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Abstract Rock

In a peer-to-peer (P2P) system, nodes typically
connect to a small set of random nodes (their R
neighbors), and queries are propagated along
these connections. Such query flooding tends to
be very expensive. We propose that node connec-
tions be influenced by content, so that for exam-
ple, nodes having many “Jazz” files will connect
to other similar nodes. Thus, semantically related
nodes form a Semantic Overlay Network (SON).
Queries are routed to the appropriate SONSs, in-
creasing the chances that matching files will be
found quickly, and reducing the search load on
nodes that have unrelated content. We have evalu-
ated SONs by using an actual snapshot of music-
sharing clients. Our results show that SONs can
significantly improve query performance while at
the same time allowing users to decide what con-
tent to put in their computers and to whom to con-
nect.
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Figure 1: Semantic Overlay Networks

query performance while maintaining a high degree of
node autonomy. With Semantic Overlay Networks (SONSs),
nodes with semantically similar content are “clustered” to-
gether. To illustrate, consider Figure 1 which shows eight
nodes,A to H, connected by the solid lines. When using
SONSs, nodes connect to other nodes that have semantically
) similar content. For example, nodds B, andC all have

1 Introduction “Rock” songs, so they establish connections among them.

Peer-to-peer systems (P2P) have grown dramatically in re>imilarly, nodesC’, E, andF" have “Rap” songs, so they
cent years. They offer the potential for low cost sharing ofcluster close to each other. Note that we do not mandate
information, autonomy, and privacy. However, query pro_how connections are done |n5|_de a SON. For |_nstance, in
cessing in current P2P systems is very inefficient and dog§€ Rap SON nodé€’ is not required to connect directly to
not scale well. The inefficiency arises because most p2@- Furthermore, nodes can belong to more than one SON
systems create a random overlay network where querie§-9-,C belongs to the Rap and Rock SONS). In addition to
are blindly forwarded from node to node. As an alterna-the simple partitioning illustrated by Figure 1, in this paper
tive, there have been proposals for “rigid” P2P systems thaf/€ Will also explore the use of content hierarchies, where
place content at nodes based on hash functions, thus maf@" example, the Rock SON is subdivided into “Soft Rock”
ing it easier to locate content later on (e.g., [15, 9]). Al-and “Hard Rock.”
though such schemes provide good performance for point |n a SON system, queries are processed by identifying
queries (where the search key is known exactly), they argyshich SON (or SONSs) are better suited to answer it. Then
not as effective for approximate, range, or text queries. Furthe query is sent to a node in those SONs and the query is
thermore, in general, nodes may not be willing to accepforwarded only to the other members of that SON. In this
arbitrary content nor arbitrary connections from others.  way, a query for Rock songs will go directly to the nodes
In this paper we propose Semantic Overlay Networkghat have Rock content (which are likely to have answers
(SONs), a flexible network organization that improvesfor it), reducing the time that it takes to answer the query.
o . . - Almost as important, nodes outside the Rock SON (and
Permission to copy without fee all or part of this material is granted pro- . .
vided that the copies are not made or distributed for direct commercialtherefore unlikely to have answers) are not bothered with
advantage, the VLDB copyright notice and the title of the publication andthat query, freeing resources that can be used to improve

its date appear, and notice is given that copying is by permission of thghe performance of other queries.
Very Large Data Base Endowment. To copy otherwise, or to republish, ) . ) )
requires a fee and/or special permission from the Endowment. Unlike traditional DB queries, most searches in P2P sys-

Proceedings of the 29th VLDB Conference, tems are not exhaustive. When a user starts a search for a
Berlin, Germany, 2003 song, he is not interested in every single instance of the




song. Similar to a web search, most users are satisfied witR Related Work

a small subset of all the matches. SONs exploit this char-Th id f olacing data i d | to wh | N
acteristic by trading off the maximum achievable level of € 1dea of placing data in nodes close 1o where relevan

recall (i.e., the percentage of the matches that can be foun ;gfr']sso[z]g"ﬁésvggsr tjhssgl Ir:)r(i::[?\rlnils (ﬂzg&bg?gi;ﬁ?&z?
and the performance of the system. For instance, Suppo atabases ére based ;)n two%‘ ndamental assumptions that
that nodeF’ in Figure 1 has very few Jazz songs. We may u umpti

then chooseotto haveF join the Jazz SON, Although this are not applicable to P2P systems: that thgre are a small
choice will reduce the recall level of Jazz songs (we will notnurnber of stables nodes, and that the designer has total

. - control over the data.
be able to find the ones ifi), we now do not need to send
Jazz queries to nodE, reducing the number of messages There are a number of P2P research systems (CAN [9],
overall as well as the query processing load on nBde CHORD [15], Oceanstore [5], Pastry [11], and Tapestry

There has been substantial work on content hierarchie@‘”) that are designed so documents can be found with a
o Lo .. Very small number of messages. However, all these tech-
and classification. However, there are significant differ-

ences between that prior work and our work. Soecificall nigues either mandate a specific network structure or as-
in our work we structﬂre node connections réthe? than do%gume total control over the location of the data. Although

o : o these techniques may be appropriate in some application,
uments within a controlled collection. In addition, our tech-

. . ) . S the lack of node autonomy has prevented their use in wide-
niques are specifically tailored for a highly distributed Pzpscale P2P systems.

environment while the prior art focused on centralized sys- Semantic Overlay Networks are also related to the con-
tems. (Related work is further discussed in Section 2.) ) y Ne
- .__ceptof online communities [14] such as Yahoo Groups [18]
There are many challenges Wh‘?” building SONS. I:'rStand MSN Communities [17]. In an online community,
),Ne ntegd to kl)(e able to ClaSSIf})/ qt\ﬁr'es a(rju: ngde.sé(V\;Eatldo ers with common interest join specific groups and share
contain rock songs” means?). We need to decide the EVehformation and files. However, most online community

of granularity for the classification (e.g., Jl.JSt rock SONGS -4ntain a central element that coordinates the actions of the
versus soft, pop, and metal rock) as too little granularity

