A PROBABILISTIC APPROACH TO DISTRIBUTED CLOCK SYNCHRONIZATION

Flaviu Cristian

IBM Almaden Research Center
San Jose, Ca 95120-6099

ABSTRACT: A probabilistic method is proposed for reading remote clocks
in distributed systems subject to unbounded rand ication delays.
The method can achieve clock synchronization precisions superior w0 those
anainable by previously published clock synchr algorithms. Its use
& illustrated by presenting a time service whick maintains externally {and
hence, internally) synchronized clocks in the presence of process, communi-
carion and clock failures.

INTRODUCTION

In a distributed system, external clock synchronization consists of
maintaining processor clocks within some given maximum devi-
ation from a time reference external to the system. Internal clock
synchronization keeps processor clocks within some maximum rel-
ative deviation of each other. Externally synchronized clocks are
also internally synchronized. The converse is not true: as time
passes internally synchronized clocks can drift arbitrarily far from
external time.

Clock synchronization is needed in many distributed systems.
Internal clock synchronization enables one to measure the dura-
tion of distributed activities that start on one processor and termi-
nate on another processor and to totally order distributed events
in a manner that closely approximates their real time precedence.
To allow exchange of information about the timing of events with
other systems and users, many systems require external clock syn-
chronization. For example external time can be used to record the
occurrence of events for later analysis by humans, to instruct a
system to take certain actions when certain specified (external)
time deadlines occur, and to order the occurrence of related events
observed by distinct systems.

This paper proposes a new approach for reading remote clocks in
networks subject to unbounded random message delays. The
method can be used to improve the precision of both internal and
external synchronization algorithms. Our approach is probabilistic
because it does not guarantee that a processor can always read a
remote clock with an a priori specified precision (such a guarantee
cannot be provided when there is no bound on message delays).
However, by retrying a sufficient number of times, a process can
read the clock of another process with a given precision with a
probability as close to one as desired. An important characteristic
of our method is that when a process succeeds in reading a remote
clock, it knows the actual reading precision achieved.

The use of the remote clock reading method is illustrated by de-
scribing a distributed time service which maintains externally
synchronized clocks despite process, communication and clock
failures. The service is implemented by a group of time servers
which execute a simple probabilistic clock synchronization proto-
col After presenting the protocol and its performance, we con-
clude by comparing it with other published clock synchronization
protocols.

MESSAGE DELAYS

To synchronize the clocks of their host processors, time server
processes communicate among themselves by sending messages via

CH2706-0/89/0000/0288$01.00 © 1989 IEEE

% of A
msgs

288

a communication network. Since there is a one to one corre-
spondence between time server pr and pr s, we do
not distinguish between pr and pr s. For example,
when we say "the clock of process P' we mean "the clock of the
processor on which P runs".

In distributed systems the task of synchronizing clocks is made
difficult (among other things) by the existence of unpredictable
communication delays. Between the moment a process P sends a
message to a process Q and the moment Q receives the message,
there is an arbitrary, random real time delay. A minimum min for
this delay exists. It can be computed by counting the time needed
to prepare, transmit, and receive an empty message in the absence
of transmission errors and any other system load. In general, one
does not know an upper bound on message transmission delays.
These depend on the amount of communication and computation
going on in parallel in the system, on the possibility that trans-
mission errors cause messages to be retransmitted several times,
and on other random events, such as page faults, process switches,
the establishment of new communication routes, or a freeze of the
activity of a process caused by a human operator who pushes the
‘halt’ button on the panel of the processor hosting that process.

Figure 1.

Measurements of process to process message delays in existing sys-
tems indicate that typically their distribution has a shape resembl-
ing that illustrated in Figure 1. This distribution has a maximum
density at a mode point between the minimum delay min and the
median delay, usually close to min, with a long thin tail to the right.
For instance, a sample measurement of 5000 message round trip
delays between two light-weight MVS processes (running on two
IBM 4381 processors connected via a channel-to-channel local area
network) performed at the Almaden Research Center [D}, indi-
cates a median round trip delay of 4.48 milliseconds situated be-
tween 2 minimum delay of 4.22 milliseconds and an average delay
of 4.91 milliseconds. While the maximum observed delay in this
experiment (during which no route changes or 'halt’ button pushes
occurred) was very far at the right: 93.17 milliseconds, 95% of all
observed delays were shorter than 5.2 milliseconds.

PREVIOUS WORK

Most published clock synchronization algorithms (e.g. [(CAS),
[DHSS]), [L], [LM), [LWL]}, [S), [ST]) assume the existence of an
upper bound max on real time message transmission delays. If the
delays experienced by delivered messages are smaller than max
with probability 1, these algorithms keep clocks within a maximum

min delay

relative deviation greater than max-min with probability one. It
is known {LL) that the closeness with which clocks can be syn-
chronized with certainty (i.e. with probability one) is limited: n
clocks canmot be synchronized with certainty closer than
(max-min)(1-1/n), even in the absence of failures and drift.

Other authors (e.g. [GZ], [M]) adopt the premise that message de-
lays are unbounded, and use as upper bounds on synchronization
message delays the timeout delays employed for detecting commu-
nication failures between processes. Such timeouts are introduced
by system designers to prevent situations in which some process P
waits forever for a message from another process Q that will never
arrive (for example because of a failure of Q). Since message de-
lays are unbounded, it is understood that a small percentage of
messages may need more than a given timeout delay to travel be-
tween processes, i.e. there is a chance that “false" communication
failures are detected. This is the price paid for letting systems sub-
ject to unbounded message transmission delays continue to work
despite process failures and message losses. To reduce the likeli-
hood of "false” alarms, a timeout delay is conservatively estimated
from network delay statistics to ensure that message delays are
smaller than the chosen timeout with a very high probability p
(typically p>0.99). If such a timeout delay is denoted by "maxp",
the best synchronization precision achievable by the algorithms
proposed in [GZ][M] can be characterized as being 4(maxp-min).

