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Abstract

We propose a small number of basic concepts that can be used to explain the
architecture of fault-tolerant distributed systems and we discuss a list of archi-
tectural issues that we find useful to consider when designing or examining such
systems. For each issue we present known solutions and design alternatives, we
discuss their relative merits and we give examples of systems which adopt one
approach or the other. The aim is to introduce some order in the complex
discipline of designing and understanding fault-tolerant distributed systems.



1 Introduction

Computing systems consist of a multitude of hardware and software components that
are bound to fail eventually. In many systems, such component failures can lead to
unanticipated, potentially disruptive failure behavior and to service unavailability.
Some systems are designed to be fault-tolerant: they either exhibit a well-defined
failure behavior when components fail or mask component failures to users, that is,
continue to provide their specified standard service despite the occurrence of com-
ponent failures. To many users temporary errant system failure behavior or service
unavailability is acceptable. There is, however, a growing number of user communities
for whom the cost of unpredictable, potentially hazardous failures or system service
unavailability can be very significant. Examples include the on-line transaction pro-
cessing, process control, and computer-based communications user communities. To
minimize losses due to unpredictable failure behavior or service unavailability, these
users rely on fault-tolerant systems. With the ever increasing dependence placed on
computing services, the number of users who will demand fault-tolerance is likely to
increase.

The task of designing and understanding fault-tolerant distributed system architec-
tures is notoriously difficult: one has to stay in control of not only the standard
system activities when all components are well, but also of the complex situations
which can occur when some components fail. The difficulty of this task can be exacer-
bated by the lack of clear structuring concepts and the use of a confusing terminology.
Presently, it is quite common to see different people use different names for the same
concept or use the same term for different concepts. For example, what one person
calls a failure, a second person calls a fault, and a third person might call an error.
Even the term “fault-tolerant” itself is used ambiguously to designate such distinct
system properties as “the system has a well-defined failure behavior” and “the system
masks component failures”.

This paper attempts to introduce some discipline and order in understanding fault-
tolerance issues in distributed system architectures. In Section 2 we propose a small
number of basic architectural concepts. In Sections 3 and 4 we use these concepts
to formulate a list of key hardware and software issues that arise when designing or
examining the architecture of fault-tolerant distributed systems. Since the search for
satisfactory answers to most of these issues is a matter of current research and exper-
imentation, we examine various proposals, discuss their relative merits, and illustrate
their use in existing commercial fault-tolerant systems. Besides being useful as a
design guide, our list of issues also provides a basis for classifying existing and future
fault-tolerant system architectures. Finally, Section 5 comments on the adequacy of



the proposed concepts.

2 Basic architectural concepts

To achieve fault-tolerance, a distributed system architecture incorporates redundant
processing components. Thus, before we discuss the issues which underlie fault-
tolerance - or redundancy management - in such systems, we need to introduce their
basic architectural building blocks and classify the failures that these basic blocks can
experience.

2.1 Services, servers, and the “depends” relation

The three notions that, we feel, provide the best means to explain computing system
architectures are the concepts of service, server, and “depends upon” relation among
servers.

A computing service specifies a collection of operations whose execution can be trig-
gered by inputs from service users or the passage of time. Operation executions may
result in outputs to users and in service state changes. For example, an IBM4381 raw
processor service consists of all the operations defined in a 4381 processor manual,
and a DB2 database service consists of all the relational query and update operations
that clients can make on a database.

The operations defined by a service specification can be performed only by a server
for that service. A server implements a service without exposing to users the internal
service state representation and operation implementation details. Such details are
hidden from users, who need know only the externally specified service behavior.
Servers can be hardware or software implemented. For example, a 4381 raw processor
service is typically implemented by a hardware server; however, sometimes one can
see this service ‘emulated’ by software. A DB2 service is typically implemented by
software, although it is conceivable to implement this service by a hardware database
machine.

Servers implement their service by using other services which are implemented by
other servers. A server u depends on a server r if the correctness of u’s behavior
depends on the correctness of 1’s behavior. The server u is called a user (or client) of
r, while ris called a resource for u. Resources in turn might depend on other resources



to provide their service, and so on, down to the atomic resources of a system, which
one does not wish to analyze any further. Thus, the user/client and resource/server
names are relative to the “depends” relation: what is a resource or server at a certain
level of abstraction can be a client or a user at another level of abstraction. This
relation is often represented as an acyclic graph in which nodes denote servers and
arrows represent the “depends” relation. Since it is customary to represent graphically
a user u of a resource r above r, u is said to be at a level of abstraction “higher” than

r [D71], [P79], [R75].

For example, a file server f, which uses the services provided by a disk space allocation
server s and a disk 1/O server d to provide file creation, access, update, and deletion
service, depends on s and d (see figure 1). To implement the file service, the designer
of fassumes that the allocation and 1/O services provided by s and d have certain
properties. If the specifications of s and d imply these properties and f, s and d are
correctly implemented, then fwill behave correctly. All of the above servers depend on
processor service provided to them by some underlying operating system when they
execute (or are interpreted). If they were written in a high level language, they also
depend on compilers and link-editors to be translated correctly in machine language.
When all software servers under discussion depend on such translation and processor
services, it is customary to omit representing this fact in the “depends” graph.

f

S d

Figure 1: Depends-Upon relation

Note that the static “depends” relation defined above relates to the correctness of
a service implementation and differs from the dynamic “call” (or flow control) and
“Interprets” (or executes) relations which can exist at run time between servers sit-
uated at different abstraction levels. For example, the file server f will typically use
synchronous, blocking, “down-calls” to ask the allocation server s for free storage and
will use asynchronous, non-blocking, down-calls to ask the 1/O server d to initiate
disk 1/O in parallel. When the 1/0O is completed, the 1/O server will typically notify
the file server f by using an “up-call” [CI85] which might interrupt f. If a processor
p interprets the programs of f, s, and d these “depend” on p (although p “executes”



them).

A distributed system consists of software servers which depend on processor and com-
munication services. Processor service is typically provided concurrently to several
software servers by a multi-user operating system such as Unix or MVS. These op-
erating systems in turn depend on the raw processor service provided by physical
processors, which in turn depend on lower level hardware resources such as CPUs,
memories, [/O controllers, disks, displays, keyboards, and so on. The communication
services are implemented by distributed communication servers which implement com-
munication protocols such as TCP/IP and SNA by depending on lower level hardware
networking services. It is customary to designate the union of processor and commu-
nication service operations provided to application servers as a distributed operating
system service.

2.2 Failure classification

A server designed to provide a certain service is correct if, in response to inputs,
it behaves in a manner consistent with the service specification. We assume the
specification prescribes both the server’s response for any initial server state and input
and the real-time interval within which the response should occur. By a server’s
response we mean any outputs that it has to deliver to users as well as any state
transition that it must undergo.

A server failure occurs when the server does not behave in the manner specified. An
omission failure occurs when a server omits to respond to an input. A timing failure
occurs when the server’s response is functionally correct but untimely, that is, the
response occurs outside the real-time interval specified. Timing failures thus can be
either early timing failures or late timing failures (performance failures). A response
failure occurs when the server responds incorrectly: either the value of its output
is incorrect (value failure) or the state transition that takes place is incorrect (state
transition failure). If, after a first omission to produce output, a server omits to
produce output to all subsequent inputs until its restart, the server is said to suffer a
crash failure. Depending on the server state at restart, one can distinguish between
several kinds of crash failure behaviors. An amnesia-crash occurs when the server
restarts in a predefined initial state that does not depend on the inputs seen before
the crash. A partial-amnesia-crash occurs when, at restart, some part of the state is
the same as before the crash while the rest of the state is reset to a predefined initial
state. A pause-crash occurs when a server restarts in the state it had before the
crash. A halting-crash occurs when a crashed server never restarts. Note that while



crashes of state-less servers, pause-crashes and halting crash behaviors are subsets of
omission failure behaviors, in general, partial and total amnesia crash behaviors are
not a subset of omission failure behaviors. In what follows we follow accepted practice
and use the term crash ambiguously to designate one or more of the above kinds of
crash failure behaviors; which meaning is intended should be clear from the way the
state and the restart operation of the server(s) under consideration are defined.

An operating system crash followed by re-boot in a predefined initial system state
and a database server crash followed by recovery of a database state that reflects all
transactions committed before the crash are examples of crash failures. A communi-
cation service that occasionally loses but does not delay messages is an example of a
service that suffers omission failures. An excessive message transmission or message
processing delay due to an overload affecting a set of communication servers is an
example of a communication performance failure. When some action is taken by a
processor too soon, perhaps because of a timer that runs too fast, we speak of an
early timing failure. A search procedure that “finds” a key not inserted in a table
and an alteration of a message by a communication link subject to random noise are
examples of server response failures.

2.3 Server failure semantics

When programming recovery actions for a server failure, it is important to know what
failure behaviors the server is likely to exhibit. The following example illustrates this
point. Consider a client u which sends a service request sr through a communication
link / to a server r. Let d be the maximum time needed by [ to transport sr and
p be the maximum time needed by r to receive, process, and reply to sr. If the
designer of u knows that communication with r via [ is affected only by omission -not
performance- failures, then if no reply to sr is received by u within 2(d + p) time
units, u will never receive a reply to sr. To handle this, © might resend a new service
request sr’ to r, but u will not have to maintain any local data that would allow it to
distinguish between answers to “current” service requests, such as sr’, and answers
to “old” service requests, such as sr. If, on the other hand, the designer of u knows
that [ or r can suffer performance failures, if no reply to sris received by u within
2(d 4 p) time units, u will have to maintain some local data, for example a sequence
number, that will allow it to discard any “late” answer to sr.

