 1
£ 10000 | Microreboot - Microreboot
;‘ 2000
£ 8000 |- E
[1500
© 6000 - -
g 4000 - 1000
2 2000 |- - 500
o
o s 0

100 200 300 400 500 600 700 100 200 300 400 500 600 700

6 nodes 8 nodes

o T T T T T T T T T T T T T T
Q2500 Process restart -1 2500 [~ Process restart -
= Microreboot Microreboot
;’ 2000 2000 — -
£
i= 1500 1500 -
8 1000 1000 [-
<
2 @ !
a 500 500 | A
o
o 0

0
100 200 300 400 500 600 700
Timeline [seconds]

100 200 300 400 500 600 700
Timeline [seconds]

Figure 4: Failover under doubled load. We show average response time
per request, computed over 1-second intervals, in 4 different cluster con-
figurations (2,4,6,8 nodes). eBid uses FastS for storing session state, in
both the JVM restart and microreboot case. Vertical scales of the four
graphs differ, to enhance visibility of details.

Stability of response time results in improved service
to the end users. It is known that response times exceed-
ing 8 seconds cause computer users to get distracted from
the task they are pursuing and engage in others [31, 4],
making this a common threshold for Web site abandon-
ment [44]; not surprisingly, service level agreements at
financial institutions often stipulate 8 seconds as a max-
imum acceptable response time [28]. We therefore mea-
sured how many requests exceeded this threshold during
failover; Table 4 shows the corresponding results.

of nodes 2 4 6 8
Process restart 3,227 | 530 | 55 | 9
EJB microreboot 3 0 010

Table 4: Requests exceeding 8 sec during failover under doubled load.

We asked our colleagues in industry whether commer-
cial application servers do admission control when over-
loaded, and were surprised to learn they currently do
not [29, 15]. For this reason, cluster operators need to
significantly overprovision their clusters and use complex
load balancers, tuned by experts, in order to avert over-
load and oscillation problems. Microreboots reduce the
need for overprovisioning or sophisticated load balancing.
Since uRBs are more successful at keeping response times
below 8 seconds in our prototype, we would expect user
experience to be improved in a clustered system that uses
microreboot-based recovery instead of process restarts.

5.4 Performance Impact

In this section we measure the performance impact our
modifications have on steady-state fault-free throughput
and latency. We measure the impact of our microreboot-
enabling modifications on the application server, by com-
paring original JBoss 3.2.1 to the microreboot-enabled
variant. We also measure the cost of externalizing ses-
sion state into a remote state store by comparing eBid with
FastS to eBid with SSM. Table 5 summarizes the results.

Configuration Throughput | Average Latency
[req/sec] [msec]
JBoss + eBidpasts 72.09 15.02
JBoss, rB + eBidpasts 72.42 16.08
JBoss + eBidSSM 71.63 28.43
JBOSSHRB + eBidSSM 70.86 27.69

Table 5: Performance comparison: (a) original JBoss vs. microreboot-
enabled JBoss, rp; (b) intra-JVM session state storage (eBidpasts) vs.
extra-JVM session state storage (eBidggn).

Throughput varies less than 2% between the various
configurations, which is within the margin of error. La-
tency, however, increases by 70-90% when using SSM,
because moving state between JBoss and a remote ses-
sion state store requires the session object to be mar-
shalled, sent over the network, then unmarshalled; this
consumes more CPU than if the object were kept inside the
JVM. Since minimum human-perceptible delay is about
100 msec [31], we believe the increase in latency is of
little consequence for an interactive Internet service like
ours. Latency-critical applications can use FastS instead
of SSM. The performance results are within the range of
measurements done at a major Internet auction service,
where latencies average 33-300 msec, depending on oper-
ation, and average throughput is 41 req/sec per node [16].

