Debunking some myths about structured and unstructured overlays

Miguel Castro Manuel Costa Antony Rowstron

Microsoft Research, 7 J J Thomson Avenue, Cambridge, UK

Abstract nodes. Each node visited during a flood or random walk

. valuates the query locally on the data items that it stores.
We present a comparison of structured and unstructure.

) his approach supports arbitrarily complex queries and
overlays that decouples overlay topology malntenancer-t bp bp y plex g

¢ hani Structured I de of does not impose any constraints on the overlay topol-
rom query mechanism. structured overiays provide € ‘ogy or on data placement, for example, each node can

ficient s_upport for simple exact—match quenes but theychoose any other node to be its neighbour in the overlay
constrain overlay topology to achieve this. Unstructured

X and it can store the data it owns. There has been a large
over_lays do not constrain overla)_/ topology or query COM-4mount of work on improving unstructured overlays, for
plexity because they use flooding or random walks toexample [10, 13, 24].
discover data. It is commonly believed that structured Structured' ov'erlays like Tapestry [35], CAN [25]
overlays are more expensive to maintain, that theirtopol-Chor d [32] and Pastry’ [29], were developé d to imprO\}e
ogy constraints make it harder to exploit heterogeneity y

and that they cannot support complex queries efficient! the performance of data discovery. They impose con-
y upp piexq . "Wstraints both on the topology of the overlay and on data
We performed a detailed comparison study using sim

ulations driven by real-world traces that debunks thescg lacement to enable efficient discovery of data. Each

id d mvihs. We d ibe techni that | ata item is identified by a key and nodes are organized
Structural Constrains to achieve low maintenance ovedio 2 stiuctured araph topology that maps each key to
head and we present a modified neighbour selection alge responsible node. The data or a pointer to the data is
rithm that canpex loit heterogeneit geffectivel We als%stored at the node responsible for its key. These con-

. =Xp Y Y y: straints provide efficient support for exact-match queries;
describe techniques to perform floods and random walk ey enable discovery of a data item given its key in
on stuctured topologies. These technidues explott TG pically only O(log V) hops with onlyO(log ') neigh-
ueﬁofr?wlié??hinouilsjfrﬂgufeo dmorilg)r(l;ie”es with bettehyours per node. It is possible to support more complex
P ys- queries by building indices on top of structured overlays

but current solutions perform worse than unstructured
1 Introduction overlays [20].
It is commonly believed that structured overlays are
There has been much interest in peer-to-peer data shafore expensive to maintain in the presence of churn, that
ing applications. They are used by millions of users ancheir topology constraints remove the flexibility neces-
they represent a Ial’ge fraction of the traffic in the |nter-sary to exp|0it heterogeneity, and that they cannot sup-
net [31]. These applications are built on top of large-port complex queries efficiently (see for example, [10]).
scale network overlays that provide mechanisms to disThis paper presents a detailed comparison of structured
cover data stored by overlay nodes. There is an ongoingnd unstructured overlays that contradicts these myths.
debate in the researCh Community on the I’elative mer- We exp|0re the design Space by decoup”ng Over|ay

itS of two typeS of OVerIayS: Unstructured and Structuredtopokjgy maintenance from query mechanisms_
This paper presents a comparison study of unstructured

and structured overlays that contributes to this debate by e We evaluate a technique that exploits structure to
debunking some widespread myths. reduce maintenance overhead. It eliminates redun-
Unstructured overlays, for example Gnutella [1], or- dant failure detection probes by using structure to
ganize nodes into a random graph topology and use partition failure detection responsibility and to lo-
floods or random walks to discover data stored by overlay ~ cate nodes that need to be informed about failures

and new node arrivals. We show that this technique2 Topology maintenance with churn

can achieve robustness to high rates of churn with

overhead lower than unstructured overlays. Measurement studies of deployed peer-to-peer overlays
have observed a high rate of churn [4, 17, 30]; nodes join

e We describe how to exploit heterogeneity by mod-and leave these overlays constantly. Therefore, peer-to-
ifying any proximity neighbour selection algo- peer overlays should be able to cope with a high rate of
rithm [8, 35, 16] to adapt the topology such that the churn.
indegree of nodes matches their capacity. Can unstructured overlays cope with churn better than

structured overlays?

e We introduce techniques to support complex Each node maintains a set of neighbours to form
queries efficiently on structured topologies with- an overlay. Structured overlays impose constraints on
out constraints on data placement. These techthe overlay topology; nodes have identifiers and two
niques perform floods or random walks on struc-nodes can be neighbours only if their identifiers satisfy
tured topologies but exploit structural constraints certain constraints. Unstructured overlays do not im-
to ensure that nodes are visited only once duringyose constraints on neighbours. Both types of overlay
a query, the number of visited nodes is controlledcan improve robustness to churn at the expense of in-
accurately, and the average capacity of nodes Visgreased maintenance overhead by increasing the num-
ited during a query is increased to better exploither of neighbours per node and probing them more fre-
heterogeneity. Additionally, they remove the needquently to detect and replace failed neighbours.
to maintain both a structured and an unstructured ; js pelieved that maintaining a structured overlay in
overlay to implement hybrid search strategies [22]. the presence of churn is more expensive than maintain-

ing an unstructured overlay because of the constraints

The paper presents results of detailed comparisons bes, eighhour selection. This section shows that this is

tween several representative structured and unstructuregly e cessarily the case. It is possible to use structure to

overlay tOPO'Ogy rr_lainte_nancg algorit_hms. These resulty hieve petter robustness with lower maintenance over-
were obtained using simulations driven by real-world o4 in a structured overlay

traces of node arrivals and departures in the Gnutella
file sharing application [30]. The results show that our

techniques enable structured overlays to cope with hig or some applications [5]. We study structured overlays

rates of churn and exploit heterogeneity effectively with without these constraints to keep the evaluation indepen-

a maintenance overhead comparable to that achieved b&’ent of any particular application. Data placement con-
state-of-the-art unstructured overlays.

| d th ; ¢ data di straints do not result in significant overhead in several ap-
We also compared the performance of data diScoveryications (for example, content distribution [9] and Web

using several representative unstructured overlays anéjaching [19]) and the search technique in Section 4 does
using our techniques to perform floods and random walk%ot constrain data placement at all

on structured overlays. We used a real trace of content .o o ntion describes the implementation of struc-
dlstrl_butlon across nodesmthe eDon_key pe_er—to—peerfllt%ured and unstructured overlay maintenance protocols
sharing application [12] to drive the simulations. The i an homogeneous setting and compares their perfor-

sults show that our techniques can discover data mMorg, e The next section explains how to exploit hetero-
often, faster, or with lower overhead. geneity

The additional functionality provided by structured
overlays has proven important to achieve scalability and
efficiency in a wide range of applications. Structured2 1 Unstructured overlays
overlays can emulate the functionality of unstructured
overlays with comparable or even better performance. We implemented an unstructured overlay maintenance
In Section 2, we describe and compare structured angrotocol based on the specification of Gnutella version
unstructured topology maintenance protocols assuming.4 [15] but we added many optimizations to the proto-
a homogeneous setting. Section 3 extends the strueol to ensure a fair comparison.
tured topology maintenance protocol to exploit hetero- Gnutella 0.4 organizes overlay nodes into a random
geneity in peers’ resources and compares this with ungraph. Each node in the overlay maintains a neighbour
structured topology maintenance protocols which exploittable with the network addresses of its neighbours in the
heterogeneity. Section 4 compares the performance afverlay. The neighbour tables are symmetric; if nade
content discovery using random walks and flooding onhas nodey in its neighbour table then nodehas nodex
both structured and unstructured topologies, and Sectioim its neighbour table. There is an upper and lower bound
5 presents our conclusions. on the number of entries in each node’s neighbour table.