ASSUMPTIONS ON CLOCKS, PROCESSES, AND COMMU-
NICATION

Each time server process has access to the hardware clock H of its
host processor. To simplify our presentation, we assume these
clocks have a much higher resolution than the time intervals (e.g.
process to process communication delays) which must be measured.
For example, if the delays observable are of the order of millisec-
onds, we assume the hardware clocks have a microsecond resol-
ution. A clock H is correct if it measures the length t’-t of any real
time interval [t,'] with an error of @ most p(t-t'), where p is the
maximum clock drift rate from external (or real) time specified
by the clock manufacturer:

©) (1-p)(1-t") SH)-H() S (1 +p)(1-t").

In the above formula, it is implicit that the delay t-t’ is long enough
so that the worst case error in measuring its length caused by the
discrete clock granularity is negligible compared to that due to
drift. For most types of quartz clocks, the constant p is of the or-
der of 10-5. For example the worst actual drift rate measured for
the microsecond resolution clocks existing on the IBM 4381
processors in our laboratory is 6¥10-¢ {D}. Since p is such a small
quantity, we ignore in this paper terms of the order of p? or
smaller (e.g. we equate (1 + p)-! with (i-p) and (1 = p)~* with
(1+p)). A clock failure occurs if the clock correctness condition
(C) is violated. Examples of clock failure types are: crash failures
(i.e. the clock stops), timing failures (e.g. 2 change in the fre-
quency of the quartz oscillator driving the clock counter causes
the clock value to be incremented too fast or too slowly), and
Byzantine failures (e.g. the clock counter displays a nonmonotonic
time because some of its bits are stuck at 0 or 1). To simplify our
presentation, we assume initially that processor clocks are correct.
We relax this assumption later, by showing how one can detect and
handle arbitrary clock failures.

289

We assume that message delays between processes are unbounded.
As we will see later, the closer the distribution of such delays re-
sembles that of Figure 1 (i.e. the closer the median delay is to min),
the better our probabilistic clock synchronization algorithms per-
form. What is remarkable, however, is that their correctness does
not depend on any assumption about the particular shape of the
message delay density function. We also assume that, to let proc-
esses continue to work despite process failures or message losses, a
timeout delay maxp is chosen. The adoption of such a timeout de-
lay divides observable network behaviors into two classes. A com-
munication path (P,Q) between processes P and Q is said to
function correctly if any message sent by P is delivered uncorrupted
to Q within maxp time units. If a message accepted at one path end
is never delivered at the other end or is delivered after more than
maxp time units, the path suffers a late timing or performance failure
[CASD). We assume that communication channels between proc-
esses can only be affected by performance failures.

Processes undergo state transitions in response to message arrivals
and timeout events generated by timers. To simplify our presen-
tation we assume that between the occurrence of a timeout and
the invocation of the associated timeout handler there is a null
(process scheduling) delay and that process timers advance at the
same rate as the clocks of the underlying processors. Thus, a cor-
rect process which at real time t sets a timer to measure W time
units, is awakened in the real time interval
ft+(1-p)W,t+(1+p)W] We say that a process behaves correctly if
in response to trigger events (such as message arrivals or timeout
occurrences) it behaves in the manner specified. The specification
prescribes the state transitions which should occur and the time
intervals within which these transitions should occur. If, in re-
sponse to some trigger event, a process never performs its specified
state transition or undergoes it too early or too late (i.e. outside
the time interval specified), the process is said to suffer a fiming
failure {CASD). Processes which crash, omit to receive or send
certain messages, respond too slowly to trigger events (because of
excessive load or slow timers), or time out too early (because of
timers running at speeds greater than 1+p) are examples of timing
failures. We assume processes can suffer only fiming failures.

ATTEMPTING TO READ A REMOTE CLOCK

To read the clock of a process Q, a process P sends a message
("time=17") to Q. When Q receives the message it replies with a
message ("time=",T), where T is the time on Q's clock If P does
not receive a reply because of a failure, its attempt at reading Q's
clock fails. Assume that P receives a reply and let D be half of the
round trip delay measured on P’ clock between the sending of the
("time=17") message and the reception of the ("time=",T) mes-
sage.

Theorem: 1f the clocks of processes P and Q are correct, the value
displayed by Q's clock when P receives the ("time=",T) message is
in the interval [T+min(1-p), T+2D(1 +2p)-min(1 +p)}

Proof: Let t be the real-time when P receives the (“time=",T)
message from Q, and Cqy(t) be the value displayed by Q's clock at
that time. Let min+a, min+8, a>0, 820, be the real time delays
experienced by the ("'time=?") and ("time=",T) messages, respec-
tively, and let 2d be the real time round trip delay:

(1) 2d=2min+a+8.
Since a and B are positive, (1) implies:
) 0<B<2d-2min.

From the definition of 8, and the fact that Q's clock can run at any
speed in the interval {1-p,1+p), we can infer that, at real time t,
Q's clock satisfies the condition:

(3) Ca(1) €[T+(min+8)(1-p), T+ (min+B)(1+p)}
By combining (2) and (3) we obtain:
(4) Co(t) €[T+min(1-p), T+ (2d-min)(1 +p)}

Since the clock that P uses to measure the round trip delay can
drift at a rate of at most p from real time, it follows that

(5) d<D(1+p).
By substituting (5) into (4) we get (after some simplifications):
6) Co(V) e[T+min(1-p), T+2D(1+2p)-min(1 +p)}

End of proof.

The above theorem indicates that P can determine an interval
which contains Qs clock value if ir measures the round trip delay
2D. Since possible scenarios such as a=2(d-min), =0 and a=0,
B=2(d-min) are indistinguishable to P, and we assume that P does
not know the drift rate of Q's clock or its own clock, the value
Co(t) can be anmy point in this interval In other words:
[T+min(1-p),T+2D(1 +2p)-min(1 +p)) is the smaliest interval which
P can determine in terms of T and D that covers Q’s clock value.

