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Abstract. As the use of distributed systems is spreading widely and relevant 
applications become more demanding, the efficient design of distributed systems has 
become a critical issue. To achieve the desirable integration of distributed system 
components, knowledge from d:fferent areas must be combined which leads to 
increas:ng complexity. The construction and provision of appropriate software tools 
may facilitate the design and evaluation of distr:buted systems architectures. In this 
paper the architecture and functionality of the Intelligent Distributed System Design tool 
(IDIS) are presented. IDlS integrates methodologies and techniques from the artificial 
intelligence and simulation domains, in order to provide a uniform environment for 
proposing altemat:ve architectural solutions and evaluating their performance. 

1.  Introduction 

The efficient operation of distributed systems 0%) 
depends critically on the collaboration of discrete com- 
ponents, such as processing elements, storage devices 
and communication networks. To achieve maximum 
utilisation of these components, DSs must be carefully 
designed. The variety of possible architectural solutions 
and the integration of knowledge from different areas 
makes the design a complex task. To effectively explore 
all aspects of DS construction, software tools have been 
developed, enabling experts to design DS architectures 
and evaluate their performance. 

Traditional approaches, such as simulation model- 
ling, have been extensively applied during the preceding 
decade to evaluate the performance of distributed sys- 
tems and networks. Numerous tools can be referenced, 
both in the industrial [I, 21 and academic community 
[3,4]. Most of them contribute to the behaviour analysis 
of a predetermined architecture, represented as a simula- 
tion model and they cannot make suggestions for the 
design of the architecture. Software tools have also been 
built for investigating data or resource allocation prob- 
lems using formal methods, mathematical models, simu- 
lation techniques or, often, a combination of them 15-71. 
In the artificial intelligence domain, examples can be 
found of expert systems for designing single LAN and 
WAN architectures 18-10]. These systems are based on 
empirical and experimental rules. Most of them axe 
built to explore certain design issues, such as ELAND 
[8] that proposes scenarios for the physical topology of 
local networks, but they cannot be used to evaluate the 
performance of the proposed solutions. 

The research activities presented in this paper are 
t e-mail: mara@di.uoa.ariadnet.gr. 

oriented towards the construction of the Intelligent 
Distributed Systems Design tool (IDIS). IDIS is an 
expert tool for proposing alternative distributed system 
architectures according to speci6cations provided by 
the operator and available technology. To facilitate 
the performance evaluation of the proposed solutions, a 
simulation environment is incorporated into the IDIS 
framework. 

2. IDlS objectives 

Distributed systems range from a few workstations 
interconnected by a single LAN to bank or airline 
systems extended to many remote sites interconnected 
via WANs. Distributed application requirements include 
concurrent access to resources by many users, guaranteed 
response time, service points that are geographically 
widely distributed, openness and expandability. The 
main objective of IDIS is to assist DS developers in the 
decision making process during the design of a new 
system or the reconfiguration of an existing system, 
taking into account distributed application require 
ments. IDIS does not provide commercial solutions. It 
proposes alternative scenarios for the configuration of 
the system and data and process placement. Since the 
performance of a DS depends critically on the perfor- 
mance of the network infrastructure, special attention is 
given to the protocols used to support the distributed 
applications and the network topology design. 

The distributed applications described by IDIS are 
considered to reside in merent locations. A location is 
delined as a region in which the range does not exceed 
Zkm, ensuring that all resources within a location can be. 
physically connected through a LAN (the range of sites 
interconnected by a fibre backbone is limited to 2h). 
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Given that the scale of DSs varies from single LAh3 to 
worldwide applications, IDIS should enable the operator 
to define the range of the system according to his/her 
needs; thus, both the delkition of locations as well as 
the specification of their size are performed under the 
operator's control, If, for example, an IDIS operator 
describes the sales database of a small h, the locations 
will most likely be different floors corresponding to the 
departments in the h. If he/she is describing the infor- 
mation system of an industrial complex, the locations can 
be floors in the main corporate building, buildings in the 
corporate park and remote branch oEces in different 
cities. 

