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ABSTRACT

The design of distributed applications in a CORBA based
environment can be arried out by means of an incremental
approach, which starts from the spedfication and leads to
the high level architedural design. This is done by
introducing in the spedfication al typica elements of
CORBA and by providing a methodological support to the
designers. The paper discusses a methodology to transform
a formal spedfication written in TRIO into a high level
design document written using an extenson of TRIO
named TC. The TC language is siited to formally describe
the high level architedure of a CORBA based application.
The methodol ogy and the associated language are presented
by means of an example involving a real Supervision and
Control System.

Keywords

CORBA, Design, Forma Methods, Tempora Logic,
Supervision and Control Systems

1 INTRODUCTION

During the past few years, distributed computing has
gained more and more importance in the Information
Tecdhnology domain. One of the most promising approaches
to the development of distributed systems is represented by
the Objed Management Group (OMG) Common Objed
Request Broker Architedure (CORBA) [19, 20].
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The OMG has aso defined a complete architedure
(OMG/OMA, [25]) addressng bath general issues and
particular needs of spedfic application domains (eg.,
Banking, Telecom, Supervision and Control Systems) by
defining high level libraries or frameworks [9]. However,
the OMG and CORBA mainly address the technological
aspeds of distributed computing without too much
emphasis on the devel opment process

Application development is composed of three major
phases. requirement analyss and  spedfication,
architedural design, implementation. Great benefits (in
terems of vaidation of the user requirements and
verification of the implemented system) can be oltained if
the spedfication is expresed in a rigorous (possbly
formal) way, and if the application designer is supported by
a methodology (and related tods) for deriving the
architedure of the application from the spedfication.

Popular objed oriented (OO) methodol ogies (and notations)
such as [5, 6, 24] do not spedficaly addressthe isaes of
OOA/OOD over CORBA. Moreover, they do not allow a
formal description of reguirements snce they lack a
rigorous underlying mathematicall model, even though
some work has been carried out lately to couple these
methodol ogies with formal spedfication languages [12].

This date of the art is extremely unfortunate since the
identification of requirements is the most critical phase in
system development. Errors and ambiguities at this level
often yield significant cost increases in the successve
design phases or, even worse, the design of incorred
systems that can cause severe damages to people or to the
environment. In particular, the use of formal methods in
the cntext of Supervision and Control Systems (SCS) is
particularly effedive since such systems typically impose
high reli ability and real-time requirements.

SCS are usualy implemented as closed systems based on
proprietary hardware and software and thus, they are
usualy not portable and can not be extended or integrated
into more mmplex systems. As a result, adding new
functionaliti es to an existing SCS often leads to huilding



new independent systems. For instance an Energy
Management Systems is typically composed of several
independent applications each of them having their own
sensors, hardware procesors, databases and spedalized
software, even though conceptually they share the same
information. Since the functional architedure of all these
applications is very similar several components are
dugicated (e.g., there is a data acquisition component for
each appli cation).

One posdble solution in order to overcome this stuation is
to use the high level abstract interface provided by CORBA
to define an open environment in which different
applications can coexist and share information. In this way
it would be possble to extend a SCS by adding new
components whenever they are developed, thus reducing
development time and cost. For instance alarms could be
recorded by the alarm managing subsystems and accessd
through a global database by the diagnostic subsystem. To
fully achieve such a goal, however, two crucial issues must
be addres=ed:

* CORBA does not presently address ®me of the isaues
that are aitical for SCS such as reliability and real-
time. This creates a "semantic hole" that hampers
rigorous design and verification;

* A big gap must be filled by design to move from
system requirements to a complete implementation in
terms of the CORBA architedure.

This paper addresses the latter isue by presenting an
approach to the design of distributed systems in a CORBA
environment, based on an initial formalization of the
requirements given in terms of TRIO [10, 18]. TRIO is a
first order temporal logic which has $own to be very
effedive for spedfying critical systems, such as SCS|[8].

