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Abstract

In a peer-to-peer (P2P) system, nodes typically
connect to a small set of random nodes (their
neighbors), and queries are propagated along
these connections. Such query flooding tends to
be very expensive. We propose that node connec-
tions be influenced by content, so that for exam-
ple, nodes having many “Jazz” files will connect
to other similar nodes. Thus, semantically related
nodes form a Semantic Overlay Network (SON).
Queries are routed to the appropriate SONs, in-
creasing the chances that matching files will be
found quickly, and reducing the search load on
nodes that have unrelated content. We have evalu-
ated SONs by using an actual snapshot of music-
sharing clients. Our results show that SONs can
significantly improve query performance while at
the same time allowing users to decide what con-
tent to put in their computers and to whom to con-
nect.

1 Introduction
Peer-to-peer systems (P2P) have grown dramatically in re-
cent years. They offer the potential for low cost sharing of
information, autonomy, and privacy. However, query pro-
cessing in current P2P systems is very inefficient and does
not scale well. The inefficiency arises because most P2P
systems create a random overlay network where queries
are blindly forwarded from node to node. As an alterna-
tive, there have been proposals for “rigid” P2P systems that
place content at nodes based on hash functions, thus mak-
ing it easier to locate content later on (e.g., [15, 9]). Al-
though such schemes provide good performance for point
queries (where the search key is known exactly), they are
not as effective for approximate, range, or text queries. Fur-
thermore, in general, nodes may not be willing to accept
arbitrary content nor arbitrary connections from others.

In this paper we propose Semantic Overlay Networks
(SONs), a flexible network organization that improves
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Figure 1: Semantic Overlay Networks

query performance while maintaining a high degree of
node autonomy. With Semantic Overlay Networks (SONs),
nodes with semantically similar content are “clustered” to-
gether. To illustrate, consider Figure 1 which shows eight
nodes,A to H , connected by the solid lines. When using
SONs, nodes connect to other nodes that have semantically
similar content. For example, nodesA, B, andC all have
“Rock” songs, so they establish connections among them.
Similarly, nodesC, E, andF have “Rap” songs, so they
cluster close to each other. Note that we do not mandate
how connections are done inside a SON. For instance, in
the Rap SON nodeC is not required to connect directly to
F . Furthermore, nodes can belong to more than one SON
(e.g.,C belongs to the Rap and Rock SONs). In addition to
the simple partitioning illustrated by Figure 1, in this paper
we will also explore the use of content hierarchies, where
for example, the Rock SON is subdivided into “Soft Rock”
and “Hard Rock.”

In a SON system, queries are processed by identifying
which SON (or SONs) are better suited to answer it. Then
the query is sent to a node in those SONs and the query is
forwarded only to the other members of that SON. In this
way, a query for Rock songs will go directly to the nodes
that have Rock content (which are likely to have answers
for it), reducing the time that it takes to answer the query.
Almost as important, nodes outside the Rock SON (and
therefore unlikely to have answers) are not bothered with
that query, freeing resources that can be used to improve
the performance of other queries.

Unlike traditional DB queries, most searches in P2P sys-
tems are not exhaustive. When a user starts a search for a
song, he is not interested in every single instance of the



song. Similar to a web search, most users are satisfied with
a small subset of all the matches. SONs exploit this char-
acteristic by trading off the maximum achievable level of
recall (i.e., the percentage of the matches that can be found)
and the performance of the system. For instance, suppose
that nodeF in Figure 1 has very few Jazz songs. We may
then choosenotto haveF join the Jazz SON, Although this
choice will reduce the recall level of Jazz songs (we will not
be able to find the ones inF ), we now do not need to send
Jazz queries to nodeF , reducing the number of messages
overall as well as the query processing load on nodeF .

There has been substantial work on content hierarchies
and classification. However, there are significant differ-
ences between that prior work and our work. Specifically,
in our work we structure node connections rather than doc-
uments within a controlled collection. In addition, our tech-
niques are specifically tailored for a highly distributed P2P
environment while the prior art focused on centralized sys-
tems. (Related work is further discussed in Section 2.)

There are many challenges when building SONs. First,
we need to be able to classify queries and nodes (what does
“contain rock songs” means?). We need to decide the level
of granularity for the classification (e.g., just rock songs
versus soft, pop, and metal rock) as too little granularity
will not generate enough locality, while too much would in-
crease maintenance costs. We need to decide when a node
should join a SON (if a node has just a couple of documents
on “rock,” do we need to place it in the same SON as a node
that has hundreds of “rock” documents?). Finally, we need
to choose which SONs to use when answering a query.

Many of our questions can only be answered empiri-
cally by studying real P2P content and how well it can be
organized into SONs. For our empirical evaluation we have
chosen music-sharing systems. These systems are of inter-
est not only because they are the biggest P2P application
ever deployed, but also because music semantics are rich
enough to allow different classification hierarchies. In ad-
dition there is a significant amount of data available that
allows us to perform realistic evaluations.

In this paper we study options for building effective
SONs and evaluate their performance by using an actual
snapshot of a set of music-sharing clients. The main con-
tributions of this paper are:

� We introduce the concept of SONs, a network organi-
zation that can efficiently process queries while pre-
serving a high degree of node autonomy.

� We analyze the elements necessary for the building
and usage of SONs.

� We evaluate the performance of SONs with real user
data and find that SONs can find results with only
10%-20% of message overhead that a system based
on a random topology would incur.

� We introduce Layered SONs, an implementation of
SONs that further improves query performance at the
expense of a marginal reduction of the maximum
achievable recall level.

2 Related Work

The idea of placing data in nodes close to where relevant
queries originate was used in early distributed database
systems [4]. However, the algorithms used for distributed
databases are based on two fundamental assumptions that
are not applicable to P2P systems: that there are a small
number of stables nodes, and that the designer has total
control over the data.

There are a number of P2P research systems (CAN [9],
CHORD [15], Oceanstore [5], Pastry [11], and Tapestry
[24]) that are designed so documents can be found with a
very small number of messages. However, all these tech-
niques either mandate a specific network structure or as-
sume total control over the location of the data. Although
these techniques may be appropriate in some application,
the lack of node autonomy has prevented their use in wide-
scale P2P systems.