Locations are used to define the access points of a DS. 
Distributed applications consist of interacting processes. 
An IDIS operator also specifies the processes operating 
in it along with a formal description of their operation. 
This is expressed in terms of processing, exchanging and 
storing information. There are two kind of processes, 
front-end processes which are invoked by users and 
back-end processes, which are invoked by other pro- 
cesses. Data storage is possibly only through system 
back-end processes called file servers VS). The operator 
also spedies the profiles of all the users in the distributed 
environment. Profile description includes the front-end 
processes invoked by the user, the probability of their 
invocation and the location of the user. Process placement 
is accomplished by IDIS or, alternatively, by the IDIS 
operator. 

placement of processes operating in the distributed 
environment in order to minimise network traffic 
0 design of the network infrastructure in order to satisfy 
the requirements imposed by the distributed applications 

evaluation of the system performance. 

The configuration of the DS is formed based on the 
integration of the workstation-server and processor pull 
model. A workstation is allocated to each user for the 
execution of front-end processes invoked by him/her. 
Back-end processes are executed on dedicated processing 
nodes. Their architecture is defined by IDIS. IDIS also 
proposes the network architecture for the interconnection 
ofnodeswithin locations and thelocationinterconnection 
schema. IDIS is based on the OSI/ISO RM in order to 
specify the network architecture. The RPC mechanism is 
used to describe the three upper layers. RPC is the most 
common protocol for interprocess communication in DSs. 
For the description of the four lower layer of OS1 RM, 
IDIS supports a variety of protocols for the implementa- 
tion of LANs and WANs. All protocols are selected 
because they are commercial 'and organisation stand- 
ards, and are considered to fulfil w e n t  and future 
communication needs. Networkinterconnection is carried 
out according to OS1 in the data link and network layer 
via bridges and gateways. The protocols supported by 
IDIS for all the OS1 layers are presented in Table 1. 

The tasks that must be accomplished by IDIS cannot 
be achieved using algorithmic methodologies. In spite of 
this, methods exist which offer partially satisfactory 

To realise its goals, IDIS aims at the: 

Table 1. Protocols supported by IDlS and their relation with the 
OS1 RM. 

OS1 Protocol 
Stack 

Protocols Supported By IDlS 

Application 

Presentation RPCs 

Session 

Transport DARPA DARPA HSTP IS0 VMTP 
TCP UDP TP4 

Network X.25 IP DARPA IP 

Data Link E- HDLC IS0 LLC (IEEE 82.2) 

ISDN (X.25Layer2) IEEE IEEE ANSI 

Physical ATM X.21 V.35 802.3 802.5 FDDl 

answers to the problems IDIS is dealing with. The time 
required for the exhaustive combinatorial examination of 
al l  alternatives can be drastically reduced by the introduc- 
tion of empirical criteria (rules of thumb usually used by 
DS designers; the data and process allocation problem is 
considered NP-complete 171). ADS configuration problem 
that involves several complex interrelated issues can be 
solved using heuristic techniques. Furthermore, since most 
of these problems are semi-structural, the expert system 
approach was considered as the most appropriate for 
IDIS implementation [I 11. Thus, IDIS serves as a tool of 
formal description and exploitation of various distributed 
system design methods and techniques based on empirical 
knowledge and algorithmic methodologies. 

The output ofIDIS is a detailed parametric description 
of the functional and performance characteristics for all 
resources included in each location, processes operating 
on it, and protocol-stacks used to describe networks and 
internetworks. The overall performance of the proposed 
architecture can be explored under actual conditions using 
simulation tools. Examination of the DS behaviour under 
conditions imposed by the described applications may 
determine the existence of bottlenecks and low resource 
utilisation. The process view simulation approach is 
adopted and automated program generation capabilities 
are incorporated into IDIS. 