Structured overlays also impose constraints on data
lacement that can result in high overhead under churn

A joining node uses a random walk starting from aresults in additional overhead without improved robust-
bootstrapnode, which is randomly chosen from the setness or query performance.
of nodes already in the overlay, to find other nodes to fill
its neighbour table. It sends the bootstrap nodeigh-
bour discoverynessage with a counter that is initialized
to the number of nodes required to fill its neighbour ta-There are several structured overlay maintenance proto-
ble. Upon receiving a discovery message, a node checksols. We chose an implementation of Pastry [29] called
whether it has less neighbours than the upper bound. If1S Pastry [6] because it has good performance under
this is the case, the node sends a message to the joinirgiurn and has an efficient implementation of proxim-
node inviting it to become a neighbour and decrementsty neighbour selection [8]. We modified it to exploit
the counter in the neighbour discovery message. In eithefieterogeneity (as described in the next section). Stud-
case, the neighbour discovery message is forwarded toigs have shown that other structured overlay maintenance
randomly chosen neighbour if the counter is still greaterprotocols[21, 28] also perform well under churn.
than zero. To increase resilience to node and network Structured overlays map keys to overlay nodes. Over-
failures, all neighbour discovery messages are acknowlay nodes are assignewbdeldsselected from a large
edged. If a node does not receive an acknowledgemendentifier space and application objects are identified by
within a timeout, it selects another neighbour at randokeys selected from the same identifier space. Pastry se-
and forwards the neighbour discovery message to thgkcts nodelds and keys uniformly at random from the set
neighbour. of 128-bit unsigned integers and it maps a kego the

In addition to joins, nodes need to detect failures andhode whose identifier is numerically closesktmodulo
replace faulty neighbours. Evetyseconds each node 2'28, This node is called the key’s root. Given a message
sends arl’m alive message to every node in its neigh- and a destination key, Pastry routes the message to the
bour table. Since all nodes do the same and neighbotkey’s root node. Each node maintains a routing table and
tables are symmetric, each node should receive a mestleaf set to route messages.
sage from each neighbour in eackecond period. If a Nodelds and keys are interpreted as a sequence of dig-
node does not receive a message from a neighbour, it exts in base2®. We useb = 1 in this paper to minimizes
plicitly probes them and if no reply is received the node isthe maintenance overhead. The routing table is a matrix
assumed to be faulty. We useé- 30 seconds in this pa- with 128/b rows and2® columns. The entry in row and
per. Nodes maintain a cache of other nodes that they ussolumnc of the routing table contains a random nodeld
to replace failed neighbours. If the cache is empty, theythat shares the firstdigits with the local node’s nodeld,
obtain new neighbours by sending a neighbour discoveryand has ther(+ 1)th digit equal toc. If there is no such
message to a randomly chosen neighbour. All messagesdeld, the entry is left empty. The uniform random dis-
sent between the nodes are used to replace expfitit tribution of nodelds ensures that orilyy,. N rows have
alive messages. non-empty entries on average. Additionally, the column

Simulation results show that this protocol leads to poorin row r corresponding to the value of the-¢ 1)th digit
guery performance because the neighbour table of a joinef the local node’s nodeld remains empty.
ing node and those of its neighbours are likely to share a Nodes use aeighbour selection functicio select be-
significant fraction of nodes. This reduces the effective-tween two candidates for the same routing table slot.
ness of floods and random walks to discover data. WeSiven two candidateg and z for slot (r, ¢) in nodex’s
overcome this problem by forwarding the neighbour dis-routing table,z selectsz if z's nodeld is numerically
covery message over a number of random hops after eadioser thany’s to the nodeld obtained by replacing the
neighbour invitation is sent. We add a hop counter to(r + 1)th digit of z's nodeld byc. This neighbour selec-
discovery messages that is setRdy every node that tion function promotes stability in routing tables while
replies with a neighbour invitation. Nodes decrement thedistributing load. We chose not to use proximity neigh-
hop counter when they forward a discovery message andour selection because it increases overhead slightly and
they only consider sending a neighbour invitation whenlow delay routes do not seem important for the applica-
the counter is less than or equal to zero. We uBed 5 tions we study in this paper.
in this paper as, from experimental evaluation, this pro- The leaf set connects nodes in a ring. It contains the
vided good query performance with small increase inl/2 closest nodelds clockwise from the local nodeld and
maintenance overheads. thel/2 closest nodelds counter clockwise. The leaf set

We use unbiased random walks because we found tha&nsures reliable message delivery. We Use 32 in
biasing the random walk to nodes with low degree re-this paper, which provides high robustness to large scale
duces overhead but results in poor query performancedailures and high churn rates.
We also experimented with flooding of discovery mes- At each routing step, the local node normally forwards
sages (as specified in the Gnutella 0.4 protocol) but thishe message to a node whose nodeld shares a prefix with

2.2 Structured overlays

the key that is at least one digit longer than the prefixexample, the original Chord [32] finger table and Pastry’s
that the key shares with the local node’s nodeld. If noconstrained routing table [7]. For example, Pastry’s con-
such node is known, the message is forwarded to a nodgtrained routing table enables a node that detects the fail-
whose nodeld is numerically closer to the key and shareare of its right neighbour to locate all nodes with routing
a prefix with the key at least as long. The leaf set is usedable entries pointing to the failed node with an expected
to determine the destination node in the last hop. cost of O(log N) messages. We chose not to use the con-
strained routing table because it eliminates the flexibility
Exploiting structure to reduce maintenance overhead —necessary to cope with heterogeneous peers as described
Structured overlays can use structure to reduce maintdd the next section.
nance overhead in several ways. First, several structured MS Pastry uses a different strategy to detect failures
overlays use structure to initialize the routing tables ofin the routing table. Since the routing table is not sym-
joining nodes efficiently and to announce their arrival. metrical, a node explicitly probes every member every
Node joining in Pastry exploits the topology structure ¢ seconds to detect failures. The routing table probing
as follows. A joining noder picks a random nodel® periodt, is set dynamically by each node based on the
and asks a bootstrap nodeo route a special join mes- node failure rate in the overlay observed by the node [6].
sage usingX as the destination key. This message isWWe configured MS Pastry to achieve a 1% loss rate, i.e., a
routed to the node with nodeld numerically closest to message routed between a pair of nodes has a probability
X. The nodes along the overlay route add routing tabledf 99% of reaching the destination even in the absence of
rows to the message; nodeobtains therth row of its ~ retransmissions.
routing table from the node encountered along the route Pastry also has periodic routing table maintenance
whose nodeld matchess in the firstr — 1 digits and ~ protocol to repair failed entries. Each nadasks a node
its leaf set fromz. After initializing its routing table;: in each row of the routing table for the corresponding row
sends the'th row of the table to each node in that row. in its routing tablex chooses between the new entries in
This serves both to announags presence and to gos- received rows and the entries in its routing table using
sip information about nodes that joined previously. Eachthe neighbour selection function defined above. This is
node that receives a row considers using the new nodeg€peated periodically, for example, every 20 minutes in
to replace entries in its routing table. the current implementation. Additionally, Pastry has a
Additionally, structured overlays can eliminate redun- passive routing table repajprotocol: when a routing ta-
dant failure detection probes by using structure to parti-ble slot is found empty during routing, the next hop node
tion failure detection responsibility and to locate nodesis asked to return any entry it may have for that slot.
that need to be informed when a failure is detected. For These techniques used to reduce overhead in MS Pas-
example, MS Pastry uses this technique to reduce th#y are described in detail in [6] and are applicable to
number of liveness probes in the leaf set by a factor ofther structured overlays.
32. Each node sends a singjlm alive message every
seconds to its_ left neighbour in the_ id space. _If a nod§2_3 Experimental comparison
does not receive a message from its right neighbour, it
probes the neighbour and marks it faulty if it does not re-We compare the maintenance overhead of the different
ply. When it marks the neighbour faulty, it discovers the overlays using a packet-level discrete-event simulator.
new member of its leaf set by querying the right neigh-We simulated a transit-stub network topology [34] with
bour of the failed node and informs all the members of5050 routers. There are 10 transit domains at the top
the new leaf set about the failed node. If several condevel with an average of 5 routers in each. Each transit
secutive nodes in the ring fail, the left neighbour of therouter has an average of 10 stub domains attached, and
leftmost node will detect the failure and repair provided each stub has an average of 10 routers. Routing is per-
the number of consecutive nodes that failed is less thaformed using the routing policy weights of the topology
1/2 — 1. We uset; = 30 seconds in this paper, which is generator [34]. The simulator models the propagation
equal to the period betwe¢m alive messages in the un- delay on the physical links. The average delay of router-
structured overlays. This technique is readily applicablerouter links was 40.7ms. In the experiments, each end
to systems that organize nodes into a logical ring, for ex-system node was attached to a randomly selected stub
ample [32, 29, 28], but harder to apply to other systemsyouter with a link delay of 1ms.
for example [25, 35]. The simulation is driven using a real-world trace of
The technique can be extended to eliminate fault denode arrivals and failures from a measurement study of
tection probes sent to routing table entries. This carGnutella [30]. The study monitored 17,000 unique nodes
be done in routing tables that constrain each nede in the Gnutella overlay over a period of 60 hours. It
point to nodes whose identifiers are the closest to specifiprobed each node every seven minutes to check if it was
points in the identifier space derived fraris nodeld, for still part of the overlay. The average session time over