Since the recovery actions invoked upon detection of a server failure depend on the
likely failure behaviors of the server, in a fault-tolerant system one has to extend the
standard specification of servers to include, in addition to their familiar failure-free



semantics (the set of failure-free behaviors), their likely failure behaviors, or failure
semantics [C85]. If the specification of a server s prescribes that the failure behaviors
likely to be observed by s users should be in class F, we say that “s has F failure
semantics” (a discussion of what we mean by “likely” is deferred to Section 2.6).
We use the term failure “semantics” instead of failure “mode” because semantics is
already a widely accepted term for characterizing behaviors in the absence of failures,
and there is no logical reason why such dissimilar words as “semantics” and “mode”
should be used to label the same notion: allowable server behaviors.

For example, if a communication service is allowed to lose messages, but the probabil-
ity that it delays or corrupts messages is negligible, we say that it has omission failure
semantics (we discuss what “negligible” means in Section 2.6). When the service is
allowed to lose or delay messages, but it is unlikely that it corrupts messages, we say
that it has omission/performance failure semantics. Similarly, if a processor is likely
to suffer only crash failures or a memory is likely to suffer only omission failures in
response to read requests (because of parity errors), we say that the processor and the
memory have crash and read omission failure semantics, respectively. In general, if
the failure specification of a server s allows s to exhibit behaviors in the union of two
failure classes F and G, we say that s has F/G failure semantics. Since a server that
has F/G failure semantics can experience more failure behaviors than a server with F
failure semantics, we say that F/G is a weaker (or less restrictive) failure semantics
than F. Equivalently, F'is stronger (or more restrictive) than F/G. When any failure
behavior is allowed for a server s, that is, the failure semantics specified for s is the
weakest possible, we say that s has arbitrary failure semantics. Thus, the class of
arbitrary failure behaviors includes all the failure classes defined previously.

It is the responsibility of a server designer to ensure that it properly implements a
specified failure semantics. For example, to ensure that a local area network service
has omission/performance failure semantics, it is standard practice to use error de-
tecting codes that detect with high probability any message corruption. To ensure
that a local area network has omission failure semantics, one typically uses network
access mechanisms that guarantee bounded access delays and real-time executives
that guarantee upper bounds on message transmission and processing delays [LL89].
To implement a raw hardware processor service with crash failure semantics, one can
use duplication and matching, that is, use two physically independent processors that
execute in parallel the same sequence of instructions and that compare their results
after each instruction execution, so that a crash occurs when a disagreement between
processor outputs is detected [TW89].

In general, the stronger a specified failure semantics is, the more expensive and com-
plex it is to build a server that implements it.



The following examples illustrate this general rule of fault-tolerant computing. A
processor that achieves crash failure semantics by using duplication and matching, as
discussed in [TW89], is more expensive to build than an elementary processor which
does not use any form of redundancy to prevent users from seeing arbitrary failure
behaviors. A storage system that guarantees that an update is either completely
performed or is not performed at all when a failure occurs is more expensive to build
than a storage system which can restart in an inconsistent state because it allows
updates to be partially completed when failures occur. More design effort is required
to build a real-time operating system that provides to software servers processor
service with crash failure semantics, than to build a standard multi-user operating
system, such as Unix, which provides processor service with only crash/performance
failure semantics [LL89].

2.4 Hierarchical failure propagation and masking

A failure behavior can be classified only with respect to a certain server specification,
at a certain level of abstraction. If a server depends on lower level servers to provide
correctly its service, then a failure of a certain type at a lower level of abstraction can
result in a failure of a different type at the higher level of abstraction. For example,
consider a value failure at the physical transmission layer of a network which causes
two bits of a message to be corrupted. If the data link layer above the physical layer
uses at least 2-bit error detecting codes to detect message corruption and discards
corrupted messages, then this failure is propagated as an omission failure at the
data link layer. As another example, consider a clock affected by a crash failure that
displays the same “time”. If that clock is used by a higher level communication server
that is specified to associate different timestamps with different messages it sends at
different real times, then the communication server may be classed as experiencing

an arbitrary failure [CASDS85].

As illustrated above, failure propagation among servers situated at different abstrac-
tion levels of the “depends upon” hierarchy can be a complex phenomenon. In general,
if a server u depends on a resource r with arbitrary failure semantics, then u will likely
have arbitrary failure semantics, unless u has some means to check the correctness
of the results provided by r. The task of checking the correctness of results provided
by lower level servers is very cumbersome, so fault-tolerant system designers prefer
to use whenever possible servers with failure semantics stronger than arbitrary, such
as crash, omission or performance. In hierarchical systems relying on such servers,
exception handling provides a convenient way to propagate information about failure
detections across abstraction levels and to mask low level failures from higher level



servers [C89]. The pattern is as follows. Let ¢ and j be two levels of abstraction,
so that a server u at j depends on the service implemented by the lower level ¢ If
u down-calls a server r at i, then information about the failure of r propagates to
u by means of an exceptional return from r (this can be a time-out event signalling
no timely return from r). If the server u at j depends on up-calls from lower level
servers at ¢ to implement its service, u needs some knowledge about the timing of
such up-call events to be able to detect lower level server failures. For example, if the
server u expects an interrupt from a sensor server, every per milliseconds, a missing
sensor data update can be detected by a time-out. If the server u at j can provide
its service despite the failure of r at ¢ we say that u masks r’s failure. Examples of
masking actions that u can perform are down-calls to other, redundant servers r’, r”,

. at ¢, or repeated down-calls to rif ris likely to suffer transient omission failures.
If s masking attempts do not succeed, a consistent state must be recovered for u
before information about w’s failure is propagated to the next level of abstraction,
where further masking attempts can take place. In this way, information about the
failure of a lower level server r can either be hidden from the human users by a suc-
cessful masking attempt or can be propagated to the human users as a failure of a
higher level service they requested. The programming of masking and consistent state
recovery actions in a client ¢ of u is usually simpler when ¢’s designer knows that u
does not change its state when it cannot provide its standard service. Servers which,
for any initial state and input, either provide their standard service or signal an ex-
ception without changing their state (termed “atomic with respect to exceptions” in
[C89]) simplify fault-tolerant programming because they provide their users with a
simple-to-understand omission failure semantics.

We illustrate the hierarchical failure masking pattern described above by an IBM
MVS operating system example running on a processor with several CPUs (other ex-
amples of hierarchical masking can be found in [W75]). When an attempt at reading
a CPU register results in a parity check exception detection, there is an automatic
CPU retry from the last saved CPU state. If this masking attempt succeeds, data
about the original failure is logged and the human operator is notified, but the origi-
nal (transient) omission CPU failure occurrence is masked from the MVS operating
system and the software servers above it. Otherwise, the observed parity exception
followed by the unsuccesstul CPU retry is reported by an interrupt as a crash failure
of that CPU server to the MVS system, which in turn may attempt to mask the
failure by re-executing the program which caused the CPU register parity exception
(from a previously saved checkpoint) on an alternate CPU. If this masking attempt
succeeds, the failure of the first CPU is masked from the higher levels of abstraction
-the software servers which run application programs. If there are no alternate CPUs
or all masking attempts initiated by the MVS system fail, a crash failure of the MVS



system occurs.

2.5 Failure masking through server groups

To ensure that a service remains available to clients despite server failures, one can
implement the service by a group of redundant, physically independent, servers, so
that if some of these fail, the remaining ones provide the service. We say that a
group masks the failure of a member m whenever the group (as a whole) responds
as specified to users despite the failure of m. While hierarchical masking (discussed
in the previous Section) requires users to implement any resource failure masking
attempts as exception handling code, with group masking, individual member failures
are entirely hidden from users by the group management mechanisms. The group
oulput is a function of the outputs of individual group members. For example, the
group output can be the output generated by the fastest member of the group, the
output generated by some distinguished member of the group, or the result of a
majority vote on group member outputs. We use the phrase “group ¢ has F failure
semantics” as a shorthand for “the failures that are likely to be observable by users
of g are in class F7.

A server group able to mask from its clients any k concurrent member failures will be
termed k-fault tolerant; when k is 1, the group will be called single-fault tolerant, and
when k is greater than 1, the group will be called multiple-fault tolerant. For example,
if the k members of a server group have crash/performance failure semantics and the
group output is defined to be the output of the fastest member, the group can mask up
to k-1 concurrent member failures and provide crash/performance failure semantics to
its clients. Similarly, a primary/standby group of k servers with crash/performance
failure semantics, with members ranked as primary, first backup, second backup,

, (k-1)th backup, can mask up to k-1 concurrent member failures and provide
crash/performance failure semantics. A group of 2k+1 members with arbitrary failure
semantics whose output is the result of a majority vote among outputs computed in
parallel by all members can mask a minority, that is, up to k member failures. When a
majority of members fail in an arbitrary way, the entire group can fail in an arbitrary
way.

