
Department of Computer Science
Chair IV, Software and Systems Engineering

Model Evolution for
a Distributed UML Software Engineering
Workbench based on CORBA and Java

Frank Keienburg
Tutor: Andreas Rausch

Prof. Manfred Broy

Date:05.03.2000

Part 1–2 Model Evolution

Contents

Preface ... 1–4
Foreword ... 1–4
Introduction And Motivation ... 1–4

Why Scheme Evolution ? ... 1–4
Structure Of This Document .. 1–5

Part 1 - Model Evolution Theoretical .. 1–6
1.1 Components, Evolution and Runtime Mapping... 1–6
1.2 Evolution Of UML Models... 1–7
1.3 Model Evolution.. 1–8

1.3.1 Model Change List .. 1–8
1.3.2 Model Change Macro .. 1–8
1.3.3 Change Execution ... 1–9

1.4 Model Changes And Classification ... 1–9
1.4.1 Treatment Of Not Cleanly Manageable Model Changes............................ 1–11
1.4.2 Mathematical Foundation For Model Changes .. 1–13
1.4.3 Treatment Of Generalization Changes .. 1–13

Part 2 - Requirements Analysis For AutoMate ... 2–14
2.1 State Of The Art ... 2–14

2.1.1 The Development Process With AutoMate .. 2–14
2.1.2 What Should Happen After A Model Change ?.. 2–16

2.2 Desired Model Evolution and Application Behavior... 2–16
2.2.1 A Typical Usage Scenario ... 2–17
2.2.2 Summary of Requirements.. 2–19

Part 3 - System Design and Architecture For AutoMate................................... 3–20
3.1 General Thing’s .. 3–20

3.1.1 Architecture for handling Type Casts... 3–20
3.2 Specification for Model’s and Change’s.. 3–20
3.3 Architecture of Model Evolution Framework ... 3–23

3.3.1 Change Policies .. 3–23
3.3.2 Mapping Model Changes to Scheme Changes.. 3–24
3.3.3 The Change Parser and the Model Manager... 3–24
3.3.4 Treatment of Scheme Change Primitives .. 3–25

3.4 Architecture For Handling Code Changes With CORBA................................... 3–25
3.4.1 The Access Code – Or The Delegated .. 3–25
3.4.2 The Wrapper Code – Or The Delegate.. 3–26
3.4.3 The Object Adapter ... 3–27

Part 4 - Prospects .. 4–29

Part 5 - Literature References.. 5–30

Part 6 - appendix.. 6–31
6.1 The Database Environment.. 6–31
6.2 Pre- and Post conditions for Evolution.. 6–32

Model Evolution Part 1–3

Illustrations

Illustration 1 – A Component Model... 1–6
Illustration 2 – A Wrapper Model ... 1–7
Illustration 3 – Entities of UML Class Diagrams ... 1–8
Illustration 4 – Evolution Model.. 1–9
Illustration 5 – Model Entities And Changes .. 1–10
Illustration 6 – Model Change Primitives.. 1–11
Illustration 7 – The Convert Scenario .. 1–12
Illustration 8 – The Extend Scenario.. 1–12
Illustration 9 – The 3 Level Architecture of a typical Distributed Systems 2–14
Illustration 10 – The Development Process with AutoMate .. 2–15
Illustration 11 – Model Change.. 2–16
Illustration 12 – System with Different Model Versions .. 2–17
Illustration 13 – Sequence diagram example for working with different model versions2–18
Illustration 14 – The Expression Model.. 3–20
Illustration 15 – Database Change Policies ... 3–24
Illustration 16 – Delegation .. 3–26
Illustration 17 – The Delegate Sequence Chart ... 3–27

Part 1–4 Model Evolution

35()$&(

Foreword

This document was developed in scope of a System Development Project at the Technis-
che Universität Munich – Department of computer science chair IV, software and systems
engineering. The document and it’s belonging code should be an extension of the existing
software engineering workbench AutoMate [http://automate.informatik.tu-muenchen.de],
which is used to support the development of distributed systems with CORBA [OMG 99]
and Java [SUN] based on UML [OMG 99b] class models. The development of this exten-
sion is used as a case study to explain the general problems of model evolution and a
possible solution attempt. As a prerequisite the reader should be familiar with the con-
cepts of UML, CORBA and the Java programming language.

Introduction And Motivation

Why Scheme Evolution ?

Technical innovations in communication and information processing, permanent organiza-
tional changes, international business networks and virtual organizations lead to a new
business competition landscape. Today’s development of new products takes place under
immense time pressure. Ever shorter technology time cycles lead to ever shorter product
life cycles and shorter development time cycles. “Time-to-market” has become one of the
most important success factors for new products to survive this competition. The question
is, how can you shorten product development time to be successful at the market. Modern
concepts of software engineering should support this improvement process. In the last
decade, the object-oriented paradigm gained a great success covering almost all steps of
software development and it’s life cycle.

Concurrent engineering in software engineering shortens software development time.
Thereby, the traditional sequential development process with its consecutive steps re-
quirements analysis, design, implementation, quality insurance and service is replaced by
a more concurrent one. This process should be iterative, incremental and therefore more
cyclic than the old one. As soon as possible the results from earlier phases should be
passed to later ones. This leads to a nearly parallel and therefore shorter process with
early information exchange between the different phases, but also to a lot of changes to
the original development model and the related data based on it. The new software devel-
opment process and the supporting tools should cover all steps of the software life cycle
and therefore also model changes.

Another demand of modern software engineering to shorten development time for being
successful at the market, is development with regards to prior product versions and com-
ponents with the help of “Reuse” and “Componentware”. These concepts differ to starting
every time from scratch again. For a efficient development process you need a tool that
supports the creation of new software based on older versions and components. As an
additional benefit, components can help to avoid software redundancies and provide
interoperability if they are used by more than one software application.

For that reasons, development tools like AutoMate that facilitate concurrent engineering,
reuse, and componentware should support model changes. This evolution should also
include data migration of data based on old models to new models and data access with
code based on different model versions, or shortly preserving persistent data across
scheme changes. Technically this means to support scheme evolution.

Model Evolution Part 1–5

Structure Of This Document

This document is structure into three main parts.

Part 1 : In the beginning of the document a theoretical overview of model scheme evolu-
tion is presented. It gives an introduction to the theoretical aspects of model evolution. It
concerns the parts of a model, the change operations on these parts, the related basic
runtime problems of model evolution and how these problems can be classified and
solved.

Part 2 : The intention of this part is to document the requirement analysis process and it’s
results for the concrete model scheme evolution application AutoMate. It is based on the
question, what the primary tasks and requirements for the system extension are. To
achieve this goal the informal and formal requirements are specified and or described. To
explain the main problem and functionality two scenarios are used. The “State of the Art
scenario” describes the actual status, and according to this the actual behavior of the
system. The “Future scenario” should explain the desired behavior of the system.