The presented approach consists in moving from the TRIO
representation of the requirements to a new formalization
representing the high level architedural design in which
the technological target i.e., CORBA, is taken into account.
This transformation is supported by a language, whose
name is TC (TRIO/CORBA), oltained by introducing in
TRIO the basic concepts characterizing CORBA. The
integration of a formal approach during the spedfication
phase with CORBA concepts, at the design leve, is
expeded to enhancethe devel opment process

Even though the example presented in this paper refersto a
SCS, namely an Energy Management System, the results
are general enough to be applied in amaost any domain. As
a consequence this paper does not focus on the aitical
requirements of the application but rather on the design
language and methodol ogy used to design such system.

The paper is organized as follows: Sedion 2 provides a
short introduction to TRIO; Sedion 3 dscusses the main

features of TC; Sedion 4 presents the methodology by
means of an example in which TC is used to design a
Supervision and Control System; finally Sedion 5 draws
some mnclusions.

In what follows we assume the reader has already some
knowledge of the basic CORBA concepts and terms.

2 THE TRIO SPECIFICATION LANGUAGE

TRIO [10, 18] is afirst order temporal logic language that
supports a linear notion of time. Besides the usual
propositional operators and the quantifiers, one may
compose formulas by using a single basic modal operator,
caled Dist, that relates the current time, which is left
implicit in the formula, to ancther time instant: the formula
Dist(F, t), where F is a formula and t a term indicating a
time distance spedfies that F holds at a time instant at t
time units from the arrent instant.

Several derived temporal operators can be defined from the
basic Dist operator through propositional composition and
first order quantification on variables representing a time
distance For example, the operator

Past(A, d) =4 >0 0O Dist(A, -d)
statesthat A held dtime unitsin the past; the operator
SomP(A) =4 [ (d>0 O Dist (A, -d))
statesthat A held sometimesin the past;
WithinF(A, d) =g« @ (0<t <dODist (A, t)

states that A will hold at some time within the next d time
units.

TRIO also defines the so-called ontological constructs,
which support the natural tendency to describe systemsin a
more operational way, i.e., in terms of states, transitions,
events, etc.

An event isa particular predicate that is s1pposed to model
instantaneous conditions guch as a change of state or the
ocaurrence of an external stimulus. Events can be
asciated with condtions that are related causally or
temporally with them. A state is a predicate representing a
property of a system. A state may have a duration over a
time interval; changes of state may be assciated with
suitable pre-defined events and conditions. Altogether,
events, states, and conditions define a comprehensive
mode! of the system evolution.

For spedfying large and complex systems, TRIO has the
usual OO concepts and constructs guch as classs,
inheritance and genericity. Classes can be ather simple or
structured —the latter term denoting classes obtained by
composing smpler ones. A classis defined through a set of
axioms premised by a dedaration of al items that are
referred therein. Some of such items are exported, that is



they may be referenced from outside the dass

TRIO is also endowed with a graphic representation in
terms of boxes, lines, and connedions to depict class
instances and their components, information exchange, and
logical equivalenceamong (parts of) objeds.

For example, in Figure 1 pgain lines represent logical items
(It1, 1t2), lines with dots are events (Evl, Ev2) and badd
lines represent states (St1, St2). The plain bax represents a
single objed of classC1, whil e the stacked box represents a
set of ojeds of classC2.

c1 Evl c2
o
It2
- Ev2 -
It1 ° * St2

Figure 1: An overview of TRIO graphical symbols
An example of a TRIO spedfication is provided in Sed. 4.
3 THE TCLANGUAGE

The TRIO/CORBA (TC) language enriches TRIO with the
typical ements of CORBA that allow oneto refinea TRIO
functional spedfication by introducing architedural
elements. TC has the formal rigor of TRIO, but is siitable
for describing the high level design of an application. Thus,
it allows designers to formally define the behavior of the
objeds composing an architedure and the way in which
they interact.

TC introduces all CORBA basic ooncepts sich as
operations, attributes, exceptions, interfaces, application
objeds, while cmplex concepts (services, frameworks) are
built from such basic dements. These @ncepts are
formalized by means of TRIO axioms whose aim is to
describe the low-level aspeds defining the behavior of any
CORBA-based system. As a consequence, the designer can
focus on (higher-level) user-defined requirements.

