
Probabilistic Internal Clock Synchronization
�

Flaviu Cristian and Christof Fetzer
fetzer@christof.org
www.christof.org

May 1, 2003

Abstract

We propose an improved probabilistic method for reading remote clocks in systems subject
to unbounded communication delays and use this method to design a family of fault-tolerant
probabilistic internal clock synchronization protocols. The members of this family differ in
the failure classes they tolerate, from crash to arbitrary. Because of probabilistic reading, our
protocols achieve better synchronization precisions than those achievable by previously known
deterministic algorithms. Another advantage of the proposed protocols is that they use a linear,
instead of quadratic, number of messages, and that message exchanges are staggered in time
instead of all happening in narrow synchronization intervals. The envelope and drift rates of the
synchronized clocks are proven to be optimal.

1 Introduction

Most distributed systems encountered in practice are asynchronous, in that they do not guarantee a
bound on message communication delays. Traditional deterministic, fault-tolerant clock synchro-
nization algorithms such as those of [2, 3] assume bounded communication delays. Thus, they
cannot be directly used to synchronize clocks in asynchronous systems. Moreover, these protocols
typically require the transmission of at least

���
messages each time

�
clocks are synchronized

and all messages are exchanged in a bursty manner within a narrow re-synchronization real-time
interval. This makes them difficult to scale to larger networks. Given the practical importance of
large, asynchronous distributed systems, such as those based on Unix and similar systems, the idea
of probabilistic clock synchronization was proposed in [1] as a means to synchronize clocks in the
presence of unbounded communication delays. However, [1] has discussed the use of probabilistic

�
An earlier version of this paper was published in the proceedings of the Thirteenth Symposium on Reliable Dis-

tributed Systems, Oct, 1994. This work was done at the Department of Computer Science & Engineering, University of
California San Diego (UCSD), La Jolla, CA 92093 � 0114. It was partially supported by grants from the Air Force Office
of Scientific Research, the German Academic Exchange Service (DAAD), the Powell Foundation, Sun Microsystems,
and the Microelectronics Innovation and Computer Research Opportunities in California

1

remote clock reading only to achieve external clock synchronization. The goal of this paper is to
show how one can use probabilistic remote clock reading to achieve fault-tolerant internal clock
synchronization.

Probabilistic remote clock reading yields likely reading errors much smaller than classical, deter-
ministic reading. The price for this increased precision is a small probability of failing to read a
remote correct clock with a reading error specified in advance. Different correct time servers can
experience such remote clock reading failures independently. This can cause different time servers
to successfully read the values of different sets of correct clocks while attempting to achieve internal
synchronization. Classical deterministic internal synchronization algorithms are not design to deal
with such behavior, since they all rely on the hypothesis that each reading of a correct clock by a
correct time server succeeds.

This paper proposes a family of fault-tolerant internal clock synchronization protocols which can
successfully mask independent remote clock reading failures. The members of the family differ in
the failure classes they tolerate, from crash to arbitrary. Because our protocols rely on a probabilistic
remote clock reading method, they can be used to synchronize clocks despite unbounded commu-
nication delays. Since probabilistic reading achieves higher precisions than deterministic reading,
the protocols achieve synchronization precisions better than those achievable by previously known
deterministic algorithms, such as those of [2, 3, 7, 8]. Our algorithms use several new midpoint con-
vergence functions, derived from the original fault-tolerant midpoint convergence function of [3].
These new convergence functions achieve optimal accuracy: the drift rate of the synchronized clocks
is bounded by the maximum drift rate of correct hardware clocks. In contrast to clock synchroniza-
tion algorithms which are based on statistical clock reading methods, such as [4], our algorithms
allow a process to detect the possibility that its local clock might be out of synch with the other
correct clocks.

Internal clock synchronization algorithms typically require that each time server process reads the
clocks of all other time servers periodically. Therefore, their message complexity tends to be at least
quadratic in the number of processes. Moreover, the processes send the synchronization messages in
narrow real-time intervals, increasing the risk of congestion. We propose an improved probabilistic
remote clock reading method which only requires to send a linear number of unreliable broadcast
messages. Our method staggers the message traffic in time, thereby avoiding bursty message trans-
fers. We further reduce the number of synchronization messages by proposing a new transitive
remote clock reading method that allows a process to read the clock of a second process if it learns
of the reading by a third process of the second process’ clock. This transitive reading method allows
us to decrease the number of messages down to

���	�
in the best case, where

�
is the number of

time server processes.

2 System Model

We consider distributed systems consisting of nodes connected by a communication network. Nodes
do not share any storage, but each node has access to a local hardware clock. The processes that
run on network nodes communicate with each other only by exchanging messages or by observing
the passage of time on their local clock. We assume that the network provides a datagram commu-
nication service, such as UDP, that allows any process to send unreliable broadcast messages. To
synchronize its clock, each node runs a time server.

2

2.1 Communication

To synchronize their clocks, time servers must exchange messages. We assume that if a process
 receives a message � from process � , � was indeed sent by � . Between the sending and the
reception of a message there is an arbitrary, random, real-time delay. A positive lower bound ��
��
on this delay exists, because of the existence of a positive processing overhead at both the sender and
the receiving nodes and the existence of a positive network signal propagation time. In principle the
delay ��
�� can be computed by adding the times required to transmit an empty message between two
neighboring network nodes in the absence of any other load or transmission failures. In practice, it is
often the case that this bound is not known a priori and must be estimated using empirical methods.

The magnitude of actual communication delays depends on the amount of computation and com-
munication going on in parallel in the network, on the possibility that transmission errors will cause
messages to be retransmitted several times before being successfully received, and on other random
conditions, such as the occurrence of page faults and process switches or the establishments of new
communication routes. Measurement of delays in current distributed environments, indicate that
their distribution has a typical shape resembling that illustrated in figure 1. This delay graph was
experimentally measured on an Ethernet based cluster of Sun IPX workstations in our Dependable
Systems Laboratory. The measurement is based on 200,000 round-trip message exchanges. Most
messages arrive very fast: while the minimum round-trip delay observed was above 1,700 ��� , the
average round-trip delay was below 1,900 ��� and more than 50% of round-trip messages returned
within 1,750 ��� . However, a few messages take a much longer time: the 99% timeout delay ob-
served was about 4,175 ��� . The maximum round trip delay observed in this experiment was about
156,000 ��� . Even though for any finite experiment there will be a maximum delay, it is not clear how
such experimentally observed maximum delays can be used to determine some real upper bound on
delays for all possible experiments. Moreover, the significant gap that exists between any experi-
mentally determined ����� and the minimum delay ��
�� make the bound ����� impractical for the
purpose of synchronizing N clocks, since all deterministic synchronization algorithms that depend
on an upper bound for the maximum communication delay cannot achieve a maximum deviations
better than ������������
�� �!� � � �#"!� � [3]. In what follows, we do not assume any upper bound on
communication delays.

2.2 Clocks

A hardware clock consists of an oscillator and a counting register that is incremented by the ticks
of the oscillator. To simplify our presentation, we assume hardware clocks have a much higher
resolution than the time intervals (such as process to process communication delays) that have to
be measured. For example if the delays observable are of the order of milliseconds, we assume
hardware clocks have a microsecond resolution. The hardware clock $&% of any process � is a total
mapping from real-time '�(to clock time)�(: $*%���+,� is the value displayed by the counter of the
hardware clock of � at real-time + . We say that $-% is correct if it measures the passage of any real-
time interval ./��01+32 with an error of at most 45�6+��7�8� , where 4 is the maximum clock drift rate specified
by the clock manufacturer:

(bounded drift) � � �94:�;��+<�=�8�?>@$A%:��+,�B�C$A%D���#�E>F� �G� 4:�!�6+B�H�#�
In the above formula, it is implicitly assumed that the delay +I��� is long enough so that the clock
granularity is negligible compared to the maximum error caused by the drift of the clock. For most

3

1.7 1.9 2.1 2.5 mst50
0

%

Figure 1: Transmission delay density

quartz clocks available in modern computers, the constant 4 is of the order of
�KJML:N

or
�KJ:L:O

, and for
high precision quartz clocks 4 is of the order of

�KJ LQP
or
�KJ L:R

. Since 4 is such a small quantity, in
this paper we ignore terms of the order of 4 � or smaller, for example we will equate � �S� 4:� LMT with� � �94:� and � � �=4:� LMT with � �G� 4:� .
A clock failure occurs if condition bounded drift is violated. We distinguish between two clock
failure classes. A clock crash occurs when the counter of a clock stops progressing. Any other clock
failure will be classified as arbitrary. Example of arbitrary clock failures are a clock that ticks faster
or slower than allowed by the drift bound 4 or a clock that displays a non-monotonic sequence of
time values because some of the counter bits are stuck at 0 or 1,

Time servers do not, in general, directly manipulate the value or the speed of hardware clocks.
Instead, a time server maintains a virtual clock by adding to the underlying hardware clock an
adjustment function. This function can be a step function of time, in which case the virtual clock
is called discrete, or it can be a continuous function of time, in which case the clock is called
continuous. For simplicity, we only consider discrete virtual clocks in this paper, knowing that we
can substitute later continuous clocks to our discrete clocks without worsening the precision of the
clock synchronization algorithms [6]. Like a hardware clock, a virtual clock UG% is a total mapping
from real-time '�(to clock time)�(. In what follows, we often refer to virtual clocks simply as
clocks.

2.3 Processes

Time server processes undergo state transitions in response to message receptions and timeout events
generated by local hardware clocks. The delay between the moment an event on which a process
waits occurs and the moment the process is awaken will be referred to as the process scheduling de-
lay. For a correct process, we assume the existence of an upper bound V on the maximum scheduling
delay. For example, if a correct process sets a timer at + to measure W time units, we assume the un-
derlying operating system will awake the process in the real-time interval [t+(1- 4)W,t+(1+ 4)W+ V].

4

Similarly, if a correct process waits for a message, we assume that it is awaken within V real-time
units of the message arrival.

We distinguish between three classes of process failures: crash, performance and arbitrary. A pro-
cess suffers a crash failure when after a first failure to react to a trigger event it systematically omits
to react to all subsequent trigger events until its restart. A process suffers a performance failure
when it reacts too slowly to a trigger event, possibly because the underlying operating system ex-
ceeds the scheduling delay bound V . All other possible process failures are classified as arbitrary.
For example, a process that reacts too fast to a trigger event or undergoes erroneous state transitions,
including the sending of conflicting information to other processes, will be classified as suffering an
arbitrary failure.

We assume each process � checks that successive readings of its local clock yield different values:
a clock crash will then result in a process crash. An arbitrary clock failure will result in an arbitrary
process failure. A correct process has by definition a correct clock.

3 Remote Clock Reading

We first recall the basic idea of probabilistic remote clock reading and we describe its four character-
istic properties. We then propose a new probabilistic clock reading method optimized for achieving
internal clock synchronization. The main advantages of this method are its reduced number of mes-
sages and its increased probability of successfully reading a remote clock.

3.1 Probabilistic Remote Clock Reading

The basic idea behind probabilistic clock reading [1] is as follows. To read the clock of a remote
process
 , a process � must measure the round trip delay elapsed between the sending of the time
request and the arrival of the reply on its local clock. Knowledge of the round trip delay allows �
to estimate
 ’s clock as well as to bound the error it makes in reading
 ’s clock. If the bound on the
reading error is smaller than or equal to a desired constant W , � declares success, otherwise it retries
the remote clock reading procedure. We call constant W the maximum acceptable clock reading
error. If the goal is to successfully read
 ’s clock within at most X time units, � ’s probability of
success can be made arbitrarily close to one by ensuring that � has time for a sufficient number of
retries Y before the X time units expire. If at the expiration of X time units no successful reading
has occurred, a remote clock reading failure occurs.

p

q

m1 m2

T0

T1

T2

Figure 2: Probabilistic Clock Reading Method

For concreteness, let � T be the message that � sends and � � be
 ’s reply containing
 ’s current

5

clock value (see figure 2). Let Z\[be � ’s clock value when � T is sent (figure 2), Z T be
 ’s clock
value when � � is sent and Z � be the time on � ’s clock when � � is received. Process � uses the
measurement of the round trip delay (� T 0]� �) to calculate an upper bound for the clock reading
error and to approximate
_^ � clock value at � ’s local time Z � as follows. Process � ^ � clock can drift
from real time by at most 4 . Thus, the round-trip delay is not greater than ��Z � �HZ`[a�!� �b� 4:� . This
upper bound for the round-trip delay can be used to define an upper bound �����c��� � � for the one-way
transmission delay +;��� � � of message � � :

�����c��� � �edf ��Z � �gZh[a�;� �G� 4:�B�=��
��Bi (1)

The condition +;�j� � �*>k�����c��� � � holds, because ��Z � �lZ`[m�!� �n� 4:�&op+;�j� T � � +;�j� � � and ��
��@>+;�j� T � , by definition of the minimum message transmission delay ��
�� . The lower bound ��
�� and
the upper bound �����c�j� � � of the message transmission delay +;�j� � � can now be used to approximate
#^ � clock at time Z � :
8^ � ’s clock value increases by ��
��q� � �r4:� at the least and by �����c�j� � �;� �s� 4:� at
the most during the transmission of � � . To minimize the worst case error that � makes in estimating
 ’s clock, � ’s estimate of
 ’s clock at Z � , denoted)ut#��Z � 0��s� , is defined as the midpoint of the interval
[Z T + ��
��<� � �94:� , Z T + �����c��� � �!� �G� 4:�]:

)vtK�6Z � 0��5�ndf Z T �w�����c�j� � �!� �S� 4:� � ��
��q� � �94:�x (2)

This limits the worst case clock reading error ystz��Z � 0��5� that p can make in approximating
 ’s clock
at Z � to half of the size of the above interval:

yutz��Z � 0��5� df �����c��� � �!� �{� 4:�<�9��
��<� � �=4:�x (3)

Process � waits for a certain duration after sending a message and before sending the next message.
When choosing this waiting time one has to consider that in some network protocol implementations,
such as UDP on SunOS, messages can be coarsely classified as cold and hot messages. A cold
message is one that follows a message that is sent a sufficient long time ago. A hot message is one
that follows the previous message immediately or after a short delay. The transmission delay of a
cold messages is substantially longer than the transmission delay of hot messages. Hence, a clock
reading method wants to generate hot messages to decrease the clock reading error. For example, a
clock reading method could use short waiting times so that almost every message is a hot message,
or it could issue short bursts of request messages followed by a longer waiting time.