3. IDlS architecture 

IDIS consists of two individual subtools, an expert system 
called the Architecture Defuition Tool (ADT) and a 
simulation environment called the Performance Evalu- 
ation Tool PET), which operate independently and 
collaborate as shown in Figure 1. The ADT maintains 
the necessary knowledge to define the architecture of the 
distributed system and the PET evaluates the proposed 
architecture performance. 

The ADT consists of three modules, co-ordinated by a 
fourth one, called the Manager, which is responsible for 
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Figure 1. IDlS architecture. 

the invocation of all others. The modules are invoked in 
the following order: 

User Interface Module (USIM): The User Interface 
Module enables an IDIS operator to define the locations 
on which distributed applications are executed, and to 
describe their operation. He/she also provides control 
information concerning specific conditions for the per- 
formance evaluation of the system. The user interface is 
fully system guided to avoid any inconsistency, contra- 
diction and incoherence, according to rules residing in the 
RUSIM. The part of the Knowledge Base containing the 
information obtained by an IDIS operator is called User 
Knowledge. 
a Topology Design Module (ToDeM): The Topology 
Design Module is responsible for process placement 
(user defined and File Servers) and the construction of 
the internetwork topology. ToDeM also determines the 
internetwork type (LAN or WAN) and instantiates the 
values of the parameters describing the network infra- 
structure characteristics. These parameters indicate the 
maximum application requirements imposed on network 
resources. As indicated in Figure 1, the ToDeM explores 
two parts of the Knowledge Base, the User Knowledge 
and a set of rules, called RToDeM, which consist of formal 
descriptions of experimental, mathematical and empirical 
techniques for data and process placement and topology 
design. This knowledge is permanently stored in the 
Knowledge Base and can be subjected to updates through 
IDISpropermechanisms. The exploration ofknowledge by 
the ToDeM produces the fact base Topology Design 
Knowledge,whichisincorporatedinto theKnowledgeBase. 

0 Network Comtmction Module (NeC0M);TheNetwork 
Construction Module designs the network infrastructure 
using User Knowledge, Topology Design Knowledge and 
a set of rules, named RNeCoM. RNeCoM contains rules 
for protocol selection and combination and for the assign- 
ment of network resources to processes. It is part of the 
Knowledge Base and can be updated by IDIS proper 
mechanisms. The NeCoM builds the network infrastruo 
ture in order to satisfy the maximum user requirements. 
The proposed network architecture must conform with the 
user specifications without wasting valuable processing or 
communication resources. If the NeCoM cannot satisfy 
user requirements, it suggests the best acceptable solution. 
The exploration of knowledge performed by the NeCoM 
results in the fact base Network Design Knowledge, incor- 
porated into the Knowledge Base. This knowledge is used 
by PET for the construction of the simulation model in 
order to evaluate the proposed architecture performance. 
0 Manager: The Manager is responsible for co-ordinating 
the ADT operation. All the modules are invoked by the 
Manager according to metarules residing in RMunuger, 
which orientate the ADT inference engine during the 
exploration of the Knowledge Base. The Manager is also 
responsible for determining the completion of an IDIS 
operation, when all the user requirements are satisfied or 
the ADT Knowledge Base is exhausted. To determine if 
the user requirements are satisfied, the Manager examines 
the simulation results, which are stored in the fact base 
Simulation Results after the completion of the simulation 
process. 

PET is invoked when the ADT has completed the 
design of the network infrastructure and is responsible 
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for estimating its performance according to the user 
specifications. I t  consists of the following two modules: 
0 SPGT: The Simulation Program Generation Tool 
transforms model and program specifications to simula- 
tion programs through the use of the Model Libraries. The 
SPGT imports DS component models and constructs the 
simulation program according to the knowledge produced 
by the ADT to describe the DS model and the control ,&ta 
concerning the experimentation process. 
0 Model Libraries: Model Libraries are constructed to 
facilitate storing and retrieving DS component models. 
Models are combined during the simulation program 
construction phase and form a larger composite model. 
They can be viewed as object classes, organised in hier- 
archies due to the advantages offered. Models are directly 
imported by the SPGT, when building the overall DS 
model. 