In order to formalize such concepts TC defines four
different meta-classes, some of which aim at capturing the
intrinsic semantics of CORBA basic concepts. The meta-
classesare: TRI O Appl i cati on Qbj ect, I nterface
and Envi r onment *.

Interface and Application bject meta-clases
model CORBA IDL interfaces and application objeds
respedively; TRI O meta-class models the usual TRIO
classs; finaly Environment meta-class is used to
structure the description of an architedure in terms of the
above mentioned meta-classes.

In therest of the paper the following convention is adopted:

! Thecouri er font denotes TC meta-classs.

Application Object denotesthe name of a TC meta-
classwhile Appl i cati on Obj ect ClassC? denotes a
classnamed C instance of the meta-class Appl i cati on
hj ect. For the sake of readability whenever no
ambiguity can arise we refer to an Application
hj ect ClassCas Application Object C.

Figure 2 shows the relationships all owed among instances
of the meta-classes in terms of inheritance and inclusion.

.| TR OClasss I nterface Clases
I 1

| Application Qbject Clases
- 4
: A

1 Envi ronnent Clas®s [

———————p caninherit from
» cancontan

Figure 2: The Relationships among TC meta-classes

In what foll ows a short discusson of the main features of
the different TC meta-classesis provided.

Application (bject

All clases that are instances of the meta-class
Application Object share a set of properties
(expressed by means of axioms) whose aim is to formalize
the features of CORBA application ohjeds.

For example, all instances of Application oject
have an item _id that is used to uniquely identify every
instanceof an Appl i cati on Cbj ect class

_id: 0ID

O DisaTC basic type representing the set of all possble
identifiers that can be assgned to an instance of an
Appl i cation Object class

Notice that _id can be used to model bath the standard
CORBA objed reference and the oljed identity as defined
by the IdentifiableObjed interface of the CORBA
Relationship service Let us consider an objed O whose
item _id evaluates to val _id: in the former case val_id
represents the “value’ to which any other ojed must point

2 The reader should not be nfused by the term
Application Objed Class In fact the term Application
Objed comes from CORBA jargon where a run-time view
is adopted, and denotes the ohjeds accesshle from the
ORB. This paper, instead, discusses design issues and thus
refers to classes rather than objeds. As a consequence an
Application Objed Class is a class whose instances are
application ohjedsin CORBA sense.



in order to accessO; in the latter case val_id represents the
identity of objed O.

As a second example let us consider operations®. In TC the
i-th invocation of an operation Op(ay,...a,) IS represented
by the TRIO event Op(i).invoke while the event
Op(i).return denotes the termination of the i-th invocation
of operation Op and Op(i).a, 1< k < n, denotes the value of
a. Since an operation returns only if it was previousy
invoked, the following axiom is defined for
Application bject:

Op(i).return — SomP(Op(i).invoke)*

Notice that each Application Object class can
introduce a set of items and axioms to define the spedfic
semantics of the CORBA application ohjeds that one wants
to modd.

I nterface

CORBA application objeds implement CORBA IDL
interfaces and thus, all operations and attributes exported
by an objed are defined in its interface As a consequence
all CORBA appli cation objeds implementing the same IDL
interface export the same operationg/attributes.

In TC, IDL interfaces are modeled by the meta-class
Interface. Thus, a CORBA application obed
implementing a CORBA IDL interface is modeled by an
Application QObject class inheriting from an
Interface class modeling the latter. In this way
different Application Object clases might be
designed to provide different semantics to the same
I nt erface class acoording to the definition of CORBA
IDL interface

An | nt er f ace classIF contains only the signature of the
operationgattributes dedared therein that is, no axioms are
defined. Their semantics is defined in the Appl i cati on
hj ect class inheriting from IF.  Findly, all
operationg/attributes of an | nt er f ace classare visible to
outer classes.