Part 3 : As next step this part describes based on the results of part one and two how the
future model evolution architecture of AutoMate can be achieved and will be transferred
from the theoretical part. This part shows which design decisions have been made and
why.

Part 1–6 Model Evolution

3DUW � � 02'(/ (92/87,21 7+(25(7,&$/

Today developing software systems is tool aided because of the inherent system com-
plexity. Especially CASE tools based on the Unified Modeling Language (UML) are used
to support the difficult development process. With assistance of this tools, models and
interfaces of a desired system are specified. These models serve as interfaces, abstrac-
tion and communication foundation during the development process and help to under-
stand the nature of the problem. With focus on further automation of the development pro-
cess this models are also used for generating application and database access code.

1.1 Components, Evolution and Runtime Mapping

As already mentioned software systems are usually very complex. For reasons of reuse
and concurrent engineering these systems are partly constructed of components. A com-
ponent client communicates and interacts with a component via it’s interface. Such com-
ponents with it’s belonging set of interfaces can be modeled like shown in the UML class
diagram in Illustration 1. A Component is constructed according to the composite pattern
of [Gamma] and is a single implementation or a compound of other components.

Normally development of components is a iterative and incremental process as surround-
ing conditions of the system or it’s desired behavior changes during it’s life cycle. There-
fore a typical development scenario for a component with the help of a CASE tool can be
like this: At the beginning of the development process a UML model of the interface will be
designed. Based on this interface model the implementation will be realized or generated.
In the later life cycle of the component, it’s interface model will be changed and the im-
plementation has to be updated accordingly.

Illustration 1 – A Component Model

This causes the necessity to support automatic component interface changes. Most of the
time it is not possible or desired to update all applications that already use an existing
component at the moment the interface of a component changes. The resulting problem is
to handle more than one component interface of a single component. With the necessity
to support component evolution a problem of interface incompatibility is born and the mo-
tivation to solve this problem with the help of schema evolution is introduced.

As a solution approach each component provides a set of interfaces mapping to it’s ver-
sions, but only one actual implementation. This solution approach is modeled in
Illustration 1. The latest version of the component interface exactly corresponds to the
actual implementation, all other interfaces are wrappers or adapters in the sense of
[Gamma] that encapsulate the functionality of the component and provide translation and

Model Evolution Part 1–7

delegation. Each time a component model changes a new interface version has to be
generated, the implementation has to be changed accordingly and the old interfaces have
to be converted into wrapper to the latest interface.

Illustration 2 explains how a wrapper or adapter for components can be modeled accord-
ing to [Gamma] and clarifies the principle of delegation from the target interface to the
adapted interface. This model is a refinement of the interface wrapper relationship in
Illustration 1. All interfaces are generalizations of the before introduced component inter-
face. All Target Interfaces are old versions of component interfaces and a adapted inter-
face is the latest interface of the component. Therefore every component would have a 1-
to-1 relationship with the adapted interface and a 1-to-* relationship with possible old tar-
get interfaces.

Illustration 2 – A Wrapper Model

If a client calls an operation on a target interface a adapter will delegate this target inter-
face operation to a operation on the adapted interface. This delegation mechanism with
the adapter is responsible for matching operations and casting results at runtime.

The idea of this document is to provide a flexible workbench that supports the software
development process with automatically generating necessary interfaces and wrappers
based on model changes. These workbench should provide additional functionality like
instance conversion and delegation to the right adapted interface. The functionality de-
mand requires automatic component code and instance evolution. This are the concept of
model evolution.

1.2 Evolution Of UML Models

As mentioned before, today interfaces and their relationships are often described with
graphical description techniques and afterwards the according Java code, CORBA IDL or
database adapters are generated. A common graphical description technique is the usage
of UML class models. To understand the problems that are related to evolution of such
models, it’s important to get an overview of all possible class model entities in the begin-
ning. In the further document only the basic parts of UML class diagrams are taken into
consideration

The most important entities of a UML class model diagram are illustrated below in
Illustration 3 according to the [UML] specification.

Part 1–8 Model Evolution

Illustration 3 – Entities of UML Class Diagrams

The relevant one’s for this document are:

ª classes,

ª attributes,

ª methods,

ª and relations (association, aggregation, generalization, …).

As you can easy image it is possible for a developer to change every entity of such a
class model diagram in a CASE tool. These changes will be called update primitives in the
further document and are introduced in more detail in the later.

1.3 Model Evolution

The last two sections described how a client can work with different interface versions of a
component at runtime (1.1) and what possible changes of a component interface de-
scribed in UML are (1.2). This section describes an architecture how possible changes
can be organized and applied on a model.

1.3.1 Model Change List

Model evolution means proceeding a ordered list of model change primitives on an exist-
ing component model and therefore create a new model version. Afterwards the next in-
terface versions and wrapper have to be generated, the implementation has to be
changed and the old interfaces (target interfaces) have to be maintained in a way that
they can work as wrapper to the latest version.

The different model versions are organized in a model list in Illustration 4. The first ele-
ment of such a list is the first model version, the last element is the latest model version.
Recursively the successors are derived from their predecessors according to a set of
change commands or update primitives. Every list item beside of the first and the last has
exactly one predecessor and one successor. Each model version is aggregated of a set of
model components, that are equivalent to the one’s introduced before.

1.3.2 Model Change Macro

In principle every model change primitive leads to a new model version in the model
change list, but most of the time it makes more sense to group update primitives together

Model Evolution Part 1–9

to a set of update commands or model change macros. These macros are modeled in
Illustration 4 according to the composite pattern of Gamma. A component change consists
of at least one change primitive or a compound of change primitives. Proceeding such a
set of update commands or a component change object on a model leads to a new model
version.

1.3.3 Change Execution

Change execution can be modeled with the help of Gamma’s command pattern [Gamma].
The client of the command pattern is the so called change manager, the trigger or execu-
tor is a change executor and the commands themselves are the above introduced com-
ponent changes. Last but not least, the receiver of the changes are the different model
versions which are organized in a ordered model list.

A change manager is very similar to a parser for recognizing model changes. The change
executor is responsible for the change logic. It’s task is to apply a component change on a
model version. This task can include database changes, code changes and the organiza-
tion of the new model version. Putting everything together delivers the following evolution
model introduced in Illustration 4.

Illustration 4 – Evolution Model

1.4 Model Changes And Classification

Let us now consider in more detail the different UML class model update primitives that
are relevant for Scheme Evolution. The following provides a short overview of the differ-
ent model update primitives and the changes that can occur to them.

Different possible changes have different consequences that have to be reflected now.
The below shown Illustration 5 summarizes possible change primitives.

Part 1–10 Model Evolution

Illustration 5 – Model Entities And Changes

An interesting fact to recognize is that certain model item changes could be replaced by a
sequence of other model primitives. For example the change of a attribute name. This
change could be compensated through a attribute deletion with a following creation with
the new name.