4. Architecture Definition Tool 

As previously mentioned, the Architecture Dehition 
Tool (ADT) consists of three independent modules 
exchanging information through a common Knowledge 
Base. To implement IDIS objectives, the ADT must be 
able to store and evaluate empirical information. It also 
must facilitate the conditional invocation of modules, the 
interruption of a module operation and the invocation of 
another, and the mainienance of intermediate results. For 
all these reasons, the blackboard architectwe [12] was 
chosen for ADT implementation. The introduction of 
the Manager allows the invocation of independent 
inference engines consulting specific parts of the Knowl- 
edge Base for thecompletion of an autonomous operation. 
The same architecture is also used for the implementation 
of all the modules. For the implementation, the F’rolog 
programming language is used, since it offers a uniform 
environment for the development of all modules. 

4.1. Manager 

The Manager is responsible for the invocation and 
co-ordination of all modules as well as the evaluation of 
the simulation results. The operation of the ADT is 
supervised by the Manager and includes the following 
steps: 

(1) The USIM is invoked to obtain the description of the 
distributed applications and their requirements from 
the IDIS operator. 

(2) The ToDeM is invoked to place back-end processes 
andFileServers and to constructthenetwork topology. 

(3) The NeCoM is invoked to instantiate the network 
resources. 

(4) The SPGT is invoked to generate the simulation code. 
(5) After the simulation process is completed, simulation 

results are evaluated. If all the operator’s requirements 
are satisfied, the USIM is invoked to present the results 
to the IDIS operator and intermediate knowledge is 
removed. If application requirements are not satisfied 

or the utilisation of the network resources exceeds 
the proper limits [13], the NeCoM and ToDeM are 
selectively reactivated under the supervision of 
empirical redesign rules residing in m a n a g e r  and 
step 4 is reactivated. If there are no alternative 
solutions and the IDIS operator requirements are 
still not satisfied, the most efficient solution is 
presented. 

The completion of the simulation phase is the most 
time consuming part of the IDIS operation. To accelerate 
IDIS performance, redesign metarules are invoked by the 
Manager so that all possible changes are canied out before 
the simulation process is reactivated. 

4.2. User interface 

The User Interface Module (USIM) is a fully system 
driven environment. The IDIS operator explicitly pro- 
vides the information requested in a predefined form. 
The operator is responsible for the complete description 
of the system specifications, and the USIM is responsible 
for testing the correctness of the description. User infor- 
mation is stored in the Knowledge Base as presented in 
Figure 2. 

During the description of the applications, the USIM 
is responsible for ensuring that the information provided 
by the IDIS operator conforms with the predehed 
structure and form, as well as checking for any possible 
contradictions and omissions (knowledge acquisition con- 
trol). For example there must be aprocessing() predicate 
for a back-end process each time it is invoked by a 
request( ) predicate. USIM also extracts possible implicit 
knowledge from IDIS operator descriptions. For example, 
for each diskIO() predicate, a reguest() predicate is 
constructed, indicating information exchange between 
the process and a File Server as well as a processing( ) 
predicate for the File Server. 

The User Interface .Module is also responsible 
for the presentation of the proposed architecture and 
the expected performance characteristics to ‘the IDIS 
operator. 

4.3. Topology design 

As previously mentioned, the primary goal of the 
Topology Design Module (ToDeM) is to suggest 
locations for processes and data and to defme the way in 
which networks corresponding to locations should be 
interconnected. The secondary goal is to estimate the 
application requirements from the network resources. As 
a result, the ToDeM operation is divided in two parts. The 
first part corresponds to process placement and the design 
of the intemetwork topology. The second concerns the 
instantiation of the parameter values, describing the 
network infrastructure characteristics. 