Since P has no means of knowing exactly where Q's clock is in the
interval (6), the best it can do is to esnimare Co(t) by a function
CE(T.D) of what it knows, that is, T and D. In doing so, the actuval
error that P makes is:

{CE(T.D) - Co(1) |

P minimizes the maximum error it can make in estimating Cy(t)
by choosing C3(T.D) to be the midpoint of the interval (6):

%)) CH(T.D) = T+D(1+2p)-minp.

For this choice of CZ(T,D) , the maximnm error e that P can make
when reading Q's clock is half the length of the interval (16):

(€3] e = D(1+2p)-min.

Any other estimate choice leads to a bigger maximum error. We
refer to the expression (7) as "P's reading of Q's clock" and to (8)
as "P’s reading error" or "P's reading precision”.

READING A REMOTE CLOCK WITH A SPECIFIED PRECI-
SION

Formula (8) can be interpreted as follows: the shorter the round
trip delay is, the smaller P’s error in reading Q’s clock is. Thus, if
P wants to achieve a reading error smaller than a certain specified
maximum error (or precision) &, it must discard any reading at-
tempt for which it measures an actual round trip delay greater
than 2U, where

290

9) U = (1-2p)(s+min).

Indeed, by (8), such clock readings can lead to actual reading er-
rors greater than ¢. For this reason, we call a round trip delay
smaller than 2U successful, and refer to 2U as the fimeour delay nec-
essary for achieving the reading precision e. When the process P
observes a successful round trip, we say that it reaches rapport with

Q

The closer U is to min, the better P's reading precision is. How-
ever, since in the worst case P's timer can run at a rate as fast as
1+p, P must chose a timeout delay greater than

(10) Uaia = min(1+p),

to ensure that between the sending of a message and its reception
there is a real time delay of at least min. To achieve the best pos-
sible precision for which there exists a positive probability of
rapport, P must chose a timeout delay as close to Uaun as possible.
For such a limit timeout delay, formula (8) implies that the best
reading precision achievable by a clock reading experiment is

an €mi = 3pmin.

The first two ps correspond to the relative drift between Q’s clock
and P’s clock while the ("time=",T) message travels between Q
and P, and the third p corresponds to P's error in setting its timeout
delay so that jt measures at least min real time units.

Let p be the probability that P observes a round trip delay greater
than 2U. The larger U is, the smaller p will be. Conversely, the
smaller U is, the larger p will be. Thus, there exists a Jundamenzal
trade-off between the precision achievable when attempting to read
a remote clock and the probability 1-p of success. The better the
desired precision is, the smaller is the probability of success. Con-
versely, the worse the precision is, the greater is the probability
of success. In the limiting case, if a maximum real time message
delay max is known, by settling for a remote clock reading preci-
sion of max(l+3p)-min (corresponding to a timeout delay of
max(l +p)), one obtains a deterministic remote clock reading algo-
rithm (similar to the ones used by the synchronization algorithms
presented in [CAS), [DHSS], (L], [LM], (LWL), [S), [ST] which al
ways achieves rapport. The price for such a choice is poor precision.

Consider now a certain specified precision ¢ and the associated
probability p that a reading attempt fails. For this precision, the
probability that process P reaches rapport with process Q can be
increased if sewral clock reading attempts are allowed before P
gives up. To achieve a certain degree of independence between
successive attempts, these should be separated by a minimum
waiting delay W. This delay must be chosen so as to ensure that if
P and Q stay connected and correct, then any transient network
traffic bursts that may affect their communication disappear
within W clock time units with high probability. (A solution to the
problem of how to adapt to slower, nonbursty, network load
changes is sketched later.) To avoid P attempting, ad infinitum, to
read Q's clock when Q is permanently partitioned from P or has
crashed, one must decide on a maximum value k for the number
of successive attempts that P is allowed to make. For a given
choice of k, allowing for up to k reading attempts increases the
probability of success to 1-p*, Since P<1, this probability can be
made arbitrarily close to 1 by choosing a sufficiently large k.

For large values of k and a choice of W that ensures independence
between successive reading attempts, Bernoulli’s law yields that
the average number of reading attempts needed for achieving
rapport is (1 — p)-'. Since each attempt costs two messages, it fol-
lows that the average number of messages i for achieving rapport
is

2
a-p’
Formulae (8) and (12) indicate the existence of a conrinuum of dif-
ferent clock reading algorithms indexed by different timeout de-
lays U: from aggressive but risky algorithms indexed by U's close
to min which are capable of achieving high precisions by possibly
using a very large number of messages, to low risk "deterministic"”
algorithms indexed by U'’s close to max which achieve poor pre-
cisions by using a small number of messages.

(12) m =

A DISTRIBUTED TIME SERVICE.

The probabilistic clock reading method described above can be
used to improve the precision achievable by most of the internal
clock synchronization algorithms surveyed in [S) by letting time
servers read probabilistically the remote clock values used as in-
puts to the convergence functions mentioned there. Instead of
exploring this avenue, we devote the rest of the paper to describ-
ing a simple distributed time service which provides external clock
synchronization.

The goal is to keep clocks synchronized to an official source of
external time signals, such as the Universal Time Coordinated
(UTC) signals broadcast by the WWV radio station of NBS.
Commercially available receivers (e.g. [K)) can receive such
signals. The receivers can be attached to processors via dedicated
busses. To guard against a physical receiver failure, it is possible
to pair physically independent receivers into a self-checking receiver
unit, by continuously comparing their results, and interpreting any
disagreement among them as a failure of the pair [K]. If no multi-
ple failures occur, a self-checking receiver either displays correctly
the external time or signals an error. We assume that all radio
receivers used by the time service are self-checking. We also as-
sume that, for reasons of economy, only certain processors, called
masters, have time receivers attached to them. The other processors
are referred to as siaves. To simplify our presentation we initially
assume the existence of a unique, continnously available, master
time source. Issues related to the implementation of this master
time source by a group of redundant physical masters are discussed
Iater. To further simplify the presentation, we do not distinguish
between real (or atomic) time and astronomical UTC time, that is,
we ignore problems related to the existence of yearly UTC time
discontinuities known as "leap seconds”. (For a discussion of the
differences between these two time references, see [KOl) We
furthermore assume that the official source of external time is re-
Jiable and that its signals are always available for reception by the
radio receivers at s. The investigation of
the issues related to maintaining synchronization in the presence
of erroneous external time signals or in the absence of such signals
constitutes a research topic in its own right.