The introduced primitives can be organized in different categories of model update primi-
tives. This different groups of update primitives are different in the way how changes are
evaluated for the model, the code, the instances or the wrapper. Generally the primitives
above can be subdivided in primitives which are relevant for persistence and primitives
which are not relevant for persistence. This categorization is possible because of the two
different characteristics of objects, state and behavior. Everything that describes the state
of a object like attributes is relevant for persistence, anything that describes the behavior
like methods is not relevant for database persistence. Remark: Also there are some primi-
tives that are not relevant for persistence this primitives have to be handled for code up-
dates.

The primitives that are relevant for persistence can be further divided into four groups.
These groups are ordered ascending to the difficulty of implementation:

ª First Group: Phantom Modifying Primitives
These primitives are all renaming primitives. With name parameterization this primi-
tives can be handled very easily by a wrapper that looks up the actual name at run-
time. Only the wrapper code has to be changed not the implementation nor the in-
stances.

ª Second Group: Interface Restricting Primitives
This category is especially for deletion primitives. The consequence of a deletion
primitive is only the creation of a new wrapper that restricts the range of the original
implementation. There have to be no changes to the instances or the code, only re-
stricting wrapper have to be implemented.

ª Third Group: Model Extending Primitives
These primitives are the create or add primitives. Essentially these primitives can be
executed by an enhancement of existing wrapping interfaces, implementation code
and additionally instance enhancement.

ª Fourth Group: Not cleanly Manageable
This group is for all retype primitives. This primitives are critical for reasons of informa-
tion and exactness losses and indetermination of user’s wishes. The treatment of such
changes will be described in the next paragraph.

Concluding these four groups are explained in the following illustration.

Model Evolution Part 1–11

Illustration 6 – Model Change Primitives

However, after discussing the different categories of changes it’s interesting to know what
the consequences of not cleanly manageable changes are and how these consequences
are handled. Exactly this is done in the next paragraph.

1.4.1 Treatment Of Not Cleanly Manageable Model Changes
In this section a simple model is presented for supporting model scheme evolution. This
simple model is only used to explain the general behavior of not cleanly manageable
model changes.
The target of model evolution is to maintain correctness after a model change. This
means both the static relation of interfaces and types and cooperation between interfaces
and the behavior of instances has to be consistent after a change. In the following two
possible scenarios for handling model evolution are described. The 1st one will be named
as the “Convert Scenario” and the 2nd one as the “Extend Scenario”. In the later the prob-
lems, advantages and disadvantages of each scenario are described.

The Convert Scenario

In the “Convert Scenario” the old data of persistent objects is converted and adapted ac-
cording to the new model specification. Every time the model changes the scheme
changes and the data is converted too.

Now comes a short explanation of this scenario. At time t0 the class C in Model t0 has an
attribute a:integer . The model which includes C is changed and now at time t1 the class C
has an attribute a:real . After the model change two versions (Model t0 and Model t1) of the
Model exist. The scheme is changed according to the new model and the data has to be
converted into the new format. This means all old values of attribute a have to be con-
verted from integer to real. Additionally to the value converting a new view has to be cre-
ated, because one of the requirements is that it should be possible to access the con-
verted data with an old model version. This view is responsible for this transparent access
and will be realized with a wrapper. At the moment you should imagine that this view is a
black box that gets real value input from the database scheme and provides integer output
to the code based on model t0. Illustration 7 provides you a visual overview of the ex-
plained scenario

Part 1–12 Model Evolution

Illustration 7 – The Convert Scenario

The “Extend Scenario” chooses another way to keep consistency. This philosophy of this
scenario is as follows. Every time a model is changed the scheme will be extended. The
new scheme is a union of the old and the new model. Newly added attributes for example
will be initialized with null. The different applications (including the latest) access the
scheme with the help of wrappers, because each model uses only a subset of the
scheme.

Now the attribute a of Class C in Model t0 is changed from type a:real to a:integer . The
most important difference is the way instances are treated. In this scenario not the attrib-
ute type of the scheme is changed, but a new attribute with type real extends the scheme.
The old values are still accessible as integers but the values are not converted from inte-
ger to real. Instead of the attribute conversion the new attributes are initialized with a null
reference. Each code equal if it is based on the new or the old model must now use a
view to access the persistent data from the database. The Scheme Evolution changes are
visible in Illustration 8 below.

Illustration 8 – The Extend Scenario

Model Evolution Part 1–13

Now we have discussed two scenarios of “Scheme Evolution”, but at what time it makes
sense to convert instead of extend and at what time the other way around or rather what
wants the developer? The answer is it depends on the situation and on the users de-
mands. The next section comments the situation of not cleanly manageable update primi-
tives and delivers the mathematical foundation.

1.4.2 Mathematical Foundation For Model Changes

There is a very easy mathematical foundation for the problems of not cleanly manageable
changes. The reason for the problems is that not every type cast with the related instance
conversion is a bijective function. This means there is no identical way to convert the data
from one representation into the other. The only way to achieve a general conversion
possibility is to store every instance in a container that has type any, but this has the big
disadvantage of no typing and data conversions.

1.4.3 Treatment Of Generalization Changes
This problem is not solved already in this paper, but there is an approach to treat this
problem. According to [Gamma] and [Ostermeier] delegation can be used to simulate in-
heritance. The effects of inheritance can be adjusted using aggregation. This provides the
theoretical background for a flexible and changeable treatment of a inheritance mecha-
nism during run-time. The problem is that’s in some languages it’s very difficult to map
these model to the programming language (for example: Java).

Part 2–14 Model Evolution

3DUW � � 5(48,5(0(176 1/<6,6)25 $8720$7(

This part deals with the question what the development requirements for model scheme
evolution in the existing AutoMate system are. Therefore this part is divided into three
paragraphs. The 1st part or the “State of the Art” paragraph describes the actual system
environment and explains how the actual system handles changes in the development
model. The 2nd paragraph or the “Visionary” part illustrates how the system should work
after the development and analysis the concrete requirements to the system. The final
paragraph shows how the system demands can be solved.

2.1 State Of The Art

However, after discussing the general principles of model evolution and possible changes
theoretically, it’s interesting to point out the concrete requirements for a existing system.
As a first step the existing AutoMate system has to be analyzed and the current develop-
ment process has to be viewed to point out the weak points. Exactly this is done in the
next sections.

2.1.1 The Development Process With AutoMate

Modern distributed systems are based on a 3-tier or multi-tier client server architecture. A
3-tier architecture mostly consists of client (tier 1), application server (tier 2) and database
server (tier 3). Illustration 9 shows such an architecture. A popular approach to build such
a system is using Java and CORBA. Because development of such a system is very
complex it’s helpful to use tools that support the development process. For explaining the
benefits of developing distributed system with AutoMate in the beginning the standard
steps of a development process are explained.

