m_DATA MIANAGEMENT

Design strategies for real-time
data in distributed systems

by Mike Rogosin, Real-Time Innovations

THIS ARTICLE DESCRIBES HOW
DATA CAN BE EXCHANGED IN
DISTRIBUTED SYSTEMS. DDS,
DESIGNED SPECIFICALLY FOR
HIGH-PERFORMANCE DATA
DISTRIBUTION, WILL SIMPLIFY
A COMPLEX NETWORK DESIGN.
DDS 1s Now PUBLISHED BY
OMG AS AN OPEN INDUSTRY
STANDARD, PROVIDING A UNI-
VERSAL PLATFORM FOR SYSTEM
INTERCONNECT.

B Today's embedded software applications are
increasingly distributed. A wide range of stan-
dards-based COTS products are available al-
lowing the configuration of cheap and reliable
systems which communicate real-time data be-
tween many computing nodes at high speed. So
why is the design of larger, more complex dis-
tributed applications still such a challenge? The
main issue is that efficient handling of real-time
data is not always as simple as it looks. An em-
bedded network must find and disseminate in-
formation quickly to many nodes. The appli-
cation needs to find the right data, know
where to send it, and ensure delivery to the
right place at the right time. This is of course
not a new problem.

Virtually all modern operating systems
provide a basic network TCP/IP stack. The
stack provides fundamental access to the net-
work hardware and low-level routing and
connection management. However, writing
directly to the stack results in unstructured
code at best. Complex distributed applica-
tions require a more powerful communica-
tions model. Several types of software tech-
nologies, commonly known as "middleware",
have emerged to meet this need. They fall
into three broad classes: client-server (or
remote object invocation), message passing,
and publish/subscribe.

30 boards & solutions
W June 2005

"Client-server" was the buzzword of the ex-
ploding IT market of the last decade. Client-
server networks include servers - machines that
store data, and clients - machines that request
data. Most client-server middleware designs
present an application programmer interface
(API) that strives to make the remote node ap-
pear to be local; to get data, users call "methods"
on remote objects just as if they were on the
local machine (also called remote method in-
vocation, RMI). The middleware thus strives to
hide the networked nature of the system. Suc-
cessful client-server middleware designs include
CORBA, DCOM, HTTP, and Enterprise
JavaBeans (EJB).

Client-server is fundamentally a many-to-one
design. Client-server works well for systems
with centralized information, such as databas-
es, transaction processing systems, and central
file servers. However, if multiple nodes are also
generating information, client-server archi-
tectures require that all the information be sent
to the server for subsequent redistribution to
the clients. Such indirect client-to-client com-
munication is inefficient, particularly in a real-
time environment. The central server also adds
an unknown delay to (and therefore removes
determinism from) the system, because the
receiving client does not know when - or even
if - it has a message waiting.

Figure 1. Client-server works
best with centralized data

Client-server middleware technologies typically
build on top of TCP. TCP offers reliable deliv-
ery, but little control over delivery semantics.
For instance, TCP retries dropped packets, even
if the retries take a lot of time. TCP requires
dedicated resources for each connection; since
each connection takes time to set up and
significant resources to maintain, TCP does
not scale well for extended data distribution in
larger systems.

Message-passing architectures work by imple-
menting queues of messages as a fundamental
design paradigm. Processes can create queues,
send messages, and service messages that arrive.
This extends the many-to-one client-server de-
sign to a more distributed topology. With a sim-
ple messaging design, it's much easier to ex-
change information between many nodes in the
system. Some operating systems, such as QNX
and OSE, use message passing as a fundamen-
tal low-level synchronization mechanism. Oth-
ers provide it as a library service (e.g. VxWorks,
Nucleus, POSIX message queues). Message-
based OS designs can use "send-receive-reply”
blocking sequences for inter-node (and inter-
process) synchronization and communication.
In addition to the message-based operating sys-
tems, many enterprise middleware designs im-
plement a message-passing architecture. BEA's
MessageQ and IBM's MQSeries are significant



Figure 2. Message passing works best with a few clear channels

players in this market. Message passing allows
direct peer-to-peer connections.