3.2 Characteristic Properties of a Probabilistic Reading Method

The goal of a probabilistic clock reading method is to allow a process � to estimate the clock of a
remote process
 with some known error. We denote W the maximum acceptable clock reading error,Z`[the time when � starts its attempt at estimating
 ’s clock, +1[the earliest point in real-time such
that U<%:��+|[m� f Zh[, X the maximum time � is willing to allow for its attempts at reading
 ’s clock with
the desired error, } a positive constant, and T any time between Z�[� X and Zh[� X � } by which �
needs to have read
 ’s clock with an error of at most W . Term + denotes the earliest point in real-time
when process � ’s virtual clock shows Z , i.e. Z f U{%:�6+,� . Probabilistic reading is required to yield� and estimate)utz��Zb0��5� of
 ’s clock as well as an error function yst!��Zb0��s� such that the following
conditions are satisfied.

6

~ (timeliness) Remote clock reading takes at most X time units on � ’s clock.~ (error bound) If � or
 do not suffer arbitrary failures between the start Z [and the end T of
remote reading, the reading error ystz��Zb0��s� returned to � is a bound on the distance between the
actual value of
 ’s clock and the estimated value of
 ’s clock:� U?tK�6+,�B�g)utK��Zb0��5� � >�yutz��Zb0��5� (4)~ (crash handling) If � is correct throughout the reading experiment .�+1[K01+32 but
 crashed before+|[, the error is infinite yMtK�6Zb0��5� f�� .~ (likely success) If � and
 are both correct throughout the reading experiment .�+][K01+32 , the prob-
ability that the error yutK�6Zb0��5� is less than or equal to W is strictly positive:�M�_�_�8��yvtK�6Zb0��5�S>�WE�?� J i (5)

The error bound condition implies that if processes � or
 suffer a performance failure, y`t!��Zb0��5� still
yields a bound of the clock reading error, although this might be infinite. It does not constrain the
value of yMtz��Zb0��s� if one of the processes suffers an arbitrary failure. We require that if � crashes, the
error bound condition should be true by definition. If
 suffers a crash failure during probabilistic
clock reading (after time +,[and before time +) the error yMtK�6Zb0��5� can be finite. The error bound
condition is still valid, because UEt is totally defined and we assume that the drift rate of Unt is still
bounded by 4 . Note that if two correct processes � and � approximate
 ^ s clock for time + and

crashes during these two readings, the distance between the two approximations is still bounded by�)vtK�6Zv%�0��5�B�9)utz��Z5�z0]��� � >�yvtz�6Zv%�0��5� � yutz��Z5�z0]��� , where Zv% f U<%D�6+,� and Z5� f US�#�6+,� . This property is
of importance for fault-tolerant internal clock synchronization: it allows correct processes � and

to approximately agree on
_^ � clock value even when
 crashes.

The likely success condition forbids a probabilistic clock reading method from always deliver-
ing an infinite remote clock error bound. Remote clock reading methods which guarantee that� ���8�8��yut!��Zb0��5��>�WE� f �

are deterministic [1]. A remote clock reading method, such as [4], that
does not provide the reading process � with a bound on the clock reading error is statistical. The
advantage of probabilistic clock reading compared to deterministic clock reading is the possibility to
achieve much smaller clock reading errors. The advantage with respect to statistical clock reading is
that a process � knows when its clock is within a specified constant maximum deviation from other
correct clocks.

The timeliness property implies that a correct process that invokes a probabilistic remote clock read-
ing method at local time Z\[is guaranteed a return before its clock reads Z [� X . This condition
cannot be guaranteed in non real-time systems in general. Nevertheless, timeliness can be closely
approximated in a system with a non real-time scheduler. A performance failure with respect to the
timeliness condition can be detected and can be transformed - in the worst case - into a process crash
failure.

3.3 Probabilistic Reading Method for Internal Clock Synchronization

Internal clock synchronization algorithms typically use a round-based approach to synchronize
clocks. Before the end of every clock synchronization round, each process reads all other remote

7

clocks at about the same time. The new probabilistic clock reading method optimizes the reading of
remote clocks by decreasing the number of messages exchanged and by increasing the probability
of reading all remote clocks successfully.

We use several techniques that optimize probabilistic clock reading for internal clock synchroniza-
tion. First, given the popularity of local area networks that allow broadcasting, we use broadcast
messages whenever possible, to reduce the number of messages exchanged in a round. In what
follows processes send unreliable broadcast messages, but they could also use a sequence of (un-
reliable) unicast messages to emulate a broadcast message. Second, we use all potentially non-
concurrent message pairs between two processes � and
 to approximate � ^ � or
#^ � clocks. We use
a heuristic that selects the approximately fastest message from � to
 and from
 to � . Hence, we
select from all message pairs between two processes the message pair that provides approximately
the lowest upper bound for the clock reading error. Third, the processes stagger the sending of mes-
sages in time, to reduce network congestion and message concurrency. Since staggering increases
the number of non-concurrent messages, the probability of successfully reading a remote clock in-
creases. Moreover, if the failure assumptions exclude arbitrary failures, any process � can make use
of transitive remote clock reading: � can use process
 ^ � remote clock approximations to obtain its
own estimates of other remote clocks. In the best case, this allows all processes to read all remote
clocks with a total number of

� ��� ���
messages, where

�
denotes the set of all time server processes.

Since the maximum number of messages sent per process and round is limited by Y , our probabilis-
tic clock reading method uses at most Y � ��� messages per round to perform � � ��� � � � � remote clock
readings.

3.3.1 Staggering Messages

In round-based internal clock synchronization, processes determine the start and end of a synchro-
nization round on their local clocks. Let Z [denote the start of the first round and

�
the duration of

a round. The
 -th round starts at local time Z\[�
 � and must end by local time Z\[� �j
 ��� � � with
all processes having read all other remote clocks.

p

q

r
slot

cycle

Figure 3: Staggering of messages

The messages exchanged in a round is staggered by dividing a round into Y cycles and each cycle
into

� ���
slots (see figure 3). Exactly one slot is assigned to each process per cycle. The size � of

a slot should be large enough so that all messages sent by a process � to read remote clocks are
delivered to the other processes in the same slot with high probability. Every process in

�
has a

unique rank. The rank of process � is denoted by �_��� Y\���5� and has a value between
J

and
� ��� � �

.
The slot with number �����\Y\���5� is assigned to process � . Because there are Y cycles per round, each

process can send up to Y messages per round. Let Z denote the end of the i-th round,
� df � ���

, and

8

�
denote the duration of a cycle, i.e.

� df � � . The first slot of the first cycle in round
 starts at
local time Zg��Y � , and therefore a process � can send its first message at time Zg��Y ��� �_��� Y\���5�1� .

3.3.2 Approximating Remote Clocks

A process executing the proposed probabilistic clock reading method sends a part of its current state
with every message. Each message contains among other things the round number, the send times-
tamp, and the current approximations and error bounds of the sender for all remote clocks. Every
sender timestamps every message � with a send timestamp }b�j��� . Every receiver
 timestamps any
received message � with a receive timestamp ���j��� (see figure 4). A process � records the send
and receive timestamps of all messages sent and received in a round. Hence, if process
 receives
a message � from � ,
 gets all receive timestamps belonging to messages which
 has sent and� has received before � sent � . This allows processes to have a partial knowledge of the receive
timestamps of their own messages.

S(m1)

R(m1) S(m2)

R(m2)
p

q

m1 m2

Figure 4: Improved Probabilistic Clock Reading

A process � uses the send and receive timestamps }b�j��� and ���j��� to approximate the clock of any
other process
 (see figure 4). Let � T be a message sent by process � and let � � be a message sent
by
 . The message pair (� T , � �) is called non-concurrent if either
 receives � T before it sends � �
or � receives � � before it sends � T , i.e.���j� T �E>�}b��� � � �����j� � �?>�}b�j� T �
To bound the transmission delay +;��� � � of � � , process � can use any non-concurrent message pair�j� T 01� � � sent between � and
 . The bound �����5�I�!�j� � � on the transmission delay of � � for a
non-concurrent message pair �j� T 01� � � is given by

����� �{� ��� � � f�� �j���j� � �<�C}b�j� T �,�!� �{� 4:�<�@��}b��� � �B�C���j� T �,�!� � �=4:�B�=��
��
3�7���j� T �S>�}b�j� � ��j���j� T �<�C}b�j� � �,�!� �{� 4:�<�@��}b��� T �B�C���j� � �,�!� � �=4:�B�=��
��
3�7���j� � �S>�}b�j� T � (6)

When ���j� T ��> }b�j� � � is true, +;�j� � ��>p����� �I� �j� � � holds because the duration of the round-trip�j� T 01� � � is bounded by ������� � �_�¡}b�j� T �,�!� �:� 4:� and we can subtract the time
 waits before it sends� � (at least ��}n��� � �I�¢���j� T �,�!� � �¢4:�) and the transmission delay of � T (at least ��
��). Process �
can use ����� �I� �j� � � to approximate
 ^ � clock at time Z (denoted by) �{�3£ �B¤t ��Zb0��5�) and to bound the
clock reading error (denoted by y<� � £ � ¤t ��Zb0��5�):

)\�I�|£ �<¤t ��Zb0��5� f Z��C���j� � � � }b�j� � � � �B¥|¦m§ �©¨ �<¤|ª ¨ T�«v¬ ª « �c­¯® ¨ T3LD¬ ª� (7)y �I�°£ �B¤t ��Zb0��5� f x 4 � Z��=����� � � � � �c¥|¦ § � ¨ �B¤3ª ¨ T�«v¬ ª L �c­¯® ¨ T3LD¬ ª� (8)

9

The idea behind these definitions is similar to that for equations (2) and (3). Process � bounds the
transmission delay of � � by �����c��� � � and ��
�� and uses the average of these values as an estimate
for +;��� � � to minimize the clock reading error. Because � has to add Z��l����� � � to adjust its view
of
8^ � clock for time Z , the bound on the clock reading error increases by

x 4 � ZC�±����� � � � (since the
clocks of � and
 can drift apart with a rate of up to

x 4).

If each pair of processes � and
 sends up to k messages to each other, the number of message pairs
that are exchanged by them estimating each other’s clock can be as great as Y � . We derive now a way
to reduce the number of message pairs that have to be considered for the approximation of a remote
clock. Consider the case when process � sends message � ¥ and ��² to process
 , and
 replies
with message ��³ . The difference between the bounds for the clock reading errors is approximatelyy´�cµa£ �c¶t ��Z·�S��y´�B¸°£ �´¶t �6Z·�&¹º�j���j� ¥ �S�»}b��� ¥ �,�?�F�����j��²3�E��}b����²|�1� (derived by discarding terms
with factor 4 in (8)). Therefore, we only consider the non-concurrent message pair (� ­ , �r¼) with���j� ­ �q�¢}b�j� ­ � and ���j��¼a�I�¢}b�j��¼;� minimum. This allows us to select the message pair with the
approximately smallest error bound without calculating the bound for the clock reading error for all
message pairs.

Let us now derive a bound for the size � of a slot. The slot size should be chosen so that a slot is
large enough to ensure that a message broadcast to read remote clocks at the beginning of the slot
is delivered during the same slot. If a process � schedules to send message � for time Z T , � cannot
assume that � is sent exactly at time Z T . The slot size should reflect this variation in scheduling
by the addition of the maximum scheduling delay V . Since the maximum deviation between clocks
is bounded by ½ , the difference between the start of a round seen by two different processes is also
bounded by ½ . Hence, ½ should also be added to the size of a slot. For yq�{�3£ �B¤t �6Zb0��5�E>�W to be true,
the transmission delay of +;�j� � � has to be smaller than

x W � ��
�� . Thus, we must chose the size of
a slot so that ��o�½ � x W � ��
�� � V holds.