It is not meaningful to compare the performance of eBid
to that of original RUBIS, because the semantics of the
applications are different. For example, RUBIS requires
users to provide a username and password each time they
perform an operation requiring authentication. In eBid,
users log in once at the beginning of their session; they are
subsequently identified based on the HTTP cookies they
supply to the server on every access. We refer the reader
to [10] for a detailed comparison of performance and scal-
ability for various architectures in J2EE applications.

6 A New Approach to Failure Management

The previous section showed microreboots to have signif-
icant quantitative benefits in terms of recovery time, func-
tionality disruption, amount of lost work, and preservation
of load dynamics in clusters. These quantitative improve-
ments beget a qualitative change in the way we can man-
age failures in large-scale componentized systems; here
we present some of these new possibilities.

6.1 Alternative Failover Schemes

In a microrebootable cluster, tRB-based recovery should
always be attempted first, prior to failover. As seen ear-
lier, node failover can be destabilizing. In the first set of
experiments in Section 5.3, failing requests over to good
nodes while Ny,q was recovering by pRB resulted in 162
failed requests. In Figure 1, however, the average num-
ber of failures when requests continued being sent to the
recovering node was 78. This shows that uRB without
failover improves user-perceived availability over failover
and pRB.

The benefit of pre-failover uRB is due to the mismatch
between node-level failover and component-level recov-
ery. Coarse-grained failover prevents Ny,,q from serving a
large fraction of the requests it could serve while recover-
ing (Figure 2). Redirecting those requests to other nodes
will cause many requests to fail (if not using SSM), or at
best will unnecessarily overload the good nodes (if using
SSM). Should the pre-failover uRB prove ineffective, the
load balancer can do failover and have Vy,,q rebooted; the
cost of microrebooting in a non-uRB-curable case is neg-
ligible compared to the overall impact of recovery.

Using the average of 78 failed requests per microre-
boot instead of 162, we can update the computation for
six-nines availability from Section 5.3. Thus, if using mi-
croreboots and no failover, a 24-node cluster could fail
683 times per year and still offer six nines of availabil-
ity. We believe writing microrebootable software that is
allowed to fail almost twice every day (683 times/year) is
easier than writing software that is not allowed to fail more
than once every 2 weeks (/23 times/year for JVM restart
recovery).

Another way to mitigate the coarseness of node-level
failover is to use component-level failover; having re-
duced the cost of a reboot by making it finer-grain, micro-
failover seems a natural solution. Load balancers would
have to be augmented with the ability to fail over only
those requests that would touch the component(s) known
to be recovering. There is no use in failing over any
other requests. Microfailover accompanied by microre-
boot can reduce recovery-induced failures even further.
Microfailover, however, requires the load balancer to have
a thorough understanding of application dependencies,
which might make it impractical for real Internet services.

6.2 User-Transparent Recovery

If recovery is sufficiently non-intrusive, then we can use
low-level retry mechanisms to hide failure and recovery
from callers — if it is brief, they won’t notice. Fortunately,
the HTTP/1.1 specification [18] offers return code 503 for
indicating that a Web server is temporarily unable to han-
dle a request (typically due to overload or maintenance).
This code is accompanied by a Ret ry-After header con-
taining the time after which the Web client can retry.

We implemented call retry in our prototype. Previously,
the first step in microrebooting a component was the re-
moval of its name binding from JNDI; instead, we bind

10

the component’s name to a sentinel during uRB. If, while
processing an idempotent request, a servlet encounters the
sentinel on an EJB name lookup, the servlet container au-
tomatically replies with [Retry-After 2 seconds] to
the client. We associated idempotency information with
URL prefixes based on our understanding of eBid, but this
could also be inferred using static call analysis. We mea-
sured the effect of HTTP/1.1 retry on calls to four differ-
ent components, and found that transparent retry masked
roughly half of the failures (Table 6); this corresponds to
a two-fold increase in perceived availability.

Operation / No Delay &
Retry

component name retry retry

Viewltem 23 16 8

BrowseCategories 20 8 0

SearchltemsByCategory 31 15 0

Authenticate 20 9 1

Table 6: Masking microreboots with HTTP/1.1 Retry-After. The
data is averaged across 10 trials for each component shown.