Notice that Application Cbject clases are not
required to inherit from an | nt er f ace classwhile every
CORBA application objed must implement an IDL
interface  The main consequence of this being that
Application Objects clases can be used to model
either  CORBA application objeds or plan obeds
interacting with a CORBA application objed. Thus,

% In this example only CORBA synchronous operations are
taken into account. For a discusson of all the different
CORBA invocation mechanisms ®e[19].

* Freeocaurrences of variables are implicitly assumed to be
universally quantified.

acoording to CORBA jargon an Appl i cati on (bj ect
classcan modd either server objeds or client objeds. The
main reason for this is that both servers and clients have
the same underlying semantics differing only for the way in
which invocations may occur at run-time (servers are
invoked whil e dients do invoke).

TRI O

TRI O clases are used to modd entities that do not
correspond to CORBA application objeds nor to CORBA
clients. For example, a TRI O classcould be used to model
some physical device such a sensor not conneded to an
ORB, or posshbly a human operator.

The syntax and the properties of TRI O classes correspond
to those of typical TRIO classes. Thus, TRI O classs can
contain, and/or inherit from other TRI O classes, while they
can neither contain nor inherit from any instance of other
TC meta-classs.

Envi r onnent

An Envi r onnent classis very smilar toa TRI O class
except for the fact that it can include dasss of any type.
Envi ronnment classes are meant to describe how the
other clases composing a system interact. For instance
requirements involving operations belonging to different
Application bject classes are stated by means of
axiomsin an Envi r onnment class

4 THETCMETHODOLOGY

High level design essntially consists of identifying the
classes composing the system whose instances will provide
and use services by exchanging messages through the ORB.

The TC methodology allows one to start from a TRIO
spedfication in order to design the high level architedure
of a CORBA-based system. Acoording to this methodol ogy,
the designer smoathly moves from the spedfication toward
a high level design in a step-wise fashion. At each step a
different asped is taken into account so that the complexity
of the whole design is kept under control. Moreover, at
each step a “design document” is produced in order to kegp
track of the different choices made.

In what follows the steps are presented as if they were

meant to be exeauted sequentially. However it is useful to

remind that they are not completely independent and that,

in practice mutual feedbacks among the various phases and

sub-phases are unavoidable according to the phil osophy of

the spiral approach [4].

The methodology is mainly structured into the foll owing

five major steps:

* identification of data flows between the spedfication
classs;

* identification of operations;



» identification of interfaces and application objeds,

* identification of the semantics of operations and
attributes,

* identification of services and
impacting frameworks.

Notice that some frameworks (naturally called
architedure-impacting) contain in their very definition
architedure-shaping concepts. Thus, their use must be
carefully considered at the beginning of the design process
if not in the spedfication. For space reasons this paper does
not addressthis isaue, even though in the real application it
has been taken into acoount.

non-architedure-

Ancther point not addressd in this paper concerns the
feasibility of usng CORBA for applications with strict
timing requirements. In this case a speda analysis is
needed to ched the ORB features against the application
temporal requirements. However, sincethe enphasis of this
paper is on design rather than on temporal requirements,
thisisaueis not discussed any further.

The methodology is illustrated by means of an example
based on a Maintenance System currently developed by
ENEL, the Italian agency of energy, within the ESFRIT
Projed OpenDREAMSHI [22].

The ENEL Maintenance System

The goal of the Maintenance System (MYS) is to monitor the
activity of field devices (sensors, actuators, etc.) installed in
a power plant, in order to quickly detea possble failures
and malfunctions.

Figure 3 shows the main components of the appli cation and

their mutual interactions.
Devices

IMS ¢ » GlobaPlantDB

Control System

|

AlarmManager » HMI 4—»%

Figure 3: The M S application

The ore of the system is the Instrumentation Maintenance
Sysem (IMS), which is in charge of colleding and
validating data (i.e., measures) coming from the field
devices. Whenever the validation process deteds an
anomaly in the behavior of such devices the IMS sends an
aarm to the Alarm Manager, which in turn notifies a
human operator by means of a Human-Machine Interface
(HMI).