; : . . “members of the group.
will not generate enough locality, while too much would in- There is a large corpus of work on document cluster-
crease maintenance costs. We need to decide when a noﬂ

o . . % using hierarchical systems (see [6] for a survey). How-
Sh‘?‘UId JO,!” a SON (ifa node ha.S.JUSt acouple of document%ver, most clustering algorithms assume that documents are
on “rock,” do we need to place it in the same SON as a nod

that has hundreds of “rock” documents?). Finally, we nee art of a controll_ed collection Iocate_d ata ce_zntral database.
to choose which SONS to use when anévx}ering a’query lustering algorithms for decentralized environments have
) ' . also been studied in the context of the web. However,

Many of our questions can only be answered empiriege techniques depend on crawling the data into a cen-
cally by studying real P2P content and how well it can bey5|i;e4 site and then using clustering techniques to either

organized inFo SONSs. Forour empirical evaluation we h_avq'nake web search results more accurate (as in SONIA [12])
chosen music-sharing systems. These systems are of intgf¢ gasier to understand (as in Vivisimo [20]). A more de-
est not only because they are the biggest P2P applicatiofynralized approach has been taken by Edutella [7] where

ever deployed, but also because music semantics are rigfher with similar content connect to the same super peer.
enough to allow different classification hierarchies. In ad-

dition there is a significant amount of data available that3 Semantic Overlay Networks

allows us to perform realistic evaluations. . . .
In this paper we study options for building effective In this section we formally introduce the concept of Seman-
) ; tilc Overlay Networks (SONs). We model our system as a
SONs and evaluate their performance by using an actua f nod h h nod NI
shapshot of a set of music-sharing clients. The main con§et of nodesV where each node; € N maintains a set
tributions of this paper are: ' of documentsD; (a particular document may be stored in
_ pap ' _more than one node). We denote the set of all documents in
 We introduce the concept of SONs, a network organi-all nodes a®. Each node iogically linked to a relatively

zation that can efficiently process queries while pre-small set of nodes (called its neighbors) which in turn are

serving a high degree of node autonomy. linked to more nodes. A link is a triplg;, n;, 1) wheren;
e We analyze the elements necessary for the buildingindn; are the connected nodes dns a string. We call the
and usage of SONs. set of links with the samé& an overlay network. As links

e We evaluate the performance of SONs with real use@re bidirectional(n;, n;, ) and(n;, n;, [) are the same.
data and find that SONs can find results with only ~ Current P2P systems are established by a single over-
10%-20% of message overhead that a system based@y network (i.e., all links have the sarje However, this
on a random topology would incur. needs not be the case and a P2P system can have multiple

« We introduce Layered SONSs, an implementation Ofoverlay networks. In this case, a node can be connected to
SON:s that further improves ql,Jery performance at the® set of neighbors through dn Iink and to a.potentially
expense of a marginal reduction of the maximumd'ﬁerem set of nodes through asnlink. We will see_that
achievable recall level. a carefully chosen sets of overlay networks can improve

search performance.



In this paper, we are focusing on the usage and creis answered faster; and second, but not less important, the
ation of overlay networks, and not on how queries arenodes that have few results for this query will not receive
routed within an overlay network (see Section 2 for a briefit, avoiding wasting resources on that request (and allowing
overview of current solutions to the intra-overlay network other requests to be processed faster).

routing p_roblem). Therefore, we will ignore_: the link struc- e propose using a classification hierarchy as the ba-
ture within an overlay network and we will represent ans;s of the formation of the overlay networks. A classifica-
overlay network just by the set of nodes inGtly; = {n: € tion hierarchy,H is a tree of concepts. For example, in
N|3Falink(n;,n;,1)}). Inaddition, we assume that an over- Figure 4, we show 3 possible classification hierarchies for
lay network ON; supports three functionsJoin(n:,1),  music documents. In the first one, music documents are
where one or more links of the fortm;,n;,1) are created  cjassified according to their style (rock, jazz, etc.) and their
(wheren; € ON;); Search(r, 1) that returns a set of nodes gypstyle (soft, dance, etc.); in the second one, they are clas-

in ONN; with matches for request andLeave(n;,l) where  sified by decade; and in the third one, they are classified by
g Theh ( |rrl1;3 I:nm deztaﬂor(] .01;) t\;‘/ﬁl J;PthI?onrrS]’(;ms(tZ%l)tlo Each document and query is classified into one or more

earchir, ) ait Leavein,, vary Y eaf concepts in the hierarchy. Conceptually, the classi-
system. Additionally, these functions may be implemente ication of queries and documents is done by two func-
b_y each node of the netwqu, a subset of it, or even be pr.ot'ions, Cy(q) andC(d) respectively, which return one or
vided by a computer outside the network. For example, Mhore leaf concepts itf. These functions are chosen so
the Gnutella file sharing systenigin(n;, 1) starts by link- ’

: if M(q,d) = 1thenC?(q) N C%(d) # 0. However, in
ing the noden; to a set of well known nodes (whose ad- ) 4 d . .
drgess are usually published on a web page). (Thenan practice, classification procedures mayrbereciseas they

learn about additional nodes (and potentially link to them)™ 2 not able to determine exactly to which concept a query

by sending “oina” messaaes throuah the network (nodeor document belongs. In this case, imprecise classification
y 9 ping 9 g ?unctions,Cq(q) andCy(d), may return non-leaf concepts,

may reply to a “ping” message with a “pong” message ;