Semantic Overlay Networks are also related to the con-
cept of online communities [14] such as Yahoo Groups [18]
and MSN Communities [17]. In an online community,
users with common interest join specific groups and share
information and files. However, most online community
contain a central element that coordinates the actions of the
members of the group.

There is a large corpus of work on document cluster-
ing using hierarchical systems (see [6] for a survey). How-
ever, most clustering algorithms assume that documents are
part of a controlled collection located at a central database.
Clustering algorithms for decentralized environments have
also been studied in the context of the web. However,
these techniques depend on crawling the data into a cen-
tralized site and then using clustering techniques to either
make web search results more accurate (as in SONIA [12])
or easier to understand (as in Vivisimo [20]). A more de-
centralized approach has been taken by Edutella [7] where
peers with similar content connect to the same super peer.

3 Semantic Overlay Networks

In this section we formally introduce the concept of Seman-
tic Overlay Networks (SONs). We model our system as a
set of nodesN where each nodeni 2 N maintains a set
of documentsDi (a particular document may be stored in
more than one node). We denote the set of all documents in
all nodes asD. Each node islogically linked to a relatively
small set of nodes (called its neighbors) which in turn are
linked to more nodes. A link is a triple(ni; nj ; l) whereni
andnj are the connected nodes andl is a string. We call the
set of links with the samel, an overlay network. As links
are bidirectional,(ni; nj ; l) and(nj ; ni; l) are the same.

Current P2P systems are established by a single over-
lay network (i.e., all links have the samel). However, this
needs not be the case and a P2P system can have multiple
overlay networks. In this case, a node can be connected to
a set of neighbors through anl1 link and to a potentially
different set of nodes through anl2 link. We will see that
a carefully chosen sets of overlay networks can improve
search performance.



In this paper, we are focusing on the usage and cre-
ation of overlay networks, and not on how queries are
routed within an overlay network (see Section 2 for a brief
overview of current solutions to the intra-overlay network
routing problem). Therefore, we will ignore the link struc-
ture within an overlay network and we will represent an
overlay network just by the set of nodes in it (ONl = fni 2
N j9a link(ni; nj ; l)g). In addition, we assume that an over-
lay networkONl supports three functions:Join(ni; l),
where one or more links of the form(ni; nj ; l) are created
(wherenj 2 ONl); Search(r; l) that returns a set of nodes
inONl with matches for requestr; andLeave(ni; l) where
we drop all the links inONl involvingni.

The implementation of the functionsJoin(ni; l),
Search(r; l) andLeave(ni; l) will vary from system to
system. Additionally, these functions may be implemented
by each node of the network, a subset of it, or even be pro-
vided by a computer outside the network. For example, in
the Gnutella file sharing system,Join(ni; l) starts by link-
ing the nodeni to a set of well known nodes (whose ad-
dress are usually published on a web page). Then,ni can
learn about additional nodes (and potentially link to them)
by sending “ping” messages through the network (nodes
may reply to a “ping” message with a “pong” message
that contains their identity). The functionSearch(r; l) in
Gnutella works by having a node send the request along
with a “horizon” counter (TTL) to all its neighbors. The
neighbors check for matches, returning their identifier to
the original requesting node if there are any matches. Then
these nodes decrement the horizon counter by one and send
the request and the new counter to their neighbors. The
process continues until the counter reaches zero, when the
request is discarded. Finally,Leave(ni; l) is implemented
in Gnutella by simply dropping all thel links ofni.

Requests for documents are made by issuing a queryq
and some additional system-dependent information (such
as the horizon of the query). A query is also system depen-
dent and it can be as simple as a document identifier, or key-
words, or even a complex SQL query. We model a match
between a documentd and a queryq as a functionM(q; d)
that returns 1 if there is a match or 0 otherwise. The number
of hits for a queryq in a nodeni is the number of matches
in the node (H(q; ni) =

P
d2Di

M(q; d)). Similarly, the
number of hits in an overlay network will beH(q; ONl) =P

ni2ONl
H(q; ni). We will denote the probability of a

match betweenqi anddj (i.e., Prob(M(qi; dj) = 1)) as
PM (qi; dj). Queries can either be exhaustive or partial. In
the first case, the system must return all documents that
match the query. In the second case, the request includes a
minimum number of results that need to be returned.

3.1 Classification Hierarchies

Our objective is to define a set of overlay networks in such
a way that, when given a request, we can select a small
number of overlay networks whose nodes have a “high”
number of hits (or all hits if the query is exhaustive). The
benefit of this strategy is two fold. First, the nodes to which
the request is sent will have many matches, so the request

is answered faster; and second, but not less important, the
nodes that have few results for this query will not receive
it, avoiding wasting resources on that request (and allowing
other requests to be processed faster).

We propose using a classification hierarchy as the ba-
sis of the formation of the overlay networks. A classifica-
tion hierarchy,H is a tree of concepts. For example, in
Figure 4, we show 3 possible classification hierarchies for
music documents. In the first one, music documents are
classified according to their style (rock, jazz, etc.) and their
substyle (soft, dance, etc.); in the second one, they are clas-
sified by decade; and in the third one, they are classified by
tone (warm, exciting, etc.).

Each document and query is classified into one or more
leaf concepts in the hierarchy. Conceptually, the classi-
fication of queries and documents is done by two func-
tions,C�

q (q) andC�

d(d) respectively, which return one or
more leaf concepts inH . These functions are chosen so
if M(q; d) = 1 thenC�

q (q) \ C�

d(d) 6= ;. However, in
practice, classification procedures may beimpreciseas they
may not able to determine exactly to which concept a query
or document belongs. In this case, imprecise classification
functions,Cq(q) andCd(d), may return non-leaf concepts,
meaning that document or query belongs to one or more
descendant of the non-leaf concept, but the classifier can-
not determine which one. For example, when using the
leftmost classification hierarchy of Figure 4, a “Pop” doc-
ument may be classified as “Rock” if the classifier cannot
determine to which substyle (“Pop,” “Dance,” or “Soft”)
the document actually belongs. Specifically, ifc 2 C�

q (q)
then9c0 2 Cq(q) such thatc0 � c, and if c 2 C�

d(d) then
9c0 2 Cd(d) such thatc0 � c, wherec0 � c means thatc0

is equal toc, or thatc0 is an ancestor ofc in H . This def-
inition and the definition ofC� imply that if M(q; d) = 1
then9cq 2 Cq(q) andcd 2 Cd(d) such thatcq � cd or
cd � cq .