08 send’m alive messages to each of their neighbours every
—Gnutella 0.4 (8)

$07 1 Grutela0. () 30 seconds. The average number of links per node over
e the trace is 5.8 ilGnutella 0.4 (4)and 11.0 inGnutella

£ 0.4 (8) Therefore, the expected overhead due to fault de-
£oa tection is 0.19 and 0.37 messages per second per node in
§o2 | Gnutella 0.4 (4)landGnutella 0.4 (8) respectively. Pas-

try’s maintenance overhead is between the overhead of
0 0 2 4 o e Gnutella 0.4 (4)andGnutella 0.4 (8)most of the time.
fimetours) Pastry is able to achieve low maintenance overhead
because it exploits structure. The overhead for fault de-
Figure 1: Maintenance overhead in messages per secomgction of leaf set members is only 0.03 messages per
per node over time for th&nutella 0.4and Pastry over- second per node even though there are 32 nodes in each
lays. node’s leaf set. Additionally, Pastry tunes the routing
table probing period to achieve 1% loss rate (using the
techniques described in [6]). This ensures that it uses
the trace was approximately 2.3 hours and the numbeghe minimum probe rate that achieves the desired reli-
of active nodes in the overlay varied between 1,300 andypjjity. Pastry’s maintenance overhead varies with the
2,700. The failure rate and arrival rates are similar butzjlyre rate observed during the trace because the self-
there are large daily variations (more than a factor of 3)tyning technique increases the probe rate when the node
There was no application-level traffic during this experi- fajlure rate increases. The spikes in maintenance over-
ment to isolate the overlay maintenance overhead. head at approximately 44 hours and after 50 hours are
We opted for a simulation study because scalability isque to spikes in the node failure rate in the trace. These
an important attribute of these overlays and the testbedspikes in failure rate are probably caused by temporary
we have available cannot cope with the overlay sizes thabss of network connectivity between the site issuing the
we simulate in this and later sections. The code that rungings and a large fraction of its targets during the collec-
in the simulator is complete and realistic; it can run intjon of the trace.
a real deployment by simply relinking with a different |t js possible to lower the overhead of Gnutella by re-
communication library. The simulator also appears toguycing the rate ofm alive messages or the number of
be accurate as shown by the validation study presentefeighbours but doing this decreases resilience to churn
in [6], which compares the simulator output with values and degrades search efficiency. It might also be possible
measured in a real deployment. to use techniques similar to Pastry’s to reduce mainte-
We compare the maintenance overhead of Gnutella 0.Aance overhead in Gnutella overlays without decreasing
and Pastry. We used two configurations of Gnutella 0.4tesilience but this would require introducing a structure
Gnutella 0.4 (4)oounds the number of neighbours to be similar to Pastry’s. However, this is not the point.
at least 4 and no more than 12nutella 0.4 (8)oounds The important point is that the maintenance overhead
the number of neighbours to be at least 8 and no morgs negligible in all three systems and that structured over-
than 32. In the experiments, we observed fBatitella |ays provide additional functionality that has proven use-
0.4 (4)has on average 5.8 neighbours dbutella 0.4 fulin a number of applications. For example, the average
(8) has on average 11.0 neighbours. number of messages per second per node over the trace
These parameters were chosen becdtisatella 0.4 s only 0.26 in Pastry. Furthermore, the vast majority of
(4) has maintenance overhead lower than Pastry whereasese messages are smaller than 100 bytes on the wire.
Gnutella 0.4 (8)has higher overhead. It is important Therefore, the overhead is less than 26 bytes per second,
to note that both configurations have lower resilience towhich is negligible even for users with slow dialup con-
churn than Pastry. Each Pastry node has 32 neighbourgctions. For comparison, the latest Gnutella specifica-
in the leaf set alone and it detects and repairs failures ofion [2] recommends a probing period that results in an
leaf set neighbours as fast as the Gnutella overlays deestimated 131 bytes per secquer neighbour
tect and repair their neighbour failures. A node only gets The maintenance overhead is constant in the unstruc-
partitioned from the overlay #2 nodes fail before being tured overlays but grows with’ in the structured over-
replaced in Pastry whereas it only takes 6 nodes to fail inay. However, it grows very slowly. The fault detection
Gnutella 0.4 (4jand 11 inGnutella 0.4 (8) traffic, which accounts for most of the maintenance over-
Figure 1 shows the maintenance overhead measurdgkad, is constant for leaf set members and it is propor-
as the average number of messages per second per nodenal tolog,(N) for routing table entries. For example,
The x-axis represents simulation time. increasingV to one billion nodes with a similar pattern
Most of the overhead is due to fault detection mes-of node arrivals and departures would increase mainte-
sages in the three overlays. In the Gnutella overlay, nodesance traffic in the structured overlay to less than 0.69

messages per second per node (or less than 69 bytes pgay topology such that nodes with higher capacity have
second per node), which is still negligible. higher degree. Since high-degree nodes receive a larger
fraction of the traffic, this ensures that they have the ca-
. . pacity to handle this traffic. Gia’s fine-grained approach
3 Exploiting heterogeneity to exploit heterogeneity can perform better than simply
) using super-peers [10].
Nodes in deployed peer-to-peer overlays are heteroge- \ye implemented Gia exactly as described in [10].
neous [30]; they have different bandwidth, storage, ang\oqe discovery is implemented using a random walk
processing capacities. An overlay thatignores the differ 55 gescribed for Gnutella 0.4) but the nodes use Gia's
ent node capacities must bound the load on any node t ick neighborto_drop function [10] to decide whether
be belovy the Ioad_that_ th_e least capa_ble nodes are a_b 8 send back a neighbour invitation message. Topology
to sustain; otherwise, it risks congestion collapse. It iSyqantation is driven by Giasatisfactionlevelfunction,
important to exploit heterogeneity to improve scalability. \;nich increases with the sum of the ratio between the
Can unstructured overlays exploit heterogeneity MOr&capacity and degree of each neighbour. This function
effectively than structured overlays? is evaluated periodically and nodes with a low satisfac-
Structured overlays have constraints on the graphjon |evel attempt to find a new neighbour to increase the

topology that reduce flexibility to adapt the topology to |eve|. The adaptation interval is computed as in Gia (with
exploit heterogeneity. However, some structured overthe parameter& = 256 andT = 10 seconds).