Illustration 9 – The 3 Level Architecture of a typical Distributed Systems

Normally following steps are involved in the development of a CORBA based distributed
system:

Model Evolution Part 2–15

ª Create an Application Model (with a CASE Tool)

ª Define or generate CORBA IDL interfaces based on the model

ª Implement the application server according to the IDL interfaces

ª Realize persistence for the application server instances

ª Implement the client application(s) in a programming language like Java

Some of these standard work can be automated by a tool to become a continuous devel-
opment process based on a consistent model. That’s the point where AutoMate comes in
the big picture. Using AutoMate you can concentrate your development on implementing
the server functionality and the client code. Everything else is automatically done for you
according to the class model. AutoMate generates IDL Interfaces, client proxies, server
code and adds the whole database functionality including transaction logic and other
things. See Illustration 10 for more details.

Illustration 10 – The Development Process with AutoMate

The current AutoMate version relieves you of generating application code, database ac-
cess and delivers some standard work. But one thing currently missing in AutoMate is
model evolution. This fact delivers the motivation for developing and discussing model
evolution in the context of AutoMate.

Improvement Possibility

At the moment after changing a class model, new code overwrites old code, a new data-
base scheme overwrites the old one and old object instances are deleted. This means
only clients based on the newest model version can for example create or select persis-
tent objects. All previous work is lost, you can’t access persistent objects with an old client
version anymore. Every time you change your model you have to start from scratch again.
Remember the introduction: Model changes are quite usual in a concurrent development
environment and every time starting from scratch again is not very efficient. That’s the
reason why scheme evolution is a useful extension to the existing system. The next para-
graph describes the possible extension of AutoMate.

Part 2–16 Model Evolution

2.1.2 What Should Happen After A Model Change ?

To cover the hole model life cycle from analysis to test you have to ensure consistency.
This consistency can be divided into static and dynamic aspects. You have to maintain
both, static aspects which are dealing with keeping application code consistent and dy-
namic aspects which are dealing with keeping object instances and their behavior con-
sistent.

To achieve the needed consistency, you have to care about two things, keeping your ap-
plication code up to date and reorganize the interfaces and wrappers. And secondly reor-
ganize of the object instances which means in the AutoMate environment database
scheme and object instance changes and conversion.

Keeping Code Up To Date

Static aspects deals with the definition of classes including it’s attributes, method signa-
tures, types and inheritance graphs and the static relation between such classes. The
framework has to ensure that no type or interface inconsistencies occur.

After a UML model has changed you have to update your code that has already been cre-
ated with AutoMate. This means for a three tier architecture realized with CORBA, you
have to adapt IDL interfaces, client stubs, server code and database access in a way that
clients based on old and new model version work together with your database and behave
consistent over their whole life cycle.

Reorganize Data Instances

Dynamic aspects concern the run-time behavior of instances when clients proceed
method calls on them. These client calls based on a specific model version have to deliver
the same results (behave consistent) over the hole model and application life cycle.

Persistent objects and the database scheme are related to a specific code version. That’s
just why code changes cause also database scheme and object instance changes. Both
should be reorganized in a way that the data is consistent and accessible with client code
based on any model version.

2.2 Desired Model Evolution and Application Behavior

To clearly and easily explain the requirements of model evolution in the AutoMate system,
the desired model evolution behavior is introduced. In the beginning a model is introduced
that changes over time, these change means a change of a special interface. After this
change there are two versions of the model and accordingly two versions of the interface.

Illustration 11 – Model Change

Model Evolution Part 2–17

The desired behavior should cover how model evolution is handled in the future system
from the client application point of view. The next illustration shows a distributed system
that is build on the before introduced model versions.

Illustration 12 – System with Different Model Versions

This software system is based on a three tier architecture, which may be created with
AutoMate. The presentation tier of this system architecture consists of client applications
build on basis of interfaces from different model versions of model A. The 2nd tier consists
of CORBA servers for the different interface versions and the 3rd tier consists of a object
oriented database with persistent objects based on a general interface A and the neces-
sary wrappers that delegate the work to the general interface. Based on this architecture a
typical usage scenario in form of a message sequence chart is introduced.

2.2.1 A Typical Usage Scenario

This section describes from the users point of view how working with different model ver-
sions should be possible in the flight booking system created with AutoMate. Illustration
13 – Sequence diagram example for working with different model versions above shows
how different clients in a distributed system can communicate and interact with the data-
base and the persistent object instances. Clients can create instances of a model and
select existing instances of a model from the database. In general this is nothing new, but
the instances of a model can be based on different model versions. The Evolution Man-
ager cares about the different versions and the database scheme and makes the access
of the applications totally transparent. The Manager also cares about the version man-
agement or scheme evolution and provides something similar to a view in relational data-
bases on the model instances to the applications. As a prerequisite two client versions
based on Model A exist, the application server is simplified and presented by a “Evolution
Manager” and no data based on Model A is already stored in the database server. The
following scenario is a typical usage scenario for the above introduced flight system:

Part 2–18 Model Evolution

ª Client one or Application1 creates a instance of a flight reservation based on Model A
version one.

ª To make this flight reservation persistent this instance has to be stored in the data-
base. The database storage procedure should be totally transparent for the user,
therefore a black box “Evolution Manager” is doing this work. This manager cares
about creation of the database scheme and storage of the object instance.

ª Client two also creates a instance of a flight reservation. But the difference is that Ap-
plication 2 is based on code according to Model A version two. For this reason a in-
stance based on Model A version two is created.

ª The “Evolution Manager” is responsible for storing this second flight reservation in the
database. Therefore the manager has to change or extend the database scheme and
the already stored flight reservation totally transparent for the users.

ª Now user of Application1 wants to see all flight reservations or instances of Model A.
As a result the “Evolution Manager” presents the user two flight reservation instances
according to a Model A version one view. Therefore the EM selects all instances of
Model A and adapts them to Model A version one.

ª If user of App 2 wants to see all instances of Model A version one, the same steps as
before happen. As a result user 2 views two flight bookings based on model A version
two.

Illustration 13 – Sequence diagram example for working with different model versions

The above introduced usage scenario explains a desirable system behavior. Both con-
sistency parts are fulfilled and you can access consistent data with clients based on the
hole model life cycle. To create this future behavior something like an “Evolution Manager”
has to be developed that should realize model evolution.

The above introduced scenario is a scenario nearly at the end of a model’s life cycle. It is
a scenario using completely build applications. But model evolution can be useful over the
hole model life cycle, and therefore for example also in the application development phase
for reasons of a new application design or added functionality. Model changes are usual
at all phases of the object oriented development process and afterwards at all phases of
usage and maintenance.

Model Evolution Part 2–19

Remark: In general it’s not imperative for all model changes to cause schema evolution in
the database (for further details refer to UML class model changes). Additionally model
evolution is only necessary if applications based on an old model version are existing and
the developer wants to keep compatibility with these applications. Therefore it should be
possible for the developer to explicitly decide keeping the old version or deleting it inclu-
sive the according persistent objects.