hed to pr

Continuously adjustable clocks

Some processor architectures enable the speed of a hardware clock
to be changed by software while others do not. Since the former

291

make clock management dependent on the particular commands
available for changing clock speeds, in this paper we chose to dis-
cuss the latter alternative. To compensate for the fact that the
speed of a hardware clock H is not adjustable, a logical clock C
with adjustable speed is implemented in software. The value of C
is defined as the sum of the local hardware clock H and a period-
jcally computed adjustment function A:

C(t) = H(1) + A1)

To avoid logical clock discontinuities (i.e. jumps) A must be a con-
tinuous function of time. For simplicity we consider only linear
adjustment functions

A(t) = m*H(t)+N,

where the m and N parameters are computed periodically as de-
scribed below. If, at local rapport time L, a slave estimates that the
master clock displays time M, ML, the goal is to increase (if
M>L) or decrease (if M<L) the speed of the slave clock C so that
it will show time M+a (instead of L+a) a clock time units after
rapport, where a is a positive clock amortization parameter. Since
at the beginning and end of the amortization period the slave clock
displays the values L=H(1+m)+N and M+a=(H+a)(1+m)+N,
respectively, where H is the hardware clock value at rapport, by
solving the above system of equations we conclude that the pa-
rameters m, N must be set to

(A) m= (M-L)/a, N=L-(1+m)*H

for the a clock time units following rapport. After the a amorti-
zation period elapses, at local time L'=M+a, the slave clock C can
be allowed to run again at the speed of the local hardware clock
until the next rapport by setting m to O and (to ensure continuity
of C) N to L'-H’, where H’ is the value displayed by the hardware
clock at the end of the amortization period.

The Master-Slave Synchronization Protocol

The time service is implemented by a group of distributed time
server processes, one per correctly f unctioning processor in the
system. The master server running on the master processor M
keeps the master logical clock Cy within a maximum deviation em
(external-master) of external (or real) time. A slave server §
keeps its logical clock C within a maximum deviation ms (master-
slave) from the master clock. In this way the maximum deviation
es of a slave from external time will be em+ms and the maximum
relative deviation of 1wo slaves will be ss=2ms.

Since the protocol used for synchronizing a master clock to the
clock of an attached self-checking receiver is similar to that used
for synchronizing a slave clock to a master clock, we only describe
the latter in detail The main difference between the two proto-
cols lies in the variability of observed round trip delays. While a
variability of the order of milliseconds is reasonable for master
slave communications, variabilities much smaller can be achieved
for the communication between a master time server and the self-
checking receiver attached via a dedicated bus (for instance by
ensuring that the master server does not relinquish control of the
master CPU during a receiver clock reading attempt). By formula
(8) this yields a very high receiver clock reading precision. If this
high reading precision is supplemented by the adoption of a high
master clock resynchronization {requency, the em constant can be

kept so small that it is reasonable to assume in what foliows that a
master clock runs at the same speed as the external time.

The absence of master drift, the fact that for current local area
network technology round trip delays smaller than 10 seconds are
the rule, and that a drift rate p of the order of 10~ or less makes
terms of the form dp -where d is a round trip delay- insignificant,
allows us to simplify the formulae (6)-(9) as follows. When a slave
S receives a successful round trip of length 2D from the master M,
the master clock C,, is in the interval [T+min, T+2D-min}:

(69 Ca(t) €[T+min, T+2D-min}.

By estimating the value of the master clock as being the midpoint
of this interval

(¢M) Ci(T.D) = T+D
the maximum reading error that S can make is
(8") e = D-min.

The protocol followed by a slave § relies upon the above simplified
formulae. The remainder of this section presents this protocol in-
formally and analyzes its behavior. A detailed description is given
in the Appendix.

To keep synchronized with a master, a slave S attempts periodically
to reach rapport. Each attempt at rapport consists of at most k
attempts at reading the master clock, where successive reading at-
tempts are separated by W clock time units. We assume W>2U, i.e.
a slave knows whether its previous reading attempt has succeeded
when it is time to try again reading. If during an attempt to reach
rapport all k reading attempts fail, S must leave the group of syn-
chronized slaves (such a departure can be followed by a later re-
join). Consider now that one of the reading attempts results in a
round trip delay 2D<2U allowing S to reach rapport with M. At
rapport, the speed of the slave logical clock C is set according to
the equations (A) for the next t, real time units, (1-p)a <t, <
(1+p)a, so that during amortization, say t real time units after
rapport, 0 < t < t,, the worst case distance d between the slave
clock C and the master clock is

o) d = (1-t/t,)ms + t/t,e + pt,

where e is the reading error and ms is the worst case distance be-
tween C and C,, at rapport. The term pt in (9') reflects the fact
after rapport the slave clock C continues to drift from C,,. During
amortization d is required 1o stay smaller than ms, i.e.

ao) (1-t/t,)ms + te/t, +pt < ms

By rewriting (10') we get

ar e+pt, <ms.
We show later that if amortization ends before a next attempt at
rapport, (11°) is satisfied.

Since the slave clock continues to drift from the master clock after
amortization ends, it follows that for any t>t,, the distance be-
tween C and Cy, can be as large as e+pt. To keep C and C,, within
ms of each other, i.e.

292

(12" e+ptsms,

it is sufficient to ensure that after each rapport (with error e) the
real time delay to the next rapport dar is smaller than

(13" dar = p-! (ms-e).

If at most k reading attempts are allowed (during which the slave
S can drift from the master by as much as pkw, where w=(1+p)W
is the maximum real time which can elapse between successive
reading attempts), it follows that the maximum real time delay
dna between a rapport and the next azempx at rapport must be

(14°) dna = p-! (ms-e)-(1+p)kW.