The failed requests visible to end users were requests
that had already entered the system when the microreboot
started. To further reduce failures, we experimented with
introducing a 200-msec delay between the sentinel rebind
and beginning of the microreboot; this allowed some of
the requests that were being processed by the about-to-be-
microrebooted component to complete. Of course, a com-
ponent that has encountered a failure might not be able
to process requests prior to recovery, unless only some in-
stances of the EJB are faulty, while other instances are OK
(a microreboot recycles all instances of that component).
The last column in Table 6 shows a significant further re-
duction in failed requests. We did not analyze the tradeoff
between number of saved requests and the 200-msec in-
crease in recovery time.

6.3 Tolerating Lax Failure Detection

In general, downtime for an incident is the sum of the
time to detect the failure (Tyet), the time to diagnose the
faulty component, and the time to recover. A failure mon-
itor’s quality is generally characterized by how quick it is
(i.e., Tget), how many of its detections are mistaken (false
positive rate F'Pget), and how many real failures it misses
(false negative rate F'N 4et). Monitors make tradeoffs be-
tween these parameters; e.g., a longer Tqer generally yields
lower FP4et and F'N 4et, since more sample points can be
gathered and their analysis can be more thorough.

Cheap recovery relaxes the task of failure detection in
at least two ways. First, it allows for longer Ty, since
the additional requests failing while detection is under
way can be compensated for with the reduction in failed
requests during recovery. Second, since false positives
result in useless recovery leading to unnecessarily fail-
ing requests, cheaper recovery reduces the cost of a false
positive, enabling systems to accommodate higher F'P 4et.
Trading away some F'P 4.t and T4 may result in a lower
false negative rate, which could improve availability.

We illustrate Tyet relaxation in the left graph of Fig-
ure 5. We inject a fault in the most frequently called EJB
and delay recovery by Tyet seconds, shown along the hori-
zontal axis; we then perform recovery using either a JVM
restart or a microreboot. The dotted line indicates that,
with pRB-based recovery, a monitor can take up to 53.5
seconds to detect a failure, while still providing higher
user-perceived availability than JVM restarts with imme-
diate detection (Tyet = 0). The two curves in the graph
become asymptotically close for large values of Ty, be-
cause the number of requests that fail during detection
(i.e., due to the delay in recovery) eventually dominate
those that fail during recovery itself.

Doing real-time diagnosis instead of recovery has an
opportunity cost. In this experiment, 102 requests failed
during the first second of waiting; in contrast a microre-
boot averages 78 failed requests and takes 411-825 msec
(Table 3), which suggests that microrebooting during di-
agnosis would result in approximately the same number
of failures, but offers the possibility of curing the failure
before diagnosis completes.

False positive rate [%)]

90 95 97 98 98.5
100000 L L L L F 1e+06 o—L—1 L L L

j2} 3 F 4
§ 10000 i ; 100000 _E F
g E E 10000 - L
2 1000 E]
3 1000 L
E 100 E Process restart —=— E 100 - Process restart =—— £

3 Microreboot F] Microreboot [

10 T T T T 10 T T T T T
0 20 40 60 80 100 0 10 20 30 40 50 60 70

Detection time [secl False positives

Figure 5: Relaxing failure detection with cheap recovery.

The right graph of Figure 5 shows the effect of false
positives on end-user-perceived availability, given the av-
erages from Figure 1: 3,917 failed requests per JVM
restart, 78 requests per pRB. False positive detections oc-
cur inbetween correct positive detections; the false ones
result in pointless recovery-induced downtime, while the
correct ones lead to useful recovery. For simplicity, we
assume Tg4er = 0. The graph plots the number of failed
requests f(n) caused by a sequence of n useless recov-
eries (triggered by false positives) followed by one use-
ful recovery (in response to the correct positive). A given
number n of false positives inbetween successive correct
detections corresponds to a FPget =n/(n + 1). The dot-
ted line indicates that the availability achieved with JVM
restarts and F'P4er = 0% can be improved with pRB-based
recovery even when false positive rates are as high as 98%.