. M . i ; meaning that document or query belongs to one or more
that contains their |den_t|ty). The functidiearch(r, ) in descendant of the non-leaf concept, but the classifier can-
Gnutella works by having a node send the request alonﬂot determine which one. For example, when using the

reore S o s, ot e et eTmostclasifcaon erarchy of FQre 4, 3 “Pop’ doc-
9 ' 9 ument may be classified as “Rock” if the classifier cannot

the original requesting node if there are any matches. The(r}: termine to which substyle (“Pop,” “Dance.” or “Soft”)
these nodes decrement the horizon counter by one and se[h‘ae document actually beI)c/)ngs Sg,ecificallyc,ié C*(q)
) q

the request and the new counter to their neighbors. Th ; , : X
process continues until the counter reaches zero, when ﬂgh%(laneﬂg E( d)c‘lsgqghsﬁ?tfhftc ivrferaer::fj ;fccernggr(l?t;\gip
request iﬁ dki)sca_rde:j.dFinaIIygavﬁ(%l_l)lis ir?plemented is equaldtOc, or thatc’ is an ancestor of in H. This def-
n %thfe:ts };osrlrggcnrr:gr?gg%:rr:adénb; iosszziﬁg a query|n|t|on and the definition o* imply that if M (¢,d) = 1
and some additional system-dependent information (suchheg Jeq € Cylg) andeq € Cq(d) such thate, > cq OF
as the horizon of the query). A query is also system depenqd = C -~ ] )

dent and it can be as simple as a documentidentifier, or key- Classifiers may also makmistakesby returning the
words, or even a complex SQL query. We model a matchVrong concept for a query or document. Specifically, a
between a documeritand a query as a functiomV/(q,d) ~ classifier mistake happens whafi(g, d) = 1 but A(c, €

that returns 1 if there is a match or 0 otherwise. The numbef’s(7) andeg € Cy(d)) such thak, > cq Orca > ¢q. I

of hitsfor a queryg in a noden; is the number of matches the following discussion, we will assume th@f (¢) and

in the node H(q,1:) = . ycp, M(q,d)). Similarly, the Cy(d) are imprecise but that they do not make mistakes.
number of hits in an overlay network will b (¢, ON;) = However, in our experiments we will study. how much the
> n.con, H(a:ni). We will denote the probability of a system is affected in the presence of classifier mistakes.

match between; andd; (i.e., Prob(M (qi,d;) = 1)) as In most systems, document classifications change infre-
Par(gs,d;). Queries can either be exhaustive or partial. Inquently, so itis advantageous to classify documents in ad-
the first case, the system must return all documents thatance. Then, to speed up searches, documents can then be
match the query. In the second case, the request includegP#aced in “buckets” that are associated with each concept

in which bucket a document should be placaifferen-

tial andtotal assignment. When using a differential assign-
Our objective is to define a set of overlay networks in suchment, a document is placed in the bucket of conceptf

a way that, when given a request, we can select a small € C;(d). On the other hand, when using a total assign-
number of overlay networks whose nodes have a “high’'ment, a document is placed in the bucket of coneeibt
number of hits (or all hits if the query is exhaustive). Theeitherc € C,;(d), or ¢ is an ancestor of some element of
benefit of this strategy is two fold. First, the nodes to whichCy(d) in H, or ¢ is a descendant of some elementifd)

the request is sent will have many matches, so the request H. To illustrate, when using the leftmost hierarchy of

3.1 Classification Hierarchies
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Figure 2: Classification Examples

Figure 4, a differential assignment of a document classiso we need to consider all the descendant concepts of the
fied as “rock” will place it in the bucket associated with C;(gs), as well as the ancestors of it. In conclusion, given
the concept “rock”, while an total assignment of the sameC,(¢), we only need to consider documents for which their
document will place it in the buckets associated with theCy(d) is an ancestor of’,(¢) or a descendant af’,(q).
concepts “rock,” “music,” “pop,” “dance,” and “soft.” The more precise the classification functiop(g) is, the
Given a query, we now need to decide which bucket Smaller the number of concepts that need not be considered

(or buckets) need to be considered for finding matches. Ifor & match. In addition, the more preciég(d) is, the
we used a total assignment, we consider the buckets asseMaller the number of documents that will be classified in
ciated with each element &f,(q). On the other hand, if the intermediate nodes of the hierarchy, thus also reducing
we used a differential assignment, we need to consider €€ number of documents that need to be considered.
larger set of buckets: the bucket associated with each ele- So far we have considered documents by themselves,
ment ofC, (¢), the bucket associated with the ancestors ofoutin a P2P system, documents are actually kept by nodes.
the elements of’,(¢), and the bucket associated with the Therefore, we need to place nodes, rather than documents
descendants of the elements@f(q). As mentioned be-  in buckets. We call a bucket of semantically related nodes a
fore, queries can be exhaustive or partial. In the case of affemantic Overlay Network. Formally, we defin&aman-
exhaustive query, we need to find all matches, so all bucktic Overlay Networkas an overlay network that is associ-
ets that may contain results need to be considered; while iated with a concept of a classification hierarchy. For short,
the case of partial queries but we do not need to considewe will call a SON associated with conceptsimply the
all of them. Given that we need to choose among a set oBON ofc or SON... For example, in the leftmost hierarchy
buckets, partial queries add an additional dimension to thén Figure 4 (if we assume that only the its only concepts
problem as now we need to select the best subset of buckre the ones shown), we will define at 9 SONs: 6 associ-
ets to answer the query. As the exhaustive case is not conated with the leaf nodes (soft, dance, pop, New Orleans,
mon in current P2P systems and is a special case of partigkc.), one associated with rock, another associate with jazz,
gueries, in the rest of the paper, we will assume that we arand a final one associate with music. To completely define
answering partial queries. We also assume that documeatSON, we need to explain how nodes are assigned to SONs
assignment is done using the differential strategy. and how we decide which SONs to use to answer a query.
Let us now illustrate how classification functions help A node decides which SONs to join based on the clas-
reduce the number of documents that need to be considerééfication of its documents. Thus, since we are using a dif-
when answering a query. For simplicity, we will assumeferential assignment of documents, a naggoins SON,
that the classification functions return a single element off there is ad € D; such as: € Cy(d). Under this defini-
the hierarchy. In Figure 2 we present several combination§0n, a query; associated with the concetts(q) will only
of classification of documents and queries. In Figure 2afind results inSON. wherec € Cy(q) orc < ¢’ € Cy(q)
we show the worst-case scenario for our system when &r ¢ > ¢’ € Cy(q). This strategy is very conservative as
query is classified at the root concept of the hierarchy. Thidt Will place a node inSON. if just one document classi-
classification indicates that the query results can actuallfies asc. A less conservative strategy will place a node in
be in any of the leaf concepts in the hierarchy and thereSON. if a “significant” number of document classifiesas
fore documents classified in any category in the system cafuch less-conservative strategy has two effects: it reduces
match the query (depicted as black circles in the classifithe number of nodes in a SON and it reduces the number
cation hierarchy). In Figure 2b, the query is classified atof SONs to which a node belongs. The first of these effects
one of the leaf concepts. In this case, we know that onlyncreases the advantages of SONs as less nodes need to be
documents that belong (or may belong) to this concept cafiueried. The second effect reduces the cost of SONs as
match the query; thus, we need to consider the documentge greater the number of SONs to which a node belongs,
classified in that base concept and all the ancestor concephe greater the the node overhead for handling many differ-
of it and we can safely ignore all the documents classifiecnt connections. However, a less conservative strategy may
into concepts depicted as white circles. Finally, in Fig-prevent us from finding all documents that match a query.
ure 2c, the query is classified at an intermediate concepf Section 6, we study different strategies for assignment
in the hierarchy tree. In this case, documents matching thef nodes to SONs.
qguery may belong to any of the descendant leaf concepts, After assigning nodes to SON, we may make adjust-
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e Classifying queries and documents (Section 5): Im-
precise classifiers can map too many documents and
qgueries to higher levels of the hierarchy, making
searches more expensive. What are the options for
building classifiers? Are they precise enough for our
needs? What is the impact of classification errors?