We now propose a new transitive remote clock reading method to reduce the number of messages
exchanged for reading remote clocks. The new method (see figure 5) allows a process
 to estimate
the clock of another process � when
 learns of the approximations of � ’s and
 ’s clocks by a third
process � . Transitive reading reduces the number of messages per round to

�¾���
in the best case

and decreases the probability of clock reading failures.

To explain how transitive reading works, let us assume that �\0
 01� are correct processes. Assume that� has approximations of the clocks of � and
 at real time +�% such that U<%:��+�%8� f Z and
 has learned
of)v�8�6Zb0��5�a0,yv�z��Zb0��5� ,)ut#�6Zb0��5�m01yut!��Zb0��s� . The goal of transitive reading is to allow
 to compute an
estimate)v�#�6Zb0
 � of � ’s clock at time Z f UEtK�6+|t©� and bound the maximum error that it makes byyv�K��Zb0
 � .
The remote clock estimate)u�#��Zb0
 � is determined as follows. In general, the real times +�% and +|t at
which the clocks of � and
 display local time Z are different (see figure 5). To account for the time+|t - +�% elapsed between � ’s reading of � ’s clock and
 ’s estimate of � ’s clock,
 adds to � ’s estimate)Q�#��Zb0��5� the time Z��g)vt#��Zb0��s� that approximates +¿t - +�% .

)Q�#�6Zb0
 � df)v�K��Zb0��s� � Z��±)vtK�6Zb0��5� (9)

Given that the clocks of p and q are at most ½ apart, this estimate yields an error that is bounded
by the sum of the errors yu�K�6Zb0��5� and yutK�6Zb0��5� that � has made in reading the clocks of � and
 ,

10

respectively, plus the error
x 4D½ , which must be added because the clocks of � and
 can drift apart

during time
� +j%n�±+|t � by at most

x 4D½ .
yv�z��Zb0
 � df yQ�#��Zb0��5� � yvtz�6Zb0��5� � x 4D½ (10)

The proof of Theorem (T1) in the Appendix shows that (10) is an upper bound on the error made
by using estimate (9). Note that this kind of transitive knowledge cannot be used when arbitrary
failures can occur, since a process suffering an arbitrary failure could send erroneous remote clock
approximations to other processes.

p

q

r

T

t

qt

p

T

 (T,p) (T,q)r r

 (T,p)qC

C C

Figure 5: Transitive remote clock reading mechanism.

3.3.3 Round Message Exchange Protocol

A process executing the proposed probabilistic clock reading method can be in three modes: request,
reply and finish. At the start of a new round a process is in request mode. A process � stays in request
mode for as long as it has not yet successfully read all other remote clocks. While in request mode,� sends in each of its time slots a request message containing its current approximations and error
bounds for all other clocks. Each process � that receives a request message checks if the sender

has successfully read � ^ � clock. If
 has not done this, � has to send a message in its next slot. When
a process has successfully read all remote clocks it changes its mode to reply or finish mode. A
process � stays in reply mode for as long as it is not certain that all other processes have successfully
read � ’s clock or until � changes to finish mode. While in reply mode, � will only send messages in
reply to clock reading requests it receives from other processes.

A process � switches to finish mode when � has read all remote clocks successfully and � knows that
all remote processes can use its remote clock approximations and error bounds to read in their turn
all remote clocks successfully. Thus, any two error bounds ÀK� T and ÀK� � calculated by � must satisfyÀK� T � ÀK� � � x 4D½�>�W before � can switch to finish mode. When � sends a finish message � , any
receiver
 can use � to get � ^ � approximation of any clock in

�
. A process that sends or receives

a finish message in a round normally stops sending further messages in that round. However, since
we do not assume a reliable broadcast, it is possible for some processes to fail to receive a finish
message. Thus, a process must be prepared to reply to request messages even when it receive them
after sending or receiving a finish message.

When a process � receives a message � from process
 , it locally stores the send and receive times-
tamps of � . Furthermore, � also extracts all receive time stamps belonging to messages sent by �

11

and stores the fastest message pairs between � and any other process observed so far. If the mes-
sage pair for process
 is changed to ��� T 0]� � � by the reception of message � , � recalculates its
best approximation and error bound of
�^ � clock to)\�{�3£ �B¤t �6ZÁ� and yc�I�3£ �<¤t �6Z·� , where Z is the end
time of the current round. If the failure hypotheses excludes arbitrary failures, � uses the remote
approximations of
 to improve its own error bounds (by use of equations (9),(10)). If � is a finish
message, � can use � to read all clocks successfully.

At the end of a round process � automatically switches to request mode. The probabilistic clock
reading procedure executed by process � returns a result to its client when � switches to reply or
finish mode or after the last slot in the last cycle of the current round has elapsed. The results
returned by this procedure consist of the approximations and error bounds determined from the
fastest message pair between � and each other process observed in the current round. In this way,
the remote clock reading procedure guarantees the timeliness and the bounded error conditions. The
lower bound for clock reading errors achievable by probabilist reading is Â�4���
�� [1]. If the maximum
reading error is chosen so that W���Â�4���
�� � x 45��X � }I� , Y is chosen to be at least 2 and � is chosen
greater than ½ � x W � ��
�� � V , the likely success condition is also satisfied.

The message complexity of the round protocol described above is Y � messages in the worst case,
since each process can in the worst case send a message in each of its Y slots of a round. In the best
case, every process sends one message in the first cycle and the process with rank zero switches to
finish mode after receiving the messages sent by all other processes in the first cycle. This process
will send a finish message and all other processes will stop sending messages. Thus, the best case
message complexity is

���@�
.

4 Internal Clock Synchronization

4.1 Requirements

The main goal of a clock synchronization algorithm is to bound the distance between virtual clocks
of correct time server processes by a constant ½ (maximum deviation). If + [denotes the earliest point
in real time for which virtual clocks must be synchronized, this requirement can be expressed as

(bounded deviation) For any processes � ,
 correct at time +Go�+ [:� U<%D��+,�B�CU?tz��+,� � >@½ .
A second requirement is that the drift rate of a correct virtual clock be bounded by a constant 4vÃAÄ �

.
Synchronization algorithms for which 4DÃ f 4 are called optimal [9] If Å denotes the maximum
discontinuity of virtual clocks, this second requirement is expressed as:

(clock drift) For any process � that is correct in interval . +m0]ÆM2 , + [>�+G>�Æ :� � �94�Ãz�!��Æ7�9+,�B�CÅp>�U<%��jÆ`�B�=U<%:��+,�S>p� �{� 4�Ãz�!�jÆr�9+,� � Å .

A clock synchronization algorithm is correct when it satisfies the bounded deviation and clock drift
requirements. A consequence of the clock drift requirement is the linear envelope condition: correct
virtual clocks are within a linear envelope of real time.

(linear envelope) For any process � that is correct in interval . + [01+32 , + [>�+ :� � �=4�Ç1�!�6+<�±+ [�B�C�w>@U<%:��+,�B�CU<%���+ [�S>p� �{� 4�Ç©�!�6+B�9+ [� � �
12

ClockValue A; // current adjustment value of local virtual clock
ClockValue T; // end of current round

void
��h
j+ () È // schedule synchronizer
A,T = InitialAdjustement(); // determine initial adjustment and end of first round
schedule (/*function*/ �KÉ:�\Ê;Ëu���#�h
�Ì�Àz� , /*every*/

�
, /*start at*/ Z);

// schedule �zÉQ�hÊ!Ëu�_�8�`
°Ì�Àz� processÍ
void �zÉ:�\Ê;Ëu���#�h
�Ì�Àz� () È // called every

�
ClockValue Clocks[

�
]; // stores approximations for all

�
round clocks

ClockValue Errors[
�

]; // stores error bounds for all
�

round clocks

ReadClocks(Clocks, Errors); // get approximations from probabilistic reading method
A = A + cfn(rank(), Clocks, Errors) - T;

// calculate adjustment for next roundZ f Z �¢�
; // set Z to end of next roundÍ

Figure 6: Clock Synchronization Protocol

The envelope rate 4DÇ is smaller than or equal to the drift rate 4DÃ of virtual clocks. A synchronization
algorithm has an optimal envelope rate if 4:Ç is not greater than the maximum hardware clock drift
rate 4 .

4.2 Outline of Algorithms

A pseudocode description of a clock synchronization algorithm is given in figure 6. Variable Z
denotes the time at which the remote clocks are read probabilistically by another thread in process� and variable Z also refers to the time at which the procedure �KÉ:�\Ê;Ëu���#�h
�Ì�Àz� is scheduled for
execution. Time server process � executes the synchronizer procedure about every

�
clock time

units. The procedure ReadClocks only fetches the approximations and error bounds provided by
the parallel thread which executes the round message exchange protocol described earlier. The
value of a virtual clock is determined as the sum of the hardware clock and a periodically computed
adjustment value Î . The value Z of the virtual clock is replaced by the value computed by the
convergence function, i.e. Ê;�`�q�������\Y\���m0©U*Ï��8Ê!Yv��0]Ð*�8���#���#� . A new round starts at the time process �
changes its adjustment value Î .

To analyze our algorithms, we use the following notation: +1Ñ% denotes the start of � ^ ��Y -th syn-
chronization round. Time + Ñ is the real time when all correct processes have just started their Y -th
synchronization round: +,Ñ f ����� ÈK+|Ñ% � �±Êa�#�_�_ÀKÊm+·��+·+|
���Àr+|Ñ% Í (+|Ñ is called the start of the Y -th
synchronization round). For every round Y and every correct process � , the clock synchronization
algorithm defines a new adjustment value which we denote by Î Ñ% . A virtual clock in round Y is

13

defined by the hardware clock and the adjustment value Î Ñ% :U<%:��+,�ndf $�%:�6+,� � Î Ñ%eÒ ËsÀz�r+ Ñ% >�+?Äl+ Ñ «`T% i
At the end of every round all correct processes try to estimate the values of all clocks. The rounds
can overlap, i.e. a process can start round Y ���

while another process is still in round Y . Process �
tries to approximate the remote virtual clocks with respect to the adjustment values of round Y and
not with respect to the adjustment values of round Y ��� . Therefore, we define the concept of a round
clock. The round clock U*Ñ% of process � for round Y is defined by

U Ñ% �6+,� df $A%D��+,� � Î Ñ% i
Our clock synchronization algorithms use the improved probabilistic clock reading method to read
remote round clocks (see section 3.3). Let Z Ñ «`T% denote the end of round Y ���

with respect to clockU�Ñ% , i.e. ZeÑ «`T% df U�Ñ% ��+|Ñ «`T% � . We assume that the reading error of a local clock is negligible, i.e.y Ñ% �6Z Ñ «`T% 0��5� f J
.

4.3 Assumptions

To prove that the proposed internal clock synchronization algorithms satisfy the bounded deviation
condition, we make several assumptions; these must be guaranteed by any implementation of the
clock synchronization algorithms. Since we use a probabilistic clock reading method and so pro-
cesses can fail to read correct clocks within a given maximum error, our assumptions are somewhat
different from those of [7, 8, 5]. The main differences are in the failure assumptions which limit the
number of independent clock reading failures.

4.3.1 Initialization

We require that at the start of the first round all correct clocks be within a constant ½#Ó of each
other, where ½!Ó will be determined later. Constant ½zÓ is also used to denote the maximum deviation
between two correct clocks at the start of all rounds.

(initial deviation) For any processes � and
 that are correct at real time + [:� U [% �6+ [�B�CU [t ��+ [� � >@½;ÓMi (A1)

4.3.2 Interval Constraints

The real-time length of a clock synchronization round has to be bounded by constants � �c­Ô® and � �c¥¿¦ :
(bounded interval) For any process � that is correct in real time interval . +1Ñ% 0,+|Ñ «`T% 2 :� �´­¯® >�+ Ñ «`T% �±+ Ñ% >�� �c¥¿¦ . (A2)

The real-time delay between the beginning of the same synchronization round for different processes
has to be bounded by a constant Õ :

14

(bounded delay) For any processes p and q correct at + Ñ% and + Ñt , respectively:� + Ñ% �9+ Ñt � >�Õ (A3)

The overlap of rounds is restricted by:

(nonoverlap) Õ9>�� �´­¯® (A4)

Let us now derive some bounds for � �´­¯® 01� �B¥|¦ , and Õ with respect to the clock synchronization
algorithm of figure 6. Since the maximum scheduling delay for thread synchronizer is V and a clock
can obviously be adjusted by at most ½ , we set � �c¥¿¦ df � �{� 4:� �¢� V � ½ and � �´­¯® df � � �94:� � �9½ .
All correct clocks synchronize their clocks at the same local time, i.e. Z Ñ% f Z Ñt . Since the deviation

between correct virtual clocks is bounded by ½ , we define Õ@df � �G� 4:�,½ . Assumption nonoverlap is
aquivalent to � � � 4:�¿½&>F� � ��4:� � ��½ , that is, it is sufficient to assume that

� oF� x � Â�4:�¿½ to satisfy
conditions (A2) to (A4).