Noticethat the IMS does not communicate diredly with the
field devices: al the data colleded by these devices are
stored in a database named Global Plant DataBase (GPDB).
Thus, the IMS queries the GPDB to oltain the desired data.
Using the same cmmmunication medanism the IMS can
also send commands to these devices or can make a device
perform a self-test to werify its corred functioning.
However, before sending a command to a device the IMS
must get from the Control System the rights to access sich
device After having completed the desired operations, the
IMS natifies the Control System, which in turn releases the
device

For the sake of simplicity, this paper focuses on the part of
the system composed of the IMS, the GPDB, and the
devices (i.e., the dotted area of figure 3).

The TRIO Specification

Figure 4 shows the TRIO classdiagram that represents the
part of the system taken into account. The depicted classes
are onneded by means of TRIO logical items (predicates,
functions, variables, states, events) defining the behavior of
each class

For example, item test_request is an event that is true when
the IMS asks a device viathe GPDB, to perform a self-test,
while access avail is a non-exported state representing
whether or not IMS has acquired the accessrights from the
Control System.

IMS GPDB
chan_status

chan_detailed_status

measure_info

access_avail

MeasuringChannels

measure

test_request

test_end

command_send

status

cyclic_acq detailed_status

on_variation_acq

Figure 4: TRIO classdiagram of the M S application

The following axiom in the spedfication of classIMS states
that if a sef-test is darted (test_request) or any other
command is $nt to a device (command_send) then the IMS
has aready acquired the access rights from the Control
System (access avail).

( test_request(i, MC, test_cmd) [ax]1]
O command_send(i, dev, dev_cmd))
- access avall

Furthermore, the foll owing axiom states that if the testing
activity (test_cmd) on a device ends (i.e., test_end is true)
then it was previoudy started (i.e., test_request istrue).



test_end(i, MC) [ax2]
- [Otest_cmd (SomP(test_request(i, MC, test_cmd)))

Finally, the following axiom states that when the GPDB
sends the status of a device to the IMS (i.e., cydic_acq is
true) the data previoudy read from the device (status) are
sent by means of chan_status (T is the system-dependent
constant representing the maximum delay between the
instant when data ae lleded from the devices, and the
instant when they are sent to the IMS).

cyclic_acq(i, MC) [ax3]
- Odev_s,om,ac p

( chan_status(MC, dev_s, om, ac_p)

O WithinP(status(MC, dev_s, om, ac_p), T))

From the Specification to the Design
In what foll ows the methodology is applied to the example.
Sep 1 Data Flows

This gep ams at identifying explicit information
exchanges among the dasses identified in the spedfication.
These exchanges are @lled data flows and are afirst step to
move from the mncept of sharing logical items (predicates,
functions, etc) - typical of TRIO clases - towards the
concept of exported operations - typical of CORBA. A data
flow can be viewed as a complex merge of TRIO items.

For example, item test_end, shown in figure 4, denotes the
end of atest whose beginning is represented by test_request
that is, test_endistrue when the results are sent back to the
IMS. Furthermore, the results of the test are described by
measure_info, chan_status and chan_cetailed_status. Since
these items are dosely related they can be grouped into a
single data flow named test.

The dass diagram of the system is therefore modified
replacing original TRIO items with data flows. Moreover,
every data flow is textually defined. For example the
definiti on of test is as foll ows:

Connection between IMS and GPDB
Dataflows
test (from test_request,
totest_end,
to chan_status,
to chan_detailed_status,
to measure_info);

Conversdly, items measure, status and detailed_status,
conneding classes GPDB and MeasuringChannels, do not
change. They represent the information flowing from the
devices to the GPDB and sincethe design choice made is to
use a field-bus’ [11] to make them communicate with

> A fidd-bus is a typical SCS digital channd used to
conned sensors and other equipments to computers.

GPDB, their representation remans as it was in the
spedfication. However, the field-bus imposes to introduce a
new item (ctrl) conneding the GPDB with the devices,
representing a control signal. In fact only when ctrl is true,
measure, status and detailed status have meaningful
values that can be accessed by the GPDB.