However, message-passing systems do not sup-
port a data-centric model. With messages, ap-
plications have to find data indirectly by tar-
geting specific sources (by process ID or "chan-
nel" or queue name) on specific nodes. The
model doesn't address how the application
knows where that process/channel is, what hap-
pens if that channel doesn't exist, etc. The ap-
plication developer must determine where to
get data, where to send it, and when to do the
transaction. There's no real model of the data
itself, there is only a model of a means to trans-
fer data. Also, messaging systems rarely allow
control over the messaging behaviors or qual-
ity of service (QoS). Messages flow in the sys-
tem when produced; all streams have similar
delivery semantics. Lastly, in the embedded
space at least, it usually creates a dependency on
a particular OS being present throughout the
system, raising issues of application portabili-
ty and integration with nodes outside the OS.

Publish-subscribe adds a data model to mes-
saging. Publish-subscribe nodes simply "sub-
scribe" to data they need and "publish" infor-
mation they produce. Messages logically pass
directly between the communicating nodes.
The fundamental communications model pro-
vides both discovery - what data should be sent
- and delivery - when and where to send it. This
design mirrors time-critical information de-
livery systems in everyday life including televi-
sion, radio, magazines, and newspapers. Pub-
lish-subscribe systems are good at distributing
large quantities of time-critical information
quickly, even in the presence of unreliable
delivery mechanisms.

Publish-subscribe architectures map well to the

embedded communications challenge. Finding
the right data is trivial; nodes just declare their
interest once and the system delivers it. Sending
the data at the right time is also natural; pub-
lishers send data when the data is available.
Publish-subscribe can be efficient because the
data flows directly from source to sink without
requiring intermediate servers. Multiple sources
and sinks are easily defined within the model,
making redundancy and fault tolerance natural.

Finally, modern implementations of pub-
lish/subscribe middleware, such as data distri-
bution services (DDS from the OMG) allow
elegant and efficient quality of service (QoS)
mechanisms to be specified per data stream.
Properly implemented, publish-subscribe mid-
dleware delivers the right data to the right place
at the right time. Of course, publish-subscribe
designs are not new. Custom, in-house publish-
subscribe layers abound. Industrial automation
"Fieldbus" networks have used simple and
mostly hardware-dependent publish-subscribe
designs for decades. Commercial publish-sub-
scribe enterprise solutions (Tibco's Rendezvous,
JMS) routinely deliver information such as fi-
nancial data from stock exchanges. In the em-
bedded space, commercial middleware prod-
ucts, including RTT's NDDS, control complete
naval ships, large traffic grids, flight simulators,
military systems, and thousands of other real-
world applications. The technology is proven
and reliable.

What is new here is that capabilities are im-
proving and standards are evolving. The Object
Management Group (OMG), the standards
body responsible for technologies such as
CORBA and UML, recently recognized the im-
portance of publish-subscribe architectures.
The newly adopted OMG DDS standard is the
first open international standard directly ad-



m_DATA MIANAGEMENT

Figure 3. Publish-subscribe decouples data flows

dressing publish-subscribe middleware for em-
bedded systems. Also, DDS's advanced features
include extensive fine control of QoS parameters,
ensuing defined levels of reliability, bandwidth
control, delivery deadlines, and resource limits.

In summary, client-server middleware is best
for centralized data designs and for systems that
are naturally service-oriented, such as file
servers and transaction systems. They struggle
with systems that entail many, often poorly-
defined data paths. Message passing, "send that
there" semantics, map well to systems with

32 boards & solutions
W June 2005

clear, simple dataflow needs. They are better
than client-server designs at free-form data
sharing, but still require the application to dis-
cover where data resides. Publish-subscribe in-
herently provides both discovery and messag-
ing services. Together they implement a data-
centric information distribution system. Nodes
communicate simply by sending the data they
have and asking for the data they need.