4.3.3 Remote Clock Reading Requirements

We assume the use of a remote clock reading method that possesses the error bound, crash handling,
likely success, and timeliness properties defined in section 3.2:

(reading method) Conditions error bound, crash handling, likely success, and timeli-
ness are valid.

(A5)

Since deterministic clock reading possesses all the above properties, our algorithms also work if
deterministic remote clock reading is used.

4.3.4 Constraints for Constants

The correctness proofs of our clock synchronization algorithms require that constants ½ and ½_Ö satisfy
constraints (A6) and (A7), where × f J

if only crash failures can occur, else × f x
.½!ÓØoF� x � ×Q�¿W � x 45�j� �B¥|¦ � Õc� (A6)½ÙoF� x � ×Q�¿W �CÚ 4�� �c¥¿¦ � x 4�Õ (A7)

4.4 Midpoint Convergence Functions

Assume each correct process p would somehow be able to 1) read the value U·tz��+,� of each clock
q at a given time + without an error and 2) know which clocks are correct at + . Let Û and � be
the minimum and maximum values displayed at + by correct clocks and let Ü`��+,� f ./ÛE0©�·2 be the
interval spanned by the correct clocks. If all processes would set their virtual clocks at the same
time + to the midpoint of Ü`��+,� , then all correct clocks would be exactly synchronized at that point in
time. Unfortunately, hardware clock drift prevents correct processes to agree on t, the randomness of
communication delays prevents them from exactly reading remote clocks and the randomness that
characterizes failure occurrences prevents them from knowing which clocks are correct and which
clocks are faulty. Thus, correct processes can only approximate the interval spanned by the correct

15

clocks. This causes the deviation between correct clocks to be positive. However, this deviation can
be bounded by using the following simple ideas. First, we have to guarantee that any approximationÝ % made by correct process � of the interval of correct clocks Ü is included in a bounded extension
of Ü . Second, we must bound the distance between the approximations

Ý % and
Ý t computed by

different correct processes � and
 of the interval of correct clocks. This allows us to bound the
deviation between the midpoints of all the approximation intervals computed by correct clocks, and
hence, bound the deviation between correct clocks. Third, we must ensure that the deviation between
successive round clocks U Ñ% and U Ñ «`Tt is bounded. This allows us to bound the deviation between
correct virtual clocks at any point in real time.

We define the interval Ü Ñ ��+,� determined by correct round clocks for a round Y in accordance with
the ideas above.

Since the clock of a process � that crashed in round Y could have been read by some correct process
 , we add to Ü:Ñ���+,� the values of all clocks that belong to processes crashed in round Y . This amounts
to “shifting” the time of a crash to the end of the round in which the crash occurs. Thus, we will
consider a process � to be �_Y at time + , if it is either correct at + or has crashed in the current round:�_Y\����01+,� df �EÊa�8�8�_ÀKÊm+���+�+\�ßÞMYuÞvÆ�à�+ ÑÖ >�Æ�>�+?Äl+ Ñ «`TÖ á �bÊa�#�_�_ÀKÊm+´�mÀ#�h�#�_À?Æ á �EÊm���:�#ËMÀ#�E��+�Æ�i
We define the interval of �_Y clocks Ü Ñ �6+,� to beÜ Ñ ��+,� df .���
��cÈ8U ÑÖ �6+,� � �-â � á ��Y\����01+,� Í 0]����� È8U ÑÖ �6+,� � ��â � á �_Y\����0,+,� Í 2
A crash of � in round Y causes a reading failure to occur whenever a correct process
 attempts to
read � ’s clock in rounds that follow Y .

Since a correct process
 estimates a correct remote clock � only with a certain error (which is at
most W if
 and � are correct and no reading failure occurs), we also define the W -extended interval
of ��Y clocks Ü:Ñã �6+,� to beÜ Ñã �6+,� df .ä��
��cÈ8U ÑÖ ��+,�B�9W � ��â � á �_Y\����01+,� Í 0]����� È8U ÑÖ ��+,� � W � �*â � á �_Y\����0,+,� Í 2 (11)

As the deviation of �_Y clocks is bounded by ½ , the length of ÜuÑã �6+,� is bounded by ½ � x W .

We define the midpoint ��
�å`�,.���01É:2æ� of an interval [x,y] as

��
°å5�,.���0]ÉD2æ� df � � Éx i (12)

The length of interval .���0]ÉD2 , denoted ç_. ��0]ÉD2,ç , is defined asç_.���0]ÉD2¿ç df É&�9��i (13)

The distance åD
°�!+;��è�0]é¡� between two intervals è and é is

åD
°�!+;��è�0]é¡�edf êë ì ��
��<��é¡�B�=�����c�jé¡�
°�7�����c��èí�EÄl��
��q��éÙ���
��<��èí�<�=�����c��è��
°�7�����c��é¡�?Ä���
��q��è��J �K+,ËMÀz� Ò
3�KÀ (14)

We denote process � ’s approximation of the interval of �_Y clocks by
Ý Ñ% . A midpoint convergence

function sets the clock of process � in round Y to the midpoint of
Ý Ñ% : U<%D�6+ Ñ «`T% � df ��
�å5� Ý Ñ% � . Different

midpoint convergence functions allow to mask different failures by using different approximations
for the interval of �_Y clocks.

16

4.5 Design And Correctness Principles

The design and correctness proofs of our clock synchronization algorithms have been guided by the
following principles.

The first principle, states that to bound the distance between the midpoints of the approximationsÝ Ñ% and
Ý Ñt , it is sufficient to ensure that 1) each approximation

Ý Ñ% made by a correct process � is
included in the corresponding W -extended interval of ok clocks, 2) the distance between any two
approximations

Ý Ñ% and
Ý Ñt made by correct processes � and
 is at most å , and 3) that any two

correct processes � and
 set their clocks at the same point in real time:

Principle P1: + f +¿Ñ «`T% f +|Ñ «`Tt á �î���\å
 Ê;�#�8��ÀKÊ©+q��+q+ á çmÜDÑã ��+,�#ç�>k½ � x W á Ý Ñ%Cï ÜDÑã ��+,� á Ý ÑtíïÜDÑã ��+,� á å�
°�z+;� Ý Ñ% 0 Ý Ñt �?>@å&ð � ��
�å5� Ý Ñ% �B�9��
�å5� Ý Ñt � � >òñ «u� ã «uó�
The requirement that any two correct processes set their clocks at the same point in real time is
unfortunately too strong to be implementable; the most that can be guaranteed in practice is that
the maximum distance between + Ñ «`T% and + Ñ «`Tt is bounded by constant Õ . If the distance between��
°å5� Ý Ñ% � and ��
�å5� Ý Ñt � is bounded by À under the assumption of simultaneity (i.e. +1Ñ «`T% f +|Ñ «`Tt)
and the maximum distance between +,Ñ «`T% and +|Ñ «`Tt is bounded by Õ , then the distance between the
adjusted clocks U*Ñ «`T% and U�Ñ «`Tt at time + f ����� ÈK+|Ñ «`T% 01+|Ñ «`Tt Í

is bounded by À � x 4�Õ :

Principle P2: (� and
 correct at +¿Ñ «`T , and
� ��
�å5� Ý Ñ% �D����
�å`� Ý Ñt � � >@À for assumption +|Ñ «`T% f +|Ñ «`Tt �qð� U�Ñ «`T% ��+,�<�=U�Ñ «`Tt ��+,� � >@À � x 4�Õ for ����� ÈK+|Ñ «`T% 0,+|Ñ «`Tt Í >�+?>�+|Ñ «`T .

When a process � already uses its new round clock U Ñ «`T% at + while another process
 still uses its
old round clock U*Ñt + can in principle increase the distance between the virtual clocks UG% and U?t . To
show that the maximum deviation between any two virtual clocks UG% and U?t is bounded by ½ , it is
sufficient to prove that U Ñ «`T% �6+ Ñ «`T% �Sâ�Ü Ñ �6+ Ñ «`T% � :
Principle P3: (+|Ñ «`T% >�+?Ä¢+|Ñ «`Tt á � 0
 correct in . +¿Ñ «`T% 01+32 á U-Ñ «`T% ��+|Ñ «`T% �?â�ÜDÑ���+|Ñ «`T% � á çmÜDÑ��6+,�#çÁ>@½_�qð� U�Ñ «`T% ��+,�<�=U�Ñt ��+,� � >�½ .
We prove in the Appendix (theorem Generic Proof) that the bounded deviation requirement holds
for midpoint convergence functions whenever assumptions (A1-A7) and the following conditions
(C1-C3) hold:

��U � � df Ý Ñ%�ï Ü Ñã �6+ Ñ «`T% ���U x � df å�
3�!+;� Ý Ñ% 0 Ý Ñt �?>�×DW9�h�#�E+ Ñ «`T% f + Ñ «`Tt��U-Â�� df U Ñ «`T% ��+ Ñ «`T% �Sâ�Ü Ñ �6+ Ñ «`T% �
5 Algorithms

Our clock synchronization algorithms differ in the failure assumptions they make. The first algo-
rithm U*}<ÎÁôv� ¥ Ö�õ masks up to ö process or clock crash failures. U&}<Î�ôv� ¥ Ö�õ needs at least ö �F�
processes to guarantee the bounded deviation condition. Algorithm U*}<Î*÷QÇ ¥ ó masks up to ö fail-

17

ures, where each failure can be either a remote clock reading failure or a process or clock crash
failure. It requires at least

x ö � �
processes. The third algorithm U*}<Î�øQ�°² ­¯ù � ¥ �°ú masks up to ö

failures, where each failure can be an arbitrary process or clock failure or a remote clock reading
failure. It requires Â�ö � �

processes. Algorithm U*}qÎAû´ú,²æ� ­ ó is designed for a hybrid failure as-
sumption: the maximum number of crash, reading and arbitrary failures are separately bounded by
constants öBôB0©öc÷ and öcø . Algorithm U&}<ÎÁû´ú,²æ� ­ ó needs Â�öcø � x öB÷ � öcô ���

processes to mask these
failures.

We denote by �`Ñô the number of crashed processes and by � Ñø the number of processes suffering
arbitrary failures at the end of round Y , i.e. at time +,Ñ . We define �`Ñ÷ as the maximum number of
clock reading failures a correct process has suffered in round Y when reading correct remote clocks.
Hence, the failure assumptions for U&}<ÎÁøQ�3² ­¯ù � ¥ �°ú restricts the number of arbitrary, clock reading and
crash failures by �hÑô � �`Ñ÷ � �5Ñø >üö , while the failure assumptions for U*}<Î�û�ú1²æ� ­ ó assume that�`Ñô >@öBô á �5Ñ÷ >@öB÷ á �5Ñø >@öcø .

5.1 Algorithm ý±þ�ÿ��������	�
Algorithm U&}<ÎÁôv� ¥ Ö�õ is based on the following failure assumptions:

~ The number of processes suffering crash failures is at most ö , that is, ��Ñô >wö for all roundsY . (FA 1)~ No clock reading failures when reading a correct clock and no arbitrary failures occur: �´Ñ÷ f� Ñø f J
for all rounds Y . (FA 2)

When process � crashes in round Y , the error bound computed by the clock reading method will be
infinite for all following rounds and all processes can henceforth reject � ’s clock value. In round Y a
process may or may not observe a reading failure when attempting to read � ’s clock. For example,
when in addition to � , process � also suffers a crash failure during round Y , process � may read � ’s
clock successfully and fail to read � ’s clock, while process
 may read � ’s clock successfully and
fail to read � ’s clock. (see figure 7). The crash failures of � and � increase the distance between the
intervals

Ý Ñ% and
Ý Ñt that � and
 use to approximate the values of other correct clocks.

p qr s

I (t)k

p

q

k

k

ΛΛ

I

I

Λ

Λ Λ

Λ

Λ

Figure 7: Processes � and � have crashed in the current interval.

We introduce an interval extension technique which allows to mask some clock reading errors with-
out increasing the number

�
of needed processes: it allows a process � to use remote clock readings

18

that yield an error greater than the maximum acceptable clock reading error W to extend the intervalÝ Ñ% . We define the lower bound Û of process � ’s approximation of the interval of ok clocks by

Û�df ��
��cÈz) Ñ� ��Z Ñ «`T% 0��5� � y Ñ� �6Z Ñ «`T% 0��s�B�9W � �Ùâ �rÍ
To see that L is a lower bound, consider the process � for which Û f)cÑ� �6ZnÑ «`T% 0��5� � ycÑ� ��ZnÑ «`T% 0��s�q�W . By failure assumption (FA 2) and the error bound assumption of the clock reading method,ycÑ� �6ZeÑ «`T% 0��5� bounds the clock reading error:

� U&Ñ� ��+|Ñ «`T% �G�H)\Ñ� ��ZnÑ «`T% 0��5� � >pycÑ� �6ZeÑ «`T% 0��5� . Thus, ÛpoU�Ñ� ��+|Ñ «`T% �B�9W@o���
��îÜDÑã �6+|Ñ «`T% � holds.