Engineering failure detection that is both fast and ac-
curate is difficult. Microreboots give failure detectors
more headroom in terms of detection speed and false posi-
tives, allowing them to reduce false negative rates instead,
and thus reduce the number of real failures they miss.
Lower false negative rates can lead to higher availability.
We would expect some of the extra headroom to also be
used for improving the precision with which monitors pin-
point faulty components, since microrebooting requires
component-level precision, unlike JVM restarts.

11

6.4 Averting Failure with Microrejuvenation

Despite automatic garbage collection, resource leaks are
a major problem for many large-scale Java applications;
a recent study of IBM customers’ J2EE e-business soft-
ware revealed that production systems frequently crash be-
cause of memory leaks [33]. To avoid unpredictable leak-
induced crashes, operators resort to preventive rebooting,
or software rejuvenation [20]. Some of the largest U.S.
financial companies reboot their J2EE servers daily [32]
to recover memory, network sockets, file descriptors, etc.
In this section we show that pRB-based rejuvenation, or
microrejuvenation, can be as effective as a JVM restart in
preventing leak-induced failures, but cheaper.

We wrote a server-side rejuvenation service that period-
ically checks the amount of memory available in the JVM;
if it drops below M ,jarm bytes, then the recovery service
microreboots components in a rolling fashion until avail-
able memory exceeds a threshold Mgymcient; if all EIBs
are microrebooted and Mg, mcient has not been reached,
the whole JVM is restarted. Production systems could
monitor a number of additional system parameters, such
as number of file descriptors, CPU utilization, lock graphs
for identifying deadlocks, etc.

The rejuvenation service does not have any knowledge
of which components need to be microrebooted in order to
reclaim memory. Thus, it builds a list of all components;
as components are microrebooted, the service remembers
how much memory was released by each one’s tRB. The
list is kept sorted in descending order by released mem-
ory and, the next time memory runs low, the rejuvenation
service microrejuvenates components expected to release
most memory, re-sorting the list as needed.

We induce memory leaks in two components:
Viewltem, a stateless session EJB called frequently in
our workload, and Item, an entity EJB part of the long-
recovering EntityGroup. We choose leak rates that allow
us to keep each experiment under 30 minutes.

1000
800
600
400
200

Available Mem [MB]

8 10 12 14 16 18 20 22 24 26 28
Timeline [minutes]

L —
0 2 4 6

Figure 6: Available memory during microrejuvenation. We inject a 2
KB/invocation leak in Item and a 250 KB/invocation leak in ViewItem.
M alarm 18 set to 35% of the 1-GByte heap (thus ~ 350 MB) and
Mgufficient to 80% (= 800 MB).

In Figure 6 we show how free memory varies un-
der a worst-case scenario for microrejuvenation: the ini-
tial list of components has the components leaking most
memory at the very end. During the first round of mi-
crorejuvenation (interval [7.43-7.91] on the timeline), all
of eBid ends up rebooted by pieces. During this time,
Viewltem is found to have the most leaked memory, and

Item the second-most; the list of candidate components is
reordered accordingly, improving the efficiency of subse-
quent rejuvenations. The second time M),y 1S reached,
att = 13.8, microrebooting ViewlItem is sufficient to bring
available memory above threshold. On the third rejuvena-
tion, both Viewltem and Item require rejuvenation; on the
fourth, a Viewltem uRB is again sufficient; and so on.

Repeating the same experiment, but using whole reju-
venation via JVM restarts, resulted in a total of 11,915
requests failed during the 30-minute interval. When mi-
crorejuvenating with uRBs, only 1,383 requests failed —
an order of magnitude improvement — and good 71,, never
dropped to zero. The commonly used argument to moti-
vate software rejuvenation is that it turns unplanned total
downtime into planned total downtime; with microrejuve-
nation, we can further turn this planned total downtime
into planned partial downtime.