lays have significant flexibility in the choice of some
overlay neighbours, which is important to implement
proximity neighbour selection [35, 29, 16, 28]. These3:2 Structured overlays

structured overlays can exploit heterogeneity by modyye jmplemented two structured overlay maintenance

ifying the proximity neighbour selection algorithm 10 460015 hased on Pastry that exploit heterogen&ity:

choose nodes with high capacity as overlay neighbour erPastryuses super-peers like Gnutella 0.6 atelt-

We show that this is as effective as recent proposals tsgroPastryuses topology adaptation like Gia.

adap_t unstrl_Jctured oyerlay tOp_OIOQ'eS [10]'_ It is simple to exploit the super-peers concept in a
This section describes the implementation of severaky,cyyred overlay. The super-peers are organized into

structured and unstructured overlay maintenance proto giryctured overlay using the Pastry algorithm described
cols that exploit heterogeneity and compares their peri, the previous section. Ordinary peers do not join this

formance. overlay. Instead they attach to a small number of super-
peers as in Gnutella 0.6. Ordinary peers select super-
3.1 Unstructured overlays peers to attach to by routing to random destination keys

through a bootstrap super-peer. They exchdmgealive

We implemented two unstructured overlay maintenancenessages with the selected super-peers to detect failures
algorithms that exploit heterogeneity: a version ofas in Gnutella 0.6.
Gnutella 0.6[2] and a version of Gia [10]. The implementation of capacity-aware topology adap-

Gnutella 0.6 extends the Gnutella 0.4 protocol bytation in structured overlays is less obvious. We propose
adding the concept of super-peers [3]. Nodes that ara simple solution based on existing proximity neigh-
capable of contributing enough resources to the overlapour selection algorithms [29, 35, 16]. These algo-
are classified as super-peers and organized into a ramthms select the closest neighbours in the underlying
dom graph using the optimized version of the Gnutellanetwork subject to the structural constraints on the topol-
0.4 protocol (which was described in the previous sec-ogy. They can be modified to provide capacity-aware
tion). Ordinary nodes are not part of the random graphtopology adaptation by using a proximity metric that re-
Instead, each ordinary node attaches to a small numbdiects node capacity.
of randomly selected super-peers and proxies its data HeteroPastry uses the Pastry algorithm described in
discovery queries through them. Ordinary nodes selecthe previous section except that it achieves capacity-
super-peers to attach to using a random walk with a modaware topology adaptation by modifying the neighbour
ified neighbour discovery message and they exchangselection function to take node capacity into account.
I'm alive messages with the selected super-peers to desiven two candidateg and > for slot (r, ¢) in nodez’s
tect failures. This topology places most of the search andouting table,x selectsz if it has capacity greater than
overlay maintenance load on super-peers. y or if z andy have the same capacity and nodeld is

Gia [10] provides a more fine-grained adaptation tonumerically closer thap'’s to the nodeld obtained by re-
heterogeneity. Each node selects a humegeglacity placing the { 4 1)th digit of 2’s nodeld byc. We assume
value that abstracts the amount of resources that it ithat node capacities are quantized into a few discrete val-
willing to contribute to the overlay. Gia adapts the over- ues for the randomization based on nodelds to be effec-

tive at distributing load. Itis possible to design neighbour oa m
selection functions that combine several capacity metrics $oas | —Supetesny
and even network proximity. 3037

In addition to specifying capacity, nodes can specify \°022
an upper bound on their indegree, i.e., the number of Soss Attt
nodes with routing table entries pointing to them. This £ o1
bound is likely to be a function of their capacity. We 0051
modified Pastry to ensure that the number of routing ta- % 0 2 2 4 s e

Time(hours)

ble entries pointing to a node does not exceed the speci-
fied bound. Each node keeps track of nodes with rout-
ing table entries that point to (backpointers) and sends Figure 2: Maintenance overhead in messages per sec-
backoffmessages when the number of backpointers exend per node over time for the two overlays using super-
ceeds the indegree bound. It is necessary to keep tragseers.

of backpointers because neighbour links in Pastry rout-

ing tables are not symmetric. Neighbour links in the leaf

set are symmetric and their number is fixed at 32 in this3.3 Experimental comparison

paper. They are not counted as part of the indegree of))
unless they also have a routing table entry pointing.to e compared the maintenance overhead of the different

Nodes keep track of backpointers by passively moni-0verlay maintenance algorithms that exploit heterogene-
ity to achieve scalability. We used the experimental setup

toring messages received from other nodes. They add %y X i - _
node to the backpointer set when they receive a messad@ S€ction 2.3, which does not include any query traffic,
from the node and, everl seconds, they remove nodes '© iSolate the maintenance overheads.
from which they did not receive messages for more than Gnutella 0.6 and SuperPastry were configured with
2D secondsD is set to the routing table probing period similar parameters to allow a fair comparison. Each or-
because nodes send probes to their routing table entrigdnary node selected 3 super-peers as proxies and each
every routing table period. super-peer acted as a proxy for up to 30 ordinary nodes.
If the number of backpointers exceeds the bound afteFach super-peer in Gnutella 0.6 had at least 10 super-
adding a new node, the local nodeselects one of the Peer neighbours and at most 32. The indegree bound
backpointers for removal and sends that node a backofff SUPer-peers in SuperPastry was also 32. The simula-
message. For each backpointewith z in slot (r, c) tor provided each joining nodg .W.Ith a randomly se!eptgd
of its routing table, the numerical distance betwedn SUPer-peer to bootstrap the joining process and joining
nodeld and the nodeld obtained by replacing the{)th npdes were marked super-peers with a probability of 0.2.
digit of y's nodeld byc is computed.r selects the node Figure 2 shows the maintenance overhead measured as
with the maximal distance for eviction. This policy is the number of messages sent per second per node.
dual of the neighbour selection function (except thatitis The maintenance overhead is dominated by the cost
oblivious to capacity) to provide stability. of failure detection as before. In Gnutella 0.6, a node
Nodes that receive a backoff message remove th8as 7.5 neighbours on average, which results in D25
sender from their routing tables and insert the sender ilive messages per second per node on average. This
a backoff cache. We modified the neighbour selectioraccounts for most of the control traffic has shown in Fig-
function to ensure that it never selects nodes in the backure 2. Both systems incur the same communication over-
off cache. The current implementation removes entriefiead between ordinary peers and super-peers. SuperPas-
from the backoff cache after four routing table probing try achieves lower overhead than Gnutella 0.6 because
periods. it exploits structure to reduce failure detection overhead.
Our solution is not applicable to some structured over-The overhead is negligible in both systems.
lays that provide no flexibility at all in the selection of ~ We also ran experiments to compare the maintenance
neighbours, for example, the original Chord [32] andoverhead of Gia and HeteroPastry. Gia was configured
CAN [25]. It is possible to use virtual nodes [32] to using the parameters in [10]. The lower bound on the
adapt these structured overlays to different node capachrumber of neighbours in Gia is 3 and the upper bound
ties. Each physical node can simulate a number of virtuals maz(3, min(128, £)) [10], whereC is the capacity
overlay nodes proportional to its capacity. The problemof the node. We use the same bounds on the indegree of
is that node capacities can vary by several order of magrodes in HeteroPastry. The capacity of a node (in both
nitude. Therefore, the number of virtual nodes must beoverlays) is selected when it joins according to the prob-
much larger than the number of physical nodes, whichabilities in Table 1, which were taken from [10].
results in a large increase in maintenance traffic that can Figure 3 plots the maintenance overhead in messages
render this solution impractical. per second per node against time for Gia and HeteroPas-