Similarly, we define the upper bound
�

of � ’s approximation of the interval of ok clocks as� df ����� Èz) Ñ� �6Z Ñ «`T% 0��5�B�9y Ñ� ��Z Ñ «`T% 0��5� � W � �¡â �rÍ
The bound

�
is smaller than the maximum of the W -extended interval of ok clocks:

� >@������ÜMÑã �6+|Ñ «`T% � .
Process � ^ � approximation

Ý Ñ% of the ok clocks is thus defined by,Ý Ñ% df ./ÛE0©�·2
From the above considerations we can conclude that

Ý Ñ%�ï Ü Ñã �6+ Ñ «`T% � holds.

Figure 8 shows an example of an interval extension: Î�Ñt £ % denotes process � ’s approximation interval

of process
 ’s Y -th round clock. We define ÎAÑt £ % df .) Ñt ��ZnÑ «`T% 0��5�Á�wycÑt ��ZnÑ «`T% 0��s�a0,)\Ñt �6ZeÑ «`T% 0��5� �ycÑt �6ZeÑ «`T% 0��5�32 . The length of interval ÎÁÑ% £ % is therefore
J

by definition. The correct value Untz��+|Ñ «`T% �
of
 ’s clock is in Î Ñt £ % , because the failure assumptions exclude arbitrary failures. In this example
process � suffers reading failures while reading the clocks of process � and � , because � and � suffer
crash failures during round Y . Nevertheless, � can use its approximations of � ’s and
 ’s clock for the
computation of

Ý Ñ% .

r sp

I (t)k ΛΛ

Λ Λ

Λ

Ar,p
k

A
k
s,p

Ip
k

Figure 8: Process � extends
Ý Ñ% by using � ’s and
 ’s clock readings.

We define a clock synchronization algorithm by its convergence function and the set of assumptions
which have to be satisfied by an implementation of this clock synchronization algorithm at runtime.
An implementation could consist of the code sketched in figure 6 together with an implementation of
the convergence function, and a procedure that implements the improved probabilistic clock reading
method discussed earlier. Algorithm U&}<Î�ôv� ¥ Ö�õ is defined by its convergence function ��
°å5� Ý Ñ% � and
it requires that the number of processes to be at least ö �	�

, assumptions (A1) - (A7), and (FA 1)

19

- (FA 2) to be true. Note that only ö processes are necessary to guarantee the bounded deviation
condition, but we require ö ���

processes to ensure that at least one process remains correct.

Theorem I: Algorithm U&}<ÎAôv� ¥ Öjõ guarantees the bounded deviation condition.

Informal Proof: We use the theorem Generic Proof of the Appendix to prove this theorem. For this
purpose, we have to show that conditions (C1)-(C3) are valid. We already argued that condition
(C1), i.e.

Ý Ñ%íï Ü Ñã �6+,� , is valid. We use the proof of theorem T2 in the Appendix to show condition
(C3), i.e. that U-Ñ «`T% �6+|Ñ «`T% �±â Ü:Ñ���+|Ñ «`T% � is valid. The proof of T2 shows that there exist two ok
processes � and � so that U?�K�6+|Ñ «`T% �?>@U�Ñ «`T% ��+|Ñ «`T% �?>@UEÖ;�6+|Ñ «`T% � , i.e. U�Ñ «`T% �6+|Ñ «`T% �?â�ÜDÑ��6+|Ñ «`T% � holds.

Condition (C2) is holds for × f J
, i.e. åD
°�!+;� Ý Ñ% 0 Ý Ñt � f J

for + Ñ «`T% f + Ñ «`Tt . When only one process
is correct, then (C2) is trivially true. Consider now that processes � and
 are correct. Processes �
and
 successfully read each others clock, because we exclude clock reading failures by the failure
assumption (FA2). If

� U Ñ% ��+ Ñ «`T% �B�CU Ñt �6+ Ñ «`T% � � � x W , intervals
Ý Ñ% and

Ý Ñt overlap each other, because� and
 read each others clock with an error of at most W and they of course successfully read their
own clock. If

� U-Ñ% �6+|Ñ «`T% �G��U-Ñt ��+|Ñ «`T% � � > x W the intervals
Ý Ñ% and

Ý Ñt overlap, because .äU*Ñ% ��+|Ñ «`T% �S�W·0]U Ñ% ��+ Ñ «`T% � � WG2 ï Ý Ñ% and .äU Ñt ��+ Ñ «`Tt �B�=We0©U Ñt �6+ Ñ «`Tt � � W{2 ï Ý Ñt by definition of
Ý Ñ% and

Ý Ñt .

5.2 Algorithm ý±þ�ÿ���
 ���
We make the following failure assumptions for algorithm U&}<Î�÷QÇ ¥ ó :~ The number of processes suffering crash failures plus the number of reading failures when

reading a correct clock is at most ö : � Ñô � � Ñ÷ >@ö for all rounds Y . (FA 3)~ No arbitrary failures occur: �hÑø f J
for all rounds Y . (FA 4)

These failure assumptions allow that, in any round Y , a correct process fails to read up to öp�@��Ñô
correct clocks. Reading failures can be independent. For example, when ö f �

, � can fail to read
#^ � clock and � can fail to read � ’ clock. To bound the deviation between two correct clocks at
the start +¿Ñ «`T of a round Y ���

by ½!Ö , we have to bound the deviation between the approximations
that different processes make of the interval ÜQÑã ��+,� . We use the pigeonhole principle to bound this
deviation. Let }u%�0©}ht denote two sets of processes such that � has successfully read all clocks in }5%
and
 has successfully read all clocks in } t . We call }u% the success set of process � . The pigeonhole
principle, ensures that when

� }M% � � � }ht � o �C� Ê then
� }v%��e}ht � o@Ê . We require that every clock reads

at least � ��" x�� �	�
clocks successfully. Thus, for every pair (� ,
) of correct processes there exists

at least one common clock which both processes have successfully read. This limits the distance
between their approximations

Ý Ñ% and
Ý Ñt by

x W (assuming +¿Ñ «`T% f +|Ñ «`Tt). Figure 9 illustrates an
example of two processes � and
 which have successfully read � ’s clock, but they have failed to
read each others clock and shows that

Ý Ñ% and
Ý Ñt can be at at most

x W apart.

A clock synchronization algorithm needs at least
x ö �í�

processes to mask ö clock reading failures.
Otherwise, we could partition the set of correct processes

�
in two sets

� T and
� � such that all

processes in
� T successfully read all clocks in

� T and fail to read the clocks in
� � and that the

processes in
� � successfully read all clocks in

� � and fail to read the clocks in
� T . In such a case, the

deviation between the clocks in
� T and

� � could get arbitrarily large. Algorithm U*}<Î�÷:Ç ¥ ó requires
therefore the number of processes to be at least

x ö ���
.

20

p qs

I (t)k

p
k

ΛΛ

I Λ

Λq
k

I

Λ

Figure 9: Processes � and
 have read � ’s clock successfully.

Although we restrict the number of clock reading failures to be smaller than ö for a correct process � ,
a process suffering a performance failure could observe more than ö reading failures. Processes can
use the error bounds of the probabilistic clock reading method to determine if they can synchronize
their clock, because these error bounds are correct when no arbitrary failures can occur. A process �
can synchronize its clock when it has successfully read at least � ��" x�� �g�

clocks. If a process � fails
to read that number of clocks successfully, the deviation between � ^ � clock and the correct clocks
could get larger than ½ . Hence, � will crash itself. Algorithm U*}qÎ�÷QÇ ¥ ó uses the same approximationÝ Ñ% of Ü:Ñã �6+|Ñ «`T% � as U*}<ÎÁôv� ¥ Ö�õ does.

Λ ΛΛ

r sp q

I
p
k

A

A
A

q,p

r,p
s,p

k

k
k

Figure 10: Processes � ,
 , � , and � are in the success set of process � .

We can improve the robustness of algorithm U*}<Î�÷QÇ ¥ ó by refining the definition of the success set}v% . The idea hereby is, that the midpoint of
Ý Ñ% depends only on two clock readings and when the

approximation interval ÎÁÑt £ % of any other process
 is a subset of
Ý Ñ% then this clock does not affect the

midpoint of
Ý Ñ% and so process � can assume that it has read
 ’s clock successfully. We generalize

and formalize this idea by introducing the concept of the effective reading error: let
Ý Ñ% = [L,R];

process � ’s effective reading error ÀK� of � ’s clock in round Y is defined by,

À!�Adf ê�ë
�
ì Ûg�CUS�K��+|Ñ «`T% �
°�7US�K��+|Ñ «`T% �?ÄlÛUS�#�6+|Ñ «`T% �B�=�
°�7�FÄ�US�K�6+|Ñ «`T% �J �K+,ËMÀz� Ò
3�KÀ

Process � fails to read
 ^ � clock when the effective reading error is greater than W , that is,
 ’s clock
value is more than W apart from the interval

Ý Ñ% . Let us define the success set of process � as

}v% df È
 â � � .) Ñt ��Z Ñ «`T% 0��s�B�9����� È J 01y Ñt ��Z Ñ «`T% 0��5�B�9W Í 0,) Ñt ��Z Ñ «`T% 0��5� � ����� È J 0,y Ñt ��Z Ñ «`T% 0��5�c�=W Í 2 ï Ý Ñ% Í i
We can cut the edges of interval ÎÁÑt £ % by W , because the effective reading error of
 is still at mostW . Figure 10 shows an example of a success set }s% . Process � is required to read at least � ��" x�� ���

21

clocks with an effective reading error of at most W , i.e.
� }s% � o�� ��" x�� �@�

. When
� }u% � Ä�� ��" x�� ���

process � cannot synchronize its clock and therefore must leave the group of correct processes.

Algorithm U&}<ÎÁ÷QÇ ¥ ó is defined by its convergence function ��
°å5� Ý Ñ% � , requires that the number
�

of
processes be at least

x ö ���
, and that assumptions (A1) - (A7), and (FA 3) - (FA 4) hold.

Theorem II: U*}<ÎÁ÷QÇ ¥ ó guarantees the bounded deviation condition.

Informal Proof: The proof of conditions (C1) and (C3) is the same as for theorem I. We show that
condition (C2) is true for × f x

. Let � and
 be correct processes such that they have successfully
read at least � ��" x�� ���

clocks:
� }u% � 0 � }v% � o�� ��" x�� ���

. Because
� }u% � � � }ht � o x ��� ��" x�� �@� �S� �

,
there exists at least one clock � which � and
 have both read successfully: �Hâp}5% and �Hâp}ht
(pigeonhole principle). The distance å�
3�!+;� Ý Ñ% 0 Ý Ñt � is therefore bounded by

x W for assumption +1Ñ «`T% f+|Ñ «`Tt .

6 Algorithm ����� Îe���©
�+|�_���_É
Algorithm U&}<Î·øQ�3² ­Ôù � ¥ ��ú can mask remote clock reading failures as well as arbitrary process and
clock failures. We make the following failure assumption (FA 5):
At any time + at most ö processes are faulty. When ö<ø processes are faulty at time +¿Ñ «`T , a correct
process fails to read at most ö»�CöBø correct processes in round Y .

We adapt the fault-tolerant midpoint function proposed in [3] to mask remote clock reading failures
and to provide an optimal drift rate for the virtual clocks. Let us first recall the basic idea behind
the fault-tolerant midpoint function of [3]. Consider first that no reading failures can occur. Let the
number of processes

�
be at least Â�ö ��� . A process � estimates the virtual clocks of all processes at

the end of every round and sorts these clock readings. Let array é contain � ’s sorted clock readings
of round Y . Process � rejects the first ö and the last ö values, and it accepts the remaining

� � x ö
clock readings. Interval

Ý Ñ% denotes the interval spanned by the clock values accepted by process� in round Y :
Ý Ñ% f .äéî.äöA2�0©éØ. � �@ök� � 2 2 . Process � sets its clock at time +¿Ñ «`T% to the midpoint

of
Ý Ñ% : U<%���+ Ñ «`T% �ídf �! "�# « �$ % L " LMT #� . The interval

Ý Ñ% is a subset of the W -extended interval of ok
clocks Ü:Ñã ��+|Ñ «`T% � , because at most ö clock readings belong to faulty clocks. Thus, there exist indicesJ >�
,0'&H>�ö so that é�.�
�2 and é�. � � � �(&�2 are clock readings of correct clocks. Because é is
sorted, it follows that é�.�
�2�>@éØ./öA2 á éî. � � � �)&�2�o@éî. � ��ö=� � 2 and hence

Ý Ñ%�ï Ü:Ñã �6+|Ñ «`T% � holds.