7 Limitations of Recovery by Microreboot

It may appear that uRBs introduce three classes of prob-
lems: interruption of a component during a state update,
improper reclamation of a microrebooted component’s ex-
ternal resources, and delay of a (needed) full reboot.

Impact on shared state. If state updates are atomic, as
they are with databases, FastS, or SSM, there is no distinc-
tion between uRBs and process restarts from the state’s
perspective. However, the case of non-atomic updates to
state shared between components is more challenging: mi-
crorebooting one component may leave that state incon-
sistent, unbeknownst to the other components that share
it. A JVM restart, on the other hand, reboots all compo-
nents simultaneously, so it does not give them an oppor-
tunity to see the inconsistent state. J2EE best-practices
documents discourage sharing state by passing references
between components or using static variables, but we be-
lieve this should be a requirement enforced by a suitably
modified JIT compiler. Alternatively, if the runtime de-
tects unsafe state sharing practices, it should disable the
use of uRBs for the application in question.

Not only does a JVM restart refresh all components,
but it also discards the volatile shared state, regardless of
whether it is inconsistent or not; uRBs allow that state
to persist. In a crash-only system, state that survives the
recovery of components resides in a state store that as-
sumes responsibility for data consistency. In order to ac-
complish this, dedicated state repositories need APIs that
are sufficiently high-level to allow the repository to repair
the objects it manages, or at the very least to detect cor-
ruption. Otherwise, faults and inconsistencies perpetuate;
this is why application-generic checkpoint-based recovery
in Unix was found not to work well [27]. In the logical
limit, all applications become stateless and recovery in-
volves either microrebooting the processing components,
or repairing the data in state stores.

Interaction with external resources. If a component
circumvents JBoss and acquires an external resource that
the application server is not aware of, then microreboot-

12

ing it may leak the resource in a way that a JVM/JBoss
restart would not. For example, we experimentally ver-
ified that an EJB X can directly open a connection to
a database without using JBoss’s transaction service, ac-
quire a database lock, then share that connection with an-
other EJB Y. If X is microrebooted prior to releasing
the lock, Y’s reference will keep the database connection
open even after X’s pRB, and thus X’s DB session stays
alive. The database will not release the lock until after
X’s DB session times out. In the case of a JVM restart,
however, the resulting termination of the underlying TCP
connection by the operating system would cause the im-
mediate termination of the DB session and the release of
the lock. If JBoss only knew X acquired a DB session, it
could properly free the session even in the case of uRB.

While this example is contrived and violates J2EE pro-
gramming practices, it illustrates the need for application
components to obtain resources exclusively through the
facilities provided by their platform.

Delaying a full reboot. The more state gets segregated
out of the application, the less effective a reboot becomes
at scrubbing this data. Moreover, our implementation of
uRB does not scrub data maintained by the application
server on behalf of the application, such as the database
connection pool and various caches. Microreboots also
generally cannot recover from problems occurring at lay-
ers below the application, such as within the application
server or the JVM; these require a full JVM restart instead.

When a full process restart is required, poor failure di-
agnosis may result in one or more ineffectual component-
level uRBs. As discussed in Section 6.3, failure localiza-
tion needs to be more precise for microreboots than for
JVM restarts. Using our recursive policy, microrebooting
progressively larger groups of components will eventually
restart the JVM, but later than could have been done with
better diagnosis. Even in this case, however, uRBs add
only a small additional cost to the total recovery cost.

8 Generalizing beyond Our Prototype

Some J2EE applications are already microreboot-friendly
and require minimal changes to take advantage of our
uRB-enabled application server. Based on our experi-
ence with other J2EE applications, we learned that the
biggest challenges in making them 100% microrebootable
are (a) extricating session state handling from the applica-
tion logic, and (b) ensuring that persistent state is updated
with transactions. The rest is already done in our prototype
server and can be leveraged across all J2EE applications.