Since S must measure this delay with its own timer (which can run
as fast as {+p), S must set the timer measuring the delay to the
next attempt at rapport conservatively to

(15" DNA = (1-p)dna = p-'(1-p)(ms-e)-kW.

Note that the time interval which elapses between a rapport and
the beginning of the next attempt at rapport is wariable, since it is
a function of the round trip delay 2D observed at the last rapport.
If D is close to min, the tight synchronization precision achieved
allows the delay to the next attempt at rapport to be as long as:

(16" DNA,.; = p~*(1 —~ p)ms-kW.

When rapport is achieved with a round trip delay that is barely
acceptable (i.e. the reading error is close to U-min) the delay to
the next attempt can be as short as

anr) DNA,.. = p7'(1 = p)(ms+min-U)-kW.

We constrain amortization to end before a next attempt at
rapport, i.e.

(18" a € DNA,,..

Condition (18°) implies (11°), that is, if amortization ends before a
next attempt at rapport then C and C, stay within ms during
amortization. To keep logical clocks monotonic, the amortization
period must also be chosen so that the speed change parameter m
of (A) satisfies the relation m>-1. For this, it is sufficient to chose
a greater than ms+U-min (see (23°) for more details). Since the
amortization parameter a is positive

(19°) 0<a

we infer from (17') and (19°) that

(20°) ms>U-min+pk(1+p)W.

Thus, for a given choice of the U, k, and W constants, the smallest
master slave maximum deviation that can be achieved is

217 MSin = U-min+pk(1+p)W.

For aggressive risky algorithms for which U is close to min, maxi-
mum deviations as small as pk(1+p)W can be achieved at the ex-
pense of many synchronization messages (recall p is of the order
of 10-%). For sure "deterministic” algorithms for which U is close
to an assumed maximum delay max, we get synchronization pre-
cisions slightly worse than max-min with only two messages per
synchronization, a result comparable to the precisions achievable

by previously published deterministic synchronization algorithms
[CAS), [DHSS}, (L), [LL), {LM], (S}, [ST}

The clock reading method described naturally tolerates communi-
cation failures: up to k-1 successive performance failures can be
masked if they are followed by a successful rapport. The existence
of variable delays between successive slave synchronizations is a
useful property, since it will tend to uniformly spread the syn-
chronization traffic generated by independent slaves in time.

PERFORMANCE: TWO NUMERICAL EXAMPLES

To illustrate the synchronization precisions achievable by our time
service, we analyze in this section its performance in the context
of a simple system of two 4381 processors [D}, assuming one plays
the role of master and the other one the role of slave.

If we chose 2U to be the median round trip delay 2U=4.48 milli-
seconds, the probability p of an unsuccessful round trip is 0.5. By
(12) this yields an average number fl of messages per successful
rapport of N=4. Assuming that a probability of losing synchroni-
zation of 10- is acceptable, we find that at least k=30 successive
attempts at rapport should be allowed ((0.5)® < 10-?). Assuming
a worst case drift rate of p=6%10-%, a waiting time constant be-
tween successive reading attempts W of 2 seconds, formulae (16%)
and (17°) indicate that it is possible to achieve a maximum master
slave deviation ms of 1 millisecond. The minimum, average, and
maximum delays between successive synchronizations are 63, 67,
and 108 seconds, respectively. Thus, for this choice of U, p, k, and
W, a slave stays within a maximum deviation of ms=1 millisecond
from a master with probability greater than 1-10-° by sending on
the average il =4 messages every 1.11 minutes.

A more conservative choice of 2U’=5.2 milliseconds, yields a
probability p' of an unsuccessful round trip of 0.05 and an average
number @i * of messages per successful rapport of 2.1. For this p’,
to achieve a probability of successful rapport greater than 1-10-%,
k must be chosen to be at least 7 (i.e. ((0.05)? < 10-9). Since for
this choice of U, the reading error is 0.98 milliseconds, we settle
for the goal of achieving a maximum master slave deviation of
ms'= 2 milliseconds. Assuming as in the previous example p=6*
10-%, and W= 2 seconds, we find that to achieve the 2 milliseconds
maximum deviation, a slave must on the average spend 2.1 mes-
sages to reach rapport with a ter every 231 ds (3.85 min-
utes). The minimum and maximum delays between successive
resynchronizations is 230 and 273 seconds, respectively.

The above example precisions compare favorably with the best
precision of at most 44.47 milliseconds achievable by the
deterministic synchronization algorithms described in [CAS]),
{DHSS), (LM}, [LL], [M), (S}, [ST).

EXTENSIONS

In this section we relax two of the assumptions made earlier: the
existence of a continuously available master processor and the ex-
istence of reliable clocks that never faiL. We mention how to han-
dle slave failures and adapt to variable system load. In [Cr] we also
deal with the important problems of improving the accuracy with
which synchronized clocks measure the passage real-time and re-
ducing synchronization related message traffic by taking advan-

293

tage of past statistics on round trip message delays. The main idea
is to use these statistics to estimate the actual drift p, of hardware
clocks, and use this estimates to build, at a higher level of ab-
straction, self-adjusting virtual hardware clocks that run at speeds
very close to 1 by automatically compensating for the drift of the
underlying real hardware clocks.

Dealing with master server failures

With a uniﬁue master server, the master time service fails when
the unique process implementing it fails. The probability of a
master service failure can be reduced if the service is implemented
by a group of redundan: master servers, all synchronized within em
of external time. There are several ways in which such a group
can be structured. We mention three alternatives.

Active Master Ser. In this arrangement each slave multicasts
("time=1") requests to all masters, each master answers each time
request, and slaves pick up the first answer that arrives. With such
a strategy, synchronized slaves will stay within es =em+ms of ex-
ternal time, but since some slaves might be synchronized to one
master, and some others to another, the relative deviation among
slaves ss becomes 2es, instead of 2ms as before. This solution leads
to an increase in message cost: 2m messages per attempt at
rapport, where m is the number of members in the master group.
Note, however, that if all processors are on a broadcast local area
network, this number can be reduced to m+1.