Capacity | Probability 2

180 -

1 0.2 160 {
& 140
10 0.45 L
100 0.3 ; 100 1
1000 0.049 g 10
10000 0.001 0
Zg — L
Table 1: Node capacity distribution 1 10 100 1000 10000
Capacity
0.8
Gia
07) | Figure 5: Average indegree of nodes with each capacity

o
=

value.

o
o

o ¢
w

to 5is above 897. The capacity decreases when the level
increases because of stronger structural constraints. A
: ‘ ‘ ‘ node in level of the routing table must match the nodeld
2w % of the local node in the firstdigits. The size of the set

of nodes that can be selected to fill slots at lIdvel1 is
Figure 3: Maintenance overhead in messages per secomlf the size of the set of nodes that can fill slots at level

per node over time for Gia and HeteroPastry. . The_refore, the probability that these sgts include high
capacity nodes decreases as the level increases. Since
most nodes have less than 124 (2627)) levels in their
try. Failure detection messages account for most of théouting tables, there is some noise for levels above 12.
overhead as in previous experiments. Nodes in Gia have We also measured the average indegree of nodes with
15.6 neighbours on average, which results in Q62 each capacity value at the same point in time. The re-
alive messages per second per node. The overhead 6filts are in Figure 5. The average indegree of the two
HeteroPastry is almost identical to the overhead incurrediodes with capacity 10000 is above the indegree bound
by the version of Pastry that does not exploit heterogeneof 128. This happens because nodes are very likely to se-
ity and does not bound indegrees (which is shown in Figdect nodes with capacity 10000 for the top levels of their
ure 1). routing tables and these pointers are only removed after

Figure 3 shows that the overhead of topology adapthe node receives a backoff message. The results show
tation in both Gia and HeteroPastry is negligible. Thethat topology adaptation in HeteroPastry is effective at
next set of results show that topology adaptation in Hetdistributing the indegree according to capacity.
eroPastry is also effective.

We examined the routing tables of live HeteroPastry .
nodes five hours into the trace and calculated the aver4 Data queries
age capacity of the nodes in routing table entries at ea
routing table level across the 2627 live nodes. Figure
shows the results.

Topology adaptation fills routing tables with high ca-
pacity nodes. The average capacity of nodes in levels UE

o
N

Messages / second / node
o
=

o
o

o

o
=
o

?omplex gueries are important in mass-market data shar-
Ing applications [10]. Since users do not know the exact
names of the files they want to retrieve, the exact-match
ueries offered by structured overlays are not directly
seful in these applications. Users discover data with
keyword searches, which are readily supported by un-

10000 structured overlays that visit a subset of random nodes in
000] the overlay and execute the search query locally at each
visited node.
1001 Can unstructured overlays support complex queries

more efficiently than structured overlays?
Several research prototypes support keyword searches
A using the exact-match queries of structured overlays [27,
0rz3ase Zevae‘;;‘u’nlnlggbi 141516171819 20 33, 14, 18] to implement inverted indices. The basic idea
is to use the structured overlay to map keywords to over-
lay nodes. The node responsible for a keyword stores an
Figure 4: Average capacity of nodes in routing table en-index with the location of all documents that contain the
tries at each level in HeteroPastry. keyword. When a file is added to the system, the nodes

10 4

Average capacity of members

responsible for the keywords in the file are contacted tovisit the same node more than once, which resulted in
update the appropriate indices. A query for documentsvorse search performance. We added a list to each query
containing a set of keywords contacts the nodes resporwith all the nodes already visited by the query to prevent
sible for those keywords and intersects their indices. this. Nodes do not forward a query to a node that is in
Unfortunately, this approach has several problemsthis list.
Maintaining the indices in the presence of churn is ex- All unstructured overlays usene hop replication
pensive and popular keywords may be mapped to lowwhich has been shown to improve search performance
capacity nodes that cannot cope with the load [10]. Ad-in unstructured overlays [10]. A node replicates an index
ditionally, the queries can be expensive because they resf its content at each of its neighbours. In Gnutella 0.6,
quire computing the intersection of large indices. Thethese indices are only replicated at super peers.
analysis in [20] shows that this approach performs worse
than flooding queries to 60,000 nodes in a random graph4
Therefore, this approach performs significantly worse ™
than recent unstructured overlays like Gia [10]. Addi- The hybrid system exploits structure to implement ran-
tionally, unstructured overlays can support even more sodlom walks and constrained floods more efficiently.
phisticated queries that are not supported by the inverted Flooding in random graphs is inefficient because each
indices approach, for example, regular expressions anflode is likely to be visited more than once. In a graph
range queries on multiple attributes. with an average degree f a flood that visits all nodes
This section explores a different approach to supportwill send on averagék — 1) x N messages (wher&
ing complex queries in structured overlays. We devel-is the size of the overlay). Additionally, it is difficult to
oped a hybrid system that uses the topology from struceontrol the number of nodes visited during a constrained
tured overlays with the data placement and data discoviiood. Floods are constrained using a time-to-live field
ery strategies of unstructured overlays. We introducen the query message that is decremented every time the
new techniques to perform floods or random walks overquery is forwarded. The query is not forwarded when
structured topologies that provide support for arbitrar-the time-to-live field drops to zero. This provides very
ily complex queries. These techniques take advantageoarse control over the number of nodes visited.
of structural constraints on the topology to ensure that The hybrid system can do better by replacing flood-
nodes are visited only once during a query, to controling with the broadcast mechanisms that have been pro-
the number of nodes that are visited accurately, and t@osed for structured overlays [26, 9, 11]. We use Pas-
increase the average capacity of nodes visited during &y’s broadcast mechanism [9] to flood queries to over-
guery to exploit heterogeneity more effectively. lay nodes. A nodg broadcasts a query by sending the
The results in the previous sections show that it is posguery to all the nodes in its routing table. Each query
sible to maintain a structured overlay that exploits het-is tagged with the routing table rowof nodexz. When
erogeneity with low maintenance overhead. Addition-a node receives a query tagged withit forwards the
ally, the hybrid system does not constrain data placeguery to all nodes in its routing table in rows greater than
ment; nodes do not have to incur the overhead of up+ if any.
dating distributed indices for each keyword in their files. A node may have a missing entry in a slot in its rout-
This section compares the performance of random walkihg table, for example, because it pointed to a node that
and floods on the overlays that were described in the prefailed. The broadcast overcomes this problem by using
vious section. Pastry to route the query to a node with the appropriate
nodeld to fill the slot (if there is any) [9]. Almost all
nodes receive the query only once but the technique to
deal with empty routing table slots may result in a small
We used random walks to discover data because theyumber of duplicates.
have been shown to induce lower overhead than the con- We place an upper bound on the row number of entries
strained floods [23] used by current versions of Gnutellato which the query is forwarded to constrain the flood.
These random walks are biased to prefer nodes witfThis bounds the number of nodes visited to a power of
higher degree in Gia and are unbiased in the other untwo. It is simple to extend this mechanism to provide
structured overlays. The original Gia [10] biased the ran-arbitrarily fine grained control over the number of nodes
dom walks to prefer nodes with higher capacity but ourvisited.
experimental results indicate that preferring nodes with This mechanism can easily be modified to perform
higher degree yields both higher success rate and loweandom walks rather than floods by performing a breadth
delay. We present results for this optimized version offirst traversal of the tree used for flooding. This can be
Gia. done by adding a set of nodes to visit in the query mes-
We observed that random walks in Gia were likely to sage. A random walk query message includes the tag