Hierarchical and group masking are two end points of a continuum of failure masking
techniques. In practice one often sees approaches that combine elements of both. For
example, a user u of a primary/backup server group that sends its service requests
directly to the primary might detect a primary server failure as a transient service
failure and might explicitly attempt to mask the failure by re-sending the last service

10



request [B81]. Even if the service request were automatically resent for u by some
underlying group communication mechanism which matches service requests with
replies and automatically detects missing answers, it is likely that u contains exception
handling code to deal with the situation when the entire primary/backup group fails.

The specific mechanisms needed for managing redundant server groups in a way that
masks member failures and at the same time makes the group behavior functionally
indistinguishable from that of single servers depend critically on the failure semantics
specified for group members and the communication services used. The stronger
the failure semantics of group members and communication, the simpler and more
efficient the group management mechanisms can be. Conversely, the weaker the
failure semantics of members and communication, the more complex and expensive
the group management mechanisms become.

To illustrate this other general rule of fault-tolerant computing, consider a single-
fault tolerant storage service S. If the elementary storage servers used to build S have
read omission failure semantics (error detecting codes ensure that the probability of
read value failures caused by bit corruptions is negligible), one can implement S as
follows: use two identical, physically independent elementary servers s, s’, interpret
each S-write as two writes on s and s’, and interpret each S-read as a read of s, and if
the s-read results in an omission failure, a read of s’. If the elementary storage servers
are likely to suffer both omission and read value failures, that is, it is possible that in
response to a read either no value is returned or the value returned is different from
the one written, then three elementary, physically independent servers are needed
for implementing S: each S-write results in three writes to all servers and each S-
read results in three elementary reads from all servers and a majority vote on the
elementary results returned. If a majority exists, the result of the S-read is the
majority value read. If no majority exists, the S-read results in an omission failure.
The S service implemented by triplexing and voting is not only more complex and
expensive than the service S implemented by duplexing, but is also slower.

Other illustrations of the rule that group management cost increases as the failure
semantics of group members and communication services becomes weaker are given
in [CASDS85] and [ES86], where families of solutions to a group communication prob-
lem are studied under increasingly weaker group member and communication failure
semantics assumptions. Statistical measurements of run-time overhead in practical
systems confirm the general rule that the cost of group management mechanisms is
higher when the failure semantics of group members is weaker: while the run-time cost
of managing server-pair groups with crash/performance failure semantics can some-
times be as low as 15% [Ba89], the cost of managing groups with arbitrary failure
semantics can be as high as 80% of the total throughput of a system [PB85].
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Since it is more expensive to build servers with stronger failure semantics, but it is
cheaper to handle the failure behavior of such servers at higher levels of abstrac-
tion, a key issue in designing multi-layered fault-tolerant systems is how to bal-
ance the amounts of failure detection, recovery, and masking redundancy used at
the various abstraction levels of a system, so as to obtain the best possible overall
cost /performance/dependability results. For example, in the case of the single-fault
tolerant storage service described above, the combined cost of incorporating effective
error correcting codes in the elementary storage servers and implementing a single-
fault tolerant service by duplexing such servers is in general lower than the cost of
triplexing storage servers with weaker failure semantics and using voting. Thus, a
small investment at a lower level of abstraction for ensuring that lower level servers
have a stronger failure semantics can often contribute to substantial cost savings and
speed improvements at higher levels of abstraction and can result in a lower overall
cost. On the other hand, deciding to use too much redundancy, especially masking
redundancy, at the lower levels of abstraction of a system might be wasteful from an
overall cost /effectiveness point of view, since such low level redundancy can duplicate
the masking redundancy that higher levels of abstraction might have to use anyway to
satisfy their own dependability requirements. Similar cost/effectiveness “end-to-end”
arguments in layered implementations of fault-tolerant communication services have

been discussed in [SRC84].

2.6 On choosing the right failure semantics

When is the probability that a server r suffers failures outside a given failure class
F small enough to be considered “negligible”? In other terms, when is it justified
to assume that the only “likely” failure behaviors of r are in class F7 The answer
to these questions depends on the stochastic requirements placed on the system u of
which ris a part.

The specification of a server r must consist of not only functional requirements S, and
F, that prescribe the server’s standard and failure semantics, but also of a stochastic
specification. The stochastic requirements should prescribe a minimum probability
s, that the standard behavior S, is observed at run-time, as well as a maximum
probability ¢, that a (potentially catastrophic) failure different from the specified
failure behavior F) is observed. When a higher level server u that depends on r is
built, critical design decisions will depend on S, and F,. Any verification that the
design satisfies u’s own standard and failure functional specifications S, and F, also
relies on S, and F, [C85]. To check that u satisfies its stochastic specifications, a
designer has to rely on s,, ¢, and stochastic modelling/simulation/testing techniques
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[T82] to ensure that the probability of observing S, behaviors at run-time is at least
sy and the probability of observing unspecified (potentially catastrophic) behaviors
outside S, or F, is smaller than ¢,. If ¢, is small enough to allow demonstrating that
the design of u meets the stochastic requirements s,, ¢,, then F, is a failure semantics
that is appropriate for using rin the system w. If ¢, is significant enough to make such
a demonstration impossible, the designer of u has to settle for a failure semantics F,’
weaker than F, and re-design u by using new redundancy management techniques
that are appropriate for F£,’.

To illustrate this point, consider a single-fault tolerant storage service S specified as
follows: the standard functional specification requires that an S-read following an
S-write returns the value written; the failure specification states that S-writes never
fail and the only admissible S-read failures are omission failures (reading a value
different from the one previously written is considered to have potentially catastrophic
consequences); the stochastic specification requires that the probability of observing
the specified standard behavior be at least 1- fs, where fs = 107!°, and the probability
of observing an S-read value failure be at most cg = 1075,

Assume that, to build S, one decides to use a duplex design based on two physically
independent storage servers s, s’ which use 1 bit error detecting codes. The specifi-
cation of these elementary storage servers is as follows: an s-read returns the value
previously written with probability at least 1-f,, where f, = 107?; an s-write always
succeeds; the probability that an s-read returns a value different from the one written
is at most ¢, = 1079 (less than one in 10'? s-read failures is a value failure); when an
s-read value failure occurs, that is, the value read V is different form the value written
Vo, V can be any value among 10'° storage word values that are different from V5.

A simple stochastic calculation shows that the duplex design described in Section 2.5
satisfies the S requirements: the probability of an S-read omission failure is of the
order of 107!® and the probability of an S-read value failure is of the order of 10717,
Thus, the omission failure semantics assumed by the duplex S design is appropriate:
to build S one can “neglect” the probability ¢, = 107? that this failure assumption
is violated at run-time.

If the requirement is to design a more reliable storage service S’ with a specification
as before, except that the probability of an S’-read value failure should be at most
csr = 1072°, then the duplex design based on the omission failure hypothesis for
memories with 1 bit error detecting codes is no longer adequate. Indeed, for that
design, the probability ¢, = 107! that an s-read returns an undetectably corrupted
value that is passed to an S’ user is unacceptably high. A simple stochastic calculation
shows that the triplex design with voting described in Section 2.5 based on three
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memories with 1 bit error detecting codes satisfies the S’ requirements (for simplicity,
we assume perfect voting). Indeed, the triplex design ensures that the probability of
an S’-read omission failure is of the order of 107'® and the probability of an S’-read
value failure is of the order of 107*%. Thus, if the goal is to build the S’ storage
system, it is no longer appropriate for a designer to assume that memories with 1
bit error detection code have omission failure semantics. For S’ the probability ¢,
of observing an s-read value failure becomes “non-negligible” and the designer must
adopt the weaker failure hypothesis that the memories with 1 bit error correcting
codes used have omission/value failure semantics. Other examples of how to choose
server failure semantics for highly dependable systems are discussed in [Po89].

The remainder of this paper assumes that preliminary stochastic analyses or practical
statistics have helped settle the issue of the adequacy of choosing a certain failure
semantics over another one in the context of the systems to be described.

3 Hardware architectural issues

To provide processor service to application software servers, an operating system
needs hardware resources such as CPUs, memory, I/O controllers, and communication
controllers. Some hardware architectures package several of these basic resources into
single replaceable units. Other architectures make each one of these resources a
replaceable unit by itself. By a replaceable hardware unit we mean a physical unit
of failure, replacement and growth, that is, a unit which fails independently of other
units, can be removed from a cabinet without affecting other units, and can be added
to a system to augment its performance, capacity, or availability. The ultimate goal
behind hardware replaceable units is to enable them to be physically removed (either
because of a failure or because of preventive maintenance or horizontal growth) and
inserted back into a system without disrupting the activity of software servers running
at higher levels of abstraction. This is often too expensive or impossible to achieve.
The next goal is to ensure that the service provided by the hardware servers in each
replaceable unit has a “nice” failure semantics, such as crash or omission, so that
the higher software levels of abstraction can provide low-overhead hardware failure
masking by relying on such stronger failure semantics. Depending on whether or
not a qualified field engineer is needed to remove or install a replaceable unit, it is
customary to classify them into field replaceable (which need the intervention of a
field engineer) and customer replaceable (which need not).
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3.1 What are the replaceable units? How are they grouped
and connected?