Classifiers may also makemistakesby returning the
wrong concept for a query or document. Specifically, a
classifier mistake happens whenM(q; d) = 1 but 6 9(cq 2
Cq(q) andcd 2 Cd(d)) such thatcq � cd or cd � cq. In
the following discussion, we will assume thatCq(q) and
Cd(d) are imprecise but that they do not make mistakes.
However, in our experiments we will study how much the
system is affected in the presence of classifier mistakes.

In most systems, document classifications change infre-
quently, so it is advantageous to classify documents in ad-
vance. Then, to speed up searches, documents can then be
placed in “buckets” that are associated with each concept
in the hierarchy. There are two basic strategies for deciding
in which bucket a document should be placed:differen-
tial andtotal assignment. When using a differential assign-
ment, a documentd is placed in the bucket of conceptc if
c 2 Cd(d). On the other hand, when using a total assign-
ment, a document is placed in the bucket of conceptc if
eitherc 2 Cd(d), or c is an ancestor of some element of
Cd(d) in H , or c is a descendant of some element ofCd(d)
in H . To illustrate, when using the leftmost hierarchy of
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Figure 2: Classification Examples

Figure 4, a differential assignment of a document classi-
fied as “rock” will place it in the bucket associated with
the concept “rock”, while an total assignment of the same
document will place it in the buckets associated with the
concepts “rock,” “music,” “pop,” “dance,” and “soft.”

Given a queryq, we now need to decide which bucket
(or buckets) need to be considered for finding matches. If
we used a total assignment, we consider the buckets asso-
ciated with each element ofCq(q). On the other hand, if
we used a differential assignment, we need to consider a
larger set of buckets: the bucket associated with each ele-
ment ofCq(q), the bucket associated with the ancestors of
the elements ofCq(q), and the bucket associated with the
descendants of the elements ofCq(q). As mentioned be-
fore, queries can be exhaustive or partial. In the case of an
exhaustive query, we need to find all matches, so all buck-
ets that may contain results need to be considered; while in
the case of partial queries but we do not need to consider
all of them. Given that we need to choose among a set of
buckets, partial queries add an additional dimension to the
problem as now we need to select the best subset of buck-
ets to answer the query. As the exhaustive case is not com-
mon in current P2P systems and is a special case of partial
queries, in the rest of the paper, we will assume that we are
answering partial queries. We also assume that document
assignment is done using the differential strategy.

Let us now illustrate how classification functions help
reduce the number of documents that need to be considered
when answering a query. For simplicity, we will assume
that the classification functions return a single element of
the hierarchy. In Figure 2 we present several combinations
of classification of documents and queries. In Figure 2a,
we show the worst-case scenario for our system when a
query is classified at the root concept of the hierarchy. This
classification indicates that the query results can actually
be in any of the leaf concepts in the hierarchy and there-
fore documents classified in any category in the system can
match the query (depicted as black circles in the classifi-
cation hierarchy). In Figure 2b, the query is classified at
one of the leaf concepts. In this case, we know that only
documents that belong (or may belong) to this concept can
match the query; thus, we need to consider the documents
classified in that base concept and all the ancestor concepts
of it and we can safely ignore all the documents classified
into concepts depicted as white circles. Finally, in Fig-
ure 2c, the query is classified at an intermediate concept
in the hierarchy tree. In this case, documents matching the
query may belong to any of the descendant leaf concepts,

so we need to consider all the descendant concepts of the
Cq(q3), as well as the ancestors of it. In conclusion, given
Cq(q), we only need to consider documents for which their
Cd(d) is an ancestor ofCq(q) or a descendant ofCq(q).
The more precise the classification functionCq(q) is, the
smaller the number of concepts that need not be considered
for a match. In addition, the more preciseCd(d) is, the
smaller the number of documents that will be classified in
the intermediate nodes of the hierarchy, thus also reducing
the number of documents that need to be considered.

So far we have considered documents by themselves,
but in a P2P system, documents are actually kept by nodes.
Therefore, we need to place nodes, rather than documents
in buckets. We call a bucket of semantically related nodes a
Semantic Overlay Network. Formally, we define aSeman-
tic Overlay Networkas an overlay network that is associ-
ated with a concept of a classification hierarchy. For short,
we will call a SON associated with conceptc, simply the
SON ofc orSONc. For example, in the leftmost hierarchy
in Figure 4 (if we assume that only the its only concepts
are the ones shown), we will define at 9 SONs: 6 associ-
ated with the leaf nodes (soft, dance, pop, New Orleans,
etc.), one associated with rock, another associate with jazz,
and a final one associate with music. To completely define
a SON, we need to explain how nodes are assigned to SONs
and how we decide which SONs to use to answer a query.

A node decides which SONs to join based on the clas-
sification of its documents. Thus, since we are using a dif-
ferential assignment of documents, a nodeni joinsSONc

if there is ad 2 Di such asc 2 Cd(d). Under this defini-
tion, a queryq associated with the conceptsCq(q) will only
find results inSONc wherec 2 Cq(q) or c � c0 2 Cq(q)
or c � c0 2 Cq(q). This strategy is very conservative as
it will place a node inSONc if just one document classi-
fies asc. A less conservative strategy will place a node in
SONc if a “significant” number of document classifies asc.
Such less-conservative strategy has two effects: it reduces
the number of nodes in a SON and it reduces the number
of SONs to which a node belongs. The first of these effects
increases the advantages of SONs as less nodes need to be
queried. The second effect reduces the cost of SONs as
the greater the number of SONs to which a node belongs,
the greater the the node overhead for handling many differ-
ent connections. However, a less conservative strategy may
prevent us from finding all documents that match a query.
In Section 6, we study different strategies for assignment
of nodes to SONs.