P e e SON membership (Section 6): When should a node
join a SON? What is the cost of joining a SON? Can
we reduce the number of SONs that a node needs to
belong to (while being able to find most results)?

e Searching SONs (Section 7): How do we search
SONSs? Is it worth having Semantic Overlay Net-
works? Is the search performance of a SON-based
system better than a single-overlay network system

Figure 3: Generating Semantic Overlay Networks

such as Gnutella?

ments to the SONs based on the actual data distributiond Classification Hierarchies

in the nodes. For example, if we observe that a SON con-
tains only a very small number of nodes, we may want to
consolidate that SON with a sibling or its parent in order to

reduce overhead.

To summarize, the process of building and using SON
is depicted in Figure 3. First, we evaluate potential classifi-
cation hierarchies using the actual data distributions in thé
nodes (or a sample of them) and find a good hierarchy. ThiBu
hierarchy will be stored by all (or some) of the nodes in the

the system, first floods the network with requests for the
hierarchy in a Gnutella fashion (we do not address securit
problems in this paper, but inconsistent hierarchies may b
detected by obtaining the hierarchy from multiple sources
and using a majority rule). Then, the node runs a docu-
ment classifier based on the hierarchy obtained on all it
documents. Then, a node classifier assigns the node to s
cific SONs (by, for example, using the conservative strat-
egy described in this section). The node joins each SO
by finding nodes that belong to those SONs. This can bé
done again in a Gnutella fashion (flooding the network until
nodes in that SON are found) or by using a central direc-
tory. When the node issues a query, first it classifies it and
sends it to the appropriate SONs (nodes in those SONs cg
be found in a similar fashion as when the node connected t
its SON). After the query is sent to the appropriate SONs
nodes within the SON find matches by using some propaga-:
tion mechanism (such as Gnutella flooding or super peersbo

In the next sections, we will study the challenges and
present solutions for building a P2P system using Sema
tic Overlay networks. We will evaluate our solutions by

In this section we present the challenges and some solutions
to the problem of choosing a good classification hierarchy
for a SON-based system. Specifically, we will define what
a good classification hierarchy is, how can we evaluate a
‘Tlassification hierarchy, and how can we choose among a
set of possible hierarchies.

A good classification hierarchy is one that: (i) produces
ckets with documents that belong to a small number of
... nodes, (ii) nodes have documents in a small number of
gi)uckets, and (iii) it allows for easy-to-implement classifi-
cation algorithms that make a low number of errors (or no
Lrrors at all). In the following paragraphs we explain the
Fationale behind these criteria.

We need a classification hierarchy that produces buckets
of documents that belong to a small number of nodes be-
Rause the smaller the number of nodes we need to search,
Pfe better the query performance. To illustrate, consider
i3 classification hierarchy for a music-sharing system that
Is based on the decade the music piece was originally cre-
ated. In such a system, we may expect that a large number
of nodes will have “90’s or current” music. If that is the
ase, there is little advantage to create a SON for “90’s or
current” music, as this SON will have almost all nodes in
fle system and it will not produce any benefit (but we will
&ill be incurring on the cost of an additional connection at
each node and of having to classify nodes and queries).
We need a classification hierarchy such that nodes have
cuments in a small number of buckets as each bucket will
potentially become a SON that needs to be handled by the
"Mode. The greater the number of SONSs, the greater the cost
for a node to keep track of all of them. For example, con-

simulating a music-sharing system based on real data frolgye 5 classification hierarchy for a music-sharing system

Napster [22] and OpenNap [19]. Specifically,
we will address the following challenges:

in this papery, at is hased on a random hash of the music file. If we as-
sume that nodes have a lot more files than there are hash

e Classification hierarchies for SONs (Section 4): If buckets, then we can expect with a high probability that a
nodes have very diverse files, there will not be enougmode will have to joirall SONs in the system. In this case,
clustering to merit the use of SONs. So, in practice,the node will have to process every single query sent into
will we see enough clustering? What hierarchies will the system eliminating all the benefits of SONSs.
yield the most clustering and the best SON organiza- Finally, we want classification hierarchies for which it is

tion?

possible to implement efficient classifiers that make a small



Substyle
Substyle

Figure 4: Classification Hierarchies

number of errors. To illustrate, consider an image shar-

ing system with a classification hierarchy with the concept

“has a person smiling.” This concept may generate a good
number of small SONSs, but it requires a very sophisticated

classification engine that may generate a large number of
erroneous results.