After introducing the future system behavior and a usage scenario we can summarize
system requirements for model evolution.

2.2.2 Summary of Requirements

One important result of a requirements analysis process is an overview of requirements.
Something like a list of extensions, changes and new development functionality. Therefore
a list is presented with the topics that model evolution for AutoMate should cover.

ª Creation, changes and deletion of packages, classes, methods and attributes,

ª migration of existent persistent data based on an old model to a new model,

ª organization of automatically created code from all models of the model life cycle,

ª transparent access to persistent data from all models of the model life cycle,

ª application transparency, this means unchanged behavior of application during the
hole model life cycle,

ª and a decision possibility for the developer to handle not cleanly manageable model
evolution. This can be for example the decision to extend a current model and migrate
the data of the persistent objects or to delete the old data and create a new model.

After explaining how a system should react and listing up the requirements it’s interesting
to deal with the question how to achieve the expectations. The last paragraph of this part
shows in a very global and informal way how model evolution can be achieved.

Part 3–20 Model Evolution

3DUW � � 6<67(0 '(6,*1 $1' $5&+,7(&785()25

$8720$7(

The following part of this document presents an architecture for solving the introduced
requirements of the part before. In the following will be specified how necessary type
casts will be handled in general, how models and model changes will be specified, how
model changes will be transformed to scheme and instance changes in the database and
last but not least how the server application code will be organized and updated according
to the database scheme changes.

The theoretical evolution model will now be filled with the needed functionality.

3.1 General Thing’s

3.1.1 Architecture for handling Type Casts

One important thing is handling of type cast needed for scheme evolution. A frame work
for type conversations is needed on the one hand for casting database instances accord-
ing to the new scheme during scheme evolution in the database and on the other hand for
casting database instances backwards to older scheme versions to achieve the wanted
application transparency.

The intention of this cast framework is to deliver a possibility to cast between all needed
types. This will be done by using a neutral intermediate format. Every expression type that
should be casted must deliver the functionality to cast it into the neutral format and the
other way around from the neutral format to the expression format. An model example for
simple types is shown in the illustration below.

Illustration 14 – The Expression Model

The above specifiation of a cast environment is a minimum specification. It is possible to
enhance these specification with additional functionality like user extensibility or different
methods to cast a special type to or from the expression type.

3.2 Specification for Model’s and Change’s

In the following the architecture for specifying UML models and model changes will be
introduced. One needed important thing for delivering transparent model changes is a
neutral model specification format. For reasons of currently becoming a respected stan-
dard and being adopted by a lot of UML Case Tools vendors, XMI is chosen in this archi-
tecture as a neutral exchange format between different Case Tools. In addition there is a

Model Evolution Part 3–21

explosion of tools for handling XML documents very comfortable. The XMI standard
specifies with a Document Definition Type (DTD), how UML models are mapped into a
XML file. Besides this functionality XMI also specifies how model changes can be easily
mapped into an XML document. Therefore XMI is a very good solution for solving some of
the requested requirements for UML model evolution.

As said before XMI specifies a possibility for transmitting metadata differences. The goal
is to provide a mechanism for specifying the differences between documents in a way that
the entire document does not need to be transmitted each time. This is especially impor-
tant in a distributed and concurrent environment where changes have to be transmitted to
other users or applications very quickly. This design does not specify an algorithm for
computing the differences, just a form of transmitting them. Only occurring model changes
are transmitted. In this way different instances of a model can be maintained and syn-
chronized more easily and economically. The idea is to transmit only the changes made to
the model (difference between old and new model) together with the necessary informa-
tion to be able to apply the necessary changes to the old model. With this information you
have the possibility for model merging. This means you can combine difference informa-
tion plus a common reference model to construct the appropriate new model. (New = Old
+ Changes). A important remark to this topic is that model changes are time sensitive.
This means changes must be handled in the exact chronological order for achieving the
wanted result.

According to Illustration 4 from the theoretical part that specifies the evolution model, the
model versions are represented as XMI files and the component changes are also XMI
files that only specify the model changes. Each model version has a predecessor model
from that it is derived (except if the model is the first version), a XMI document that repre-
sents the actual UML specification of this model. Each component change has a XMI-
change document that specifies how a model version was constructed from the predeces-
sor scheme.

The next section describes the model and change specification format and explains it with
easy examples:

As introduced before not only the UML models will be specified according to the XMI
standard, but also model changes. The following elements are used to encode the for this
paper important model differences:

ª XMI.difference: (reference to the old model)
The XMI.difference element is contained by the XMI.content section of the XMI docu-
ment. There can be zero or more difference elements and each difference element
can contain zero or more particular differences. The difference element optionally links
to the original document (the parent model) to which the changes are applied.

ª XMI.delete: (reference to deleted element)
The delete element is contained by a difference element. It’s link attributes contain a
link to the element from the original document to be deleted and specifies a removal of
the referenced element and all of it’s contents.

ª XMI.add: (new element content)
Like the delete element the add element is contained by a difference element. The
content of a add element specifies the element and it’s contend to be added to the
original model.

ª XMI.replace: (reference to replaced element, replacement content)
The last element is also contained by a difference element. The content of replace is
the element to replace the old element with. The old element will be specified in the
link attributes of the replace element.

Part 3–22 Model Evolution

Here is an example how the UML model data and the changes can be coded according to
the XMI standard (The tags are shortened for clarity).

Original document: “original.xml”

The change document with references to the original document.

And finally how the differences steps change the document if they are applied

Model Evolution Part 3–23

The introduced model version and component change specification according to the evo-
lution model are the first part of the model evolution framework. The next part concerns
the question how the model changes can be transferred to the database.

3.3 Architecture of Model Evolution Framework

Now that we have introduced how models and model changes are specified, the next im-
portant thing is the architecture for handling these model changes. The first thing for han-
dling model changes is to recognize them. This is the work of the change manager. The
change manager parses a difference file and triggers the change executor to fulfill it’s
task.

As said before model evolution causes changes to the object instances and the applica-
tion code. Therefore model changes made in a model must be forwarded to the according
database and result in scheme and instance changes.

In addition to this there should exist a framework where the user can specify what hap-
pens to already existing instances and application compatibility. Then the user can specify
for example if existing instances will be casted and transferred to the new scheme or if
they will be dropped. But for more details refer to the later documentation. The next thing
that will be introduced to you are the different change policies that are important for the
database modifications and the later introduced code updates.

3.3.1 Change Policies

Change policies specify how scheme changes will be treated in the database and how the
CORBA application code will be modified. These change policies are part of the change
manager. According to the users needs and wishes the different policies can be set in the
scheme change framework. These change policies can be mapped to the software life
cycle. You can easy imagine that in early development phases a lot of model changes are
applied and that it might not be important to keep compatibility to prior code versions and
keep created instances, but the further you become in the software life cycle the more
important it is to keep compatibility to older code versions and keep existing instances
alive. In the following the scheme change policies are described a little bit more in detail.