After assigning nodes to SON, we may make adjust-
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ments to the SONs based on the actual data distributions
in the nodes. For example, if we observe that a SON con-
tains only a very small number of nodes, we may want to
consolidate that SON with a sibling or its parent in order to
reduce overhead.

To summarize, the process of building and using SONs
is depicted in Figure 3. First, we evaluate potential classifi-
cation hierarchies using the actual data distributions in the
nodes (or a sample of them) and find a good hierarchy. This
hierarchy will be stored by all (or some) of the nodes in the
system and it is used to define the SONs. A node joining
the system, first floods the network with requests for the
hierarchy in a Gnutella fashion (we do not address security
problems in this paper, but inconsistent hierarchies may be
detected by obtaining the hierarchy from multiple sources
and using a majority rule). Then, the node runs a docu-
ment classifier based on the hierarchy obtained on all its
documents. Then, a node classifier assigns the node to spe-
cific SONs (by, for example, using the conservative strat-
egy described in this section). The node joins each SON
by finding nodes that belong to those SONs. This can be
done again in a Gnutella fashion (flooding the network until
nodes in that SON are found) or by using a central direc-
tory. When the node issues a query, first it classifies it and
sends it to the appropriate SONs (nodes in those SONs can
be found in a similar fashion as when the node connected to
its SON). After the query is sent to the appropriate SONs,
nodes within the SON find matches by using some propaga-
tion mechanism (such as Gnutella flooding or super peers).

In the next sections, we will study the challenges and
present solutions for building a P2P system using Seman-
tic Overlay networks. We will evaluate our solutions by
simulating a music-sharing system based on real data from
Napster [22] and OpenNap [19]. Specifically, in this paper
we will address the following challenges:

� Classification hierarchies for SONs (Section 4): If
nodes have very diverse files, there will not be enough
clustering to merit the use of SONs. So, in practice,
will we see enough clustering? What hierarchies will
yield the most clustering and the best SON organiza-
tion?

� Classifying queries and documents (Section 5): Im-
precise classifiers can map too many documents and
queries to higher levels of the hierarchy, making
searches more expensive. What are the options for
building classifiers? Are they precise enough for our
needs? What is the impact of classification errors?

� SON membership (Section 6): When should a node
join a SON? What is the cost of joining a SON? Can
we reduce the number of SONs that a node needs to
belong to (while being able to find most results)?

� Searching SONs (Section 7): How do we search
SONs? Is it worth having Semantic Overlay Net-
works? Is the search performance of a SON-based
system better than a single-overlay network system
such as Gnutella?

4 Classification Hierarchies
In this section we present the challenges and some solutions
to the problem of choosing a good classification hierarchy
for a SON-based system. Specifically, we will define what
a good classification hierarchy is, how can we evaluate a
classification hierarchy, and how can we choose among a
set of possible hierarchies.

A good classification hierarchy is one that: (i) produces
buckets with documents that belong to a small number of
nodes, (ii) nodes have documents in a small number of
buckets, and (iii) it allows for easy-to-implement classifi-
cation algorithms that make a low number of errors (or no
errors at all). In the following paragraphs we explain the
rationale behind these criteria.

We need a classification hierarchy that produces buckets
of documents that belong to a small number of nodes be-
cause the smaller the number of nodes we need to search,
the better the query performance. To illustrate, consider
a classification hierarchy for a music-sharing system that
is based on the decade the music piece was originally cre-
ated. In such a system, we may expect that a large number
of nodes will have “90’s or current” music. If that is the
case, there is little advantage to create a SON for “90’s or
current” music, as this SON will have almost all nodes in
the system and it will not produce any benefit (but we will
still be incurring on the cost of an additional connection at
each node and of having to classify nodes and queries).

We need a classification hierarchy such that nodes have
documents in a small number of buckets as each bucket will
potentially become a SON that needs to be handled by the
node. The greater the number of SONs, the greater the cost
for a node to keep track of all of them. For example, con-
sider a classification hierarchy for a music-sharing system
that is based on a random hash of the music file. If we as-
sume that nodes have a lot more files than there are hash
buckets, then we can expect with a high probability that a
node will have to joinall SONs in the system. In this case,
the node will have to process every single query sent into
the system eliminating all the benefits of SONs.

Finally, we want classification hierarchies for which it is
possible to implement efficient classifiers that make a small
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number of errors. To illustrate, consider an image shar-
ing system with a classification hierarchy with the concept
“has a person smiling.” This concept may generate a good
number of small SONs, but it requires a very sophisticated
classification engine that may generate a large number of
erroneous results.

Using the criteria for “goodness” of a classification hier-
archy presented above, we can now evaluate classification
hierarchies (with the final objective of choosing the best
one). This evaluation is a very important step as we have
seen that if we are not careful in choosing a good classifi-
cation hierarchy we may reduce or even eliminate the ben-
efits of using SONs. To evaluate, first, we need to make
sure that classifiers can be implemented and that they are
efficient. Then, we use the actual data from the nodes in
the system to predict the size of the SONs as well as the
number of SONs to which a node will belong.

4.1 Experiments

To illustrate the issues described in this section, we will
evaluate three classification hierarchies for a music sharing
system. Music sharing is of interest to us because it is by far
the largest P2P application today. While our experimental
results in this paper are particular to this important applica-
tion, we have no reason to believe they would not apply in
other applications with good classification hierarchies.

In Figure 4, we illustrate three possible classification hi-
erarchies for music. In the figure we only present a small
subset of the concepts in each classification hierarchy. The
full sets of concepts are presented in the extended version
of this paper [2] and are based on the hierarchy used byAll
Music Guide[21], a music database maintained by volun-
teers who manually classify songs and artist.