The distance between the intervals
Ý Ñ% and

Ý Ñt of the correct processes � and
 is bounded. Consider
for simplicity that +|Ñ «`T% f +|Ñ «`Tt . In the worst case, only

x ö ���
clocks are correct and � and
 reject

the first ö and the last ö correct clock values. But � and
 do not reject the F+1-th correct clock
value. Because of clock reading errors, � and
 can have a different view with respect to the ordering
of the correct clocks. The two ö ���

-th correct clock values of � and
 are nevertheless at most
x W

apart (for +|Ñ «`T% f +|Ñ «`Tt), because the reading errors are bounded by W . The distance between
Ý Ñ% andÝ Ñt for + Ñ «`T% *f + Ñ «`Tt is therefore bounded by

x W � x Õ�4 , because
� + Ñ «`T% �l+ Ñ «`Tt � >òÕ and � ’s and
 ’s

clocks can drift apart from each other by at most
x 4 .

The drift rate of virtual clocks synchronized by the above sketched fault-tolerant midpoint algorithm
is not optimal: consider the case when all hardware clocks drift at their maximum drift rate 4 , all

22

processes read remote clocks with a positive clock reading error of W , initially all clocks show the
same clock value and all clocks are adjusted at the same points in real-time. When process � ’s clock
shows Z at the end of round Y , then � approximates all other clocks by Z � W . Process � rejects its
own clock value, because � has to reject the first ö and the last ö clock values. Therefore, � sets its
clock to Z � W . The drift rate of the virtual clocks is hence greater than 4 , because the clocks have
an additional drift introduced by the periodic increment by W .

The fault-tolerant midpoint function of [3] is not applicable for failure assumption (FA 5), because
under (FA 5) reading failures can be independent from each other. To show this, let us considerö f �

and four correct processes �\0
 01�80©� . We will show that the maximum deviation between
the clocks of these processes is not necessarily bounded by ½ . Assume � ’s and
 ’s clocks show
always the same clock value, i.e. UI%:�6+,� f U?tz��+,� , and also � ’s and
 ’s clocks show always the
same value. Let the drift rate of � ’s and
 ’s hardware clocks be 4 and the drift rate of � ’s and� ’s hardware clocks be

J
. Furthermore, assume that � and
 fail to read � ’s clock and � and �

fail to read � ’s clock and that the other reading errors are zero. Thus, we can assume that for
all rounds Y conditions Z·Ñ «`T f) Ñt ��ZnÑ «`T 0��5� f)\Ñ% ��ZnÑ «`T 0
 � f) Ñ� ��ZnÑ «`T 0��5� f)\Ñ� �6ZeÑ «`T 0
 � andZnÑ «`T f) ÑÖ ��ZnÑ «`T 0]��� f) Ñ� ��ZnÑ «`T 0©�8� f)\Ñ% �6ZeÑ «`T 0]��� f) Ñ% �6ZnÑ «`T 0m�#� hold. In this case no process
changes the value of its virtual clock and the deviation between the virtual clocks will eventually
become greater than ½ .
The basic idea behind the midpoint function proposed in this paper is as follows: a process must
restrict the number of clock values that the midpoint function of [3] would reject, in order to be
able to mask clock reading failures. We show later a lower bound for the number of accepted clock
readings that is sufficient to bound the deviation between the approximations of the interval of ok
clocks and that ensures that these approximations are subsets of the W -extended interval of ok clocks.
Furthermore, a process should always include its own clock value in its approximation of the interval
of ok clocks. This allows us to demonstrate that the drift rate of the virtual clocks is optimal.

Let us assume that process � is correct at time +,Ñ «`T% . To calculate how many clock values process� can reject, we define two sorted arrays Û and
�

with indexes ranging from
J

to
� � �

. Array Û
contains for every ok clock � an estimate)�Ñ� ��ZnÑ «`T% 0��5� � ycÑ� �6ZeÑ «`T% 0��5�u��W of � ’s clock value U*Ñ� ��+|Ñ «`T% �
such that the difference between the correct clock value Ub�#��+|Ñ «`T% � and this estimate is at most W
whenever the estimate is less than UE�K��+ Ñ «`T% � :

Û�df �K�8�#+©Èz) Ñ� ��Z Ñ «`T% 0��5� � y Ñ� ��Z Ñ «`T% 0��5�B�9W � �Ùâ �rÍ
Note that the definition of Û also includes clock readings for which process � has suffered clock
reading failures.

Similarly, array
�

contains for every ok clock � another estimate) Ñ� ��Z Ñ «`T% 0��5�c�íy Ñ� ��Z Ñ «`T% 0��5� � W of� ’s clock value U-Ñ� ��+|Ñ «`T% � such that the difference between the correct clock value Ub�#��+|Ñ «`T% � and this
estimate is at most W whenever the estimate is greater than UE�#��+ Ñ «`T% � .� df �K�8�#+©Èz) Ñ� ��Z Ñ «`T% 0��5�B�±y Ñ� �6Z Ñ «`T% 0��5� � W � �¡â �rÍ
Next, we define the interval +�Ã spanned by the lowest and highest values of the arrays Û and

�
after

removing at most the first × elements of Û and at most the last × elements of
�

. When process � is

23

correct, then . Z Ñ «`T% �9We01Z Ñ «`T% � WG2 is a subset of the W -extended interval of ok clocks Ü Ñ ��+ Ñ «`T% � . We
extend therefore +�Ã by the interval .�Z Ñ «`T% �=We01Z Ñ «`T% � W{2 :

+�Ã df .���
��´È8Ûe.�×�2�0,Z Ñ «`T% �9W Í 0]����� È � . � �9×&� � 2�01Z Ñ «`T% � W Í 2
To simplify the correctness proof of algorithm U*}<ÎAøQ�3² ­Ôù � ¥ ��ú , we will assume that process � always
rejects (with respect to +�Ã) the first × readings in Û and the last × readings in

�
, that is, � rejectsÛn. J 2�0zi i 0©Ûn.ä×Ù� � 2 and

� . � �=×�2�0zi i 0 � . � � � 2 . We define the set of rejected clocks �ÁÃ ï �
to be set

of all clock readings rejected by � . The set �ÁÃ contains
x × elements.

A process � accepts all clock readings in +DÃ that are not in �eÃ with an effective clock reading error
of at most W , i.e. the correct clock value of an ok clock is at most W to the left or right of interval +vÃ .
We define the acceptance set }\Ã with respect to +�Ã as follows:}`Ã df È
 â � �C�nÃ �

+�Ã-,k.) Ñt ��Z Ñ «`T% 0��5�B�9����� È J 01y Ñt �6Z Ñ «`T% 0��s�B�=W Í 0,) Ñt �6Z Ñ «`T% 0��5� � ����� È J 01y Ñt �6Z Ñ «`T% 0��5�B�9W Í 2
Processes have to restrict the number of rejected clock values to guarantee that the distance between
two approximations of the interval of ok clocks is bounded. We have shown previously that at leastx ö �@�

processes are necessary to mask up to ö independent reading failures per process. To mask
up to ö arbitrary process and clock failures at least Â�ö ���

processes are needed. We exploit this
fact to mask more than the ö��íöBø permitted clock reading failures. We will in fact show that clock
synchronization algorithm U&}<ÎÁøQ�°² ­¯ù � ¥ �°ú is not only correct for failure assumption (FA 5), but it is
also correct for the weaker failure assumption (FA 6): The number of independent reading failures
per round and process öq÷ is bounded by �/.� �jö»�=öcøh� � o@öB÷ and öko@öcø .

Let us now explain how a process � selects the number � so that + ® can be used as the approximationÝ Ñ% of the interval of ok clocks ÜQÑ���+|Ñ «`T% � . Obviously, when � rejects too many clock values, � can get
out of synch and also when � rejects too few clock values, its approximation

Ý Ñ% is not necessarily a
subset of Ü:Ñã �6+|Ñ «`T% � and thus � could also get out of synch. We will show that � can be chosen as

� df ����� È J >�×Ø>@ö �Q� }`Ã � o � � x ×*�0� Â x ��ö��=×Q� � Í
When too many clock reading failures occur, � is undefined. In this case it is not guaranteed that
process � can synchronize its clock and � should remove itself from the group of correct processes.
When � is defined, process � approximates the interval of ok clocks byÝ Ñ% df + ®
Note that the set of rejected processes � ® and the acceptance set } ® can contain processes for which
process � has suffered clock reading failures. Process � has effectively suffered reading failures
for processes which are not in } ® and � ® . Therefore, the number of effective reading failures is� � � } ® � � � � ® � f � � � } ® � � x � .

Figure 11 shows an example for ö f Ú
. Process � has not read any remote clock with a reading

error smaller than W . Nevertheless, process � effectively suffers only three reading failures and it
rejects the first two and the last two clock readings.

24

rejected
clocks

rejected
clocks

acceptance
 set

reading
failures

Λ Λ
Ip
k

Λ

Figure 11: An example of process � ’s approximation of ÜvÑã .

Algorithm U*}qÎ·ø:�3² ­¯ù � ¥ �°ú is defined by its convergence function ��
°å5� Ý Ñ% � , it assumes that the number
of processes is at least Â�ö ���

and requires assumptions (A1) to (A7), and (FA 5) to be true.

Theorem III: U&}<Î·øQ�°² ­¯ù � ¥ �°ú guarantees the bounded deviation condition.

Informal Proof: We prove this theorem for the relaxed failure assumption (FA 6). Therefore, theorem
III is also valid for (FA 5). We show first that

Ý Ñ% ï Ü Ñã �6+ Ñ «`T% � for a correct process � . Second, we
show that the distance between

Ý Ñ% and
Ý Ñ% is bounded by

x W � x Õ�4 for correct processes � and
 .
To prove that

Ý Ñ% ï Ü Ñã �6+ Ñ «`T% � , we show that � o öBøí��� (L1), where � is the number of faulty
processes which � effectively fails to read. When � f ö , condition �»o�öqø���� holds, becauseö oßö´ø by (FA 6). Consider now that �»Ä�ö . Let ö\% f Ê � � be the number effective reading
failures process � has suffered in round Y , where Ê is the number of correct clocks which � has failed
to read. Hence, �±>	öcø á Ê*>	öc÷ (L2) by (FA 6). We use failure assumption (FA 6) to derive that�
. öB÷�>@ö»�9öcø (L3). With the definition of � , we can conclude that

� Â x ��ö»�=��� � � � Ä�ö`%*>�� Â x �jö��=� � � (15)

Therefore, � f ��ö�� �
. ö`% � and

��ö´ø��C� � o@öcøî�H�1 ��ö´ø � �
. öc÷î� �

. ö`% � o�öcøî�H� [öB÷�o@ö`%n�H�]1 ��ö´ø � ö��Cöcøî� �
. ö5% � o@ö´øî�H� [ö»�Cöcø�o �

. öc÷]1 ��o@öcøØ�H� [� f ��ö»� �
. ö`% �]We now show that the distance between

Ý Ñ% and
Ý Ñt is bounded by

x W for correct � and
 (L5)
for the simplified assumptions that +,Ñ «`T% f +|Ñ «`Tt and that all processes see the same order or-
der of correct processes, that is, when � and
 have successfully read correct clocks � and � then) Ñ� ��Z Ñ «`T 0��5�e>�) ÑÖ �6Z Ñ «`T 0��5�32 1) Ñ� ��Z Ñ «`T 0
 �n>�) ÑÖ ��Z Ñ «`T 0
 � . Let ö5% f Ê|% � �a% and öct f Êat � �#t
be the number of effective reading failures suffered by � and
 . In the worst case, it is possible that� does not accept the first �v% � Ê|% correct clocks and
 does not accept the last � t � Êat clocks (wrt.
to the common ordering of correct clock values). The number of correct processes is

� �Hö{ø . We
can conclude that (L5) is valid, because we show �M% � Ê|% � �`t � ÊatbÄ � �9öcø , i.e. there exists one
correct process � so that

Ý Ñ% is at most W to the right of � ’s clock value and
Ý Ñt is at most W to the left

of � ’s clock value for + Ñ «`T% f + Ñ «`Tt :

25

Ê|% � �v% � Êmt � �htf ö`%n�H�a% � �Q% � öctI�C�8t � �ht [ö f Ê � �]> � � � } ®54 � � x �v%n�H�a% � �Q% �H� � � } ®�6 � � x �htq�=�8t � �`t [ö f � � � } ® � � x �]> � .� ��ö»�=�Q%8� � �H�a% � �Q% � � .� ��ö��=�ht©� � �H�8t � �`t [
� } ® � o � � x ���0� .� ��ö»�=�\� �]> .� ö»� T� �v%n�C�a% � . � ö�� T� �htI�C�8t [simple transformations]> .� ö»� T� ��ö´øî�H�a%#�<�C�m% � . � ö»� T� ��ö´øî�H�8t]�B�H�8t [��o@ö´øî�H�]> Â�ö»�=ö´ø [simple transformations]Ä � �9öcø [
� o@Â�ö ���

]

6.1 Algorithm ý±þ�ÿ�798�:;�=<>�
We combine combine the techniques used in the first three clock synchronization algorithms to
derive a hybrid algorithm. We assume that for any time + ,