ª DropInstancesKeepCompatibility

Using this policy all existing instances of a scheme will be dropped, but compatibility of
applications based on older scheme versions to the modified scheme will be kept.

ª DropInstancesDropCompatibility

The laziest policy specifies that all existing scheme instances will be dropped and only
applications based on the newest scheme version can get access to existing instances,
otherwise an error message will be reported to the old application.

ª KeepInstancesKeepCompatibility

This policy delivers the most flexibility and is the most diligent policy. All existing in-
stances will be casted according to casting rules to the new scheme and compatibility
of applications based on older scheme versions will be kept.

ª KeepInstancesDropCompatibility

The last policy is responsible for casting all existing scheme instances to the new
scheme version, but specifies that applications based on older scheme versions have
no more access to the new scheme versions.

Part 3–24 Model Evolution

The illustration demonstrates the connection between database change policy, impor-
tance of instances, number of model changes and time in software life cycle.

Illustration 15 – Database Change Policies

3.3.2 Mapping Model Changes to Scheme Changes

For future compatibility and independence of Case Tool vendors the model changes are
transferred to the scheme cast framework according to XMI standards. Now a XML parser
will recognize differences applied to a model and cause necessary changes to be carried
out in the database and the access code. In the first only database changes will be han-
dled. The different model change primitives will be treated according to the classification
made above. “Scheme Extending” primitives will cause scheme add-on’s in the database
scheme, “Real Modifying” primitives will cause scheme changes and instance casting and
“Phantom Modifying” will cause renaming of scheme parts, but no real instance changes.
But before the explanation of the change primitive treatment the Model Manager will be
introduced.

3.3.3 The Change Parser and the Model Manager

As mentioned before XMI only specifies the data transfer format and not the algorithm for
proceeding the changes. This algorithm will be described in the following paragraph
(Treatment of scheme changes). But before you can proceed your model changes you
have to extract them from the XMI-change document. This will be done with the help of a
standard XML parser (XML4J from IBM). Based on this parser a component will be devel-
oped that extracts the model changes from interest and delivers it in form of a change tree
to the change proceeding algorithm. The entity that specifies and embodies these algo-
rithm will be called Change Manager in the following. This manager is responsible for the
application logic that updates the database scheme, casts the instances and reorganizes
the application code.

At this moment it’s time to add the information introduced to you to the well known model
of the change framework.

Model Evolution Part 3–25

In the following will be explained how the Scheme Manager handles the different scheme
change primitives.

3.3.4 Treatment of Scheme Change Primitives

As mentioned before the different scheme change primitive classes will be treated differ-
ently and cause different actions for the scheme evolution framework. In the later scheme
changes and instance casting will be discussed according to the most diligent change
policy, because this is the most difficult and interesting one.

ª Scheme Extending Primitives
This changes will cause an extension of the existing scheme. For example an attribute
will be added or something like that. Because of the fact that we add something new
or additionally to the scheme there is no need to cast any old instance. The most da-
tabases deliver standard functionality to fulfil these simple scheme updates.

ª Real Modifying Primitives
Real modifying primitives are the most interesting ones. Supplementary to scheme
changes, the existing primitives have to be casted to the new scheme. Both follow the
principle of modifying the scheme to the latest changes. This means the scheme will
be updated exactly to the latest changes and the instances will be casted to this new
scheme version afterwards. The instance cast will be operated with the help of the
cast framework and the instance access will be covered by code that fits exactly the
new database scheme. Access from older code versions will be wrapped to the latest
code version, but this is part of the last architecture feature described later.

ª Phantom Modifying Primitives
This changes like renaming an existing attribute will be maintained outside the data-
base with the help of Java property files. A property file contains name value pairs that
assign the original entity name to the actual entity name. These property files have to
be updated every time the name of a entity changes. For reasons of simplicity this in-
formation is stored in property files but of course this information can also be stored in
a database with the help of a separate object or table. Every time an object with an old
entity name wants to get access to the database the new entity name will be looked up
and the access will be carried out with the according new name totally transparent for
the client object. For more details refer to the last part of the architecture that specifies
in more detail how model changes are handled with the server code.

3.4 Architecture For Handling Code Changes With CORBA

This last part of the architecture is responsible for delivering a transparent client access to
object instances from every model version of the object specification at runtime. To
achieve this result three main things have to be developed and maintained during model
evolution. The first one is the access code to the actual scheme, the second one are the
wrappers that wrap the access code and deliver object access for every model version
and the last one is the Portable object adapter needed to achieve the necessary server
side flexibility.

3.4.1 The Access Code – Or The Delegated

The access code is that code that every time fits exactly to the scheme specified in the
database. This code specifies only the actual fields (name and type) of a class. This ac-
cess code will be used as a delegate from the wrappers to get access to the database
instances. This delegated together with the POA can also be used for the transaction
logic, but this is not content of this document. As implicit said before this code has to be
updated every time the model and the according database scheme changes.

Part 3–26 Model Evolution

All delegated classes inherit from the class Delegated. This class offers essentially two
methods, a method to set a field and a method to get a field. The setField method gets as
parameters the field name and an object of type expression and returns nothing. The
other getField method gets as parameter the field name and return as return value an
object of type expression. These two methods are used to manipulate the field values and
therefore accordingly the persistent instance values. Both methods use the reflection
mechanism to get the needed information.

3.4.2 The Wrapper Code – Or The Delegate

Like the headline assumes this piece of code is responsible for two things, wrapping in-
stance access and delegating calls to the right delegated. All delegate classes have to
implement a constructor method that gets as parameter a reference to the delegated class
and inherit from Delegate. Together with the earlier mentioned property file delegate
classes therefore provide the functionality of name and type transparency.

ª Name Transparency
Name transparency will be achieved with the following mechanism. The attribute get-
ter and setter methods of the delegate will lookup with the help of the parent lookup
method the actual name of this attribute in the database. With this information and the
delegated reference the fields of the delegated can be accessed and manipulated
easily by calling the setField or getField method on the delegated.

ª Type Transparency
The second type of transparency is achieved in the same attribute getter and setter
methods. Inside this methods the setField and getField methods are called as de-
scribed above. The getField expression result has to be casted back to the wanted
type and can then be returned to the client. The other way around the value that the
client wants to be set has to be converted into the neutral expression format and can
then be passed to the delegated.

Confused ? – There is no need to, here is the class model specifying the information from
above.

Illustration 16 – Delegation

Model Evolution Part 3–27

3.4.3 The Object Adapter

The two things described before are responsible for the server side data access, but hap-
pens between the client and server objects? How is the right object version determined?
How is the persistence of the object achieved? This last questions will be solved now.

The goal is to provide a architecture that handles the following scenario.