Ranked Master Group. To reduce the message cost, one can use a
synchronous membership protocol [C] to rank the group of active
masters into a primary synchronizer, back-up, and so on. With
such an arrangement slaves would send their requests only to the
primary. This results in a message cost per attempt at rapport of
2. Let C be the upper bound on the failure detection time guar-
anteed by the synchronous master membership protocol (C is a
function of the partition detection timeout delay maxp that is
chosen [C]) and let A be the time needed to inform the siaves that
all subsequent time requests should be sent to a new master. If W
is chosen greater than C+A, a slave cannot distinguish between a
master failure and an excessive synchronization message delay, so
the maximum deviations es and ss stay as before, ie. es=em+ms,
ss=2es. If W is chosen smaller than C+ A, then one has to adopt &
higher upper bound on the maximum number of successive at-
tempts at rapport and the analysis of the probability of achieving
rapport becomes slightly more complex.

Active Master Ring. A third solution would use a master membership
protocol to order all active masters on a virtual ring. To send a
time request a slave chooses an active master at random. If no an-
swer arrives within 2U, the slave asks the next active master on
the ring, and so on. The message cost of each attempt at rapport
is 2 as in the Ranked Master Group case, but the maximum deviations
es and ss stay the same as in the Acnive Master Set architecture, irre-
spective of the relation between W and C+A, where A corre-
sponds in this case to the worst case time needed to inform all
slaves of a master group membership change.

Detecting clock failures

Let U,,, min,, be the parameters of the probabilistic algorithm run
by a master M to synchronize its clock C,, to the clock C, of its

attached receiver R. The maximum difference which can exist
between C,, and M's estimate of C, at rapport is

(22" maxadjy = ey +em.

The first term e,, = Uy — min,, represents the maximum error in
reading Cp while the second term accounts for the maximum dis-
tance which might exist between Cy and Cy, at rapport. If a pre-
viously synchronized master M detects at rapport that the distance
between C,, and its estimate of C, is greater than maxadjy , &
master clock failure has occurred (recall our assumption that the
source of external time signals is reliable and that receivers are
selfchecking). Upon detecting the failure of its local clock, a
master server leaves the active master group after reporting the
failure to an operator.

Similarly, if a master M and a slave S are correct and synchronized
within ms, the maximum difference at rapport between the clock
C of the slave and the slave's estimate of C,, is

237 maxadjs = (U — min) + ms + 2em .

The last term is added because S can successively synchronize to
different masters that are 2em apart from each other. A slave
which at rapport detects that its clock is more than maxadjs apart
from a master, detects either a master or a local clock failure. As-
suming that masters synchronize more frequently than slaves, if a
master clock failure has occurred, the master will detect the fail-
ure before the next rapport with the slave. Thus, a slave detects a
local clock failure if it observes twice in a row that its distance to
the same master clock is greater than maxadjs. Upon detecting the
failure of its clock, a slave leaves the group of synchronized time
servers after reporting the failure to an operator.

Dealing with slave server failures

A slow slave, which takes too long to read its messages or to time
out, eventually discovers that the distance between its clock and a
master clock has become unacceptable when it evaluates the test
(23%). Early slave timing failures (e.g. caused by fast slave timers)
lead to an increase in network synchronization traffic. The oc-
currence of such failures can be detected by the master group, if
the masters keep track of the last time each slave has asked for the
time. If a slave asks too often, the masters could simply ignore it.
The faulty slave will then fail to synchronize and will eventually
leave the group of synchronized servers.

Adapting to changing system load

Another extension consists in making the choice of the actual U-
indexed slave synchronization algorithm used in a system at a
given moment dependent on the system load. We sketch here a
possible way to take into consideration system load when deciding
on a round trip acceptability threshold U. The intention is that U
should increase when load increases and should decrease when load
decreases. This can be achieved in the following way. If ar least one
slave experiences k'<k successive unsuccessful attempts at reach-
ing rapport with a master, it should announce to the master group
that all slaves have to adopt a higher timeout delay U’ (U'>U)
known in advance. The masters could then agree on this and dif-
fuse a decision that beginning with some time in the future every-
body has to switch to the new round trip acceptability threshold

U’ and, hence, to bigger master-slave maximum deviations. The

294

effect will be to increase the maximum master slave clock devi-
ation when the system load increases.

To decrease the maximum clock deviation when load is light, a
slave processor could communicate to the master group the fact
that it measures round trip delays that are consistently smaller
than U", for some U"<U known in advance. If the masters receive
such messages from all slave processors, they could diffuse the in-
formation that beginning with some time in the future, everybody
should decrease their round trip acceptability threshold to U". The
effect will be to decrease the master slave clock deviation when
the system load decreases.

CONCLUSION

A new probabilistic approach for reading remote clocks was pro-
posed and illustrated by presenting a synchronization algorithm
that achieves external clock synchronization. The new approach
allows one to achieve precisions better than the best precision
bound (max-min)(1-1/n) guaranteeable by previously published
deterministic algorithms [CAS), [DHSS), (L} {LL]. [LM], [LWL],
{S), [ST} (Specialized hardware can be used to reduce the differ-
ence between max and min {KO), but the inherent limitation of
deterministic protocols remains unchanged.) When indexed by a
conservative parameter U, such as a partition detection timeout
delay maxp, our external clock synchronization algorithm also
achieves a relative deviation at rapport 2(maxp-min) smaller than
the best precision 4(maxp-min) achievable by previously published
algorithms based on partition detection timeouts [GZ), [M]. One
of the key observations of this paper is that no relation needs to
exist between clock synchronization and partition detection time-
out delays. Synchronization algorithms indexed by timeout pa-
rameters U close to min can in theory achieve synchronization
precisions close to 3pmin, where p and min are of order of 10-*and
10-3 seconds, respectively, for commercially available clocks and
local area networks. One can envisage that by estimating actual
clock drift rates and using self-adjusting clocks as suggested in
[Cr), one could achieve precisions even better than the above
bound.