2 Structured Overlays

4.1 Unstructured overlays

450 400
400 | 350 |
103 300 VA g
250
< 250 1 \’\ 3
° n 200
g 200 vh E
£ 150 2150 4
2 ™ 2
100 w 100
50 50
0 ‘ e ‘
1 10 100 1000 10000 0

1 10 100 1000 10000 100000 1000000

Number of cached files Popularity ranking

Figure 6: Distribution of the number of files per node for Figure 7: Number of files versus file rank for the eDon-
the eDonkey file trace [12]. key file trace [12].

an arrayg with queues of nodes indexed by routing ta- The eDonkey trace does not include queries but the
ble row, and a bound on the maximum row number to nymper of copies of a file is strongly correlated with the
traverse. When the query is received at nodét ap- number of queries that it satisfies. Therefore, our query
pends the nodes in each routing table rdwo queue jstribution matches the distribution of the number of
q[r'] provided that- <" < d. Then, if queugy[r] isnot cgpjes of files.
empty,x removes the_next node frc_)m the queue and for- £5:h node generates 0.01 query messages per second
wards the query to this node. ¢fr] is empty, the query ging a Poisson process and each query searches for a
is forwarded to the first node in quegg + 1] andr is e in the trace. The simulator maintains the distribution
incremented. I all queues are empty, the random walk iyt the number of copies of files stored by nodes that are
complete. _ _ currently in the overlay. The target file for each query is
The results in the previous section show that the aversnosen from this distribution (which is a sample of the
age capacity of the nodes in routing table entries in Hetyjistribution in Figure 7). This ensures that at least one

eroPastry decreases as the row number increases. Theggypy of the target file is stored in the overlay when the
fore, the mechanism that we use to bound the floods angyery is initiated.

random walks biases them to visit nodes with higher ca- |, 51 the experiments, we bound random walks to visit

pacity in HeteroPastry. o ~ at most 128 nodes. When a nodeeceives a query, it
We also implemenone hop replicatiorin the hybrid checks if the target file is stored locally or if it is stored
system. Each node replicates an index of its local contengy, nodes whose indices are replicated locally. In the first
on the nodes in its routing table. Therefore, itis expectegage, the query is satisfied anddoes not forward the
to replicate its index iogz (V') other nodes. query further. In the second casegcontacts a random
nodey which it believes has a copy of the file. gfhas
the file, the query is satisfied andsends an acknowl-
edgment back te. If z receives the acknowledgment

We compared the performance of random walks on strucbefore a timeout, it stops forwarding the query. Other-
tured and unstructured over|ay5. We used the basic e){Nise,l‘ contacts another random node that it believes has
perimental setup described in the previous sections bufe file or it forwards the query if there are no more such
we simulated queries and node file stores. nodes.

We used a real-world trace of files stored by eDon- We measured the fraction of queries that are satisfied
key [12] peers to model the sets of files stored by sim-and the delay from the moment a query is initiated until
ulated nodes. There are 37,000 peers in the trace ana,is satisfied. We also measured the load by Counting the
for each peer, there is a record with the identifiers of thenumber of messages sent per second per node.
files stored by the peer. Figure 6 shows the distribution
of the number of files stored by each peer. It excludes
the 25,172 peers that have no files. We model the set o
files stored by each node as follows: when a node joinsWe compared the performance of data discovery on the
the simulator chooses a random unused record from theverlays that exploit heterogeneity. Figure 8 shows the
trace and assigns the files in the record to the node. query success rate, Figure 9 shows the delay for success-

There are approximately 923,000 unique files. Fileful queries, and Figure 10 shows the overhead in mes-
copies exhibit a heavy-tailed zipf-like distribution as sages per second per node. The results show that fine-
shown in Figure 7. Full details about the trace can begrained topology adaptation performs better than using
found in [12]. super-peers. HeteroPastry achieves significantly higher

4.3 Experimental comparison

.3.1 Gnutella trace

I
N

Gia —Gnutella 0.6
SuperPastry - - -HeteroPastry

-

-

- = -HeteroPastry
Gia

——Gnutella 0.6

[7|_——SuperPastry

o
IS
[

Success rate
o o
o

o
)

o

10 20 30 40 50 60 0 10 20 30 40 50 60
Time(hours) Time (hours)

o

Figure 8: Query success rate. Figure 10: Messages per second per node.

30000 1 _—
e ol =/ s
25000 Gia 081 10 / !
hw‘v - - -HeteroPast o7 | 100 / l !
20000 4 2% ——1000 / F
2) A 206 7 — -10000 |— !
315000 205 p | r.
2 504 |
10000 .. | . fos :
gty i 02 1
5000 ittty i 0_1] — I
0 .o / -—""-’-_ I
0 10 20 30 40 50 60 0.01 01 " 1 10 100
Time(hours) essages / second
Figure 9: Query delay for successful queries. Figure 11: Cumulative distribution of messages per sec-

ond per node for each capacity value in HeteroPastry.

success rate, and lower delay and overhead than Super-
Pastry and Pastry. We also ran experiments with overlay8is 10 minute window was 2.4 times higher for Gia than
that do not exploit heterogeneity and found that they perHeteroPastry. Figures 11 and 12 show the cumulative
form significantly worse. distribution of the number of messages per second per
SuperPastry and Gnutella 0.6 achieve very similar perhode for each capacity value in HeteroPastry and Gia.
formance by all metrics. But HeteroPastry achieves The maximum message rate observed was only 42.63
significantly better performance than all the others. Itfor Gia and 26.48 for HeteroPastry. Both systems do a
achieves the highest success rate, the lowest delay, ai®od job of distributing message load according to ca-
the lowest overhead. This demonstrates that HeteroPagacity; nodes with higher capacity receive more mes-
try can exploit heterogeneity effectively to improve scal- sages. The message rate for nodes with capacity 1 is
ability; the high success rate indicates that the bound ofPW; the median is only 0.17 and the 95th percentile is
the length of random walks can be small and the low deonly 0.30 in HeteroPastry, and the median is 0.11 and
lay shows that they are likely to terminate early, whichthe 95th percentile is 0.13 in Gia. For the nodes with
results in low overhead. The other systems would re£apacity 10 in HeteroPastry, the median is also 0.17 and
quire longer random walks to achieve the success rate ¢he 95th percentile is 0.32, and the medianis 0.11 and the
HeteroPastry, which would increase their overhead. ~ 95th percentile is 0.14 in Gia. Since the indegree of 1-
All the overlay maintenance algorithms benefit from

suppression of failure detection traffic by query traffic. e
For example, Gia’s overhead without queries is approx- oo T 1 f | lj
imately twice the overhead of Gnutella 0.6. The over- sor || —iomo [1 !l
heads of the two are comparable with queries because Soe | (= 10000) :
of the suppression of failure detection traffic and shorter gzj ‘\
random walks. Eosl |

So far we have considered the overhead averaged over 021 ‘ |
all live nodes in each 10 minute window in the trace. °'; | vy i
Since both Gia and HeteroPastry adapt the topology to 001 01 1 10 100

Messages / second

distribute load according to node capacity, we looked at

the distribution of the number of messages per second

per node in the ten minutes preceding the 5 hour maricigure 12: Cumulative distribution of messages per sec-
in the trace. The total number of messages received i®nd per node for each capacity value in Gia.