Illustration 17 – The Delegate Sequence Chart

The precondition for this scenario is the existence of a client with a reference for a object
with which no servant is associated at the time the client makes a request on the refer-
ence. It is the responsibility of the Orb, in collaboration with the POA and the server appli-
cation to find or create an appropriate servant and perform the requested operation on it.
The version of the wrapper can be determined with help of the standard CORBA helper
classes. These classes specify a id method that returns the id or Idl version of the current
client. This method can be used to create the correct server version.

The main steps:

1st: Identification of the object version with CORBA standard code

2nd: Request to the portable object adapter for a object with the given reference and the
needed object version

3rd: The object adapter launches the creation of a delegated

4th: The delegated fetches the object with the given reference from the database.

5th: The object adapter activates a new wrapper and tie object with the needed object ver-
sion and the reference of the delegated object.

6th: Exporting the tie/wrapper object to the POA

7th: Exporting the reference to the client

Part 3–28 Model Evolution

8th: The client performs requests on the tie/wrapper object.

Model Evolution Part 4–29

3DUW � � 35263(&76
Possible extensions for the AutoMate System and some future work are listed below:

• Support for different Database Management Systems with specified interfaces and
services for model evolution.

• The Treatment and Implementation of Generalization is a yet unsolved problem
• Embedding of change managers into CASE-Tools. With the help of vendor neutral

model specifications (XML and XMI) it’s possible to enhance already existing CASE
tools.

• Definition and Implementation of a common CORBA Evolution service
• Definition of user specific conversion function to extend the automatic conversion for

standard types
• Enhancement of model lists to model trees. In the moment only a strong sequential list

of changes is handled by the system.

Part 5–30 Model Evolution

3DUW � � /,7(5$785(5()(5(1&(6

[BRK 98] Dr. Klaus Bergner, Andreas Rausch and Karsten Kuhla. Schnelle Schichten
– Transparenter Zugriff auf ODBMS über CORBA. IX11/1998, p. x

[BRS97] Klaus Bergner, Andreas Rausch and Marc Sihling. Using UML for Modeling
a Distributed Java Application. TUM-I9735 Technische Universität München
1997

[BHRS97] Klaus Bergner, Franz Huber, Andreas Rausch, Marc Sihling. Component-
Oriented Redesign of the CASE-Tool AutoFocus. TUM-I9752 Technische
Universität München 1997

[HKLP] Gerd Hillebrand, Patricia Krakowski, Peter C. Lockemann, Dietmar Posselt.
Integration-Based Cooperation in Concurrent Engineering. IPD, Universität
Karlsruhe

[Orfa] Orfali. Client/Server Programming with Java and CORBA

[OMG 99] Object Management Group (OMG): Common Object Request Broker Archi-
tecture Specification. www.omg.org (1999)

[SUN] The Java Programming Language. www.sun.com

[OHE] Orfali, Harkey and Edwards The Essential Client/Server Survival Guide

[OMG 99b] The Unified Modeling Language. www.omg.org

[Busch] Buschmann. Pattern oriented Software Architecture

[Gamma] Gamma, Entwurfsmuster – Elemente wiederverwendbarer Software.
Addison-Wesley

[XML] XML, Specification. www.w3c.org

[XMI] XMI, OMG Specification. www.omg.org

[Oest] Oesterreich. Objektorientierte Softwareentwicklung

[SERC] Software Engineering with reusable components

[Vers] Versant’s Database Manual

[JBR] Jacobsen, Booch and Rumbaugh. The Unified Software Development Proc-
ess

Model Evolution Part 6–31

3DUW � � $33(1',;

6.1 The Database Environment

One of the most interesting parts in the AutoMate architecture for scheme evolution is the
used database environment and the usage of this database. Currently AutoMate is using
Versant’s OBDMS. This object oriented database delivers some standard settings for
Scheme Checking and Evolution. In the current version of AutoMate this functionality is
not used, because as said before every time a change of the model occurs the persistent
objects will automatically deleted. But it’s still very interesting for the later development
how the database handles scheme checking and evolution. For this reason the database
functionality is described below.

The first time an instance of a class is stored persistently in the database the scheme of
the class of an object get implicitly defined and stored in the database. Objects of the
class can be stored in the database only after the scheme for that class has been defined
in the database. Whenever an object is being stored in the database, for the operation to
complete successfully, the Java language binding representation (i.e. the Java class) has
to be compatible with the database representation (i.e. the database scheme). An incom-
patibility could arise when the scheme for a particular class has been previously defined in
the database and the corresponding Java class differs from what it was when the scheme
was implicitly defined. The incompatibility check between the database scheme and the
corresponding Java class is very strict. Even if the same underlying storage size is used in
storing attributes of different Java language types, the transparent binding detects an in-
compatibility. There are three ways in which an incompatibility might arise:

ª New Attributes: A Java class could differ from the database scheme if it contains new
attributes not present in the database scheme

ª Lack Attributes: A Java class could lack attributes that are present in the database
scheme

ª Different Type: A Java class could have an attribute of a different Java type compared
to the attribute type when the scheme was originally defined in the database.

All of this three conditions constitute an incompatibility or a mismatch between the data-
base scheme and the Java class in the transparent Java binding. Logically a mismatch
can also occur if there is a combination of this three incompatibility types. For instance a
mismatch might be due to a missing attribute and additionally to a type changed attribute.

The question is now how to handle this mismatches. To specify what you want to happen
if a mismatch occurs, you can set the setSchemeOption() method in a database Session.
Versants ODBMS offers three different parameters with different results for this method.

ª SCHEMA_ADD_DROP_ATTRIBUTES: “If the Java class contains a different number
of attributes than the database scheme, then modify the database class definition so
that the database class has the same attributes as the Java class”
Remark: Type changes of an attribute can be modelled as an attribute deletion with a
following attribute creation.

Part 6–32 Model Evolution

Database Reaction Consequence

Add attributes Existing database instances will be initialized with null val-
ues for each of the newly added attributes

Drop attributes The values for those attributes are deleted from the data-
base

ª SCHEMA_FORCE_DROP_DATABASE: “If there is any mismatch between the Java
class and the database class, drop the database class entirely”

Database Reaction Consequence

Drop database
class entirely

Existing database instances of the database class will be
deleted

ª SCHEMA_THROW_EXCEPTION_ALWAYS: “If there is any mismatch between the
Java class and the database class, raise an exception”
Remark: This is the default option if you do not call setSchemeOption(). When you in-
voke the setSchemeOption(), your choice of scheme handling options affects the cur-
rent session only. Each time you begin a new session the default value will be chosen.
If a exception is thrown it has the following attributes

Exception Attribute Description

AttrName A Java String which is the name of the attribute in the class
for which the exception is thrown

Category A Java Integer with one of the following values:
Attribute_Missing_in_DB, Attribute_Missing:in_Java or
Scheme_Java_Type_Mismatch

Cls The Java Class due to which this exception is thrown

DbType A Java String that represents the Java type of the attribute
when the scheme was defined in the database

JavaType A Java String that represents the current Java type of the
attribute in the Java class

These are the possibilities that the object oriented database system from Versant offers. It
is possible to use this functionality directly in their AutoMate architecture to achieve the
targets of Scheme Evolution, but this solution would be a solution especially for this data-
base and not a preferred general database independent solution.

