
Designing Real-Time Applications with the COMET/UML Method
Hassan Gomaa

Department of Information and Software Engineering
George Mason University

Fairfax, Virginia 22030, USA
hgomaa@gmu.edu

1. Introduction
Most object-oriented analysis and design methods only address the design of sequential systems or omit the
important design issues that need to be addressed when designing real-time and distributed applications
[Bacon97, Douglas99, Selic94]. It is essential to blend object-oriented concepts with the concepts of concurrent
processing [MageeKramer99] in order to successfully design these applications. This paper describes some of
the key aspects of the COMET method for designing real-time and distributed applications, which integrates
object-oriented and concurrent processing concepts and uses the UML notation [Booch98, Rumbaugh99].

2. The COMET Method
COMET is a UML based Concurrent Object Modeling and Architectural Design Method for the development of
concurrent applications, in particular distributed and real-time applications [Gomaa00]. The COMET Object-
Oriented Software Life Cycle is highly iterative.

In the Requirements Modeling phase, a use case model is developed in which the functional requirements of
the system are defined in terms of actors and use cases. In the Analysis Modeling phase, static and dynamic
models of the system are developed. The static model defines the structural relationships among problem
domain classes. Object structuring criteria are used to determine the objects to be considered for the analysis
model. A dynamic model is then developed in which the use cases from the requirements model are refined to
show the objects that participate in each use case and how they interact with each other. In the dynamic model,
state dependent objects are defined using statecharts.

In the Design Modeling phase, an Architectural Design Model is developed. Subsystem structuring criteria
are provided to design the overall software architecture. For distributed applications, a component based
development approach is taken, in which each subsystem is designed as a distributed self-contained component.
The emphasis is on the division of responsibility between clients and servers, including issues concerning the
centralization vs. distribution of data and control, and the design of message communication interfaces,
including synchronous, asynchronous, brokered, and group communication. Each concurrent subsystem is then
designed, in terms of active objects (tasks) and passive objects. Task communication and synchronization
interfaces are defined. The performance of real-time designs is estimated using an approach based on rate
monotonic analysis [SEI93].

3. Requirements Modeling with UML
In the Requirements Model, the system is considered as a black box. The Use Case Model is developed in
which the functional requirements of the system are defined in terms of use cases and actors. An actor is very
often a human user. In real-time and distributed applications, an actor can also be an external I/O device or a
timer. External I/O devices and timer actors are particularly prevalent in real-time embedded systems, where the
system interacts with the external environment through sensors and actuators.

4. Analysis Modeling with UML

4.1 Static Modeling
For real-time applications, it is particularly important to understand the interface between the system and the
external environment, which referred to as the system context. In UML, the system context may be depicted
using either a static model or a collaboration model [Douglass99]. A system context class diagram provides a
more detailed view of the system boundary for a real-time system than a use case diagram.

Using the UML notation for the static model, the system context is depicted showing the system as an
aggregate class with the stereotype «system», and the external environment is depicted as external classes to
which the system has to interface. External classes are categorized using stereotypes. An external class can be an
«external input device», an «external output device», an «external I/O device», an «external user», an
«external system», or an «external timer». For a real-time system, it is desirable to identify low level external
classes that correspond to the physical I/O devices to which the system has to interface. These external classes
are depicted with the stereotype «external I/O device». Standard association names are used on system context
class diagrams as follows:
«external input device» inputs to «system»

2

«system» outputs to «external output device»
«external user» interacts with «system»
«external system» interfaces to «system»
«external timer» awakens «system»

4.2 Dynamic Modeling
For concurrent, distributed, and real-time applications, dynamic modeling is of particular importance. UML
does not emphasize consistency checking between multiple views of the various models. During dynamic
modeling, it is important to understand how the finite state machine model, depicted using a statechart that is
executed by a state dependent control object, relates to the interaction model, which depicts the interaction of
this object with other objects.

State Dependent Dynamic Analysis addresses the interaction among objects that participate in state
dependent use cases. A state dependent use case has a state dependent control object, which executes a
statechart, providing the overall control and sequencing of the use case. The interaction among the objects that
participate in the use case is depicted on a collaboration diagram or sequence diagram.

The statechart needs to be considered in conjunction with the collaboration diagram. In particular, it is
necessary to consider the messages that are received and sent by the control object, which executes the
statechart. An input event into the control object on the collaboration diagram must be consistent with the same
event depicted on the statechart. The output event (which causes an action, enable or disable activity) on the
statechart must be consistent with the output event shown on the collaboration diagram.

When the state dependent dynamic analysis has been completed for the main sequence of the use case, the
alternative sequences described in the use case need to be considered. For example, alternative branches are
needed for error handling.

5. Design Modeling

5.1 Software Architecture
In order to transition from analysis to design, it is necessary to synthesize an initial software design from the
analysis carried out so far. In the analysis model, a collaboration diagram is developed for each use case. The
consolidated collaboration diagram is a synthesis of all the collaboration diagrams developed to support the
use cases. The consolidation performed at this stage is analogous to the robustness analysis performed in other
methods [Jacobson92, Rosenberg99]. These other methods use the static model for robustness analysis, whereas
COMET emphasizes the dynamic model, as this addresses the message communication interfaces, which is
crucial in the design of real-time and distributed applications.

The consolidated collaboration diagram depicts the objects and messages from all the use case based
collaboration diagrams. Objects and message interactions that appear on more than one collaboration diagram
are only shown once. In the consolidated collaboration diagram, it is necessary to show the messages that are
sent as a result of executing the alternative sequences in addition to the main sequence through each use case.
The consolidated collaboration diagram is thus intended to be a complete description of all message
communication. The consolidated collaboration diagram can get very large for a large system, and it may not be
practical to show all the objects on one diagram. One approach to handling the scaleup problem is to develop
consolidated collaboration diagrams for each subsystem, and develop a higher-level subsystem collaboration
diagram to show the dynamic interactions between subsystems, which depicts the overall software architecture.