[[Capacity[1 | 10 | 100 | 1000 | 10000 | “r
Gia | Mean | 3 | 3 | 2356 12602 128 T |
Median | 3 | 3 | 24 | 128 | 128 SO ’
95th 3 3 25 128 128 8 by
Hetero- | Mean | 2.15 | 2.38 | 14.50 | 104.66 | 128 G2y e
Pastry | Median | 2 3 15 125 128 £151
95th 3 3 24 128 128 §
0.5 4
Table 2: Distribution of replicas of node indices for dif- o T a a a e
ferent capacity values in Gia and HeteroPastry. session time (minutes)

Figure 13: Messages per second per node for Gia and
HeteroPastry versus session time.

and 10-capacity nodes is bounded to the same value, this

is not surprising. In both Gia and HeteroPastry, the 100-)

capacity nodes incur a higher overhead than the 1- anft-3.-2 Poisson traces

10-capacity nodes but a lower overhead than the 1000re experiments described so far use a trace of node

capacity nodes. arrivals and departures collected in a real Gnutella de-
ployment. The next set of experiments compare the per-
formance of Gia and HeteroPastry using artificial traces
with more nodes and different rates of churn. These
races have Poisson node arrivals and an exponential dis-
ribution of node session times with the same rate. We
generated traces with session times of 5, 15, 30, 60, 120
We also studied the distribution of replicas of node in-and 600 minutes and in all cases the average number of
dices, which is another indicator of the effectiveness offodes was 10,000. We used the same data and query dis-
both systems in adapting the topology to diffferent nodetribution as in the previous experl_ments.. Itis mp_ortant
capacities. Table 2 summarises the distribution of repli{0 note that a session time of 5 minutes is short; indeed,
cas of indices for each capacity value in both systemsit is 28 times shorter than the average session time of 2.3
The total numbers of index replicas is 27,707 in Het-hours observed in the Gnutella trace.
eroPastry and 38,153 in Gia. Both systems do a good Figure 13 shows the total number of messages per sec-
job at distributing index replicas (and indegree) accord-Ond per node for the different session times. Both Gia
ing to node capacity. Gia replicates more because it i§nd HeteroPastry have low overhead across all session

more effective at pushing replicas to nodes with capacityimes. _ _
100 and 1000. Gia’s overhead is almost constant across all session

times. Short session times increase Gia's overhead
HeteroPastry maintains significantly less index repli-because of increased retransmissions and traffic to fill

cas than Gia but it performs better because its randomeighbour tables. However, this is offset by a decrease
walks visit nodes with more index replicas and more di-in fault detection traffic due to a decrease in the average
verse index replicas than those visited by random walksiumber of neighbours; there are 15.1 neighbours when
in Gia. In Gia, nodes that are close in the overlay topol-the session time is 600 and 10.7 when it is 5.
ogy tend to share the same high capacity neighbours. HeteroPastry has a lower message overhead than Gia
This reduces the number of unigue files known by a noddor session times of 30 minutes or greater. This overhead
and its neighbours and it forces biased random walks talecreases between 60 and 600 minutes because Het-
visit low capacity nodes before they can find new higheroPastry adapts the routing table probing rate to match
capacity nodes to visit. Since the number of index repli-the failure rate. HeteroPastry incurs a higher message
cas stored by a node is proportional to its capacity, thisoverhead than Gia for extremely high churn rates mostly
results in poor performance. The topology adaptationdue to the overhead of maintaining the leaf set. This
and random walk mechanisms in HeteroPastry exploibverhead could be reduced without impacting query suc-
structure to prevent this problem; the constraints on theess rate and delay by using a smaller leaf set or disabling
node identifiers of neighbours and nodes visited duringhe mechanisms to ensure strong leaf set consistency [6],
a random walk ensure that the initial set of nodes vis-which are not important in this application.
ited has high capacity and knows about more unique Figure 14 shows the lookup success rate for the dif-
files. This results in HeteroPastry visiting significantly ferent session times. As in previous experiments, Het-
less nodes with capacity 100 during random walks thareroPastry achieves a success rate higher than Gia across
Gia (as shown in Figure 11). all session times.

The figures also show that the load on any node is suf
ficiently low (with a query rate of 0.01 queries per second
per node) that flow control is not necessary. Gia’s flow
control mechanism [10] can be applied to HeteroPastr)%
to enable scaling to higher query rates.

----------- 4 —Flooding
| eI 18
o S ‘ () Random walks
‘ ©16 -
0.7 14 g
; c
2064, e
; 4
s P

- ¢ ‘HeteroPastry
903 ia

o
)

-

Messages / secon
oo o o
oN » 0 ®

0 100 200 300 400 500 600 0 10 20 30 40 50 60
Session time (minutes) Time(hours)

Figure 14: Query success rate for Gia and HeteroPastrfigure 16: Messages per second per node when using

versus session time. constrained floods and random walks in HeteroPastry.
12000
Random walks R L.
10000 the nodes with the random walk. Additionally, random
. 80001 walks use acknowledgments and retransmissions to re-
6000 cover when the query is forwarded to a node that fails.

Delay (ms

This introduces delays that increase when the failure rate
in the trace increases (as shown in Figure 15). The de-
lay of constrained floods remains constant because we
0 o 2 2 4 s do not use acknowledgments and retransmissions and in-
Time(hours) stead rely on redundancy to cope with node failures. We
observed the same success rate for both flooding and
Figure 15: Query delay when using constrained flooding/andom walks, which demonstrates the effectiveness of
and random walks in HeteroPastry. using redundancy to cope with node failure during con-
strained floods.
) Figure 16 shows the number of messages per sec-
The success rates with 10,000 nodes are lower thagng per node when using constrained floods and ran-
those observed before because there are more nodes a§gy walks in HeteroPastry. It demonstrates the advan-
random walk length is still bound to 128. There are attage of random walks over flooding; random walks re-
most 2,700 active nodes at any time in the Gnutella traceg|t in lower overhead because they stop when they find
This also results in higher message overhead with 10,009 copy of the file and visit less nodes than constrained
nodes even with a session time of 600 minutes. ~ floods on average. It is interesting to note that the over-
~ The delay incurred for successful lookups is similarhead with constrained floods is comparable to the over-
in both HeteroPastry and Gia. HeteroPastry achieves fead in the unstructured overlays. Additionally, some
lower average delay per lookup because it has a highgeer-to-peer applications discover multiple nodes with
success rate and failed lookups take longer to completgatching content, for example, to enable more efficient
on average than successful lookups. Therefore, Hetgownloads with some form of striping. The benefit of
eroPastry achieves a delay at least 12% lower than Gigandom walks over constrained floods decreases in this
with 5 minute session times and at least 43% lower withcase. Constrained floods are likely to be the best strategy
600 minutes session time. for many applications.