Using the criteria for “goodness” of a classification hier-
archy presented above, we can now evaluate classification
hierarchies (with the final objective of choosing the best I
one). This evaluation is a very important step as we have 181011 ‘"‘I‘I‘-‘ ——
seen that if we are not careful in choosing a good classifi-
cation hierarchy we may reduce or even eliminate the ben-
efits of using SONs. To evaluate, first, we need to make
sure that classifiers can be implemented and that they are Figure 5: Distribution of Style Buckets
efficient. Then, we use the actual data from the nodes in
the system to predict the size of the SONs as well as thehe “tone” of the piece (e.g., warm, exciting, sweet, ener-
number of SONs to which a node will belong. getic, party, etc.). There are a total of 128 tones and a music

file can be classified in multiple tones.

In our experiment, we used the crawl of 1800 Napster

To illustrate the issues described in this section, we willnodes made at the University of Washington during the
evaluate three classification hierarchies for a music sharingionth of May 2001 [13]. This crawl included the iden-
system. Music sharing is of interest to us because itis by fafity of the node (user name), and for each node, the listing
the largest P2P application today. While our experimentaff its files. For most nodes, filenames were of the form
results in this paper are particular to this important applica-directory/author-song title.mp3” which allowed us to eas-
tion, we have no reason to believe they would not apply inly classify files by author and song titles. There was addi-
other applications with good classification hierarchies.  tional information (length of file, bit rate, and a signature
In Figure 4, we illustrate three possible classification hi-Of the content) that was not used in our evaluations. Actual
erarchies for music. In the figure we only present a smalfile content was not available.
subset of the concepts in each classification hierarchy. The To classify documents into the hierarchy, we used the
full sets of concepts are presented in the extended versioneb interface to the database Al Music Guide(at all-
of this paper [2] and are based on the hierarchy usedllby music.com). Basically, given a song and artist, the All-
Music Guide[21], a music database maintained by volun-Music-Guide database returns the song style, one or more
teers who manually classify songs and artist. substyles, the decade when the song was released, and one
The first classification hierarchy divides music files ac-0r more tones expressed by the song. We will describe and
cording first to their style (e.g., Rock, Jazz, Classic, etc.)@nalyze the classifier in further detail, including how to deal
and then to their substyle (e.g., Soft Rock, Dance RockWith mistakes and songs not in the database in Section 5.1.
etc.). For style, there are a total of 26 categories and a mu- To evaluate the style/substyle classification hierarchy,
sic file can only belong to one category; while for substyle,we will first evaluate the style classification hierarchy by
there are 255 categories and a file can be classified in muitself and then (if needed) we will add to the evaluation the
tiple substyles. The second hierarchy classifies music filesubstyle dimension. In Figure 5, we show the distribution
based on the decade on which the piece was originally putnf Style buckets. To generate this graph, for each node we
lished (10's or before, 20's, ..., 80’s, and 90's or newer).counted the number of style categories for which the node
Music files can only be classified in one decade. Finallyhad one or more files. Then we counted the number of
the third classification hierarchy divides files according tonodes with the same number of style categories and plot-

4.1 Experiments
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Figure 6: Bucket Size Distribution for Style Hierarchy Figure 7: Distribution of Substyle Buckets

ted it on the graph. For example, if a node had files in the
Rock, Jazz, Country, and Classic styles (and no files in the
other styles), then the node would have be counted in the
bar for “4 style” buckets. From the graph, we can see that
425 nodes (about 24% of the total nodes) have files in just
one style. Moreover, 90% of the nodes have files in eight or
fewer style categories. This result means that if we define
a SON based on the style of files, most nodes will have to
handle very few connections.

As indicated before, the smaller the SON, the better
query performance will be. However, we cannot compute
the size of the Style SONs without the specific node-to-
SON assignment strategy. Therefore, we will assume the
most conservative strategy: a node will belong to a Style
SON fithas one or more files in that Style bucket. Figure 6 g, re 8: Bucket Size Distribution for Substyle Hierarchy
shows a histogram for the number of nodes that have one or
more files in each Style bucket. To generate this graph Weqes (about 18% of the total nodes) have files in just one
counted, for each style, the number of nodes that have ong hstyle. Moreover, 90% of the nodes have files in 30 or
or more files classified in that style. We then counted howggg gypstyle categories. These results are again positive as
many styles had a number of nodes in the ranges 0 0 194, gows that number of SONs to which most nodes may
200 to 399, and so on, and plotted them on the graph. Foge|ong is small. In Figure 8 we show the bucket size his-
example, the leftmost bar in the graph means that 14 styleg,gram, analogous to Figure 6. From the figure we can see
buckets had documents that belonged to between 200 and,; 222 of the substyles (87% of the total) will have docu-
399 nodes. The high frequency for bucket size in the interients belonging to less than 400 nodes. However, there are
val [200,399] is good news as it shows that the maximum,gain 5 few substyle categories that will have documents
size of most SONs will be small with only 11% to 22% a1 pelong to a large number of nodes, but this problem
of th_e nodes. However, there is one style buc_ket (shown bys not as bad as the one that we had when using the style
the rightmost bar) that has documents belonging to betweef assification hierarchy by itself. In particular, the category
1600 and 1800 nodes. Thus, almost all nodes in the systefjiin the most number of nodes. “Alternative Pop Rock,’
have one or more docurgents Ior that bucket (this buckegyhich is represented by the rightmost bar in the histogram)
corresponds to the _style Rock”). Given that there is little \yii| have documents belonging to only 1031 nodes (57%
advantage on creating a SON based on the style “Rockpgges). Even though the “Alternative Pop Rock” SON will
we need to explore if it is possible to subdivide it further by haye many nodes, it is still half the size of a full Gnutella
using substyles. network that links all the nodes. In conclusion, a combined

We now consider SONs based on the substyle classityle and substyle classification hierarchy is a good candi-
fication. Although the previous analysis pointed that wedate for defining SONs as the maximum number of SONs
only needed to subdivide the Rock style category (and perthat a node needs to join is small and the maximum number
haps the 2 other categories with documents belonging tof nodes in a SON is also relatively small.
between 1000 and 1200 nodes), for completeness we will e also analyzed the usage of Decades as a criteria for
analyze all substyles categories. classifying documents (graph not shown). Although most