While we feel J2EE makes it easier to write a microre-
bootable application, because its model is amenable to
state externalization and component isolation, we hope
to see microreboot support in other types of systems as
well. In this section we describe design aspects that de-
serve consideration in such extensions.

Isolation: If there is one property of microrebootable
systems that is more critical than all the others, it is the
partitioning of the system into fine-grain, well isolated

components. While such partitioning is a system-specific
task, frameworks like J2EE and .NET [30] can help. Com-
ponent isolation in J2EE is not enforced by lower-level
(hardware) mechanisms, as would be the case with sepa-
rate process address spaces; consequently, bugs in the Java
virtual machine or the application server could result in
state corruption crossing component boundaries. Depend-
ing on the system, stronger levels of isolation may be war-
ranted, such as can be achieved with processes or virtual
machines. Dependencies between components need to be
minimized, because a dense dependency graph increases
the size of recovery groups, making uRBs take longer and
be more disruptive.

Workload: Microreboots thrive on workloads consist-
ing of fine-grain, independent requests; if a system is faced
with long running operations, then individual components
could be periodically microcheckpointed [42] to keep the
cost of uRBs low, keeping in mind the associated risk of
persistent faults. In the same vein, requests need to be
sufficiently self-contained, such that a fresh instance of a
microrebooted component can pick up a request and con-
tinue processing it where the previous instance left off.

Resources: Java does not offer explicit memory release
or lease-based allocation, so the best we could do was
to call the system garbage collector after uRB. However,
this form of resource reclamation does not complete in an
amount of time that is independent of the size of the mem-
ory, unlike most traditional operating systems. We believe
that efficient support for microreboots requires a nearly-
constant-time resource reclamation mechanism, to allow
microreboots to synchronously clean up resources.

9 Related Work

Our work has three major themes: reboot-based recovery,
minimizing recovery time, and reducing disruption dur-
ing recovery. In this section we discuss a small sample of
work related to these themes.

Separation of control and data is key to reboot-based re-
covery. There are many ways to isolate subsystems (e.g.,
using processes, virtual machines [17], microkernels [25],
protection domains [41], etc.). Isolated processing com-
ponents appeared also in pre-J2EE transaction processing
monitors, where each piece of system functionality (e.g.,
doing I/0O with clients, writing to the transaction log) was a
separate process communicating with the others using IPC
or RPC. Session state was managed in memory by a dedi-
cated component. Although the architecture did not scale
very well, the “one component/one process” approach pro-
vided better isolation than monolithic architectures and
would have been amenable to microrebooting.

Baker [2] observed that emphasizing fast recovery over
crash prevention has the potential to improve availability,
and she described ways to build distributed file systems
such that they recover quickly after crashes. In her design,
a “recovery box” safeguards metadata in memory for re-
covery after a warm reboot. In our work, we provide com-
ponents for a more general framework that both reduces

13

the impact of a crash and speeds up recovery.

Much work in Internet services has focused on reducing
the functional disruption associated with recovering from
a transient failure. Failover in clusters is the canonical ex-
ample; Brewer [5] proposed the “DQ principle” as a way
to understand how a partial failure in a multi-node service
can be mapped to either a decrease in queries served per
second, or a decrease in data returned per query.

Other research systems have embraced the approach
of reducing downtime by recovering at sub-system lev-
els. For example, Nooks [41] isolates drivers within
lightweight protection domains inside the operating sys-
tem kernel; when a driver fails, it can be restarted with-
out affecting the rest of the kernel. Farsite [1], a peer-
to-peer file system, has been recently restructured as a
collection of crash-only components, that are recovered
through rebooting. These systems provide examples of
microrebootable systems and lend credibility to the belief
that non-J2EE systems can be structured for effective mi-
crorebootability.