Depending on the granularity of the replaceable hardware units of a processor ar-
chitecture, it is possible to distinguish between coarse granularity architectures and
fine granularity architectures. In a coarse granularity architecture, some replaceable
units package together several elementary hardware servers such as CPUs, memory,
I/O controllers and communication controllers. In a fine granularity architecture,
each elementary hardware server is a replaceable unit by itself. Some examples of
commercially successful coarse granularity architectures are Tandem [B81], the DEC
VAX Cluster [KLS86] and the IBM MVS/XRF [IBM87]. Examples of fine granularity
architectures are Stratus [TW89] and Sequoia [B88]. Other examples of fault-tolerant
architectures can be found in [AL81], [La90], and [S90].
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Figure 2: Tandem Processor Architecture

The Tandem processor architecture packages CPU, memory, bus and I/O controller
servers into single replaceable units as illustrated in Figure 2. These units can commu-
nicate among themselves via a dual bus called Dynabus. Disk, tape, communication,
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and terminal controller servers are field replaceable units by themselves. While in
high-end Tandem systems, CPU/memory units are field replaceable, in the newer,
low-end CLX systems they became customer replaceable. The key ideas behind the
Tandem architecture were as follows: 1) ensure the existence of two disjoint access
paths from any terminal controller to any physical servers needed for interpreting
user commands, such as CPU, memory, disk, or tape, and 2) group servers into
failure masking server pair groups. The operating system implements the pair man-
agement algorithms and decides which resources play an active role in interpreting
user commands and which resources play a backup role. The operating system uses a
combination of hierarchical and group masking techniques to mask hardware resource
failures from users: if one of the active hardware resources on the active path fails,
then the operating system uses the other path to continue to provide service to the
affected users [B81]. For example, if a software server interpreting user commands
uses a disk via a certain disk controller, and the controller fails, the operating system
masks the failure by re-directing further disk accesses through the other disk con-
troller. The operating system can also ensure that disk, bus, or bus controller failures
are masked from higher level application processes. If a CPU/memory replaceable
unit fails, any software server executing on that unit also fails. The hardware archi-
tecture ensures that another CPU/memory unit with access to the resources needed
by the failed servers exists. If a failed server is a primary in a group implementing an
operating system service, such as disk 1/0, its failure is automatically masked from
higher level user servers by the promotion of its backup [B81] to the role of primary.
Since user level application servers are generally not implemented by process pairs, to
avoid the complications associated with programming periodic check-pointing [G86],
the failure of user application servers is visible to human users which have to wait
until these servers are re-started.

The duplication of hardware resources needed by software servers makes the Tandem
architecture single-fault tolerant: any single hardware replaceable unit failure can be
tolerated, provided no second replaceable unit failure occurs. As reported in [G86],
the use of server pair groups to implement operating system services also enables the
masking of a significant fraction of the operating system server failures caused by
residual software design faults. Single-fault tolerance does not mean that it is impos-
sible to mask two or even more concurrent hardware replaceable unit failures. For
example, the simultaneous failure of two disk controller servers attached to distinct
disks can be masked from higher level software servers. What single fault-tolerance
means is that the architecture guarantees masking of any single hardware replace-
able unit failure but it does not guarantee that any two concurrent replaceable unit
failures can be masked. That is, there exist double failures which cannot be masked.
For example, if two CPU/memory or disk controller replaceable units attached to the
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same disk fail, then any service that depends upon the disk also becomes unavail-
able. All the other commercial system architectures that we will discuss are single
fault-tolerant, so we will refrain from mentioning this point further.
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Figure 3: VAX Cluster Processor Architecture

In the VAX Cluster processor architecture (Figure 3), the field replaceable units are
entire VAXes (containing CPU, main storage, as well as LAN controllers), entire stor-
age controllers (containing microprocessors, specific device drivers, as well as LAN
controllers) or entire terminal controllers. Two kinds of local area networks can be
used in a VAX Cluster: a high speed custom-designed Computer Interconnect (in
Figure 3 this is duplexed and connects several VAXes and storage controllers) and
a low speed Ethernet. For a VAX cluster to be single-fault tolerant, dual LANs are
needed for connecting processors to storage controllers. In a manner similar to the
Tandem architecture, the idea is to ensure the existence of at least two disjoint access
paths from any terminal controller to any physical resources such as CPU, memory,
disk, or tape needed by a software server which interprets user commands. Hardware
replaceable unit failures are masked by a combination of hierarchical and group mask-
ing techniques. Disks can be dually ported to different storage controllers, so that if
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a controller fails, the operating system can re-direct /O to an alternate controller.
A computer interconnect permanent failure is similarly masked at operating system
level by re-directing all remaining traffic on the alternate computer interconnect. If a
VAX fails, then all software servers which were running on it also fail. Any other VAX
with enough capacity in the cluster can become active in running these servers, but
they have to be explicitly re-started, as was the case with user servers in the Tandem
system. Thus, for both the Tandem and VAX cluster architectures, single failures of
CPU/memory replaceable units can result in the failure of higher level application
servers, and these failures are visible to human users.
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Figure 4: IBM XRF Architecture

In the IBM XRF architecture (Figure 4) the replaceable hardware units are entire
high-end IBM processors. (In general, whenever previously existing processor ar-
chitectures have to be integrated into a fault-tolerant system based on a local area
network, the granularity of the resulting architecture is naturally coarse.) The XRF
system provides continuous IMS database service by using group masking: a group
of two IMS servers running on two distinct high-end processors connected by a point-
to-point local area network to provide IMS service. One of the servers, the primary,
interprets user requests and has an up-to-date view of the application state, while
the other server, the backup, lags behind in its knowledge of the current application
state. The backup maintains this delayed knowledge by reading a log generated by
the primary. This arrangement allows hardware and operating system failures to be
masked to users of the IMS service.
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Figure 5: Stratus Processor Architecture

The Stratus processor architecture (Figure 5) was the first to introduce the system-
atic use of CPU, 1/O and communication controller hardware servers implemented
by paired microprocessors that execute identical instruction streams and continu-
ously compare their results. This implementation technique ensures that such servers
have crash failure semantics with very high probability. Another characteristic of this
architecture is its fine granularity: most elementary hardware servers are customer
replaceable units with their own power supply. This can substantially reduce main-
tenance costs and ease horizontal growth. A third idea is to use group masking at
the hardware level by pairing elementary hardware servers with crash or omission
failure semantics. This enables some of the hardware server failures to be masked
from the higher software levels. For example, in order to provide single-fault tolerant
processor service to software servers, two CPU servers with crash failure semantics
(each of them implemented by a pair of microprocessors executing in lock-step that
continuously compare their results) are organized as a masking group. Each group

19



member receives the same sequence of inputs. In the absence of member failures
the output of either member is accepted. If one member suffers a crash failure (de-
tected as a disagreement among the two microprocessors which implement it), the
output is taken from the other member. Similarly, memory banks with read omission
failure semantics (implemented by using two bit detection/one bit correction codes)
can be duplexed to obtain a single-fault tolerant storage service with read omission
failure semantics. Not all elementary hardware server failures are masked directly
at the hardware level. For example, disk failures are hierarchically masked at the
operating system level, since at the lower hardware levels there is not enough state
information to enable pure hardware group masking to take place. A dual bus, called
the Stratabus, enables the replaceable units of a processor to communicate among
themselves despite any single bus failure, and a dual LAN named Stratalink enables
processors to communicate among themselves despite any single Stratalink failure.
Terminals can optionally be connected to a processor by a pair of communication
buses redundantly connected to two communication controllers attached to the pro-
cessor Stratabuses. This enables the system to mask single communication controller
or bus failures without requiring the user to move from one terminal to another one.
A double hardware failure or an operating system failure can cause an operating sys-
tem crash. In this case all the user servers that were using services provided by that
operating system also fail.

Figure 6 shows the Sequoia multi-processor architecture, another example of a fine
granularity architecture. The CPU and I/O controller services are implemented by
paired microprocessors that execute the same instruction stream in lock-step and con-
tinuously compare their results, as in the Stratus architecture. This ensures that the
CPU and I/O controller hardware services used by operating system servers have crash
failure semantics. Memory servers rely on error detecting/correcting codes to imple-
ment omission failure semantics with very high probability. Individual CPU, memory,
and 1/O controller servers are packaged as customer replaceable units. Fault-tolerant
communication among replaceable units is provided by a dual system bus. Each bus
is composed from a processor segment that connects CPUs, a memory segment that
connects memory elements and 1/O elements, and a global segment which connects
the previously mentioned buses via master (MI) and slave (SI) interfaces. Both the
master and slave interfaces provide electrical isolation for the adjacent bus segments
for error confinement reasons. The operating system uses hierarchical masking tech-
niques to hide any single hardware server failure from the software processes running
above it. For example, when a CPU server crashes, the operating system automati-
cally attempts to re-start the software server that was executed by the failed CPU on
another CPU server by using a previously saved check-point of the server state. To
ensure that server state updates are atomic with respect to CPU crashes, a shadowing
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Figure 6: Sequoia Multiprocessor Architecture

technique is adopted. This requires that the operating system maintains two copies
of the state of a software server on two different memory units. To mask memory
read omission failures, all writable data pages are duplicated on different physical
memory elements, and all read or executable-only pages are also stored on disks. If
a memory element fails, the data page which could not be read is recovered either
from another memory element or a disk, depending on whether it was a writable
or only a readable or executable page. The operating system can also mask single
disk failures by duplicating disk pages on dual-ported disks attached to different /O
controllers. In this way, the operating system can mask any single hardware replace-
able unit failure as long as at least two CPU, two I/O controller, and two memory
servers work correctly and all failures that occur are fully recovered before a second
failure occurs. When the number of correctly working hardware servers drops below
these thresholds, the operating system can continue to provide processor service with
crash/performance failure semantics as long as at least one CPU, one 1/O controller
and one memory server continue to work correctly. If multiple concurrent failures
occur or CPU, memory or I/O controller service is no longer available because all
CPU, memory, or 1/O controllers have failed, the operating system, and hence all
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higher level software servers will fail. Processor service failures can of course also
occur because of residual design faults in the operating system.