The first classification hierarchy divides music files ac-
cording first to their style (e.g., Rock, Jazz, Classic, etc.),
and then to their substyle (e.g., Soft Rock, Dance Rock,
etc.). For style, there are a total of 26 categories and a mu-
sic file can only belong to one category; while for substyle,
there are 255 categories and a file can be classified in mul-
tiple substyles. The second hierarchy classifies music files
based on the decade on which the piece was originally pub-
lished (10’s or before, 20’s, ..., 80’s, and 90’s or newer).
Music files can only be classified in one decade. Finally,
the third classification hierarchy divides files according to
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the “tone” of the piece (e.g., warm, exciting, sweet, ener-
getic, party, etc.). There are a total of 128 tones and a music
file can be classified in multiple tones.

In our experiment, we used the crawl of 1800 Napster
nodes made at the University of Washington during the
month of May 2001 [13]. This crawl included the iden-
tity of the node (user name), and for each node, the listing
of its files. For most nodes, filenames were of the form
“directory/author-song title.mp3” which allowed us to eas-
ily classify files by author and song titles. There was addi-
tional information (length of file, bit rate, and a signature
of the content) that was not used in our evaluations. Actual
file content was not available.

To classify documents into the hierarchy, we used the
web interface to the database ofAll Music Guide(at all-
music.com). Basically, given a song and artist, the All-
Music-Guide database returns the song style, one or more
substyles, the decade when the song was released, and one
or more tones expressed by the song. We will describe and
analyze the classifier in further detail, including how to deal
with mistakes and songs not in the database in Section 5.1.

To evaluate the style/substyle classification hierarchy,
we will first evaluate the style classification hierarchy by
itself and then (if needed) we will add to the evaluation the
substyle dimension. In Figure 5, we show the distribution
of Style buckets. To generate this graph, for each node we
counted the number of style categories for which the node
had one or more files. Then we counted the number of
nodes with the same number of style categories and plot-
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Figure 6: Bucket Size Distribution for Style Hierarchy

ted it on the graph. For example, if a node had files in the
Rock, Jazz, Country, and Classic styles (and no files in the
other styles), then the node would have be counted in the
bar for “4 style” buckets. From the graph, we can see that
425 nodes (about 24% of the total nodes) have files in just
one style. Moreover, 90% of the nodes have files in eight or
fewer style categories. This result means that if we define
a SON based on the style of files, most nodes will have to
handle very few connections.

As indicated before, the smaller the SON, the better
query performance will be. However, we cannot compute
the size of the Style SONs without the specific node-to-
SON assignment strategy. Therefore, we will assume the
most conservative strategy: a node will belong to a Style
SON if it has one or more files in that Style bucket. Figure 6
shows a histogram for the number of nodes that have one or
more files in each Style bucket. To generate this graph we
counted, for each style, the number of nodes that have one
or more files classified in that style. We then counted how
many styles had a number of nodes in the ranges 0 to 199,
200 to 399, and so on, and plotted them on the graph. For
example, the leftmost bar in the graph means that 14 styles
buckets had documents that belonged to between 200 and
399 nodes. The high frequency for bucket size in the inter-
val [200,399] is good news as it shows that the maximum
size of most SONs will be small with only 11% to 22%
of the nodes. However, there is one style bucket (shown by
the rightmost bar) that has documents belonging to between
1600 and 1800 nodes. Thus, almost all nodes in the system
have one or more documents for that bucket (this bucket
corresponds to the style “Rock”). Given that there is little
advantage on creating a SON based on the style “Rock,”
we need to explore if it is possible to subdivide it further by
using substyles.

We now consider SONs based on the substyle classi-
fication. Although the previous analysis pointed that we
only needed to subdivide the Rock style category (and per-
haps the 2 other categories with documents belonging to
between 1000 and 1200 nodes), for completeness we will
analyze all substyles categories.

In Figure 7 we now show the substyle distribution, anal-
ogous to Figure 5. From the graph, we can see that 328
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nodes (about 18% of the total nodes) have files in just one
substyle. Moreover, 90% of the nodes have files in 30 or
less substyle categories. These results are again positive as
it shows that number of SONs to which most nodes may
belong is small. In Figure 8 we show the bucket size his-
togram, analogous to Figure 6. From the figure we can see
that 222 of the substyles (87% of the total) will have docu-
ments belonging to less than 400 nodes. However, there are
again a few substyle categories that will have documents
that belong to a large number of nodes, but this problem
is not as bad as the one that we had when using the style
classification hierarchy by itself. In particular, the category
with the most number of nodes, “Alternative Pop Rock,”
(which is represented by the rightmost bar in the histogram)
will have documents belonging to only 1031 nodes (57%
nodes). Even though the “Alternative Pop Rock” SON will
have many nodes, it is still half the size of a full Gnutella
network that links all the nodes. In conclusion, a combined
style and substyle classification hierarchy is a good candi-
date for defining SONs as the maximum number of SONs
that a node needs to join is small and the maximum number
of nodes in a SON is also relatively small.

We also analyzed the usage of Decades as a criteria for
classifying documents (graph not shown). Although most
nodes had documents in only a few decade buckets, we
found that more than half of the SONs will have more than



600 nodes. In fact, almost all nodes will have documents
for the 70s, 80s, and 90s buckets. Therefore, given that we
do not have a way of subdividing those decades, we have
to reject the decade classification hierarchy.

When analyzing the the distribution of tone buckets
(graph not shown), we found that the median number of
buckets for which a node has documents is 43, which will
result in nodes belonging to a high number of SONs. How-
ever, we also found that most buckets will contain doc-
uments belonging to a relatively small number of nodes.
Specifically, 60% of the buckets will have documents be-
longing to 625 or fewer nodes, and 90% of the buckets will
have documents belonging to 875 nodes. In conclusion, us-
ing a classification hierarchy based in tone is borderline and
depending on the specifics of the tradeoff between nodes
maintaining a large number of connections and the benefits
of relatively small SONs, we may decide to use it or not.
Nevertheless, of all the classification hierarchies evaluated,
the one based on style/substyle is clearly superior and we
will use it in the rest of our experiments.