Use client-server if your system dataflow fits the
basic design. How do you know? Diagram your
system's dataflow. This doesn't require a

detailed design; a quick map of information
sources and sinks usually suffices. Focus on
which nodes will have the information, how
they will find each other, and how the data will
flow. If your drawing looks like a "hub-and-
spoke" system (see figure 1), a web server, or a
centralized database, then client-server will
work well for your application. In most systems
that are well suited to client-server architecture,
it is easy to specify where the servers should be.
The relatively static information sources are
centralized. Clients rarely need to talk to other
clients, and if they do, the communications are
not time-critical.

Several other characteristics indicate that a
client-server design will work best. Usually,
most transactions are easily modeled by "re-
quest-reply" semantics. Replies are often large,
e.g. big files. Processing proceeds as a series of
steps. Time criticality and fault tolerance are
second-order issues. If you have a hub-and-
spoke architecture with these properties, select
DCOM if your system is restricted to nodes
using the Windows operating system, CORBA
otherwise. Also consider other client-server
transports, such as HTTP.

A message-passing design is best if you don't
need a data model. How do you know if you



DATA NIANAGEMENT

Click-for-More

Interested in more information about design
issues and interface standards in real-time
distributed embedded systems?

Visit our specific website with links to:

» A resources page with information on the
DDS and Corba standards, as well as tech-
nical articles, design notes and white papers

» A detailed analysis by the University of
Helsinki of the performance of RT Publish-
Subscribe models in embedded systems.

» A technical summary of the issues involved
in using DDS and the IPv4 to IPv6
Transition

» A Technical Seminar on DDS and
Distributed Data Management given by
RTI, TimesTen and 4Tec.

Simply type-in Reader Service #: 624 at

Embedded-Control-Europe.com/know-how

Anabysls 1ol and bus Interfece for Flexttay networks —
Vectar Indsrmabk supphes ook for an optemded anabyain of Finaiiay natwests
Thate are the Fiestiby Optn of the wordwade-used CAsioe dev

s FleeCand, & compact bus niwface

need a data model? Your design drawn above
may not fit the hub-and-spoke, but it will have
a definite simple structure. Successful message
passing designs usually look like plumbing
supply lines into a neighborhood, as seen in fig-
ure 2. A few main information trunks deliver
data, which may branch out to several destina-
tions. Most flow is one-way and relatively stat-
ic. Return lines may or may not follow roughly
the same patterns. Since the sources and sinks of
any particular data item are well known from
the beginning, it's not important that the
middleware help the application figure out
where to send things. The application sets up the
queues and then uses them to send information.
The sending node therefore knows where the
data is going ahead of time. Be a little careful: if
you see nodes that want to "tap into" the
plumbing to get data, that's an indication that
publish-subscribe may be more appropriate.

Is publish-subscribe right for your application?
If the primary driver is to find the lowest-risk
path to high performance real-time data dis-
tribution, and where system scalability and an
open standards-based environment may be im-
portant additional factors, then the answer is

probably yes. Publish-subscribe provides a
data model that makes complex systems fun-
damentally simpler to model and understand.
If the dataflow diagram above was difficult to
draw, try it again with each node just publish-
ing the data it knows and subscribing to what
it needs. This design decouples the dataflow.
The best way to draw it is to make a central
"data flow bus", and show each node just
connected to the bus, as in figure 3. The data
model means you can essentially ignore the
complexity of the data flow; each node gets the
data it needs from the bus.

DDS, designed specifically for high-performance
data distribution, will simplify a complex net-
work design. As detailed above, the DDS pub-
lish-subscribe model also provides high per-
formance, fault tolerance, fine QoS control,
multicast when you need it, dynamic configu-
ration, and connectivity with many transports
and operating systems. Best of all, DDS is now
published by OMG as an open industry standard
for data distribution, thus providing a universal
platform for system interconnect. If your appli-
cations need any or all of these capabilities, you
should take a closer look at DDS. M

boards & solutions 33
June 2005 W