10 Conclusions

Employing reboot-based recovery does not mean that the
root causes of failures should not be identified and fixed.
Rebooting simply provides a separation of concerns be-
tween diagnosis and recovery, consistent with the observa-
tion that the former is not always a prerequisite for the lat-
ter. Moreover, attempting to recover a reboot-curable fail-
ure by anything other than a reboot entails the risk of tak-
ing longer and being more disruptive than a reboot would
have been in the first place, thus hurting availability.

By completely separating process recovery from data
recovery, and delegating the latter to specialized state
stores, we enabled the use of microreboots to achieve pro-
cess recovery. In our experiments, microreboots cured
the majority of failures that were empirically observed to
cause downtime in deployed Internet services. Compared
to process restart-based recovery, microrebooting is an or-
der of magnitude faster and less disruptive, even in multi-
node clusters.

Regardless of fault, in microrebootable systems one
should first attempt microreboot-based recovery: it does
not take long and costs very little. Skipping node failover
in clusters and microrebooting the faulty node can im-
prove availability over the commonly-used “fail over and
reboot node” approach. Microreboot-based recovery can
achieve higher levels of availability even when false posi-
tive rates in fault detection are as high as 98%. Using mi-
croreboots, we were able to reclaim memory leaks in our
prototype application without shutting it down, improving
availability by an order of magnitude.

There is a significant limitation in developing bug-free
software beyond a certain size. Accepting bugs as a fact,
we argue that structuring systems for cheap reboot-based
recovery provides a promising path toward dependable
large-scale software.

Acknowledgments

We would like to thank David Cheriton and our colleagues
in the Recovery-Oriented Computing project for early
feedback on this work. We are indebted to our shepherd
Jason Nieh, the anonymous OSDI reviewers, and Katerina
Argyraki, Kim Keeton, Adam Messinger, Martin Rinard,
and Westley Weimer for patiently helping us improve this

paper.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]
(14]
(15]
(16]

(17]

A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Wat-
tenhofer. FARSITE: Federated, available, and reliable stor-
age for an incompletely trusted environment. In Proc. S5th
Symposium on Operating Systems Design and Implemen-
tation, Boston, MA, 2002.

M. Baker and M. Sullivan. The Recovery Box: Using fast
recovery to provide high availability in the UNIX environ-
ment. In Proc. Summer USENIX Technical Conference,
San Antonio, TX, 1992.

M. Barnes. J2EE application servers: Market overview.
The Meta Group, March 2004.

N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating user-
perceived quality into web server design. In Proc. 9th In-
ternational WWW Conference, Amsterdam, Holland, 2000.
E. Brewer. Lessons from giant-scale services. IEEE Inter-
net Computing, 5(4):46-55, July 2001.

P. A. Broadwell, N. Sastry, and J. Traupman. FIG: A pro-
totype tool for online verification of recovery mechanisms.
In Workshop on Self-Healing, Adaptive and Self-Managed
Systems, New York, NY, 2002.

K. Buchacker and V. Sieh. Framework for testing the fault-
tolerance of systems including OS and network aspects. In
Proc. IEEE High-Assurance System Engineering Sympo-
sium, Boca Raton, FL, 2001.

G. Candea and A. Fox. Recursive restartability: Turning
the reboot sledgehammer into a scalpel. In Proc. 8th Work-
shop on Hot Topics in Operating Systems, Elmau, Ger-
many, 2001.

G. Candea and A. Fox. Crash-only software. In Proc.
9th Workshop on Hot Topics in Operating Systems, Lihue,
Hawaii, 2003.

E. Cecchet, J. Marguerite, and W. Zwaenepoel. Perfor-
mance and scalability of EJB applications. In Proc. 17th
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Seattle, WA, 2002.

M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer.
Failure diagnosis using decision trees. In Proc. Intl. Con-
ference on Autonomic Computing, New York, NY, 2004.
T. C. Chou. Beyond fault tolerance. IEEE Computer,
30(4):31-36, 1997.