3.2 What failure assumptions are made about hardware re-
placeable units?

Developers of operating system software typically assume that CPU, I/O and commu-
nication controller servers have crash failure semantics, that memory elements have
read omission failure semantics, that disks have seek performance failure semantics
and read/write omission failure semantics, and that communication buses and com-
munication lines have omission or omission/performance failure semantics. Available
field statistics indicate that, for commercial on-line transaction processing systems
characterized by downtimes of the order of minutes or hours per year, these failure
assumptions are adequate. All previously mentioned systems make these assump-
tions. Such strong hardware failure semantics enable system designers to use known
hierarchical masking techniques to mask hardware server failures, such as storage du-
plexing to mask loss of data replicated on two memory or disk servers with read/write
omission failure semantics [LS81] or virtual-circuits to mask omission or performance
communication failures by using time-outs, sequence numbers, acknowledgements and
retries [T81]. Moreover, when masking is not possible, strong hardware server fail-
ure semantics such as omission and crash enable system programmers to ensure that
the operating system and communication services they implement have a strong fail-
ure semantics. For example, CPU and disk controllers with crash failure semantics
and disks with read/write omission failure semantics enable the implementation of a
higher level stable storage service [C85], [LS81] with write operations that are atomic
with respect to crashes: any stable storage write interrupted by a crash is either
carried out to completion or is not performed at all. Such stable storage service can
then be used by other higher level servers to implement atomic transactions by re-
lying on known database recovery techniques such as write-ahead logging and two
phase commit [G78]. Similarly, lower level data gram communication services with
omission/performance failure semantics enable the implementation of higher level
virtual-circuits with crash failure semantics [T81].

Beyond these restrictive hypotheses about the failure semantics of the basic hardware
replaceable units, the complexity and cost of detecting, diagnosing, and recovering
from elementary hardware server failures increases to levels that many regard as
unacceptable for most commercial applications in on-line transaction processing and
telecommunications. Examples of processor architectures designed for highly critical
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application areas were, because of ultra-high stochastic dependability requirements,
designers had to assume that their elementary hardware servers have arbitrary failure

semantics can be found in [Ha78], [HLD88], and [WaT78].

3.3 How is the specified hardware failure semantics imple-
mented?

In order to detect failures in buses, communication lines, memory and disk servers, all
the previously discussed architectures use error detecting codes. This hardware failure
detection technique is well understood. There is a rich literature specializing in error
detecting codes and this subject seems to have reached a fairly mature state [PW72],
[WT8]. To detect failures in hardware servers, such as CPU, I/O and communication
controllers, systems such as IBM, VAX and high-end Tandem use error detecting
codes while newer systems such as Stratus, Sequoia, Tandem CLX and DEC VAX{t
3000 use lock-step duplication with comparison.

While error-detecting codes seem to remain the choice method for detecting failures
in storage and communication hardware servers such as memories, disks, buses and
communication lines, they seem to give way to duplication and matching in complex
circuits, such as CPUs and device and communication controllers based on off-the
shelf microprocessors. One reason for this trend is that duplication and matching
seems to provide a better approximation of crash failure semantics for these complex
servers than error detecting codes. Indeed, while for CPUs and 1/O controllers based
on error detecting codes there is a possibility that the data written to a bus or storage
during the last “few” cycles before a failure detection is erroneous, duplication and
matching by using self-checking [M82] comparator circuits virtually eliminates the
possibility of such damage. The cost for this excellent failure detection capability is
that two physical hardware servers plus the comparison logic are needed instead of
only one elementary server augmented with error detecting circuitry.

Besides providing a better guarantee of crash failure semantics for complex servers
such as CPU and I/O controllers, duplication and matching has a number of other
attractive characteristics. The absence of error detecting circuitry in elementary
physical servers reduces their complexity, leading to increased reliability and reduced
design and testing costs. The elimination of the error detecting circuitry also makes
these servers faster. Another reason for using lock-step duplication is the availabil-
ity of cheap fast microprocessors which do not have much error detection circuitry.
Pairing these off-the-sheltf components and adding a comparator can be cheaper than
developing proprietary processor designs with elaborate error-detecting capabilities.
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Moreover, pairing off-the-shelf processors enables computer system manufacturers to
“ride the wave” of rapid improvements in chip speed and update their product lines
promptly as new chips become available on the market. One last advantage of lock-
step duplication worth mentioning is improved software quality growth. When any
elementary hardware server failure is promptly detected as a disagreement before any
data damage occurs, it is easier to disambiguate failures caused by software design
faults from failures caused by physical faults. Indeed, if an operating system fail-
ure occurs and no disagreement between hardware processors is observed, then with
high probability, the failure is due to a software design fault. This is in sharp contrast
with what occurs in more traditional processor architectures based on error correcting
codes. Since in such architectures hardware failures in CPU and 1/O servers can result
in undetectable damage to data due to latencies in failure detection, a large class of
system failures attributable to the software are in fact caused by the hardware. The
knowledge that hardware failures can with significant probability “masquerade” as
software design faults can create serious difficulties in the proper diagnosis of system
failures. In this case operating system developers may blame hardware malfunction-
ing for system failures they cannot diagnose, and hardware developers may blame the
operating system for failures where the hardware apparently has worked properly.

3.4 How are replaceable hardware unit failures masked?

It is possible to implement the redundancy management mechanisms which mask
hardware server failures directly in hardware, for example by using group masking
techniques such as triplexing physical hardware servers with arbitrary failure seman-
tics and voting [Ha78] or duplexing hardware servers with crash failure semantics
(which in their turn can be implemented by server pairs based on duplication and
matching [TW89]). This allows single processor failures to be masked from higher
software levels of abstraction and increases the mean time between failures for the
raw processor service. Note, however, that hardware triplexing or quadruplexing does
not eliminate the need for handling at application software levels processor service
failures in the same way as if this service were implemented by a non-redundant pro-
cessor. Although such failures will occur less frequently, they will occur and must
be handled. For example, if the transactions implemented at a database service level
must be atomic with respect to processor service crashes, the code for implement-
ing the transaction failure semantics will have to be written, possibly by relying on
logging and recovery facilities provided by the underlying operating system, whether
the processor service is implemented by using a simple CPU or a quadruplex CPU
arrangement. Note also that hardware triplexing or quadruplexing is of no help in
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providing fault-tolerance at the operating system and application level.

Several systems attempt to mask hardware server failures at the operating system
level, so that application software servers can continue to run without interruption.
For example, the Sequoia and MVS operating systems use a combination of hierarchi-
cal and group masking methods to hide single CPU failures from higher level software
servers by restarting a server that ran on the failed CPU in a manner transparent to
that server. Similar masking of CPU, bus or disk controller failures is done by the op-
erating systems of Tandem, VAX cluster and the IBM XRF architectures. Although
the choice of masking hardware server failures at the operating system level can pro-
vide tolerance not only to hardware, but also to operating system server failures [G86],
it does not solve the problem of how to ensure fault-tolerance of application services.

The use of redundant application software server groups allows both hardware, op-
erating system and software server failures to be masked at the highest level of ab-
straction: the application level. The idea is to implement any service that must be
available to users despite hardware or software failures by a group of redundant soft-
ware servers which run on distinct hardware processor hosts and maintain redundant
information about the global service state. When a group member fails, either be-
cause of a lower level hardware or software service failure or because of a residual
design fault in its program, the surviving group members have enough service state
information to continue to provide the service. Although the approach of masking
server failures at the highest, application level is the most “powerful”, in that it can
mask both hardware and software server failures, among the successtul commercial
systems discussed previously, only Tandem and IBM XRF make use of redundant
software server groups.

4 Software architectural issues

Software servers are analogous to hardware replaceable units. These are the basic
units of failure, replacement, and growth of software. As with hardware replaceable
units, the ultimate goal is to enable software servers to be removed from a system
(due to failures, upgrades, and horizontal growth) without disrupting the activity of
the users. When this is impossible to achieve, either because of cost and complexity
reasons or because the number of active servers providing a service drops below some
threshold, the next goal is to ensure that software servers have a “nice” failure seman-
tics, such as crash, omission or performance. This will allow their (possibly human)
users to recover from failures by relying on simple masking protocols such as “log in

25



again” or “wait for some time and try again”. Because of the similarity in goals, the
issues that have to be dealt with at the software architecture level are similar to the
ones discussed in Section 3. The methods for solving these issues, however, can be
quite different in their implementation details.