4000

2000 4

0

4.3.3 Constrained floods .
5 Conclusion

We also compared the performance of constrained flood-

ing and random walks in HeteroPastry. We configuredit is commonly believed that unstructured overlays cope
constrained floods to visit at most 128 nodes as with thavith churn better, exploit heterogeneity more effectively,
random walks. Both algorithms visit exactly the sameand support complex queries more efficiently than struc-
128 nodes when the query fails so they have the sameired overlays. This paper shows that coping with churn,
success rate. exploiting heterogeneity and supporting complex queries

Figure 15 shows the delay for successful queries usingre not fundamental problems for structured overlays.

both constrained floods and random walks. It shows that We describe how to exploit structure to achieve high
constrained flooding can locate content faster than ranresilience to churn with maintenance overhead as low
dom walks. This is not surprising because constraineds unstructured overlays and how to modify proximity
flooding visits nodes in parallel; all 128 nodes are vis-neighbour selection to exploit heterogeneity effectively
ited after only 7 hops. It takes 128 hops to visit all to improve scalability. Additionally, we present a hybrid

system that uses the search and data placement strategieg
of unstructured overlays on a structured overlay topol-
ogy. Simulation results using a real-world trace show
that the hybrid system can support complex queries wit
lower message overhead while providing higher queru]
success rates and lower response times than the state of
the art in unstructured overlays.

The additional functionality provided by structured [18]
overlays has proven important to achieve scalability and
efficiency in a wide range of applications. Structured
overlays can emulate the functionality of unstructured!1®!
overlays with comparable or even better performance.
Interestingly, it is not clear that unstructured overlays carf?®
efficiently emulate the same functionality as structured
overlays.

[21]
References
[22]
[1] The Gnutella 0.4 protocol specification, 2000.
http://dss.clip2.com/GnutellaProtocol04.pdf.
[2] The Gnutella 0.6 protocol specification, 2002. [23]

http://www.limewire.org/.
[3
(4]

Kazaa, 2002. http://www.kazaa.com/.
24
BHAGWAN, R., SAVAGE, S.,AND VOELKER, G. Understanding [24]

availability. InIPTPS'03(Feb. 2003).

BLAKE, C., AND RODRIGUES R. High Availability, Scalable
Storage, Dynamic Peer Networks: Pick Two.HpntOS IX(May
2003).

CASTRO, M., COoSTA, M., AND ROWSTRON A. Performance
and dependability of structured peer-to-peer overlay 3’04
(June 2004).

CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON A.,
AND WALLACH, D. S. Security for structured peer-to-peer over-
lay networks. InOSDI'02(Dec. 2002).

CASTRO, M., DRUSCHEL, P., HJ, Y. C., AND ROWSTRON

A. Proximity neighbor selection in tree-based structured peer-
to-peer overlays. Tech. Rep. MSR-TR-2003-52, Microsoft Re-
search, Aug. 2003.

CASTRO, M., JONES, M. B., KERMARREC, A.-M., Row-
STRON, A., THEIMER, M., WANG, H., AND WOLMAN, A. An
evaluation of scalable application-level multicast built using peer-
to-peer overlays. linfocom’03(Apr. 2003). [31]

25
5] (25]

6 (26]

(27]
(7]

(28]

8

[29]

o [30]

[10] CHAWATHE, Y., RATNASAMY, S., BRESLAU, L., LANHAM,
N., AND SHENKER, S. Making Gnutella-like p2p systems scal- [32]

able. INSIGCOMM'03(Aug. 2003).

EL-ANSARY, S., ALIMA, L. O., BRAND, P.,AND HARIDI, S.
Efficient broadcast in structured p2p networkslRiTPS’03(Feb.
2003).

FESSANT, F. L., HANDURUKANDE, S., KERMARREC, A.-M.,
AND MASSOULIE, L. Clustering in peer-to-peer file sharing
workloads. INPTPS'04(Feb. 2004). 34]

GANESAN, P., SUN, Q., AND GARCIA-MOLINA, H. Yappers:
A peer-to-peer lookup service over arbitrary topology. Irifo-
com’03(Apr. 2003).

GNAWALI, O. A keyword set search system for peer-to-peer net-
works, 2002. Master Thesis, MIT.

The Gnutella protocol specification, 2000http://dss.
clip2.com/GnutellaProtocol04.pdf

[11]
(33]
[12]

[13] [35]

[14]

[15]

GumMADI, K. P., GummADI, R., GRIBBLE, S. D., RaT-
NASAMY, S., SHENKER, S., AND STOICA, |I. The impact of
DHT routing geometry on resilience and proximity. 81G-
COMM’'03 (Aug. 2003).

GUMMADI, P. K., DUNN, R. J., 3\ROIU, S., RRIBBLE, S.D.,
LEVY, H. M., AND ZAHORJAN, J. Measurement, modeling,
and analysis of a peer-to-peer file-sharing workloadS@SP’03
(Oct. 2003).

HARREN, M., HELLERSTEIN, J. M., HUEBSCH, R., LOO,
B. T., SHENKER, S.,AND STOICA, |. Complex queries in DHT-
based peer-to-peer networks.|IRTPS’02(Mar. 2002).

IYER, S., FOWSTRON A., AND DRUSCHEL, P. Squirrel: A
decentralized peer-to-peer web cacheP@®DC’'02 (July 2002).

Li, J., Loo, B. T., HELLERSTEIN, J., KAASHOEK, F.,
KARGER, D. R.,AND MORRIS, R. On the feasibility of peer-to-
peer web indexing and search. IRTPS’'03(Feb. 2003).

Li, J., SRIBLING, J., GL, T. M., MORRIS, R., AND
KAASHOEK, M. F. Comparing the performance of distributed
hash tables under churn. IRTPS'04(Feb. 2004).

Loo, B. T., HELLERSTEIN, J. M., HUEBSCH, R., SHENKER,
S.,AND STOICA, |. Enhancing P2P file sharing with an Internet-
scale query processor. LDB’04 (Sept. 2004).

LV, Q., Cao, P., @HEN, E., LI, K., AND SHENKER, S. Search
and replication in unstructured peer-to-peer networkdCHB'02
(June 2002).

Lv, Q., RATNASAMY, S.,AND SHENKER, S. Can heterogeneity
make Gnutella scalable? IRTPS'02(Feb. 2002).

RATNASAMY, S., RRANCIS, P., HANDLEY, M., KARP, R.,AND
SHENKER, S. A scalable content-addressable networkSIG-
COMM'01 (Aug. 2001).

RATNASAMY, S., HANDLEY, M., KARP, R.,AND SHENKER, S.
Application-level multicast using content-addressable networks.
In NGC’01(Nov. 2001).

REYNOLDS, P., AND VAHDAT, A. Efficient peer-to-peer key-
word searching. IMiddleware’03(Nov. 2003).

RHEA, S., GEELS, D., Roscog T., AND KuBIATOWICZ, J.
Handling churn in a DHT. IUSENIX'04(June 2004).

RowsSTRON A., AND DRUSCHEL, P. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-peer
systems. IrMiddleware’01(Nov. 2001).

SAROIU, S., QUMMADI, K., AND GRIBBLE, S. A measurement
study of peer-to-peer file sharing systems. MMCN’02 (Jan.
2002).

SEN, S.,AND WANG, J. Analyzing peer-to-peer traffic across
large networks. Innternet Measurement Worksh¢gov. 2002).

STOICA, |., MORRIS, R., KARGER, D., KAASHOEK, M. F.,
AND BALAKRISHNAN, H. Chord: A scalable peer-to-peer
lookup service for Internet applications. i GCOMM'01(Aug.
2001).

TANG, C., Xu, Z., AND DWARKADAS, S. Peer-to-peer informa-
tion retrieval using self-organizing semantic overlay networks. In
SIGCOMM’03(Aug. 2003).

ZEGURA, E., CALVERT, K., AND BHATTACHARJEE, S. How to
model an internetwork. INFOCOM’96 (1996).

ZHAO, B. Y., KuslaTowicz, J. D., AND JOSEPH A. D.
Tapestry: An infrastructure for fault-resilient wide-area location
and routing. Tech. Rep. UCB-CSD-01-1141, U. C. Berkeley, Apr.
2001.