In Figure 7 we now show the substyle distribution, anal-nodes had documents in only a few decade buckets, we
ogous to Figure 5. From the graph, we can see that 32&und that more than half of the SONs will have more than




600 nodes. In fact, almost all nodes will have documentsre those classifications.

for the 70s, 80s, and 90s buckets. Therefore, given that we

do not have a way of subdividing those decades, we havg 1 1 Evaluating our Document Classifier
to reject the decade classification hierarchy. . _

When analyzing the the distribution of tone bucketsDocuments were classified by probing the database of All
(graph not shown), we found that the median number oMusic Guide at allmusic.com [21]. In this database songs
buckets for which a node has documents is 43, which willand artists are classified using a hierarchy of style/substyle
result in nodes belonging to a high number of SONs. How-£oncepts equivalent to the leftmost classification hierarchy
ever, we also found that most buckets will contain doc-Of Figure 4. Recall that for each Napster node used in
uments be|onging to a re|ative|y small number of nodesour evaluation we had a list of filenames with the format
Specifically, 60% of the buckets will have documents be-'directory/author-song title.mp3.” As a first step, the docu-
longing to 625 or fewer nodes, and 90% of the buckets willment classifier extracted the author and the song title for the
have documents belonging to 875 nodes. In conclusion, udile. The classifier then probed the database with that au-
ing a classification hierarchy based in tone is borderline anéor and song and obtained a list of possible song matches.
depending on the specifics of the tradeoff between nodesinally, the classifier selected the highest rank song and
maintaining a large number of connections and the benefitund its style and substyles. If there were not matches in
of relatively small SONs, we may decide to use it or not.the database, the classifier assigned “unknown” to the style
Nevertheless, of all the classification hierarchies evaluatednd substyle of the file. _
the one based on style/substyle is clearly superior and we There were many sources of errors when using our doc-

will use it in the rest of our experiments. ument classifier. First, the format of the files may not fol-
5 e . dD low the expected standard, so the extraction of the author
assifying Queries and Documents and song title may return erroneous values. Second, we

In this section we describe how documents and queries assumed that all files were music (but Napster could be,
classified. Although the problem of classifying documentsand was actually used, to share other kind of files). Third,
and the problem of classifying queries are very similar, thesers made misspellings in the name of artist and/or song
requirementgor the document and query classifiers can be(to reduce the effect of misspellings, we used a phonetic
very different. Specifically, it is reasonable to expect thatsearch in the All Music database, so some common mis-
nodes will join a relatively stable P2P network at a low ratespellings did not affect the classification). Finally, the All
(a few per minute); while we could expect a much higherMusic database is not complete, which is especially true in
query rate (hundreds or even more per second). Additionthe case of classical music.
ally, node classification is more bursty as when a node joins To evaluate the document classifier, we measured the
the network it may have hundreds of documents to be clagiumber of incorrect classifications. We selected 200 ran-
sified; on the other hand, queries will likely to arrive at a dom filenames and manually found the substyles to which
more regular rate. Under these conditions, the documerifiey belong (occasionally using the All Music database and
classifier can use a very precise (but time consuming) alGoogle as an aid to find the substyles of non well-known
gorithm that can process in batch a large number of docuPieces). We then compared the manual classification with
ments; while, the query classifier must be implemented byhe one obtained from our document classifier. We consid-
a fast algorithm that may have to be imprecise. ered a classification to be incorrect for a given document
The classification of documents and queries can be donié the document classifier returned one or more substyles
automatically, manually, or by a hybrid processes. Ex-0 which the document should not belong. Note that an
amples of automatic classifiers include text matching [8],"'unknown” classification from our classifier, although very
Bayesian networks [10], and clustering algorithms [16]_imprecise, is not incorrect as it would correspond to the
These automatic techniques have been extensively studi¢got node of the classification hierarchy. In our evaluation,
and they are beyond the scope of this paper. Manual clagve found that 25% of the files were classified incorrectly.
sification may be achieved by requiring users to tag each Itis important to note that not every misclassified docu-
query with the style or substyle of the intended results. Foment cannot be found later on. To evaluate the true effect
example, the user may indicate that results for the querpf document misclassification, we evaluated the impact of
“Yesterday” are expected to be in the “Oldies” substyle;an incorrect document classification on the assignment of
or that results for the query “Like a rolling stone” are ex- nodes to SONs. For this experiment, we selected 20 ran-
pected to be in the “Rock” style. If the user does not knowdom nodes, we classified all their documents, and assigned
the substyle or style of the potential results, he can alway#he nodes to all the substyles of their respective documents.
select the root of the hierarchy so all nodes are queried. FMe considered a classification to be incorrect for a given
nally, hybrid classifiers aid the manual classification withnodeif the node was not assigned to one or more sub-
databases as we will see shortly in our experiments. styles to which the node should belong. In our evaluation,
we found that only 4% of the nodes were classified incor-
rectly. This result shows that errors when classifying docu-
The goal of this experimental section is to show that we caments tend to cancel each other within a node. Specifically,
classify documents and queries and to study how preciseven if we fail to classify a document as, for example, “Pop

5.1 Experiments
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Figure 9: Choosing SONSs to join

Rock,” it is likely that there will be some other “Pop Rock” performance. In the next subsection we introduce a non-
documentin the node that will be classified correctly so theconservative assignment strategy: Layered SONSs.

node will stlll_ be as_s!gned to the “Pop Roc_:k SON. Nev- ¢ 4 Layered SONs

ertheless, misclassified documents are still a problem for _

exhaustive queries, however, in practice almost all querie¥he Layered SONs approach exploits the very common

in P2P systems are partial. zipfian data distribution in document storage systems. (It
has been shown that the number of documents in a web-
5.1.2 Evaluating our Query Classifier site when ranked in order of decreasing frequency, tend to