4.1 What failure semantics is specified for software servers?

Depending on whether the state of a service is persistent or not, one might require the
application servers that implement the service to provide atomic transaction failure
semantics or simply amnesia or partial-amnesia crash failure semantics. An atomic
transaction, which is a sequence of operations on persistent data usually stored in
databases, must change a consistent database state into another consistent database
state or must not change the database state at all when a lower level processor service
crash occurs [GT78], [LS81]. For software servers, such as low level I/O and communi-
cation controllers which typically do not have persistent state, one is usually content
with amnesia crash failure semantics: after a failure these servers must properly re-
initialize themselves and accept new service requests.

To implement atomic transaction or simply crash failure semantics, the commercial
systems described previously assume that the programs that implement the opera-
tions exported by software servers are totally, or at least partially, correct [C89]. A
program is totally correct if it behaves as specified in response to any input as long
as the services it uses do not fail. A partially correct program may suffer a crash or
a performance failure for certain inputs even when the services it uses do not fail. In
this way, if a server delivers a result or performs a state transition in response to a
service request, that result/state transition is correct, although the result may not be
timely or even delivered at all. Partial correctness as a basic hypothesis about the
failure semantics of software servers is appealing for several reasons. First, it is more
easily achievable than total correctness. Second, it seems to be achievable in practice:
after undergoing extensive reviews and tests, the software available commercially oc-
casionally crashes or is slow, but does not output bad results. Third, a partially
correct server, which by definition has crash/performance failure semantics when the
lower level software and hardware services it depends upon do not fail, maintains its
crash/performance failure semantics when these lower level services do fail, provided
the lower level service failures are crash, omission or performance failures. Thus, if
at all levels of abstraction of a system, such as hardware, operating system, and ap-
plications, all servers have crash/omission/performance failure semantics, the system
will have crash/omission/performance failure semantics as a whole. This yields a
simple to understand, homogeneous quality assurance goal for all abstraction levels:
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make the hardware have crash or omission failure semantics, and make the software
be totally, or at least partially, correct.

Some special-purpose systems do not assume that their component servers have “nice”
failure semantics, such as crash/omission/performance [Aa85], [Ha78], [HLD88] and
[WaT78]. By assuming that group management services such as clock synchronization,
atomic broadcast, and voting work correctly, such systems can mask a minority of
server failures in application groups built from members with arbitrary failure seman-
tics. Depending on the assumptions made about the faults which cause the failures,
the systems can be classified in two classes: those that attempt to tolerate only physi-
cal faults [Ha78], [HLD88] and [Wa78], and those that attempt to also tolerate design
faults [Aa85]. The first class of system replicates the application servers on different,
physically independent processors. Since physical faults tend to occur independently
in independent processors, such faults are likely to cause minority application group
failures. Experience with the systems [HaT78], [HLD88] and [WaT78] confirms that
these can effectively mask the consequences of physical faults. Recent work on di-
verse software design [A89] pursues the goal of producing a diverse software design
methodology that would ensure that groups of application servers running diverse
programs do not suffer majority failures despite the existence of residual design faults
in these programs. Perhaps because there are no accepted techniques to estimate with
confidence the increase in reliability that results from the use of diverse programming
with voting, the work on design diversity has generated considerable controversy to

date [A89], [KAS89].

4.2 How is the specified software server failure semantics
implemented?

The problems related to the implementation of atomic transactions on persistent data
despite processors with crash/performance failure semantics, disks with omission fail-
ure semantics, and communications with omission/performance communication fail-
ures have been investigated intensively for more than twenty years by researchers in
the area of database systems. Monographs and books, such as [BHG87] and [GT78]
treat the subject in great detail. To separate concerns, these monographs assume
that the programs used in implementing transaction atomicity are at least partially
correct. The problems that need to be solved in implementing totally or partially
correct programs have been the object of intensive study for the last four decades in
the software engineering community. Over the last thirty years, several ideas have
emerged that have proven effective in helping software designers prevent the introduc-
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tion of design faults in programs. Among these, we mention the pursuit of simplicity
and clarity during design, hierarchical design methods based on information hiding
and abstract data types, rigorous design specification and verification techniques,
systematic identification, detection, and handling of all exception occurrences, and
use of modern inspection and testing methods. None of the papers describing the
commercial systems discussed earlier deal with this issue; however, it is reasonable
to assume that all have extensively used modern software engineering methods when
attempting to ensure that their software is totally, or at least partially, correct.

Among the systems discussed, most provide concurrency control and recovery support
for implementing application servers with atomic transaction failure semantics. The
goal is to ensure that concurrently executing transactions are serializable, that is, their
execution is equivalent to a serial execution, and that sequences of changes made to
stable storage are either performed to completion or aborted. These servers rely on
techniques such as locking, logging, disk mirroring, and atomic commit [BHG87],

[G78], and [LS81].

4.3 How are software server failures masked?

All of the commercial systems discussed earlier use hierarchical masking techniques
to mask hardware and certain software server failures. While such techniques can
be effective in masking crash, omission and performance server failures as long as
the underlying processor service needed by these servers does not fail, one needs a
group masking technique to tolerate software server failures caused by failures of the
underlying processor service.

Software group masking techniques based on members with crash/performance failure
semantics are used by two of the commercially successful systems discussed previously:
Tandem and IBM XRF. In Tandem systems, processes pairs are used for implement-
ing fault-tolerant basic operating system services such as disk 1/O service, spool
service, or logging/commit service, while in the XRF system pairs of primary/backup
database and communication servers are used to implement fault-tolerant database
and communication services.

A prerequisite for the implementation of a service by a software server group capable
of masking processor service failures is the existence of multiple host processors with
access to the physical resources used by that service. For example, if a disk containing
a database can be accessed from four different processors, then all four processors can
host database servers for that database service. A four member database server
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group can then be organized to mask up to three concurrent processor tailures. More
generally, replication of the resources needed by a service is a prerequisite for making
that service available despite individual resource failures. For example, the use of
at least two disks with omission failure semantics to store a database enables one to
implement a database service that can mask any single disk failure.

The use of software server groups raises a number of novel issues that are not well
understood. First, how should group members running on different processors main-
tain consistency of their local states in the presence of member failures, member joins,
and communication failures? Second, how should server groups communicate? Third,
how is it automatically ensured that the required number of members is maintained
for server groups despite operating system, server, and communication failures?

The difficulty of solving these problems might well be one of the main reasons why
software server groups are not more widespread in commercial applications. A second
reason might be that, while for a failed elementary hardware server such as a CPU
or a memory bank the repair can take hours or even days, for a software server that
crashes the “repair”, that is, the restart, can often only take minutes. Thus, since
elementary hardware server failures can heavily contribute towards the user visible
service downtime, most manufacturers prefer to attack this problem first. A third
reason why software server groups are unpopular is the additional complexity associ-
ated with the group management mechanisms and their inherent run-time overhead.
A fourth reason might be that it is not a prior: clear whether low overhead groups
of members with crash/performance failure semantics can provide effective tolerance
to residual software design faults. Recent statistics [G86] show that software server
group management mechanism designed for servers with crash/performance failure
semantics [B81] can be realistically effective in masking server failures caused by
hardware faults as well as residual design faults left in production quality software
after extensive reviews and testing. An example reported in [G86], which is based
on a sample set of 2000 Tandem systems representing over 10 million system hours,
indicates that for the primary/backup spooling process group used in Tandem’s dis-
tributed operating system, only 0.7% of the failures affecting the group were double
server failures, that is, group failures. The remaining failures (99.3% ) detected in the
group were single member failures that left the other member, and hence, the group,
running correctly. A plausible explanation for this phenomenon is that most physi-
cal faults affecting physically independent processors occur independently, and hence
cause any affected software servers to crash independently. Similarly, most residual
software design faults manifest themselves intermittently in rare exceptional condi-
tions that result in time-dependent synchronization errors or in a slow accumulation
of resources acquired for temporary use and never released. Such errors and residues
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seem to accumulate at different rates in different group members and eventually lead
individual group members to crash at different times.

4.3.1 How are the local states of group members synchronized?

For any service, the server group synchronization policy prescribes the degree of local
state synchronization that must exist among the servers implementing the service.

Close synchronization (also called masking or active redundancy) prescribes that local
member states are closely synchronized to each other by letting all members execute
all service requests in parallel and go through the same sequence of state transi-
tions. The group output depends on the failure semantics assumed for its members.
If group members can fail in arbitrary ways, majority voting is the most common
method used: a group answer is output only if a majority of the members agree.
This group organization masks minority member failures at the price of slowing down
the group output time to the time needed for a majority of members to compute
agreeing answers and for the voting process to take place. If a majority of members
fail concurrently then the group output can be incorrect. If group members have
crash/omission /performance failure semantics, any output computed by a member
can be sent to users. If all members send their outputs in parallel, the group output
can be understood as being the output computed by the set of fastest members. The
advantage of this output sending technique is that a group will perform correctly
as long as at least one group member stays correct. The drawback is a high com-
munication overhead. To reduce this overhead, group members can be ranked with
respect to communication, or c-ranked, and output sending can be restricted to the
highest functioning c-ranked member. The cost is an increased output delay when
the highest c-ranked member fails, due to the need to detect its failure and agree on
a new c-ranking among surviving members. Closely synchronized groups of software
servers are used by all systems that attempt to tolerate arbitrary server failures, such
as [Ha78|, [HLD88] and [Wa78]. Examples of closely synchronized groups of mem-
bers with crash/performance failure semantics are described in [CDD90] and [Co85].
A number of rules for transforming non fault-tolerant services implemented by non-
redundant application programs into fault-tolerant services implemented by closely
synchronized server groups have been proposed in [L84] and are discussed further in

S86].