5 Classifying Queries and Documents
In this section we describe how documents and queries are
classified. Although the problem of classifying documents
and the problem of classifying queries are very similar, the
requirementsfor the document and query classifiers can be
very different. Specifically, it is reasonable to expect that
nodes will join a relatively stable P2P network at a low rate
(a few per minute); while we could expect a much higher
query rate (hundreds or even more per second). Addition-
ally, node classification is more bursty as when a node joins
the network it may have hundreds of documents to be clas-
sified; on the other hand, queries will likely to arrive at a
more regular rate. Under these conditions, the document
classifier can use a very precise (but time consuming) al-
gorithm that can process in batch a large number of docu-
ments; while, the query classifier must be implemented by
a fast algorithm that may have to be imprecise.

The classification of documents and queries can be done
automatically, manually, or by a hybrid processes. Ex-
amples of automatic classifiers include text matching [8],
Bayesian networks [10], and clustering algorithms [16].
These automatic techniques have been extensively studied
and they are beyond the scope of this paper. Manual clas-
sification may be achieved by requiring users to tag each
query with the style or substyle of the intended results. For
example, the user may indicate that results for the query
“Yesterday” are expected to be in the “Oldies” substyle;
or that results for the query “Like a rolling stone” are ex-
pected to be in the “Rock” style. If the user does not know
the substyle or style of the potential results, he can always
select the root of the hierarchy so all nodes are queried. Fi-
nally, hybrid classifiers aid the manual classification with
databases as we will see shortly in our experiments.

5.1 Experiments

The goal of this experimental section is to show that we can
classify documents and queries and to study how precise

are those classifications.

5.1.1 Evaluating our Document Classifier

Documents were classified by probing the database of All
Music Guide at allmusic.com [21]. In this database songs
and artists are classified using a hierarchy of style/substyle
concepts equivalent to the leftmost classification hierarchy
of Figure 4. Recall that for each Napster node used in
our evaluation we had a list of filenames with the format
“directory/author-song title.mp3.” As a first step, the docu-
ment classifier extracted the author and the song title for the
file. The classifier then probed the database with that au-
thor and song and obtained a list of possible song matches.
Finally, the classifier selected the highest rank song and
found its style and substyles. If there were not matches in
the database, the classifier assigned “unknown” to the style
and substyle of the file.

There were many sources of errors when using our doc-
ument classifier. First, the format of the files may not fol-
low the expected standard, so the extraction of the author
and song title may return erroneous values. Second, we
assumed that all files were music (but Napster could be,
and was actually used, to share other kind of files). Third,
users made misspellings in the name of artist and/or song
(to reduce the effect of misspellings, we used a phonetic
search in the All Music database, so some common mis-
spellings did not affect the classification). Finally, the All
Music database is not complete, which is especially true in
the case of classical music.

To evaluate the document classifier, we measured the
number of incorrect classifications. We selected 200 ran-
dom filenames and manually found the substyles to which
they belong (occasionally using the All Music database and
Google as an aid to find the substyles of non well-known
pieces). We then compared the manual classification with
the one obtained from our document classifier. We consid-
ered a classification to be incorrect for a given document
if the document classifier returned one or more substyles
to which the document should not belong. Note that an
“unknown” classification from our classifier, although very
imprecise, is not incorrect as it would correspond to the
root node of the classification hierarchy. In our evaluation,
we found that 25% of the files were classified incorrectly.

It is important to note that not every misclassified docu-
ment cannot be found later on. To evaluate the true effect
of document misclassification, we evaluated the impact of
an incorrect document classification on the assignment of
nodes to SONs. For this experiment, we selected 20 ran-
dom nodes, we classified all their documents, and assigned
the nodes to all the substyles of their respective documents.
We considered a classification to be incorrect for a given
node if the node was not assigned to one or more sub-
styles to which the node should belong. In our evaluation,
we found that only 4% of the nodes were classified incor-
rectly. This result shows that errors when classifying docu-
ments tend to cancel each other within a node. Specifically,
even if we fail to classify a document as, for example, “Pop
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Figure 9: Choosing SONs to join

Rock,” it is likely that there will be some other “Pop Rock”
document in the node that will be classified correctly so the
node will still be assigned to the “Pop Rock” SON. Nev-
ertheless, misclassified documents are still a problem for
exhaustive queries, however, in practice almost all queries
in P2P systems are partial.

5.1.2 Evaluating our Query Classifier

For our experiments, queries were classified by hand by
the authors of this paper. Queries were either classified in
one or more substyles, a single style, or as “music”(the root
of the hierarchy). In our experiments we used queries ob-
tained from traces of actual queries sent to an OpenNap
server run at Stanford [23]. Thus, by manually classifying
queries, we are “guessing” what the users would have se-
lected from say a drop-down menu as they submitted their
queries.

Unfortunately, we cannot evaluate the correctness of the
query classification method (we, of course, consider our
classification of all queries to be correct). Nevertheless, we
can study how precise our manual classification was (i.e.,
how many times queries were classified into a substyle, a
style, or at the root of the classification hierarchy). We
selected a trace of 50distinct queries (the original query
trace contained many duplicates which the authors of [23]
believed were the result of cycles in the OpenNap overlay
network) and then manually classified those queries. The
result was that 8% of the queries were classified at the root
of the hierarchy, 78% were classified a the style level of the
hierarchy and 14% at the substyle level. As we will see in
Section 7, the distribution of queries over hierarchy levels
will impact the overall system performance, as more pre-
cisely classified queries can be executed more efficiently.

6 Nodes and SON Membership

In Section 3 we presented a conservative strategy for nodes
to decide which SONs to join. Basically, under this strat-
egy, nodes join all the SONs associated with a concept for
which they have a document. (We discussed in Section 3.1
the mechanisms used by nodes to actually connect to those
SONs.) This strategy guarantees that we will be able to
find all the results, but it may increase both the number
of nodes in each SON and the number of connections that a
node needs to maintain. A less conservative strategy, where
nodes join some of all the possible SONs, can have better

performance. In the next subsection we introduce a non-
conservative assignment strategy: Layered SONs.