5.2 Architectural Design of Distributed Applications
Distributed real-time applications execute on geographically distributed nodes supported by a local or wide area
network. With COMET, a distributed application is structured into distributed subsystems, where a subsystem
is designed as a configurable component and corresponds to a logical node. A subsystem component is defined
as a collection of concurrent tasks executing on one logical node. As component subsystems potentially reside
on different nodes, all communication between component subsystems must be restricted to message
communication. Tasks in different subsystems may communicate with each other using several different types
of message communication including asynchronous communication, synchronous communication, client/server
communication, group communication, brokered communication, and negotiated communication.

5.3 Task Structuring
During the task (active object) structuring phase, each subsystem is structured into concurrent tasks and the task
interfaces are defined. Task structuring criteria are provided to assist in mapping an object-oriented analysis
model of the system to a concurrent tasking architecture. Following the approach used for object structuring,
stereotypes are used to depict the different kinds of tasks. Stereotypes are also used to depict the different kinds
of devices the tasks interface to. During task structuring, if an object in the analysis model is determined to be
active, then it is categorized further to show its task characteristics. For example, an active «I/O device
interface» object is considered a task and categorized as one of the following: an «asynchronous I/O device

3

interface» task, a «periodic I/O device interface» task, a «passive I/O device interface» task, or a «resource
monitor» task. Similarly an «external input device» is classified, depending on its characteristics, into an
«asynchronous input device» or «passive input device».

5.4 Detailed Software Design
In this step, the internals of composite tasks that containing nested objects are designed, detailed task
synchronization issues are addressed, connector classes are designed that encapsulate the details of inter-task
communication, and each task’s internal event sequencing logic is defined.

If a passive class is accessed by more than one task, then the class's operations must synchronize the access to
the data it encapsulates. Synchronization is achieved using the mutual exclusion or multiple readers and writers
algorithms.

Connector classes encapsulate the details of inter-task communication, such as loosely and tightly coupled
message communication. Some concurrent programming languages such as Ada and Java provide mechanisms
for inter-task communication and synchronization. Neither of these languages supports loosely coupled message
communication. In order to provide this capability, it is necessary to design a Message Queue connector class,
which encapsulates a message queue and provides operations to access the queue. A connector is designed
using a monitor, which combines the concepts of information hiding and task synchronization [Bacon97,
MageeKramer99]. These monitors are used in a single processor or multiprocessor system with shared memory.
Connectors may be designed to handle loosely coupled message communication, tightly coupled message
communication without reply, and tightly coupled message communication with reply.

6. Performance Analysis of Real-Time Designs
Performance analysis of software designs is particularly important for real-time systems. The consequences of a
real-time system failing to meet a deadline can be catastrophic.

The quantitative analysis of a real-time system design allows the early detection of potential performance
problems. The analysis is for the software design conceptually executing on a given hardware configuration
with a given external workload applied to it. Early detection of potential performance problems allows
alternative software designs and hardware configurations to be investigated.

In COMET, performance analysis of software designs is achieved by applying real-time scheduling theory.
Real-time scheduling is an approach that is particularly appropriate for hard real time systems that have
deadlines that must be met [SEI93]. With this approach, the real time design is analyzed to determine whether it
can meet its deadlines.

A second approach for analyzing the performance of a design is to use event sequence analysis and to
integrate this with the real-time scheduling theory. Event sequence analysis considers scenarios of task (active
object) collaborations and annotates them with the timing parameters for each of the active objects participating
in each collaboration, in addition to system overhead for inter-object communication and context switching. The
equivalent period for the active objects in the collaboration is the minimum inter-arrival time of the external
event that initiates the collaboration.

7. Conclusions
When designing real-time and distributed applications, it is essential to blend object-oriented concepts with the
concepts of concurrent processing. This paper has described some of the key aspects of the COMET method for
designing real-time and distributed applications, which integrates object-oriented and concurrent processing
concepts and uses the UML notation.

8. References
[Bacon97] Bacon J., “Concurrent Systems”, Second Edition, Addison Wesley, 1997.
[Booch98] G. Booch, J. Rumbaugh, I. Jacobson, “The Unified Modeling Language User Guide”, Addison Wesley, 1999.
[Douglass99] B. P. Douglass, “Real-Time UML”, Second Edition, Addison Wesley, 1999
[Gomaa00] H. Gomaa, “Designing Concurrent, Distributed, and Real-Time Applications with UML”, Addison Wesley,

2000.
[Jacobson92] I. Jacobson, Object-Oriented Software Engineering, Addison Wesley, 1992.
[MageeKramer99] J. Magee and J. Kramer, “Concurrency: State Models & Java Programs”, John Wiley & Sons, 1999.
[Rosenberg99] D. Rosenberg and K. Scott, “Use Case Driven Object Modeling with UML”, Addison Wesley, 1999.
 [Rumbaugh99] J. Rumbaugh, G. Booch, I. Jacobson, “The Unified Modeling Language Reference Manual”, Addison

Wesley, 1999.
[SEI93] Carnegie Mellon University Software Engineering Institute, "A Practioner's Handbook for Real-Time Analysis -

Guide to Rate Monotonic Analysis for Real-Time Systems", Kluwer Academic Publishers, Boston, 1993.
[Selic94] B. Selic, G. Gullekson, and P. Ward, “Real-Time Object-Oriented Modeling”, Wiley 1994.