) } N be distributed according to Zipf's Law [3].) For example,
For our experiments, queries were classified by hand byn the left side of Figure 9 we present a hypothetical his-
the authors of this paper. _Queries were either c_Iassified ifogram for a node with a zipfian data distribution (we'll
one or more substyles, a single style, or as “music”(the roogxplain the rest of the figure shortly). In this histogram
of the hierarchy). In our experiments we used queries obye can observe that 45% of the documents in the node be-
tained from traces of actual queries sent to an OpenNapng to category; , about 35% of the documents belong to
server run at Stanford [23]. Thus, by manually classifyingcategorye,, while the remaining documents belong to cat-
queries, we are “guessing” what the users would have s&sgoriesc; to 5. Thus, which SONs should the node join?
lected from say a drop-down menu as they submitted theirhe conservative strategy mandates that the node need to
queries. join SON,, throughSON,,. However, if we assume that
Unfortunately, we cannot evaluate the correctness of thaueries are uniform over all the documents in a category,
query classification method (we, of course, consider ouft s clear that the node will have a higher probability of
classification of all queries to be correct). Nevertheless, weinswering queries iISON., and SON,, than queries in
can study how precise our manual classification was (i.ethe other SONs. In other words, the benefit of having the
how many times queries were classified into a substyle, @ode belong t6&ON,, andSON,, is high, while the ben-
style, or at the root of the classification hierarchy). Wefit of joining the other SONs will be very small (and even
selected a trace of 5@istinct queries (the original query negative due to the overhead of SONs). A very simple and
trace contained many duplicates which the authors of [23hggressive alternative would be to have the node join only
believed were the result of cycles in the OpenNap overla)goj\rc1 andSON.,. However, this alternative would pre-
network) and then manually classified those queries. Thentthe system from finding the documents in the node that
result was that 8% of the queries were classified at the roaio not belong to categories andc.
of the hierarchy, 78% were classified a the style level of the  Nodes determine which SONSs to join based on the num-
hierarchy and 14% at the substyle level. As we will see inper of documents in each category. To illustrate, consider
Section 7, the distribution of queries over hierarchy levelsggain Figure 9. At the right of the figure we present the hi-
will impact the overall system performance, as more preerarchy of concepts that will aid a node in deciding which
cisely classified queries can be executed more efficiently. SONs to join. In addition, a parameter of the Layered SON
6 Nodes and SON Membership approach is the minimum percentage of documents that a
node should have in a category to belong to the associated
In Section 3 we presented a conservative strategy for node3ON (alternatively, we can also use an absolute number of
to decide which SONSs to join. Basically, under this strat-documents instead of a percentage). In the example, we
egy, nodes join all the SONs associated with a concept fonhave set that number at 15%. Let us now determine which
which they have a document. (We discussed in Section 3.50Ns the node with the histogram at the left of Figure 9
the mechanisms used by nodes to actually connect to thoshould join. First, we consider all the base categories in
SONs.) This strategy guarantees that we will be able tdhe hierarchy treec( to cg). Asc; andc, are above 15%,
find all the results, but it may increase both the numbethe node joinsSSON,, andSON,,. As all the remaining
of nodes in each SON and the number of connections thateategories are all below 15%, the node does not join their
node needs to maintain. A less conservative strategy, whei®@0ONs. We then consider the second level categorigs (
nodes join some of all the possible SONs, can have bettet;;, andci1). As the combination of the non-assigned de-



In Figure 10, we show the distribution of style SONs
L\ I when using Layered SONs with a threshold of 35% and

for the conservative assignment (labeled as 0% SON). The
graphs do notinclude the “root” category to which, in prac-
tice, all nodes belong. From the graph, we can see that 616
nodes (about 34% of the total nodes) need to belong to just
one style. This result shows a significant improvement ver-
sus the conservative assignment of Section 4.1 when only
24% of the nodes belonged to one style. Moreover, 97%
of the nodes need to belong to four or less style categories
(versus 90% when doing conservative assignments).

Using layered SONSs also helps reduce the number of
nodes per SON. Figure 11 shows a histogram for the size
Figure 10: Distribution of Style SONs of the SONs (excluding the “root” SON). From the graph
we can see that by using Layered SONs we have a larger
number of small SONs. However, as before, we still have a
problem with the “Rock” style (rightmost bar in the graph)
to which almost all nodes will have to belong. In conclu-

n sion, there is a significant reduction in the size of SONs
when using Layered SONs instead of the conservative strat-
egy. This reduction will lead to significant improvements
in query performance.

We now consider Layered SONs based on the
I I Style/Substyle classification hierarchy with a threshold of
10% (graph not shown). In this case, the conservative as-

signment strategy behave similarly in terms of the number
of connections required at each node. However, the advan-
tage of Layered SONs can be seen when considering the
size of each SON as when using Layered SONs, SONs will
have on average 135 nodes (versus 517 nodes for the con-
servative approach). Moreover, the Layered SON does not
have any SONs with more than 875 nodes, while the con-
servative approach has 24. In conclusion, using Layered
SONs with a Style/Substyle hierarchy produces a signif-

of ¢;9 as the combination afs andcg are not above 15%. . . . -
Similarly the node does not join the SONsf asc; and icant improvement versus the conservative assignment as
we have much smaller SONSs.

cg are below the threshold. Finally, the node joins the SON
associated with the root of the tre@N,,,) as therewere 7 Searching SONs
categoriesd;, cg, c7 andcg) that are not part of any assign-
ment. This final assignment is done regardless of the 15
threshold as this ensures that all documents in the node ¢
be found (in our example, if we do not joisiON,,, we

C12

will not be able to find the documents in the SONscgf

t
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Figure 11: SON Size Distribution for Style Hierarchy

scendants ofgy, c3 andcy, is higher than 15%, the node
joins SON,,. However, the node does not join the SON

0/3\3 explained in Section 3, queries can be exhaustive or par-
élﬁﬂ. In the case of an exhaustive query, we need to find all

matches, so all SONs that may contain results need to be
considered; while in the case of partial queries but we do
¢e, ¢z andc). n:)t netﬁd to %tl)nsid?rhall Otf thﬁm. In this sectiort\, \ngoel)\(l
. . . . ore the problem of how to choose among a set o S

The conservative assignment is equivalent to a Layere(?:‘hen using Layered SONs. (We discussed in Section 3.1