In contrast to close synchronization, loose synchronization (also called dynamic or
standby redundancy) ranks the group members with respect to how closely they
are synchronized to the current service state, which can be understood as being the
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application of all operations requested by clients since the service initialization to the
initial service state. To distinguish this ranking from the c-ranking introduced before
we call it s-ranking. Loose synchronization requires that only the highest s-ranking
group member, usually called the primary server, process service requests and record
the current service state as its local state. Thus, a prerequisite for using this form of
group synchronization is that group members have crash or crash/performance failure
semantics. The highest ranking member is also usually the one who sends the group
output to users (since it is the first to know them) so the c- and s-rankings often
coincide. One or more backup servers with lower s-ranks can log service requests and
can receive periodically state checkpoints from the primary. In such an arrangement,
the local state of a backup server lags behind the state of the primary: the backup
state does not reflect the execution of some recent service requests by the primary
server. If the primary fails, the highest s-ranking backup server can recover the state
existing before the primary failure by re-executing the service requests logged since
the last state check-point obtained from the primary. A particular case of loose
synchronization is the situation when the group size is one, that is, there is only a
primary server with no active backups. In such a case, the server does the check-
pointing and logging. After a failure, the new primary that is started reads the last
state check-point and recovers a state that existed before the failure by executing the
logged service requests. In this way, the failure can be masked to users, who only
experience a delay in getting their response. Variants of this check-pointing rollback
masking technique have also been developed for the case when the primary server
is implemented by a set of distributed processes which check-point and log service

requests independently [JZ87], [KT87], [SY85].

For groups composed of servers with performance failure semantics, the main advan-
tage of loose over close synchronization is that only primary servers make full use of
their share of the required replicated service resources, while backups make only a
reduced use. This allows more servers to coexist for a given amount of computing
power. The main drawback is that the delays seen by clients when group members
fail are longer. If we call the maximum sequence of service requests processed by
a primary between successive state check-points the primary/backup processing lag,
then the worst case delay in answering a client request after a primary failure will
not only be composed of the time needed to detect and reach agreement about the
primary failure, but also of the time needed by the new primary to absorb the pri-
mary/backup processing lag. For on-line transaction processing environments, such
delays are considered tolerable. For real-time applications, if the response time re-
quired is smaller than the time needed to detect a member failure and to absorb the
primary/backup processing lag, close synchronization has to be used. Examples of

loosely synchronized server groups are discussed in [B81], [Ba89], [BJ87], [CDD90],
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[IBMS87], and [OLSS].

Close and loose synchronization as described above are just two end points of a con-
tinuum of synchronization policies. One can imagine intermediate synchronization
policies which would share the advantages and drawbacks of these end-points to var-
ious degrees.

4.3.2 How many members should each server group have?

For any server group, the replication policy prescribes the number of members the
group is expected to have. The more servers in a group, the greater its availability
and capacity for servicing service requests in parallel. On the other hand, the more
members a group has, the higher the cost for communication and synchronization
among group members. Given a certain required service availability, one can use
stochastic modelling and simulation methods for determining an optimum number of
members by taking into account the individual server failure rates, the server failure
semantics, the service request arrival rates, and the message communication costs.

Note that the degree of software server redundancy necessary for providing a certain
level of service availability influences the host processor redundancy degree for that
service. For example, if stochastic modelling/simulation studies show that to achieve
a certain radar surveillance and tracking service availability level, it is necessary to
use three physically independent and closely synchronized servers, then three host
processors are necessary for running these servers in parallel as shown in Figure 7.

4.3.3 What group communication protocols should be used?

Communication among server groups is different from the point-to-point communi-
cation services offered by traditional protocols such as SNA and TCP/IP. Moreover,
if the group state is replicated at several members, these members need to update
the replicas by using special group protocols that ensure replica consistency in the
presence of process and communication failures. There already exist a significant
number of protocols that have been proposed for group communication [ASC85],
[B81], [Ba89], [BD85], [BJ8T], [Ca85], [CASDS85], [CM84], [Cri89], [CZ85], [GS89],
[KT90], [KGR8Y], [L89], [LG90], [LLS90], [OL88], [MMA90], [S88], [SSCAR8T7], and
[VRB89]. This area of research is presently one of the most active. The large variety
of approaches proposed reflects the fact that the properties required from group com-
munication protocols depend not only on protocol goals and the failure semantics of
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Figure 7: Triple Modular Redundancy

group members, but also on the failure semantics of the lower level communication
services used.

Related to communication is the issue of naming: what rules are used by clients and
servers to define service names, and how are such names translated into lower level
message routing information? In fault-tolerant systems, where servers can move from
one host processor to another one, it is convenient not to require clients to know the
location of the servers that provide a service. The goal of such location-transparent
naming services is to mask from clients the effects of individual server failures in
a group. Several examples of fault-tolerant location-transparent name services that
have been implemented in real-systems can be found in [Ca85], [CDD90], [KLS86]. A

recent survey of the issues involved in naming can be found in [CP89].

4.3.4 How to enforce group availability policies automatically?

The synchronization and replication policies defined for a service implemented by a
server group constitute the availability policy for that service (or group).

One possible approach to enforcing a certain group availability policy, illustrated in
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[B81] is to implement in each group member mechanisms for reaching agreement
on the c- and s-rankings in the group, as well as mechanisms for detecting member
failures and procedures for handling new member joins and promotions to higher s-
ranks (when the group is loosely synchronized). The drawback of this approach is
that it results in substantial code duplication and lack of modularity, since the group
management mechanisms for all services which must be made highly available are
basically the same.

An alternative approach, adopted in a recent distributed fault-tolerant system built
for air traffic control [CDD90], requires group members to implement only the appli-
cation specific get-state and check-point (in case the group is s-ranked) procedures
needed for local member state synchronization at join and check-point times. The
tasks of detecting server failures, coordinating promotions and enforcing replication
policies are entrusted to a service availability management service. Since the availabil-
ity in the presence of failures of other distributed system services becomes dependent
on the availability of this service, availability management must itself be implemented
by a group of servers which we call service availability managers. We will assume that
these servers have crash/performance failure semantics.

service availability

manager
group group group 4

Figure 8: Service Availability Management

The objective is to ensure that for each service s, which the system operator enables
the system to provide, the server group availability policy defined for s is effectively
enforced without any human intervention. Figure 8, in which an arrow means “en-
forces the availability policy of” instead of “depends on”, attempts to illustrate this
goal. To simplify our presentation of an availability management service we assume
that for each service s all servers must run on distinct processors and they can be
started in any order, i.e., we ignore issues related to the existence of s-rankings in
some groups. We also assume that the hosts designated for the various services have
enough computing power to support all these services, so we will not mention issues
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related to load shed and load balancing.

Let r(s) be the degree of server replication for s, h(s) denote the set of host pro-
cessors for s, and members denote the processor membership [C88], that is, the set
of correctly functioning processors that agree to communicate among themselves in
order to collectively provide to clients all services that are enabled in the system. The
goal of the service availability management service is to ensure that for each enabled
service s there are min(| A(s)N |, 7(s)) servers. That is, there are r(s) servers as long
as the number of correctly functioning hosts is greater or equal to r(s) and, when the
number of correctly functioning hosts drops below r(s), there are as many servers as
correctly functioning hosts.

The state of each server availability manager consists of the set members of processors
that function correctly in the system, the set S of services enabled in the system, the
set P of servers functioning correctly, and two mappings (or tables) that relate these
sets: a mapping servers: members — set-of- P that, for each functioning processor m €
members, gives the set servers(m) of servers running on m, and a mapping service: P
— S that, for each server p € P, gives the service implemented by p. The state of a
server group availability manager can be changed by the following events: a service
s is enabled by the system operator, a service s is disabled by the system operator,
a server p implementing a service s fails on a processor m, a server p implementing a
service s is started on a processor m, a processor m fails, and a processor m starts.
The state transitions that an availability manager must undergo in response to these
events can be specified as follows. When a service s is enabled, then servers for s must
be started on r(s) of the processors in h(s)Nmembersif r(s) <| h(s)Nmembers |, else
servers must be started on all processors in h(s) N members; also s must be added to
the set S, all servers started must be added to the set P, and for each server started,
the mappings servers and service must be updated accordingly. When a service s is
disabled, it must be removed from 5, all existing servers for s must be shut down,
and the state variables servers, service, and P must be updated accordingly. When a
server p for a service s fails, another server for s must be started (if there is a free host
in members N h(s)) and the state variables servers, service and P must be updated
accordingly. The successful start of a server p should be reflected in an appropriate
update of the server, service and P state variables. The failure of a processor p can
be interpreted as the failure of all servers running on p (see the interpretation of
server failures sketched above) plus the removal of p from the members state variable.
The start of a processor p should result in the start of servers for all services s that
can be hosted by p and for which the present server population is below the r(s)
replication threshold specified, as well as in the appropriate updates to the state
variables members, servers, service, and P.
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Assuming the problems of server and processor failure detection are solved, it would
not be difficult to build a centralized service availability manager that achieves the
state transitions above and runs on some processor in the system. However, such a
solution would not be satisfactory because when that processor is down, no server
group availability policy would be enforced. As mentioned before, if the objective
is to have a specified service availability policy enforced whenever at least one host
processor works in the system, then server availability managers must be replicated on
all processors that work in system. This results in a need to replicate the global state
variables members, service, P, S and servers on all working processors in members.
To maintain the consistency of these replicated global state variables at all processors
in the presence of random communication delays and failures, the occurrence of any
global system state update must be broadcast to all correctly functioning processors
in such a way that these processors all see the same sequence of state updates.