Besides improving synchronization precision, the new approach
has other properties worth mentioning. Since a probabilistic ap-
proach does not assume an upper bound on message transmission
delays, it can be used to synchronize clocks in all systems, not only
those which guarantee an upper bound on message delays. A
probabilistic time service such as the one sketched previously dis-
tributes uniformly the clock synchronization traffic in time,
avoiding the periodic synchronization traffic bursts produced by
the existence of synchronization points in previously known syn-
chronization algorithms. The service is simple to implement (see
Appendix) and robust. Likely process and communication failures
are tolerated. Clock failures are detected and processes with
faulty clocks are shut down. Finally the time service described is
efficient: it uses a number of messages that is linear in the number
of processes to be synchronized.

While deterministic synchronization protocols always succeed in
synchronizing clocks, the probabilistic approach proposed in this
paper carries with it a certain risk of not achieving synchroniza-
tion. In view of the impossibility result of {LL) that deterministic
clock synchronization algorithms cannot synchronize the clocks of

1 processes closer than (max-min)(1-1/n), this seems to be an un-
avoidable price for wanting to achieve a higher precision. As the
desired precision becomes higher, more messages are sent and the
risk of not achieving synchronization becomes higher. Conversely,
as the desired precision becomes lower, the risk of not achieving
synchronization becomes lower and fewer messages need to be
sent. Actually, the U-indexed family of master-slave synchroniza-
tion algorithms presented achieves a conninuum between, at one
end, sure "deterministic" protocols (indexed by large Us close to
maxp or max) that achieve poor precision with a high probability
and a small number of messages, and "aggressive" protocols (in-
dexed by small Us close to min) capable of achieving very high
precision but which carry with them a significant risk of not
achieving synchronization even when substantial numbers of mes-
sages are exchanged. In practice, one needs to choose a parameter
U that achieves the right balance between precision and message
overhead, and reduces the risk of losing synchronization to a level
that is acceptably small

The new view cast on clock synchronization in this paper prompts
a number of questions which can lead to further research. We
mention here several. How is it possible to improve the accuracy
of some of the internal clock synchronization algorithms surveyed
in [S) by using probabilistic remote clock reading methods? What
lower bounds exist for probabilistic synchronization algorithms?
How can the accuracy of clock synchronization be improved if one
knows the distribution obeyed by message delays? How can one
estimate bounds on the actual drift rate of hardware clocks that
are better than the manufacturer specified bound p? (An answer
to this question for the case when the actual clock drift is a con-
stant is given in [Cr], but other cases also need to be considered,
e.g. the actual drift rate of clocks is a time varying function pos-
sessing a first derivative bounded by constants from above and
below). And finally, how can one design algorithms which adapt
to variable system load?

ACKNOWLEDGEMENTS

The idea that the randomness inherent in message transmission
delays can be used to improve clock synchronization precision
originated while the author was working with John Rankin and
Mike Swanson on problems related to synchronizing the clocks of
high end IBM processors in Poughkeepsie, NY, during February
1986. In the summer of 1987, John Palmer independently proposed
a similar clock synchronization protocol for the high end Amoeba
system prototype under develop t at the Almaden R ch
Center. The round trip delay measurements used in this paper
were performed by Margaret Dong in the Amoeba system. Dis-
cussions with Danny Dolev, Frank Schmuck, Larry Stockmeyer,
and Ray Strong helped improve the contents and the form of this
exposition. The research presented was partially sponsored by
IBM's Systems Integration Division group located in Rockville,
Maryland, as part of a FAA sponsored project to build a new air
traffic control system for the US.

REFERENCES

[C] F. Cristian: Reaching Agreement on Processor Group Mem-
bership in Synchronous Distributed Systems", 18th Int Conf on
Fault-Tolerant Computing, Tokyo, Japan, June 1988.

295

[CAS] F. Cristian, H. Aghili, R Strong: Approximate Clock
Synchronization despite Omission and Performance Faults and
Processor Joins, 16th International Symposium on Fault-Tolerant
Computing, Vienna, Austria, 1986.

[CASD] F. Cristian, H. Aghili, R Strong, D. Dolev: Atomic
Broadcast: From Simple Message Diffusion to Byzantine Agree-
ment, 15th International Symposium on Fault-Tolerant Comput-
ing, Ann Arbor, Michigan, June 1985.

[Cr] F. Cristian: Probablistic Clock Synchronization, IBM Re-
search report RJ6432, Revised version, March 1989.

[D] M. Dong, private communication, June 1988.

[DHSS] D. Dolev, 1. Halpern, B. Simons, R. Strong: Fault-Tolerant
Clock Synchronization, Proc of the 3d ACM Symposium on Prin-
ciples of Distributed Computing, 1984.

(GZ) R. Gusella, S. Zatti: The Accuracy of the Clock Synchroniza-
tion Achieved by Tempo in Berkeley Unix 4.3BSD. Report
UCB/CSD 87/337, 1987.

[K] Kinemetrics/Truetime: Time and Frequency Receivers,
Santa Rosa, California, 1986.

{KO] H. Kopetz, W. Ochsenreiter: Clock Synchronization in Dis-
tributed Real-Time Systems, IEEE Tr. on Comp., Vol C-36, NO. 8,
1987.

[L] L. Lamport: Synchronizing Time Servers, TR 18, DEC Systems
Research Center, Palo Alto, California, June 1987.

[LL] J. Lundelius, N. Lynch: An upper and Lower Bound for Clock
Synchronization, Information and Control, Vol 62, No. 2-3, 1984,
pp. 190-204.

[LM] L. Lamport, M. Melliar-Smith: Synchronizing Clocks in the
Presence of Faulits, Journal of the Association of Computing Ma-
chinery, Vol 32, No. 1, January 1985, pp. 52-78.

{LWL] J. Lundelius-Welch, N. Lynch: A New Fault-tolerant Algo-
rithm for Clock Synchronization, Information and Computation,
Vol 77, No. 1, 1988, pp. 1-36.

[M] K. Marzullo: Maintaining the Time in a Distributed System,
Xerox report OSD-T8401, March 1984

[S] F. Schneider: Understanding Protocols for Byzantine Clock
Synchronization, TR 87-859, Cornell Univ., August 1987.