~ The number of processes suffering crash failures is at most öqô : �`Ñô >@öBô . (FA 7)~ A correct process suffers at most ö<÷ reading failures for correct clocks per round: � Ñ÷ >	öc÷ .
(FA 8)~ The number of processes suffering arbitrary failures is at most öqø : �`Ñø >@ö´ø . (FA 9)

To mask these failures we need öqô processes to mask crash failures,
x ö<÷ processes to mask remote

clock reading failures and Â�öBø processes to mask arbitrary clock or process failures. Thus, we have
to assume that the number of processes

�
is at least öqô � x öc÷ � Â�ö´ø �»�

. In a manner similar to
that explained previously, we define:

Û df �K�8�#+©Èz) Ñ� ��Z Ñ «`T% 0��5� � y Ñ� ��Z Ñ «`T% 0��s�c�=W � �Ùâ �rÍ� df �K�8�#+©Èz) Ñ� ��Z Ñ «`T% 0��5�B�9y Ñ� �6Z Ñ «`T% 0��5� � W � �Ùâ �rÍÝ Ñ% df .���
��cÈ8Ûn.äöcøh2�01Z Ñ «`T% �=W Í 0]����� È � . � �Cöcøî� � 2�01Z Ñ «`T% � W Í 2�S% df È#�Ùâ ��� �b
3�?�_À�&DÀKÊm+¿ÀKå��©Én�Ù
��Ø�_�#Æ5�hå�Y Í}v% df È
 â �@? �S% � Ý Ñ% ,.) Ñt �6Z Ñ «`T% 0��5�B�±����� È J 01y Ñt ��Z Ñ «`T% 0��5�B�9W Í 0,) Ñt ��Z Ñ «`T% 0��5� � ����� È J 01y Ñt ��Z Ñ «`T% 0��s�c�=W Í 2 Í
A process � has to read at least öBø � öc÷ ���

clocks successfully to synchronize its clock:
� }s% � oöcø � öB÷ �9�

. This is sufficient to show that the distance between two approximations of the interval
of correct clocks is bounded, since there are at least

x öqø � x öB÷ ���
correct processes and a correct

process does not accept at most the left öBø � öB÷ and the right öBø � öc÷ clock values of the correct
clocks.

Algorithm U*}<ÎAû�ú1²æ� ­ ó is defined by its convergence function ��
°å5� Ý Ñ% � , its requirement that the num-
ber of processes to be at least öqô � x öB÷ � Â�öcø ���

and the assumptions (A1) - (A7) and (FA 6) -
(FA 9).

26

Theorem IV: U&}<ÎÁû´ú,²æ� ­ ó guarantees the bounded deviation condition.

Proof similar to the previous proofs.

6.2 General properties of the algorithms

For all our algorithms, the maximum deviation between correct clocks is bounded by� x � ×Q�¿W �CÚ 4�� �c¥¿¦ � x 4�ÕI0
where v=0 if only crash failures can occur (FA 1-2), and v=2 otherwise. This maximum deviation
is better than the best maximum deviations we are aware of. For example, the bound for the fault-
tolerant midpoint function derived with the constraints for ½ given in [8] and properties of the fault-
tolerant midpoint function given in [7] isA W ���KJ 4�Õ �HÚ 4�� �B¥|¦ i
Let us now derive an upper bound B for the maximum adjustment of a virtual clock. For B the
following condition holds: B o ����� È � U*Ñ% ��+|Ñ «`T% �b��U�Ñ «`T% �6+|Ñ «`T% � �´� �	â � Êa�8�8�_ÀKÊm+b��+?+|Ñ «`T% Í

. The
length of the interval

Ý Ñ% is bounded by ½ � x W , because at time +,Ñ «`T% the clocks can be up to ½ apart,
and the extension of this interval by clock reading errors is at most

x W . By definition of
Ý Ñ% , process� ^ � clock value Z Ñ «`T% is at least W apart from the bounds of

Ý Ñ% . Hence, � changes its clock by at most

B f ¨ ñ «u� ã ª� �=W f ñ� .
The envelope rate 4DÇ and the drift rate 4�Ã of the virtual clocks are optimal, in the sense that they are
bounded by the maximum drift rate 4 of the hardware clocks. Conditions linear envelope and clock
drift introduce discontinuity values � and Å to cope with the discrete adjustments of the virtual
clocks. We can derive a better upper bound for the discontinuity of the envelope rate, because the
bound for the initial deviation between correct clocks ½#Ó is better than the worst case deviation ½
which we have to consider for condition clock drift. The following theorem (T1) states that the
envelope rate is at most 4DÇ df 4 and that the discontinuity is at most � df ½!Ó .

Theorem (T1):C:��â � : � correct at +?o�+ [% :� � �=4:�!�6+B�9+ [% �B�9�p>@U<%:��+,�B�CU<%���+ [% �?>F� �G� 4:�;��+c�9+ [% � � �
The next theorem shows that the drift rate of the virtual clocks is at most 4:ÃÙdf 4 and the discontinuity
is at most Å df B � � f ñ � � ½!Ó . The proofs of these two theorems are in the Appendix.

Theorem (T2): For any process ��â � that is correct in interval . +1[K01+ T 2 , where + [% >@+|[n>�+ T :� � �=4:�;��+ T �9+|[m�B�CÅ >@U<%D��+ T �B�9U<%:��+|[a�S>F� �G� 4:�!��+ T �9+|[m� � Å
7 Conclusion

We have proposed a family of new probabilistic internal clock synchronization algorithms. The
members of this family differ in the failure classes tolerated, from crash to arbitrary. Because these

27

algorithms rely on probabilistic remote clock reading, they achieve synchronization precisions better
than those achievable by previously known deterministic internal fault-tolerant clock synchroniza-
tion algorithms. Another advantage of the proposed protocols is that they use a linear, instead of
a quadratic, number of messages, and that message exchanges are staggered in time instead of all
happening in narrow synchronization intervals.

We have proposed a general specification for a probabilistic remote clock reading method: require-
ments error bound, crash handling, best effort and timeliness. The improved probabilistic clock
reading method proposed in this paper satisfies all the above conditions, reduces the number of mes-
sages and improves the probability that remote clocks are read successfully. It uses disjoint time
slots to send unreliable broadcast messages. This increases the number of non-concurrent messages
and hence decreases the number of messages needed to read all remote clocks successfully. Two
processes can use the information in all non-concurrent message pairs between them to read each
others clock. The proposed transitive clock reading method allows a first process to estimate the
clock of a second process by using a third process’s approximation of the clock of the second pro-
cess. This can reduce the number of message, in the best case to

�¾�»�
, and, in the worst case, toY � messages per synchronization round.

The proposed clock synchronization algorithms use different kind of midpoint functions. We used
the error bounds provided by the probabilistic clock reading method to increase the robustness of
our clock synchronization algorithms by also making use of some failed clock readings. This in-
creases the probability that a process can successfully synchronize its clock. Furthermore, the error
bounds provided by probabilistic clock reading allow a process to determine if it has successfully
synchronized its clock or it has failed to synchronize.

The drift rate of the virtual clocks is optimal and the derived upper bound for the maximum de-
viation is better than any other upper bound derived for convergence functions we are aware of.
The proposed convergence function provides therefore also advantages when it is applied with a
deterministic clock reading method.

8 Appendix

8.1 General Assumptions

Since 4 is such a small quantity, we ignore terms of the order of 4 � or smaller, for example we will
equate � �G� 4:� LMT with � � �=4:� and � � �94:� LMT with � �S� 4:� .
8.2 Inequalities

We use in our proofs the following well known inequalities:�ED � � � � � � � > � � � � � � ��ED x � � �&�=� � >@Ê 1 �S�=ÊÁ>@�Ø>@� � Ê
28

8.3 Transitive Remote Clock ReadingsF ��Ga�
. ASSUME: 1. � 0
 0]� are correct clocks and Z f UI%���+�%8� f U?tz��+|t©� f US�#��+3�©� .

2.
� U?�z��Zb0��5�B�CUS�#�6+�%#� � >�yv�z��Zb0��5� .

3.
� UEt!��Zb0��5�B�CU?tK�6+�%8� � >�yutz��Zb0��s� .

4. We assume that the drift of clocks is bounded by 4ØÄ �
.

5. The deviation between correct clocks is bounded by ½ .
6.)Q�#��Zb0
 �edf)Q�8�6Zb0��5�B�g)vt#��Zb0��5� � Z .

7. yv�z��Zb0
 � df yQ�#�6Zb0��5� � yvtz�6Zb0��5� � x 4D½ .
PROVE:

� US�#�6Zb0
 �B�=US�#�6+|t©� � >�yQ�K�6Zb0
 �
PROOF:F x G;�

. ASSUME: 1. drift rate of � ’s hardware clock is 4IH (�n4î>�4JHb>�4) in .�+�%�01+|t¿2 .
PROVE:

� +|tq�±+�% � >F� �G� 4:�¿½
PROOF: with assumption

F ��G;�
.5� U<%D��+|t]�B�CUS�K�6+|tm� � >@½1 � U<%D�6+�%8� � ��+|tq�9+�%8�;� �{� 4�K��q�9US�#��+|t]� � >�½ [

F ��G;�
.4]1 � Z � ��+|tq�9+�%8�;� �G� 4�K��B�9Z � >@½ [

F ��G;�
.1]1 � +|tq�±+�% � � �G� 4�K��S>�½ [

F ��G;�
.4]1 � +|tq�±+�% � >F� �G� 4:�,½ [

F x G;�
.1]F x G x

. Q.E.D.
PROOF:� US�K�6Zb0
 �B�CUS�z��+|t©� �f �)Q�#�6Zb0��5�B�g)vt#��Zb0��5� � Zl�=US�#�6+|t©� � [

F ��G;�
.6]> yv�z��Zb0��s� � yutz��Zb0��s� � � �jUS�K�6+�%8�B�CUS�#�6+|t©�1�B����U?tK�6+�%8�B�9Z·� � [

F ��G;�
.2,

F ��G;�
.3]> yv�z��Zb0��s� � yutz��Zb0��s� � � �6+�%e�g+|t©�!� �G� 4:�<�@��+�%n�9+|t©�;� � �=4:� � [

F ��G;�
.4]> yv�z��Zb0��s� � yutz��Zb0��s� � x 4D½ [

F x G;�
]f yv�z��Zb0
 � [

F ��G;�
.7]

8.4 Envelope and Drift Rate of Virtual Clocks
F ��Ga�

. ASSUME: 1. Z %L df ����� È8U?t#��+ ­% � �
 â � correct at + ­% Í .
2. Z %M df ��
��´È8U?t#��+3­% � �
 â � correct at +|­% Í .
3. � df ½!Ó .
4. Ü�­ã ��+,� df .���
��´È8U�­Ö �6+,�B�9W � �?��Y&��+�+ Í 0]����� È8UA­Ö ��+,� � W � �E�_Y&��+ + Í 2 .
5.
Ý ­% as definied in section 5.1,5.2,6, or 6.1.

6. Z %L �9Z %M >@½!Ó .
7. � is correct at time +?o�+ ­% .
8. U ­% �6+,� f $�%���+,� � Î ­% .
9. The drift rate of $�% and so also of U�­% �6+,� is bounded by 4 .

10. U<%D�6+,� f U�­% ��+,� for +|­% >�+?>�+3­ «`T% .
11.

Ý ­%-ï Ü ­ã �6+ ­ «`T% � .
PROVE: C:��â � : � correct at +So�+|­% :��+<�g+3­% �!� � �=4:�B�C�w>�U<%D��+,�B�CU<%D�6+3­% �?>F��+c�9+3­% �!� �G� 4:� � � .
PROOF:F x G;�

. PROVE: C�&NC:��â � Ê;�#�8��ÀKÊ©+´��+ +|­ « ¼% àZ %M � �6+ ­ « ¼% �9+ ­% �;� � �=4:�?>@U<%D��+ ­ « ¼% �?>�Z %L � ��+ ­ « ¼% �9+ ­% �!� �{� 4:�
29

PROOF: by induction over & .
CASE: & f J
PROOF: holds by definition of Z %M and Z %L i
CASE: &ÙðO& �@�
PROOF:

Because
Ý ­ « ¼% ï Ü ­ « ¼ã �6+3­ « ¼ «`T% � (

F ��G;�
.11), there exists two ok clocks
 and � withF ÚJGa�

. UA­ « ¼t ��+3­ « ¼ «`T% �?o������c� Ý ­ « ¼% �B�±W [
F ��G;�

.11]F ÚJG x
. U ­ « ¼� ��+ ­ « ¼ «`T% �?>���
��<� Ý ­ « ¼% � � W [

F ��G;�
.11]F ÚJG Â . ��
��q� Ý ­ « ¼% � � W�>���
�å`� Ý ­ « ¼% �S>������c� Ý ­% �B�=W [

F ��G;�
.5: çmÜD­ « ¼% ç·o x W]F ÚJG¿Ú

. UA­ « ¼� ��+3­ « ¼ «`T% �?>���
°å5� Ý ­ « ¼% �?>@U�­ « ¼t �6+3­ « ¼ «`T% � [
F ÚJG;�

,
F ÚJG x

,
F ÚPG Â]F ÚJG	Q

. Q.E.D.Z %M � �6+3­ « ¼ «`T% ��+3­% �;� � ��4:�E>�UA­ « ¼ «`T% ��+3­ « ¼ «`T% �S>�Z %L � �6+3­ « ¼ «`T% ��+3­% �;� �<� 4:� [
F ÚJG,Ú

]F x G x
. PROVE: Z %M � �6+<�±+3­% �;� � �94:�?>�U<%D��+,�?>�Z %L � ��+B�±+3­% �!� �G� 4:�

PROOF:
F x G;�

implies
F x G xF x G Â . Q.E.D.