6.2 Pre- and Post conditions for Evolution
In this section the effects of model evolution operations or primitives on consistency and
compatibility are discussed. Based on the theoretical part, the model change primitives for
a basic class model are surveyed with their pre conditions and consequences on static
and dynamic aspects.

Create an Attribute:

• Pre Condition: An attribute to be created should not already be defined in the
class where it is to be inserted. Anyway, if this is allowed the new definition re-
places the old one. This is treated like a rename or a retype of an attribute.

Model Evolution Part 6–33

• Consequence: If an attribute was already inherited to the class, it will now be re-
defined.

• Post Condition: If an attribute is (re)defined, the new attribute is propagated to all
subclasses where it is added as an inherited attribute, as long as it is not already
defined locally there.

Create an Attribute:

• If an created attribute already exist in the class or one of it’s subclasses, no
matter locally defined or inherited, all methods accessing the attribute may
change their behavior or become invalid, if the attribute definition is not a gener-
alization of the old one. This behavior must be handled by attribute change.

• If an attribute is completely new, no conflicts with old applications can occur .

Create a Method:

• If an added method is a redefinition of an inherited method and the new method
has another semantic than the old one then there is no access to the scope of
the old method anymore. This might lead to behavior changes.

• If other methods refer to the new method by a different signature the method call
will be invalid.

Create a Class:

• Class names have to be unique, this has to be preserved when adding a class

• A class can be inserted anywhere in the inheritance path, with the default posi-
tion as a new subclass from a phantom class

• If super classes are specified the new class inherits all attributes and methods of
this classes, but redefines not unique definitions.

• If subclasses are specified, this classes inherit all attributes and methods and
the changes are propagated through the whole inheritance graph until there is a
locally redefinition.

Create a Class:

• Class names have to be unique, if a class overwrites an old one then the appli-
cation behavior may change.

• If a class creation changes the inheritance graph and redefines a method than
the new method is chosen from the application and not the old one. This may
cause behavioral inconsistency.

• Otherwise creating a class is behavioral consistent

Add a super class to the inheritance list:

• The super class has to be defined

• A new link is not allowed to add a cycle in the inheritance graph

• All attributes and methods are inherited from the super class and propagated to
subclasses of the inheritance graph, until they are redefined

Add a super class to the inheritance list:

Part 6–34 Model Evolution

• Adding an inheritance link leads to addition of methods and attributes to the
subclasses

Delete an Attribute:

• An attribute to be deleted has to be defined or redefined in the class from which
it shall be deleted.

• It is not possible to delete an inherited attribute.

• If an attribute was redefined, the inherited feature now replaces the redefined
on. This can be treated like an attribute rename or retype.

• The deleted attribute also has to be deleted from all subclasses.

Rename an Attribute:

• The attribute has to be locally defined

• For all name changes the new name should not introduce any new conflict, i.e. it
should be unique within the class. Therefore a name check has to be performed.

• When the change is accepted, it has to be propagated to all subclasses as long
as it is not redefined there.

Retype an Attribute:

• The attribute has to locally defined

• For all type changes the new type should not introduce any type conflict

• When the change is accepted, it has to be propagated to all subclasses as long
as it is not redefined there.

Delete an Attribute:

• If a deleted attribute is replaced by an inherited one with the same type nothing
changes.

• If a deleted attribute is replaced by an inherited one with a different type, meth-
ods using this attribute might change their behavior or become invalid

• If a deleted attribute is not replaced, methods referencing this attribute become
invalid, the same for references to the attribute in subclasses which where for-
merly available through inheritance

Rename an Attribute:

• If an attribute is renamed and replaced by an inherited one with the same type
nothing changes on application side.

• If an attribute is renamed and replaced by an inherited one with a different type
the application might change their behavior.

• For a name change without replacement, the access to the attribute under the
old name becomes undefined, therefore all methods using the old name are in-
valid too.

• Renaming might change the validity and behavior of inherited classes

Retype an Attribute:

• If an attribute is retyped and replaced by an inherited one with the old type
nothing changes on application side.

Model Evolution Part 6–35

• If an attribute is retyped and replaced by an inherited one with a different type
the application might change their behavior.

• For a type change without replacement, the access to the attribute with the old
type becomes undefined, therefore all methods using the old type are invalid
too.

• Retyping might change the validity and behavior of inherited classes

The Evolution of methods in the context of structural consistency is exactly the same
as for attributes

Delete a Method:

• If a method is deleted and not replaced with an equivalent inherited one then the
application method calls are invalid

• If a method is deleted and replaced with a not equivalent inherited one then the
application changes their behavior.

• If a method is deleted and replaced by inheritance with a equivalent one this
means name, type and signature then the application behavior might neverthe-
less change because of a different method semantic.

Rename a Method (Change the name):

• If a method is renamed and not replaced by an inherited one then application
method calls for the old name are invalid

• If a method is renamed and replaced by a syntactic and semantic equivalent one
via inheritance than the application behavior remains the same, otherwise it
might change.

Retype a Method (Change the signature):

• If the signature of a method is changed then the only way to keep the behavior
of an application is that it is replaced by an equivalent one via inheritance, oth-
erwise the behavior of the application might change

• Method calls from application to the old signature become invalid

Delete a Class:

The effects of a class deletion depend on its position in the inheritance graph

• The class has to be defined

• If the class is a leaf node, i.e. it does not have any subclasses, then it can be
deleted without affecting other class structures

• If the class has subclasses, then all inheritance links have to be deleted. With
this deletion all references to attributes and methods of this class become inva-
lid.

Rename a Class:

• The class has to be defined

• All subclasses inheriting from the old class become invalid, if the name change
is not propagated to the subclasses or a equivalent class is defined.

Delete a Class:

Part 6–36 Model Evolution

• All references to the class, it’s attributes and it’s methods become invalid, thus,
all methods referring the class become invalid

• All references to attributes and methods passed to subclasses become invalid
too, as long as they are not locally redefined.

Rename a Class:

• All method code referring explicitly to the class by it’s name become invalid.

Remove a class from the inheritance list:

• The class must be new established in the inheritance graph either must inherit
from the phantom class or the predecessor of the deleted class.

• All attributes and methods which have been inherited from the super class and
which are not redefined have to be deleted from the subclass definition. This
changes have to be propagated to the inheritance graph.

Remove a class from the inheritance list:

Deleting a link has the effect that all methods and attributes which have been inherited
from the super class are no longer available for the subclasses. Therefore code referring
to them becomes invalid.