{ST] T.K. Srikanth, S. Toueg: Optimal Clock Synchronization,
JACM, Vol 34, No. 3, July 1987, pp. 626-645.

APPENDIX: DETAILED DESCRIPTION OF THE MASTER
SLAVE PROTOCOL

A detailed description of a slave time server under the simplifying
unique master assumption is given in Figures 2 and 3. To simplify
this presentation, we do not give a detailed description of the mas-
ter time server, since it is similar to a slave server and we do not
use self-adjusting logical slave clocks. In what follows, we refer to
line j of figure i as (i.j).

The round trip acceptability threshold U, the maximum number
of successive reading attempts k, waiting time between reading
attempts W, and the amortization delay a, and the maximum devi-
ation ms are parameters of the protocol (2.1). Once U is chosen,

1 task Slave(U:Time, k:Int, W,a,ms:Time);

2 const min: Time;

3 master: processor;

4 var T,T",D,N: Time; try,sn: Integer; m: Real;

b Synch,Attempt,Amort: Timer;

6 synchronized: Boolean; H: hardware-clock;

7 sne<0; synchronized «false; Synch.set(0);

8 cycle

9 when lreceive("time?") do send-local-time;

10 when Synch.timeout

11 dotryel;snesn+l; T'«H;

12 send("time="7",sn) /0 master; Attempt.set(W);
13 when receive(''time=",ETsn')

14 do if sns#sn’ then iterate fi;

15 T«H; D« (T-T")/2;

16 if D>U then iterate fi;

17 Attempt.reset; compute-adjustment;

18 Synch.set(p='(1 - p)(ms+min-D)-kW));

19 when Attempt.timeout

20 do if try> K then synchronized «false; "leave" fi;
21 tryetry+1;snesn+1; T«H;

22 send("time="?",sn) 10 master; Attempt.set(W);
23 when Amort.timeout do m«0; N«N-HC;

24 endcycle

Figure 2.

the probability p that, under worst case load conditions, a round
trip delay is greater than 2U is also determined. The constant k
must be chosen to ensure that the probability p* of observing k
successive round trip delays greater than 2U is acceptably small
(typically two or more orders of magnitude smaller then the in-
stantaneous crash rate of the underlying processor). We assume
that the constant W is chosen greater than the acceptable round
trip delay 2U.

1 procedure send-local-time;

2 if synchronized

3 then lsend("time=",H+N+m*H)
4 else Isend("undefined")

5 M

6 procedure compute-adjustement;

7 if synchronized

8 then if ~okadj then synchronized «false; "'leave" fi;
9 me((ET+D)-(T+N+m*T))/a;

10 N<N-m*T; Amort.set(a);

11 else m«0; N« (ET+D)-T;

12 synchronized « true;

13 fi;

Figure 3.

The slave protocol uses three timers (2.5): a “Synch" timer for
measuring delays between successive synchronization attempts, an
"Attempt" timer for measuring delays between successive master
clock reading attempts, and an "Amort” timer for measuring
amortization periods. There are two kinds of operations that are
defined on a timer T: set and reset. The meaning of a T.set(8) in-
vocation is "ignore all previous T.set invocations and signal a
T.timeout event & clock time units from now". The meaning of a
T.reset invocation is "ignore all previous T.set invocations”. Thus,
if after invoking T.set(100) at local time 200, a new T.set(100) in-

296

vocation is made at local time 250, there is no timeout event at
time 300. If no other T.set or T.reset invocation is made before
time 350, a timeout event occurs at local time 350.

A local Boolean variable "synchronized" (2.6) is true when the lo-
cal clock is synchronized to the master clock and is false when the
local clock can be out of synchrony with respect to the master
clock. The local logical time is undefined when "synchronized" is
false (3.4). To prevent any confusion between messages pertaining
to old and current clock reading attempts in the presence of per-
formance failures each attempt is uniquely identified by a se-
quence number "sn" (2.4). Another variable "try" counts the
number of unsuccessful master clock reading attempts (2.4).

1 task Master;
4 war N: Time; m: Real; H: Hardware-clock;

2 cxcle

3 when receive('time=7",sn) froms

4 do send("time="H+N+m*Hsn)ws
S endcycle;

Figure 4.

After initializing the "sn” and “synchronized” local variables, an
attempt to synchronize with the master is immediately scheduled
(2.7). When the Synch.timeout event occurs (2.10), the counter
for unsuccessful attempts “try" is initialized and a message num-
bered “sn" is sent to the master (2.12). The master responds to this
message by sending its clock value (4.3). To simplify our presenta-
tion, we assume that a master clock is always synchronized to ex-
ternal time (the absence of synchrony with external time at the
master can be handled in a manner similar to the absence of
synchrony with the master at a slave). When a master response
arrives (2.13), if the received sequence number matches the local
sequence number (2.14) the message is accepted, otherwise it is
discarded (the werate command terminates the current iteration of
the loop (2.8-2.24) and begins a new iteration). Unacceptably long
round trips are discarded (2.16). Unsuccessful reading attempts
cause Attempt.timeout events (2.19). Indeed, the "Attempt" timer
is set by each new attempt at reaching rapport (2.12, 2.22) and is
reset only when rapport is reached (2.17). If k successive unsuc-
cessful attempts occur (2.20), a slave can no longer be sure that its
clock is within ms from the master clock and must leave the group
of synchronized slaves. Such a departure can be followed by a
later rejoin.

Consider now that a matching answer which arrives in less than
2U time units leads to a successful rapport and causes the "At-
tempt" timer to be reset (2.17). If the slave logical clock was not
previously synchronized, it is bumped to the estimate (7') of the
master time (3.11). If the slave was previously synchronized, and
the adjustment to be made passes the reasonableness test "okadj"
(3.8) defined in (23"), the speed of the local logical clock C is set so
as to reach the slave’s estimate of the master clock within a clock
time units (3.9-3.10) following equation (A). After amortization
ends (2.23) the logical slave clock is let again to run at the speed
of the hardware clock until the next rapport (2.17).