6.1 Layered SONs

The Layered SONs approach exploits the very common
zipfian data distribution in document storage systems. (It
has been shown that the number of documents in a web-
site when ranked in order of decreasing frequency, tend to
be distributed according to Zipf’s Law [3].) For example,
on the left side of Figure 9 we present a hypothetical his-
togram for a node with a zipfian data distribution (we’ll
explain the rest of the figure shortly). In this histogram
we can observe that 45% of the documents in the node be-
long to categoryc1, about 35% of the documents belong to
categoryc2, while the remaining documents belong to cat-
egoriesc3 to c8. Thus, which SONs should the node join?
The conservative strategy mandates that the node need to
join SONc1 throughSONc8 . However, if we assume that
queries are uniform over all the documents in a category,
it is clear that the node will have a higher probability of
answering queries inSONc1 andSONc2 than queries in
the other SONs. In other words, the benefit of having the
node belong toSONc1 andSONc2 is high, while the ben-
efit of joining the other SONs will be very small (and even
negative due to the overhead of SONs). A very simple and
aggressive alternative would be to have the node join only
SONc1 andSONc2 . However, this alternative would pre-
vent the system from finding the documents in the node that
do not belong to categoriesc1 andc2.

Nodes determine which SONs to join based on the num-
ber of documents in each category. To illustrate, consider
again Figure 9. At the right of the figure we present the hi-
erarchy of concepts that will aid a node in deciding which
SONs to join. In addition, a parameter of the Layered SON
approach is the minimum percentage of documents that a
node should have in a category to belong to the associated
SON (alternatively, we can also use an absolute number of
documents instead of a percentage). In the example, we
have set that number at 15%. Let us now determine which
SONs the node with the histogram at the left of Figure 9
should join. First, we consider all the base categories in
the hierarchy tree (c1 to c8). As c1 andc2 are above 15%,
the node joinsSONc1 andSONc2 . As all the remaining
categories are all below 15%, the node does not join their
SONs. We then consider the second level categories (c9,
c10, andc11). As the combination of the non-assigned de-
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scendants ofc9, c3 and c4, is higher than 15%, the node
joins SONc9 . However, the node does not join the SON
of c10 as the combination ofc5 andc6 are not above 15%.
Similarly the node does not join the SONs ofc11 asc7 and
c8 are below the threshold. Finally, the node joins the SON
associated with the root of the tree (SONc12) as there were
categories (c5, c6, c7 andc8) that are not part of any assign-
ment. This final assignment is done regardless of the 15%
threshold as this ensures that all documents in the node can
be found (in our example, if we do not joinSONc12 we
will not be able to find the documents in the SONs ofc5,
c6, c7 andc8).

The conservative assignment is equivalent to a Layered
SON where the threshold for joining a SON has been set
to 0%. In this case, the node will join the SONs associated
with all the base concepts for which it has one or more
documents.

6.2 Experiments

In this subsection we contrast the result, in terms of SON
size and number of SONs per node, of the conservative ap-
proach of Section 4.1 and the Layered SON approach. For
reason of space, we will only consider the Style/Substyle
classification hierarchy (the results for the other classifica-
tion hierarchies are consistent with the ones presented here
and in Section 4.1).

In Figure 10, we show the distribution of style SONs
when using Layered SONs with a threshold of 35% and
for the conservative assignment (labeled as 0% SON). The
graphs do not include the “root” category to which, in prac-
tice, all nodes belong. From the graph, we can see that 616
nodes (about 34% of the total nodes) need to belong to just
one style. This result shows a significant improvement ver-
sus the conservative assignment of Section 4.1 when only
24% of the nodes belonged to one style. Moreover, 97%
of the nodes need to belong to four or less style categories
(versus 90% when doing conservative assignments).

Using layered SONs also helps reduce the number of
nodes per SON. Figure 11 shows a histogram for the size
of the SONs (excluding the “root” SON). From the graph
we can see that by using Layered SONs we have a larger
number of small SONs. However, as before, we still have a
problem with the “Rock” style (rightmost bar in the graph)
to which almost all nodes will have to belong. In conclu-
sion, there is a significant reduction in the size of SONs
when using Layered SONs instead of the conservative strat-
egy. This reduction will lead to significant improvements
in query performance.

We now consider Layered SONs based on the
Style/Substyle classification hierarchy with a threshold of
10% (graph not shown). In this case, the conservative as-
signment strategy behave similarly in terms of the number
of connections required at each node. However, the advan-
tage of Layered SONs can be seen when considering the
size of each SON as when using Layered SONs, SONs will
have on average 135 nodes (versus 517 nodes for the con-
servative approach). Moreover, the Layered SON does not
have any SONs with more than 875 nodes, while the con-
servative approach has 24. In conclusion, using Layered
SONs with a Style/Substyle hierarchy produces a signif-
icant improvement versus the conservative assignment as
we have much smaller SONs.

7 Searching SONs
As explained in Section 3, queries can be exhaustive or par-
tial. In the case of an exhaustive query, we need to find all
matches, so all SONs that may contain results need to be
considered; while in the case of partial queries but we do
not need to consider all of them. In this section, we ex-
plore the problem of how to choose among a set of SONs
when using Layered SONs. (We discussed in Section 3.1
the mechanisms used by nodes to actually send the queries
to those SONs.)

7.1 Searching with Layered SONs

Searches in Layered SONs are done by first classifying the
query. Then, the query is sent to the SON (or SONs) associ-
ated with the base concept (or concepts) of the query clas-
sification. Finally, the query is progressively sent higher
up in the hierarchy until enough results are found. In case
more than one concept is returned by the classifier, we do
a sequential search in all the concepts returned before go-
ing higher up in the hierarchy. For example, when looking
for a “Soft Rock” file we start with the nodes in the “Soft



Rock” SON. If not enough results are found (recall that
partial queries have a target number of results), we send
the query to the “Rock” SON. Finally, if we still have not
found enough results, we send the query to the “Music”
SON. There are multiple approaches when searching with
Layered SONs. In this paper we are concentrating on a sin-
gle serial one (as our objective is to minimize number of
messages). However, there are other approaches such as
searching more than one SON in parallel (by asking each
one for some fraction of the target results) which may re-
sult in higher number of messages, but will start producing
results faster.