T. C. Chou. Personal communication. Oracle Corp., 2003.
H. Cohen and K. Jacobs. Personal comm. Oracle, 2002.
S. Duvur. Personal comm. Sun Microsystems, 2004.
Information obtained under an agreement that prohibits
disclosure of the company’s name, May 2004.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: a virtual machine-based platform for

14

(18]

(19]

(20]

(21]
(22]
(23]

(24]
[25]

[26]

[27]

(28]
(29]
(30]
(31]

(32]
(33]

[34]

(35]
(36]
(37]
(38]

[39]

(40]
[41]

[42]

[43]

[44]

trusted computing. In Proc. 19th ACM Symposium on Op-
erating Systems Principles, Bolton Landing, NY, 2003.

J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext transfer protocol — HTTP/1.1.
Internet RFC 2616, June 1999.

J. Gray. Why do computers stop and what can be done
about it? In Proc. 5th Symp. on Reliability in Distributed
Software and Database Systems, Los Angeles, CA, 1986.
Y. Huang, C. M. R. Kintala, N. Kolettis, and N. D. Fulton.
Software rejuvenation: Analysis, module and applications.
In Proc. 25th International Symposium on Fault-Tolerant
Computing, Pasadena, CA, 1995.

JBoss web page. http://www.jboss.org/.

Keynote Systems. http://www.keynote.com/.

W. LeFebvre. CNN.com-Facing a world crisis. Talk at
15th USENIX Systems Administration Conference, 2001.
H. Levine. Personal communication. EBates.com, 2003.
J. Liedtke. Toward real microkernels. Communications of
the ACM, 39(9):70-77, 1996.

B. Ling, E. Kiciman, and A. Fox. Session state: Beyond
soft state. In Proc. 1st Symposium on Networked Systems
Design and Implementation, San Francisco, CA, 2004.

D. E. Lowell, S. Chandra, and P. M. Chen. Exploring fail-
ure transparency and the limits of generic recovery. In
Proc. 4th Symposium on Operating Systems Design and
Implementation, San Diego, CA, 2000.

G. Messer. Personal communication. US Bancorp, 2004.
A. Messinger. Personal comm. BEA Systems, 2004.
Microsoft. The Microsoft .NET Framework. Microsoft
Press, Redmond, WA, 2001.

R. Miller. Response time in man-computer conversational
transactions. In Proc. AFIPS Fall Joint Computer Confer-
ence, volume 33, 1968.

N. Mitchell. IBM Research. Personal Comm., 2004.

N. Mitchell and G. Sevitsky. LeakBot: An automated and
lightweight tool for diagnosing memory leaks in large Java
applications. In Proc. 17th European Conf. on Object-
Oriented Programming, Darmstadt, Germany, 2003.

B. Murphy and T. Gent. Measuring system and software re-
liability using an automated data collection process. Qual-
ity and Reliability Engineering Intl., 11:341-353, 1995.

A. Pal. Personal communication. Yahoo!, Inc., 2002.

D. Reimer. IBM Research. Personal comm., 2004.

RUBIS project web page. http://rubis.objectweb.org/.

W. D. Smith. TPC-W: Benchmarking an E-Commerce so-
lution. Transaction Processing Council, 2002.

M. Sullivan and R. Chillarege. Software defects and their
impact on system availability — a study of field failures in
operating systems. In Proc. 21st International Symposium
on Fault-Tolerant Computing, Montréal, Canada, 1991.
Sun Microsystems. http://java.sun.com/j2ee/.

M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems. In Proc. 19th
ACM Symposium on Operating Systems Principles, Bolton
Landing, NY, 2003.

K. Whisnant, Z. Kalbarczyk, and R. Iyer. = Micro-
checkpointing: Checkpointing for multithreaded applica-
tions. In Proc. IEEE Intl. On-Line Testing Workshop, 2000.
A. P. Wood. Software reliability from the customer view.
IEEE Computer, 36(8):37—42, Aug. 2003.

Zona research bulletin: The need for speed II, Apr. 2001.