SON where the threshold for joining a SON has been se hani I h :
to 0%. In this case, the node will join the SONs associate e mechanisms used by nodes to actually send the queries

with all the base concepts for which it has one or moreOthose SONs.)
documents. 7.1 Searching with Layered SONs

6.2 Experiments Searches in Layered S_ONS are done by first classifying th_e
qguery. Then, the query is sent to the SON (or SONSs) associ-
In this subsection we contrast the result, in terms of SONated with the base concept (or concepts) of the query clas-
size and number of SONs per node, of the conservative asification. Finally, the query is progressively sent higher
proach of Section 4.1 and the Layered SON approach. Farp in the hierarchy until enough results are found. In case
reason of space, we will only consider the Style/Substylanore than one concept is returned by the classifier, we do
classification hierarchy (the results for the other classificaa sequential search in all the concepts returned before go-
tion hierarchies are consistent with the ones presented heneg higher up in the hierarchy. For example, when looking
and in Section 4.1). for a “Soft Rock” file we start with the nodes in the “Soft



Rock” SON. If not enough results are found (recall that
partial queries have a target number of results), we send -
the query to the “Rock” SON. Finally, if we still have not v
found enough results, we send the query to the “Music” 7
SON. There are multiple approaches when searching with 7
Layered SONSs. In this paper we are concentrating on a sin- VA
gle serial one (as our objective is to minimize number of 7 / — —
messages). However, there are other approaches such as - /
searching more than one SON in parallel (by asking each 0 /
one for some fraction of the target results) which may re- ;
sultin higher number of messages, but will start producing
results faster.

This search algorithm does not guarantee that all docu-
ments will be found if there are classification mistakes for Figure 12: Number of messages for query “Spears"
documents. Not finding all documents may or may not be
a problem depending on the P2P system, but in general, fhatches. In such a case, we did not count duplicate results
we need to find all documents for a query (in the presencgs new matches. Following the search algorithm for Lay-
of classification mistakes), our only option is an exhaus-ered SONs, the query was initially sent to the “Teen Pop”
tive search among all nodes in the network. However, weSON. We show as a dotted line in the graph the recall level
will see that with our document classifier (which has anyersus message performance of that SON. After the “Teen
per-document classification mistake probability of 25%),pop” SON is searched (consuming 232 messages and yield-
we can find more than 95% of the documents that match ghg 37% of the matching documents), the system searches
query. In addition, this search algorithm may result in du-the parent of “Teen pop”, i.e., the “Rock” SON. We show
plicate results. Specifically, duplication can happen when @he recall level versus message performance of this next
node belongs, at the same time, to a SON associated With®ON as a dashed line. Finally, we show as a solid line the
substyle and to the SON associated with the parent style g&call level versus message performance of a Gnutella-like
that substyle. In this case, a query that is sent to both SONgystem that searches all nodes (in an order that is indepen-
will search the node twice and thus it will find duplicate dent from the content). From the graph, we can see that
results. the Layered SON setup is able to find results with signifi-
7.2 Experiments cantly fewer messages (and therefore much faster) than the

) ) ) _ ) Gnutella network. Specifically, the SON-base system was
We will now consider two possible SON configurations andap|e to find 20% of the results with only 92 messages, while

evaluate their performance against a Gnutella-like systemy took 285 messages for the Gnutella system to reach that
As before, we used the crawl of 1800 Napster nodes madgzme |evel.

at the University of Washington, which were classified us- . .
ing the All Music database. We assumed that the nodes AS @n additional observation, the Layered SON system
in the network (both inside SONs and in the Gnutella net- oes not find all results available. While Gnutella finds
work) were connected via an acyclic graph and that on avert00% Of the results in the system, Layered SON only found

age each node was connected to four other nodes. Althougw% of the results. The reason is that the document classi-
the assumption of an acyclic graph is not realistic, we ardie" did some mistakes and some nodes (with Spears doc-

considering acyclic networks as the effect of cycles is inde UMeNts) were not assigned to the “"Rock” or “Teen Pop*

pendent of the creation of SONs. Cycles affect a P2P sysSONS' If we would Ilikﬁ to find the rehmaining S%ﬁf Ehe
tem by creating repeated messages containing queries tH&fcuments, we would have to send the query to the "Mu-

the receiving nodes have already seen. Therefore, an ana'c’ SONf(WhiCh contains all r|1|odes) ar?d That At has tr:'e
ysis of an acyclic P2P network gives us a lower estimate op@Me periormance as a Grlute a seatc (p HS t e”over ead
the number of messages generated. of having searched in the “Teen Pop” and “Rock” SONs

To illustrate, we will first show the result for a single before). Of course in practice most users will never want

query when using a Layered SON for the style/substyld® Performan exhaustive search [1].

classification hierarchy. In Figure 12 we evaluate the per- Let us now analyze the performance of Layered SONs
formance of the query “Spears” (classified manually aswith a stream of queries. For this experiment we used
a “teen-pop”). The figure shows the level of recall ver- 50 different random queries obtained from traces of actual
sus the number of messages transmitted. The level of requeries sent to an OpenNap server run at Stanford [23].
call is the ratio between the number of matches obtainedhese queries were classified by hand as described in Sec-
versus the number of matches that would be obtained ifion 6. Queries classified at the substyle level were sent se-
we searched all nodes in the system. The data points iquentially to the corresponding SON (or SONs), and then
the graph were obtained by averaging 50 simulations oveto the style-level SON. Queries classified at the style level,
randomly generated network topologies. As indicated bewere first sent sequentially to all substyles of that style, and
fore, when using Layered SONs, we may obtain duplicatehen to the style level. Queries classified at the root of the




tic Overlay Networks (SONs). We showed how SONs can
3 efficiently process queries while preserving a high degree
- of node autonomy. We introduced Layered SONs, an ap-
P proach that improves query performance even more at a
F—r cost of a slight reduction in the maximum achievable recall
- level. From our experiments we conclude that SONs offer
v — I significant improvements versus random overlay networks,
NIV | while keeping costs low. We believe that SONs, and in
/ _ - | particular Layered SONs, can help improve the search per-
formance of current and future P2P systems where data is
naturally clustered.
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