Sep 2 Clientsand Qrvers

In the second step, every data flow is categorized as either
operation or attribute. For each operation one has to choose
which classwill export it (server) and which classes will
invoke it (clients); moreover for each attribute one has to
choose which classwill dedare it and which classes will
accessit.

In the example the data flow test beaomes an operation
(with the same name). The arrow drawn on the
corresponding line of figure 5 defines that operation test is
exported by GPDB and isinvoked by IMS.

IMS GPDB
test MeasuringChannels

access_avail ctrl

g 9et_measure measure

status

variation

' detailed_status

Figure5: The new class diagram after steps1 and 2

Notice that GPDB exports two aher operations, command
(derived from item command send) and get measure
(derived from item cydic_acq), while it invokes the
operation variation (derived from item variation_acq)
exported by IMS.

Sep 3 Application Objeds andInterfaces

This ¢ep aims at identifying al CORBA application
objeds that neal to be implemented. The identification of
such objeds (and their interfaces) is based on the
operationg/attributes introduced in the previous gep.

Every class exporting/importing at least one operation
(attribute) is candidate to become an instance of the TC
Application Object meta-class However, it may be
necessry to split and/or group some of the dasses of the
spedfication in order to come up with a real objed-oriented
architedure. In fact even though the TRIO spedfication
language supports the objed oriented paradigm, the
experience has fiown that very often spedfiers tend to give
a functional-oriented spedfication. This is not a bad
practice per se but may lead to a class s$ructure that needs
to be restructured in order to identify the CORBA
appli cation ohjeds.

For example, the dases IMS and GPDB are andidate to
beame Appl i cati on bj ect clases snce they bah
export at least one operation. However, class GPDB is



divided into two parts, named Gateway and DataRep, as
shown in Figure 6. The former acts as a gateway for
sending commands while the latter acts as the actual
database, storing all the measures coll eded by the devices).
As a result there are three Applicati on Object
classes.

The dass MeasuringChannels does not correspond to any
CORBA obed, since it does not interact with the rest of
the application by means of CORBA operations and/or
attributes as discussed before. As aresult it is viewed as an
instance of the TRI Ometa-class

test Gateway K
MeasuringChannels
command I

ctrl |

DataRep measure

IMS

A A

access_avail

g 9et_measure

status

variation

detailed_status

Figure 6: The Application Object classes

Moreover, in order to satisfy the properties gated in the
spedfication, each instance of Appli cati on Object
has to satisfy also the axioms dated in the spedfication.
However, sincein the previous geps TRIO items have been
merged into data flows it is necessry to rewrite such
axioms. This point is further discussed at the end of this
sedion.

The last point of this 2ep consists in providing the needed
interfaces to every Appl i cati on Qbj ect classacting
as a server. This is done by introducing instances of the
I nt er f ace meta-classand making them ancestors of the
Application Object class exporting at least one
operation/attribute.

In our example, three different interfaces are introduced
(onefor each Appl i cati on (bj ect clasg as own in
Figure 7, where an overlapping bax is used to represent an
I nterface class

IMS Gateway

test - MeasuringChannels

. DeviceManager | —
access_avail command —
ctrl |
DataRep
get_measure measure
DataManager
ati status
i variation
DataReceiver detailed_status

Figure 7: The class diagram after step 3

Once the Application Object clases and ther
interfaces have been identified the structure of the
architedure is defined.

Sep 4 Semartics of Operations and Attributes

This dep focuses on the semantics of operations and
attributes. In fact, CORBA operations are usualy

synchronots (by default), but they can also be dedared as
asynchronots or oneway.

TC alows one to add the stereotypes (in a UML fashion)
«noblock» and «oneway» on operations names to spedfy
what kind of semantics the operations have. In the same
way attributes can be dedared read-only through the
«readonly» stereotype.

In the example, all operations are synchronous and thus no
stereotype is added.

Sep 5 Services and Frameworks

As last step of the methodology, CORBA services and
frameworks can be introduced in the architedure. The
CORBA Services taken into account are event, transaction,
guery, replication (this is not a CORBA service yet) and
persistency, and a TC formalizaion has been made for
some of them [23].