This search algorithm does not guarantee that all docu-
ments will be found if there are classification mistakes for
documents. Not finding all documents may or may not be
a problem depending on the P2P system, but in general, if
we need to find all documents for a query (in the presence
of classification mistakes), our only option is an exhaus-
tive search among all nodes in the network. However, we
will see that with our document classifier (which has an
per-document classification mistake probability of 25%),
we can find more than 95% of the documents that match a
query. In addition, this search algorithm may result in du-
plicate results. Specifically, duplication can happen when a
node belongs, at the same time, to a SON associated with a
substyle and to the SON associated with the parent style of
that substyle. In this case, a query that is sent to both SONs
will search the node twice and thus it will find duplicate
results.

7.2 Experiments

We will now consider two possible SON configurations and
evaluate their performance against a Gnutella-like system.
As before, we used the crawl of 1800 Napster nodes made
at the University of Washington, which were classified us-
ing the All Music database. We assumed that the nodes
in the network (both inside SONs and in the Gnutella net-
work) were connected via an acyclic graph and that on aver-
age each node was connected to four other nodes. Although
the assumption of an acyclic graph is not realistic, we are
considering acyclic networks as the effect of cycles is inde-
pendent of the creation of SONs. Cycles affect a P2P sys-
tem by creating repeated messages containing queries that
the receiving nodes have already seen. Therefore, an anal-
ysis of an acyclic P2P network gives us a lower estimate of
the number of messages generated.

To illustrate, we will first show the result for a single
query when using a Layered SON for the style/substyle
classification hierarchy. In Figure 12 we evaluate the per-
formance of the query “Spears” (classified manually as
a “teen-pop”). The figure shows the level of recall ver-
sus the number of messages transmitted. The level of re-
call is the ratio between the number of matches obtained
versus the number of matches that would be obtained if
we searched all nodes in the system. The data points in
the graph were obtained by averaging 50 simulations over
randomly generated network topologies. As indicated be-
fore, when using Layered SONs, we may obtain duplicate
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matches. In such a case, we did not count duplicate results
as new matches. Following the search algorithm for Lay-
ered SONs, the query was initially sent to the “Teen Pop”
SON. We show as a dotted line in the graph the recall level
versus message performance of that SON. After the “Teen
pop” SON is searched (consuming 232 messages and yield-
ing 37% of the matching documents), the system searches
the parent of “Teen pop”, i.e., the “Rock” SON. We show
the recall level versus message performance of this next
SON as a dashed line. Finally, we show as a solid line the
recall level versus message performance of a Gnutella-like
system that searches all nodes (in an order that is indepen-
dent from the content). From the graph, we can see that
the Layered SON setup is able to find results with signifi-
cantly fewer messages (and therefore much faster) than the
Gnutella network. Specifically, the SON-base system was
able to find 20% of the results with only 92 messages, while
it took 285 messages for the Gnutella system to reach that
same level.

As an additional observation, the Layered SON system
does not find all results available. While Gnutella finds
100% of the results in the system, Layered SON only found
97% of the results. The reason is that the document classi-
fier did some mistakes and some nodes (with Spears doc-
uments) were not assigned to the “Rock” or “Teen Pop”
SONs. If we would like to find the remaining 3% of the
documents, we would have to send the query to the “Mu-
sic” SON (which contains all nodes) and that it has the
same performance as a Gnutella search (plus the overhead
of having searched in the “Teen Pop” and “Rock” SONs
before). Of course in practice most users will never want
to perform an exhaustive search [1].

Let us now analyze the performance of Layered SONs
with a stream of queries. For this experiment we used
50 different random queries obtained from traces of actual
queries sent to an OpenNap server run at Stanford [23].
These queries were classified by hand as described in Sec-
tion 6. Queries classified at the substyle level were sent se-
quentially to the corresponding SON (or SONs), and then
to the style-level SON. Queries classified at the style level,
were first sent sequentially to all substyles of that style, and
then to the style level. Queries classified at the root of the
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hierarchy were sent to all nodes. We measure the level of
recall averaged for all 50 queries versus the number of mes-
sages sent in the system. As in the previous experiment, the
graphs were obtained by running 50 simulations over ran-
domly generated network topologies.

In Figure 13, we show the result of this experiment.
The figure shows the number of messages sent versus the
level of recall. As with the case of a single query, Layered
SONs were able to obtain the same level of matches with
significantly fewer messages than the Gnutella-like system.
Again, Layered SONs do not achieve recall levels of 100%
in general (average maximum recall was 93%) due to mis-
takes in the classification of nodes.

The results of Figure 13 show the average performance
for all query types (dotted line). However, if a user is able
to precisely classify his query, he will get significantly bet-
ter performance. To illustrate this point, Figure 13 also
shows with a dashed the number of messages sent versus
the level of recall for queries classified at the substyle level
(the lowest level of the hierarchy). In this case, we obtain a
significant improvement versus Gnutella. For example, to
obtain a recall level of 50%, Layered SONs required only
461 messages, while Gnutella needed 1731 messages, a re-
duction of 375% in the number of messages. Moreover,
even at high recall levels, Layered SONs were able to reach
a recall level of 92% with about 1/5 of the messages that
Gnutella required.

The shape of the curve for the message performance of
Gnutella is slightly different for all queries and for queries
classified at the substyle level. The reason for this differ-
ence is very subtle. The authors of this paper were only able
to classify very precisely (i.e. to the substyle level) queries
for songs that are very well known. Due to their popularity,
there are many copies of these songs throughout the net-
work. Therefore, a Gnutella search approach will have a
high probability of finding a match in many of the nodes
visited, making the flooding of the network less of a prob-
lem than with more rare songs. Nevertheless, even in this
case, Layered SONs performed much better than Gnutella.

8 Conclusion
We studied how to improve the efficiency of a peer-to-peer
system by clustering nodes with similar content in Seman-

tic Overlay Networks (SONs). We showed how SONs can
efficiently process queries while preserving a high degree
of node autonomy. We introduced Layered SONs, an ap-
proach that improves query performance even more at a
cost of a slight reduction in the maximum achievable recall
level. From our experiments we conclude that SONs offer
significant improvements versus random overlay networks,
while keeping costs low. We believe that SONs, and in
particular Layered SONs, can help improve the search per-
formance of current and future P2P systems where data is
naturally clustered.
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