Topology design is based on the’ following assump- 
tions: 

(1) Resources in the same location are connectedvia LAN 
protocols. 
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lwtion (Loccode) 
locdist (LocA, LocB. Distance) 
application (ApplCode, Bac!€EndE'rCmSsList, 

FrontEudE'racessLkt) 

/* locations are specifled by a unique nanre '/ 
P distance betweeti locarions */ 
/*application are speciijed by a unique name */ 
/*for Bach application back-md andfiont-end */ 
/*processes are specijed uniquely */ 
/*fiant-endprocess parameters */ 
/* ~ s e r p r ~ ~ / e p ~ r a n l e t e r s  */ 

hntendqarameters (FrontEndCode, ResponseTime) 
usergarameters(ProfileID, Location, StartTime, EndTime, 

Variance, MeanRequesUntTime, Users, 
FrontEndProcessList) 

shared-data(ID, ProtileList) 
request(Pr0fdeID. SoureeLoc, SourcePr~m~s, 

P userproJles using shareable data */ 
/* information amount exchonged V 
/* behwen processes */ 

/* infomation anio~iif needed to be processed */ 
P by mch process */ 

/* information amount needed to be stored */ 
/* by each process */ 

DestLoc, DestF'rocess, RequestAmounf 
ResponseAmount, Kind, Shareable) 

prccessing(ProfilelI3, b t i o n ,  Process, Amount) 

teminal(PmfileID, Location, Process, Amount) 
diskIO@ofilelD, Location, procesS, 

Amount, Kind, Shareable) 

Figure 2. Predicates representing User Knowledge. 

(2) Locations are connected via LANs, when the distance 
between them is less that 2km. 

(3) Front-end process replicants are placed in all the 
locations, where corresponding user profiles are 
defined. 

(4) Back-end processes can be replicated. Processes are 
obliged to use the same back-end replicant, if they 
share common data. 

(5) File Servers are placed on all the locations with 
back-end process replicants and interactive appli- 
cations. 

(6) At least one File Server must be placed in each LAN 
internetwork. 

The algorithm for the back-end process placement is based 
on the avoidance of unnecessary data transfer between 
locations. The algorithm is piesented in the following 
manner:, . 
Step 1: For each back-end process h d  the profiles calling 

Step 2: For each profle set construct a different back-end 

(i) Find the sets of locations that can be inter- 
connected via an LAN. (If a set contains only 
one location, the location can not be inter- 
connected via an LAN). 

(ii) Find the average network throughput caused 

it, that are using shareable data. 

process replicant to place the replicant: 

in each location from data transfer involving 
profiles using shareable data. 

(ii) Find the average. network throughput caused 
in all possible LAN internetworks. 

(iv) Place the back-end process replicant in the 
LAN internetwork that has the maximum 
network load. 

Step 3: For each LAN internetwork with one or more 
back-end process replicants, place one back-end 
process replicant in the location having the 
maximum load. 

File Server placement is accomplished in order to satisfy 
the application response time and to distribute equally the 
intemetwork average load. The algorithm for File Server 
placement is similar to that used for back-end process 
placement. 

Thesecondphase ofToDeM operationinstantiates the 
values of parameters considered as necessary to determine 
the DS configuration. This is an intermediate phase, which 
transforms the information given by the IDIS operator to 
that needed by the NeCoM to construct the network 
infrastructure. The output of the ToDeM second phase 
is incorporated in the Topology Design Knowledge and 
consists of the predicates presented in Figure 3. 