If different availability managers see different sequences of updates, then their local
views of the global system state will diverge. This might lead to violations of a
specified server group availability policy. To illustrate this point, consider a service s
such that r(s)=2 and h(s) N members = {m,m'}. If m sees the sequence of events:
“s enabled”, “s disabled”, and m’ sees the sequence “s disabled”, “s enabled”, then
at least the state variable S on m will end up being different from the variable S on
m’. Moreover, m’ will start a local server for s while m will not, and this will cause
a violation of the availability policy r(s)=2 specified for s.

4.3.5 How to achieve agreement on global states?

Random communication delays and performance failures can cause messages broad-
cast for updating state replicas to be lost or received out of order. To ensure that all
correct servers agree on the same sequence of global state updates, one has to solve
two major problems. First, achieve agreement on a sequence of processor joins and
failures, so that at each point in time, each correctly functioning processor knows
the group of other correct processors with which communication is possible. Second,
one has to achieve agreement on the order of messages broadcast by processors in a
group. A protocol that ensures agreement on a unique temporal sequence of succes-
sive processor group and group memberships members;, members,, ..., members;,

. is termed a processor membership protocol [C88]. A protocol that ensures that all
broadcasts originated by processors in a group members; are received in the same
order by all correct processors in members; is termed an atomic broadcast protocol

[CASDS5].
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The requirements for both membership and atomic broadcast consist of a number of
safety and timeliness properties. Safety properties are invariants which must be true
at all points in real time. For example, a membership protocol must always ensure
that any two processors joined to the same group agree on the group membership,
and an atomic broadcast protocol must ensure that correct processors in a same group
always agree on the order of broadcast messages. Timeliness properties require that
there be upper bounds on the time it takes to propagate information among group
members. For example, a membership protocol might require that surviving members
detect any member failure within a bounded time, and an atomic broadcast protocol
might require that all correct members of a group learn about any atomic broadcast
within a bounded time.

According to whether they assume or not the existence of a bound d on message
delays, existing membership and atomic broadcast protocols can be divided in syn-
chronous protocols, such as [C88], [CASDS85], and [Cri89], and asynchronous proto-
cols, such as [BJ87], [Ca85] and [CM84]. In general, synchronous protocols assume
that processor clocks are synchronized within some constant maximum deviation
epstlon, while asynchronous protocols do not require clocks to be synchronized.

Synchronous protocols have strong timeliness properties: they guarantee that infor-
mation propagates within bounded times among group members even when failures
and member joins occur concurrently with the propagation. For known synchronous
protocols, the propagation speed depends on d and e. The assumption that actual
message delays are shorter than d is crucial for a synchronous approach to work: if
the delays experienced by protocol messages can exceed d, that is, the servers which
communicate through these messages can be transiently partitioned, a synchronous
protocol might violate its safety requirements. For example, after transient partition
occurrences, servers might disagree on the order of messages broadcast and on group
membership. Protocols for detecting transient partitions and reconciling diverging
server views have been investigated in [SSCAS8T7]. Such a posteriori partition detection
and recovery protocols need to compensate for any damage done while disagreement
existed among group members.

In contrast with synchronous protocols, one can build asynchronous protocols that
never violate their safety requirements, even when communication delays are un-
bounded and communication partitions occur. Such strong safety guarantees come
however with a price. First, the timeliness properties of asynchronous protocols are
rather weak: they do not guarantee any a priori known upper bound on the amount
of time that can elapse between the instant when one processor learns of an event and
another processor learns of the same event. For example, if member joins and failures
continue to occur, an asynchronous membership protocol might need an unbounded

37



amount of time to detect changes in the set of correctly working processors. Similarly,
a message that was atomically broadcast to a group might need an unbounded amount
of time to reach some group members. Second, most asynchronous protocols make
the activities of membership computation and broadcast interfere, so that broadcasts
that occur during a membership change have to be aborted [BJ87], [Ca85], [CM84].
Third, the asynchronous protocols specifically designed to tolerate partitions require
that the correctly working processors of a system form a quorum before any work can
be done [CM84], [KLS86]. This requirement, needed to prevent divergence among
processors in distinct partitions, affects adversely system availability, since a quorum
of processors needs to be functioning before any work can be done. If no quorum of
correct processors is present, one possibility is to ask the human operator for per-
mission to go ahead [KLS86]. Another possibility is to attempt to modify quorums
dynamically [BGMS89).

Designers of distributed fault-tolerant systems are thus faced with the following
choices: attempt to ensure the existence of an upper bound d on message delays or
accept unbounded message delays. The first alternative requires advance knowledge
of the maximum system load, real time operating systems, and massive communica-
tion hardware redundancy to ensure a negligible probability that network partitions
occur. If an upper bound d is achievable and this bound allows a satistactory recovery
speed from events such as processor and communication failures, then one can adopt a
synchronous approach which guarantees strong timeliness properties and enables the
system to continue to work autonomously for as long as there exists at least one cor-
rect processor. If the bound d which is achievable by taking into account the specified
peak load and real-time operating system scheduling algorithms is not small enough
to allow the system to react sufficiently fast to component failures (for example, d
is measured in minutes when the required recovery time from failures is measured in
seconds) or if no bound can be realistically found, then two options exist. Both are
based on the adoption of a timeout delay d’ (When an unsatisfactory bound d exists,
the timeout delay d’is by definition smaller than d.) If d’is such that a synchronous
approach based on it provides sufficient recovery speed and the cost of compensating
for actions taken during transient partitions is smaller than the cost of not meeting
recovery deadlines, then one can adopt a synchronous approach based on d’. This
will ensure strong timeliness properties and will eliminate the need to worry about
quorums. Moreover, if d’is sufficiently large compared to the median message delay,
it is likely that few messages delays will exceed d’ time units [Cr89], and transient
partitions will therefore be rare. On the other hand, if the cost of compensating
for inconsistent actions taken as a consequence of transient partition occurrences is
higher than the cost of missing recovery deadlines, one can adopt an asynchronous
approach with timeout delay d’. The cost will then be weak timeliness properties and
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the need to worry about quorums. In both timeout-based approaches, the choice of
the timeout delay d’is a delicate matter. As d’ becomes larger, the failure detection
and recovery times become larger, but the frequency of transient partition detections
decreases. Conversely, as d”becomes smaller, the failure detection and recovery times
become smaller, but the frequency of transient partition detections increases. Thus,
the choice of d’ must balance the cost of recovering from transient partitions and the
cost of not detecting permanent failures fast enough.

5 Conclusion

Understanding a technical area as complex as fault-tolerant distributed computing
requires identifying its fundamental concepts and naming them unambiguously. This
paper has proposed a small number of concepts that we believe are fundamental
when designing and understanding fault-tolerant distributed systems. Some of these
concepts, such as the notions of service, server, and the “depends” relation, are fun-
damental to any kind of system. Others, such as the notions of failure semantics,
hierarchical failure masking, and group failure masking, are specific to fault-tolerant
systems. The latter concepts capture the goals of fault-tolerant computing as well
as the trade-offs: mask component failures when possible, and when masking is not
possible or economical, ensure that the system has some clearly specified failure se-
mantics. To demonstrate the “adequacy” of these concepts in capturing essential
architectural aspects, we used them to 1) formulate a list of key hardware and soft-
ware issues that arise in fault-tolerant distributed systems design, 2) describe various
design choices and alternatives known for each issue, 3) comment on the relative mer-
its and drawbacks of these alternatives, and 4) illustrate how the issues have been
addressed in existing practical system architectures. The fact that all four objectives
could be achieved solely by using the basic notions introduced in Section 2 indicates
their “power” to express crucial architectural issues in fault-tolerant distributed sys-
tems.

Clear concepts and terminology help but do not entirely solve the problem of how to
design a fault-tolerant distributed system that uses the right amount of redundancy
at various abstraction layers to achieve some optimum function/dependability /cost
result. Very little of a “complexity theory” of fault-tolerant computing exists today
that would guide a designer in choosing among a multitude of possible redundancy
management solutions at hardware, operating system and application levels. Such
choices are not only made difficult by the lack of analytical or experimental cost
information about various redundancy management techniques, but also by the lack
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of published data about what kind of failure behaviors various system components are
likely to exhibit and what failure distributions are associated with such components.
The stochastic aspects inherent in fault-tolerance, not discussed in much detail in this
paper, add another dimension of complexity to design. Moreover, even if one had
available all the needed theories and experimental cost and failure data, the number
of choices to consider would be so immense that a systematic search for optimality is
unlikely to happen. For these and other reasons, it is likely that building distributed
fault-tolerant systems will remain an art in the foreseeable future. One thing seems
to be certain: with the ever increasing dependence placed on computing systems, the
availability of computing and communication services in the presence of component
failures, hardware and software changes, and horizontal growth will become more
and more important. To achieve such high levels of availability, more systems in the
future will need to be fault-tolerant.
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