Replication and persistency are used by application objeds
while query and transaction involve operations on
application ohjeds. All these services can cooperate in
order to alow an application obed to fulfill its
requirements. Since in a CORBA based environment a
service is viewed as a set of IDL interfaces, services are
used by making the Application Objects clases
inherit from their interfaces.

For example, operation variation is invoked by DataRep to
notify the IMS that there is an abnormal variation of some
measured quantity. Since this communication will be
implemented using the CORBA Event Service [20],
operation variation is marked with the stereotype «event»
(seefigure 8).

Furthermore, since DataRep is a critical component it
needs to be replicated to satisfy the fault tolerance
requirements of the system. One way of replicating
CORBA obhjeds is using the Replication Service developed
in the OpenDREAMS-II projed [23]. This is graphically
represented adding the «repli cated» stereotype to DataRep.

IMS test Gatewa

commend
4
BPValue
odFloat

access_avail

MeasuringChannels

_value

4 B «replicated» ctrl |

get_measure DataRej measure

DataManager

status

DataReceiver |«event» variation

detailed_status

Figure 8: Thefinal classdiagram

Finally, the Base ProcessValue framework [7], defined and
implemented in the OpenDREAMS-I projed, is



introduced. This framework provides a way to store and
manipulate the values coming from devices along with
some related information such as time stamps and vali dity.
It is meant for SCS and it defines sveral different
interfaces, one of which (odFloat) is used in the example by
DataRep, Gateway and IMS to exchange information about
the measured values.

At the end of this gep, the IDL interfaces of the appli cation
objeds modeled by the Appl i cati on Obj ect classs
are automatically produced. For space reasons this point is
not addressed in this paper.

Tuning upthe axioms

Oncethe structure of the system architedure is defined one
can express the semantics of the different clases by
adapting the axioms of the spedfication in order to take
into acoount all the transformations that have occurred
during the different steps.

For example, during steps 1 and 2 TRIO items test_request
and test end were associated with the invocation of
operation test and the moment when this operation returns,
respedively. Thus [ax1] is transformed into the following
TC axiom of classIMS in which data flows are involved®

(test(i).invoke O command(i).invoke) — access avail [ax1]

Moreover, axiom [ax2] can be dropped sinceiit is implied
by the definition of operation givenin TC.

As a seond example let us consider axiom [ax3] of class
GPDB. In this case one has to take into acoount that the
TRIO item cydic_acq has bemme the operation
get_measure and that when the latter ends the information
sent back is described in a more detail ed way, since a data
structure made up of three fields (status, oper_mode and
acc_perm) is used. As a consequence axiom [ax3] is
rewritten as foll ows:

( get_measure(i).end [ax3]
O Past( get_ measure(i).invoke
O get_measure(i).device=dev, T)
0 MC_addresqdev, MC_ad)
O WithinP(status(MC_ad, dev_s, om, a p), T))

( get_measure(i).brief_status.status = dev_s
O get_measure(i).brief_status.oper_mode = om
O get_measure(i).brief_status.acc perm=a _p)

Furthermore, the TC description may contain axioms that
do not exist in the spedfication. Such axioms typically
describe some lower-level behaviors not previoudy taken
into acoount.

® Notice that item access avail remains unchanged sinceit
does not belong to any data flow.

For example, operation variation has an input parameter,
named calibrations, composed of five fields (calibID, date,
zero_error, span_error and lin_eq) used to send some
calibration data to the IMS. A new axiom is introduced to
spedfy that when calibration data ae sent al the
information must be defined.

variation(i).cali brations(l).caliblD = cal [axN]
- [Od,zeselin_e
variation(i).cali brations(l).date=d
variation(i).calibrations(l).zero_error =z e
variation(i).calibrations(l).span_error =s e
variation(i).calibrations(l).lin_eq =lin_eq)

ooogo~—

This level of detail was not taken into consideration in the
spedfication, but is suitable for an architedural description.