PROOF:

F Â G;� . Uq%���+,�B�=U<%:�6+3­% �S>�Z %L � ��+c�±+3­% �!� �S� 4:�<�±Z %M >F�6+B�g+3­% �!� �G� 4:� � � [
F x G x

,
F ��G;�

.6]F Â G x . Uq%���+,�B�=U<%D�6+ ­% �?o�Z %M � ��+c�±+ ­% �!� � �94:�c�±Z %L oF��+´�±+ ­% �!� � �94:�B�=� [
F x G x

,
F ��G;�

.6]F Â G Â . Q.E.D.�6+B�9+ ­% �;� � �=4:�B�C�p>@U<%���+,�<�=U<%:��+ ­% �S>F�6+<�±+ ­% �;� �G� 4:� � � [
F Â G;� , F Â G x]F ��G x

. ASSUME: 1. B is the maximum adjustments of virtual clocks.

2. The discontinuity Å is defined by Å�df B � � ;
PROVE: C:��â � 0RC\��0,+ Ò
�+,Ë&+ [% >��->�+ : � correct in . ��01+32 :� � �=4:�!�6+B�H�#�B�CÅk>@U<%:�6+,�B�CU<%D���#�?>F� �G� 4:�;��+c�H�#� � Å .
PROOF:F x G;�

. We choose
 so that +¿­% >��-Äl+3­ «`T% .
The adjustment of clock Uq% at time +3­ «`T% is at most B f Å»�C� .F x G x

. �6+|­ «`T% ���#�!� � �H4:�{�	�jÅF�¢���->pU<%:��+3­ «`T% �{�lU<%D���#�->ß��+3­ «`T% ���#�!� �b� 4:� � ��Åw�¢���
[
F ��G;�

.9,
F ��G;�

.10]F x G Â . �6+B�9+3­ «`T% �;� � �=4:�B�C�p>@U<%���+,�<�=U<%:��+3­ «`T% �?>F��+c�9+3­ «`T% �!� �G� 4:� � � [
F ��G;�

]F x G,Ú
. �6+B�H�#�!� � �94:�<�=Å >@U<%:��+,�B�=U<%:���8�S>p�6+B�C�#�;� �G� 4:� � Å [

F x G x
,
F x G Â]

8.5 Principle P1
F ��Ga�

. ASSUME: 1. Ü�df . Y�[z0mY T 2�0mY T o�Y�[!0mY�df Y T �HY�[.
2. è df . �s[K01� T 2�01� T o��s[K01� df � T �9�s[K01è ï Ü .

3. é df .�É�[z01É T 2�0]É T o�É�[!0]É df É T �=É�[z0©é ï Ü .

4. å df É�[I�±� T i
5. å�
3�!+;�6è�0©é&� f åÁ��å�
°�z+;�6è�0©é&� f J

, è and é overlap or é is right of è .
PROVE:

� ��
�å�è �=��
�åsé � > Ñ «uó ­ Ö ù ¨TS £ � ª�
PROOF:F x G;�

. PROVE: � � Éî>�YÙ�Cå
PROOF:

30

� � Éf �6� T �±�s[a� � �jÉ T �=É_[m� [
F ��Ga�

.2,
F ��G;�

.3]f É T �g�s[G����É�[I�9� T � [reorder terms]> YÙ�Cå [
F ��Ga�

.2,
F ��G;�

.3,
F ��G;�

.4]F x G x
. Q.E.D.

PROOF:F Â G;� . ��
°å�è f ¦/U « ¦z�� f ¦/U « ¦/U « ¦� f �s[� ¦ � [
F ��G;�

.2]F Â G x . ��
°åsé f ú U « ú �� f ¦z� «uó¿« ¦z� «uó¿« ú� f �s[� � � å � ú � [
F ��G;�

.2,
F ��G;�

.3]F Â G Â . å f É_[G�±� T >@å�
3�!+;��è�0©éÙ� [
F ��Ga�

.5]F Â G,Ú . Q.E.D.��
°å-é��=��
°åÁèf �s[� � � å � ú � ���6�s[� ¦ � � [
F Â G;� , F Â G x]f ¦ � � å � ú �f ¦ « ú� � å> Ñ L:ó� � å [
F x G;�

]f Ñ «uó�> Ñ «uó ­ Ö ù ¨TS £ � ª� [
F Â G Â]

8.6 Correctness Proof

We use the definition of (A1)-(A7) from section 4.3 and (C1)-(C3) from section section 4.4.

Lemma (L1): When (C1-3) and (A1-A7) are valid, then
C\YPC:�\0
 â � àS� 0
 Êa�8�8�_ÀKÊm+���+�+|Ñnð � U<%D��+|Ñz�B�=U?tK�6+|ÑK� � >@½!Ó

Proof: We show this lemma by induction over Y .Y f J
: (L1) is valid by assumption initial deviation (A1).YHð Y �k�

: By the induction assumption çmÜQÑã �6+|ÑK�Kç�> ½!Ó � x W holds (L2). We can assume that+ Ñ «`T% > + Ñ «`Tt . Let
Ý Ñ% f . �s[K01� T 2 , Ý Ñt f .�É�[!0]É T 2 , and Ê df + Ñ «`Tt �¢+ Ñ «`T% . Let

Ý Ñ	V% df . �s[� $�%:�6+ Ñ «`Tt �G�$A%D��+ Ñ «`T% �a01� T � $�%:�6+ Ñ «`Tt � �±$A%:�6+ Ñ «`T% �|2 . Hence, Uq%D�6+ Ñ «`Tt � f ��
�å5� Ý Ñ V% � and
Ý Ñ V% ï .��s[� Ê_� � �g4:�m01� T �Ê_� �8� 4:�|2 , because the drift of � ’s hardware clocks is bounded by 4 . Furthermore, the length of intervalÜ df .ä��
��cÈ#É_[K01�s[� Ê_� � ��4:� Í 01����� È#É_[K01�s[� Ê_� �e� 4:� Í 2 is bounded by ½!Ó � x W � x 45��+ Ñ «`Tt �l+ Ñ � ,

because of (C1) and (L2). The distance between
Ý Ñt and

Ý Ñ V% is bounded by ×DW � x 45��+¿Ñ «`Tt �¢+|Ñ «`T% � ,
because of (C2). We can conclude with the proof of principle P1 that� U<%���+|Ñ «`Tt �B�CU?tz��+|Ñ «`Tt � �

(1.1) f � ��
�å5� Ý Ñ V% �B�=��
�å`� Ý Ñt � �
(1.2) > ñEW «u�°¬ ¨ ùYX;Z �6 L ù X ª «u� ã « Ã ã «u�°¬ ¨ ùYX;Z �6 L ùYX;Z �4 ª� � U<%���+ Ñ �B�CU?tz��+ Ñ � �
(2.1) > � U<%:��+ Ñ «`Tt �B�=U?tK�6+ Ñ «`Tt � � � x 45�6+ Ñ «`T �9+ Ñ «`Tt �
(2.2) > ñEW «u�°¬ ¨ ù X;Z �6 L ù X ª «u� ã « Ã ã «u�°¬ ¨ ù X;Z �6 L ù X;Z �4 ª� � x 45��+|Ñ «`T �g+|Ñ «`Tt �
(2.3) f ñEW «u�°¬ ¨ ù X;Z � L ù X ª «u� ã « Ã ã «u�°¬ ¨ ù X;Z � L ù X;Z �4 ª�
(2.4) > ñEW « ¨ �|« Ã ª ã «u�°¬ ¨ � § µ'[«�\ ª�
(2.5) f ñEW « ñ]W�
(2.6) f ½!Ó

Theorem Generic Proof: When (C1-3), (A1-7) are valid and processes p,q are correct at t,� U<%D�6+,�B�CU?tK��+,� � >@½
31

Proof: There exists an Y so that + Ñ >�+·Ä�+ Ñ «`T . We can assume that + Ñ «`T% >�+ Ñ «`Tt . We consider first
the case that + Ñ >k+-Äw+ Ñ «`T% . With lemma (L1) we can conclude that

� UI%D��+,�{��U?tK�6+,� � > � U<%D�6+ Ñ �G�U?tK�6+|ÑK� � � x 4�� �B¥|¦ >	½ . Second, we consider the case that +,Ñ «`T% >»+eÄ�+|Ñ «`Tt . U�Ñ «`T% �6+|Ñ «`T% �·â±ÜDÑ���+|Ñ «`T% �
by (C3). Therefore,

� Uq%D�6+,�h��U?tK�6+,� � > � U<%:�6+|Ñz�h��U?tK��+|Ñz� � � x 45��+`��+|Ñ;�S>@½ holds. Third, we consider
the case that +¿Ñ «`Tt >�+ . Similarly to the proof of lemma (L1) one can show that

� U{%D�6+,�#�-U?t#�6+,� � >@½ .

References

[1] F. Cristian. Probabilistic clock synchronization. Distributed Computing, 3:146–158, 1989.

[2] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of faults. Journal of
the ACM, 32(1):52–78, Jan 1985.

[3] J. Lundelius-Welch and N. Lynch. A new fault-tolerant algorithm for clock synchronization.
Information and Computation, 77(1):1–36, 1988.

[4] D. L. Mills. Internet time synchronization: the network time protocol. IEEE Trans. Communi-
cations, 39(10):1482–1493, Oct 1991.

[5] P. Miner. Verification of fault-tolerant clock synchronization systems. Technical Report TP-
3349, NASA, Nov 1993.

[6] F. Schmuck and F. Cristian. Continuous clock amortization need not affect the precision of
a clock synchronization algorithm. In Proceedings of Ninth Annual ACM Symposium on Dis-
tributed Computing, 1990.

[7] F. Schneider. Understanding protocols for Byzantine clock synchronization. Technical Report
87-859, Dept of Computer Science, Cornell University, Aug 1987.

[8] N. Shankar. Mechanical verification of a schematic byzantine clock synchronization algorithm.
Technical Report CR-4386, NASA, July 1991.

[9] T. K. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the ACM, 34(3):626–
645, Jul 1987.

32

Symbol MeaningÎe­% adjustment to � ’s hardware clock in round
Õ maximum difference between + ­% and + ­ tU<% virtual clock of process p)�%:��Zb0
 �
 ’s estimate of � ^ � clock at local time Z) �I�3£ �B¤% approximation of � ^ � clock given message pair �j� T 01� � �UA­% virtual clock of process � in round
Ê;�`�q��� 0/^ ­% 0©Ð ­% � convergence function used by �)�(set of clock time valuesX maximum adjustment of virtual clocks½ maximum deviation between virtual clocks½!Ó maximum deviation between virtual clocks at the start of a roundW a priori given maximum reading errory�% error bound for)�%y´�{�°£ �B¤% error bound for) �I�3£ �<¤%Ð-­ «`T% error bounds on clock readings ^�­ «`T%Å maximum virtual clock discontinuity$A% hardware clock of process pÜDÑ��6+,� interval spanned by correct virtual clocks at time +Ý Ñ% approximation of ÜQÑ by process �Y max. number of messages sent by a process per roundç�+Sç length of interval +��0]� T 0]� � messages sent by processes in
������c�j��� calculated maximum transmission delay of ������M�{�!��� � � maximum transmission delay for � � given message pair �j� T 0]� � ���
�� minimum (real-time) transmission delay�

number of processes, i.e.
� f � ����

clock time duration of a round�
set of (time-server) processes� 0
 0]�#0m� processes, i.e. � 0
 0]�#0m�-â �� �´­¯® minimum (real-time) duration of a round� �c¥¿¦ maximum (real-time) duration of a round� maximum enveloppe discontinuity���j��� receive time stamp of message ��_�D�\Y\���s� rank of process �4 maximum drift rate of hardware clocks4�Ç envelope rate of virtual clocks4�Ã maximum drift rate of virtual clocks'�(set of real time valuesV maximum scheduling delay}b�j��� send time stamp of message �Zb01Z`[z01Z T 01Z � virtual clock times+m0]Æ�01+|[z0,+ T real time values+3­ start of round
 for all correct processes+3­% start of round
 for process �Zb­ «`T% local time at end of round
 of process �

^ ­ «`T% � ^ � approximation of all virtual clocks at start of round
�
duration of a cycle� duration of a slot

33