As a last example let us consider the doice discussd
during step 1, of using a field-bus to implement the
communication between the GPDB (currently represented
by the Appl i cati on Cbj ect DataRep and Gateway)
and the field devices. Moreover, let us sippose that one
wants to state that every value mming from the devices
(i.e., whenever ctrl istrue) represents

1. the result of a test/command isued by IMS via the
Gateway, which must be sent within T1 time units to
IMS, or

2. theresult of acyclic data acquisition performed by IMS
via the DataRep, which must be sent within T2 time
unitsto IMS, or

3. a variation ocaurred in some device that must be
notified to the IMS within T3 time units.

This property involves sveral different components of the
architedural description of the system and thus is
formali zed by means of an Envi r onment class

Environment Class IMSApplication
axioms

MeasuringChannel g[j] .ctrl
- Ui,dev
( ( WithinF ( Gateway.test(i).return
OGateway.test(i).device= dev, T1)
OWithinF ( Gateway.command(i).return
OGateway.command(i).device= dev, T1)
OWithinF ( DataRep.get_measure(i).return
ODataRep.get_measure (i).device=dev,T2)
OWithinF ( IMS.variation(i).invoke
OIMS.variation (i).device= dev, T3))
0 GPDB.MC_addresqdev, j))

where MC_addessis a predicate binding each instance of
a device (index j) with its gymbdic name, used by IMS
(variable dev).



Furthermore, other axioms, not reported here, ensure that
each time ctrl is true only one of the abowe operations
OCQUr's.

5. CONCLUSIONS

This paper proposed and illustrated a formal method to
develop dstributed applications based on CORBA. The
method exploits the OO logic language TRIO and drives
the designer to derive a complete CORBA architedural
design through a smoath sequence of steps garting from
the spedfication of the appli cation requirements.

The method enjoys the typical benefits of formality, i.e.,
rigor and predsion, bath in spedfication and in verification
and the posshility of using powerful tods (e.g., to generate
(semi) automatically test cases for the implementation). In
particular, the fact that the semantics of bath application
spedfication and architedural design is expressd in terms
of logic formulas allows one, at least in principle, to prove
the @rredness of the design as a typica logical
implication.

In our approach we coaose not to modify in any way the
definition of CORBA (e.g., we do not propose any formal
extensionsto IDL). Instead, we dedded to preserve its basic
features, coupling them with a formal definition. This
TRIO-based method should not be seen as an alternative to
existing non-formal, non CORBA-oriented methods sich
as UML; rather, it is wel suited to augment, and be
integrated with, several existing informal practices [8].
Moreover, even if we focused on CORBA-based
architedures, the same approach in principle ould be
adapted and applied to aher (objed-oriented) middeware
such as DCOM and Java/RMI.

Ancther distinguishing feature of our method with resped
to aher approaches sich as Darwin [13], Durra[3] is being
tailored towards SCS, which are mostly demanding in
terms of reliability -and often are hard real-time systems.
Such an orientation, however, does not affed the whole
method, which in large part is wel suited for general
distributed applications based on CORBA; only the final
step, which exploits typical services and frameworks, is
spedalized towards this application domain. In fact, we
also applied the method to aher, non-SCS applications

[17].

This paper focused on the esentials of the method. The
reader is referred to the bibliography for a more thorough
and detailed exposition. In particular, [21] describes the
method and the application case study in full detail. The
fundamental issile of managing real-time aspeds in
CORBA-based systems, not considered in this paper, is the
objedive of a companion paper [14] where the recent real-
time extension of CORBA [2] is analyzed and formali zed

and it is iown how to kuild -potentiall y- guaranteed real-
time appli cations on top of it.

Several prototype tods are avail able to support the method:
agraphical interactive elitor supporting the documentation
of al phases, from requirement spedfication to
architedural design; a test case generation tod [15, 16]; a
corrednessprover -or disprover- based on the trandation of
the TRIO formalism into PVS[1].

We eped to consolidate and augment the results of our
research in the near future so that they can be esly
accessble and widely usable in the industrial environment.
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