Predicates nefworkReq( ) contains parameters deter- 
mining the requirements for networks and internetwork. 

n e t w o r k R e q ( I D , L O c L i s t , M a x D i r t a n c e , M a x A v g M e  hroughhput) 
commonNetReqOD, CommonNetList, JabsCovert, MaxAvgMessage) 
relayNodeReq(ID,Lo% InterNetworkList, MaxThroughput) 
processReq(ID, Lo+ Pros MaxProcThroughput, MaxNetThroughput) 
comraonNodeReq(ID, LOG ProcessesList, MaxUsen) 
diskReqOD,Loc, MaxThroughput. Amount) 

Figure 3. Predicates representing the application requirements from the network infrastructure. 
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Applications executed at different locations need a uni- 
form network environment in order to communicate. 
Since in its current state the ADT builds protocol stacks 
containing one protocol per layer, common protocols 
must be used in all locations for end-to-end communi- 
cation between process. These protocols correspond to 
upper OS1 layers (4-7) and must satisfy common param- 
eters contained in predicates commonNetReq( ). Predi- 
cates reluyNodeReq() indicate the existence of routing 
elements interconnecting networks. Each location net- 
work communicates with others via one or more inter- 
networks. To establish interconnection, one relay node is 
deiined per location. 

Predicates processReq( ) contain parameters indi- 
cating the user requirements for the processes running in 
each location, representing the maximum throughput 
needed for data processing (byte/s) and maximum 
throughput needed for data transfer processing (byte/$. 
Predicates eommonNodeReq( ) indicate processes that can 
be executed in the same processing node (i.e. they are not 
simultaneous). Predicates diskReq() contain the require- 
ments imposed on data storage in each location. The 
access to data storage devices is enabled through File 
Servers. 

The ToDeM can be conditionally invoked by the 
Manager in order to place back-end process replicants or 
File Servers in speciik locations defined by redesign 
metarules residing in RManager. The ToDeM is respon- 
sible for determining any changes in the location inter- 
connection schema and for estimating the values of 
parameters representing the application requirements 
from the network infrastructure. Thus the 6rst phase of 
ToDeM operation can be executed conditionally, while 
the second phase cannot. 

4.4. Network design 

The Network Construction Module (NeCoM) formulates 
the proposed DS architecture based on the workstation- 
server model, taking into account its extensions as the 
processor pull model. NeCoM operation consists of the 
following phases: 

(1) Communication Element design for all networks and 
internetworks 

(2) Relay Processing Node design for each location 
(3) Processing Node design for each location 
(4) Storage Device design for each location. 

which corresponds to peer-to-peer protocols (OS1 layers 
4-7) and the Routing Communication Element which 
corresponds to point-to-point protocols (OS1 layers 
1-3). The NeCoM forms the protocol stacks by choosing 
the protocol corresponding to each layer and determining 
protocol parameters, such as data unit size, window size, 
processing delay, etc. Protocol selection is performed top- 
down, specifying &st the transport protocol parameters, 
then the network protocol parameters, and so on. The 
whole process is performed under the supervision of 
metarules ensuring protocol compatibility (i.e. if X.25 is 
selected in the Network layer, HDLC must be selected 
in the Data Link layer also), and taking into account 
limitation and/or specifications imposed by upper layer 
protocols. NeCoM h t  constructs the common Peer 
Communication Elements used for the description of 
networks which are involved in the execution of applica- 
tions demanding a uniform network infrastructure. These 
networks are specilied by commonNetReq( ) predicates, as 
indicated in Section 4.3. Communication Elements corre- 
sponding to location LANs are then structured using the 
common Peer Communication Elements whenever this is 
indicated. The Routing Communication Elements are 
constructed using DARPA IP and local area protocols. 
Finally, the Communication Elements Corresponding 
to intemetworks are formed. They only include Routing 
Communication Elements corresponding to protocol 
combinations for LANs and WANs. 

In the second phase, Relay Node characteristics 
included in networks and internetworks are determined 
according to the reZayNodeReq() predicates and the 
configuration of the connected networks. If two U? net- 
works, for example, are interconnected via a public X.25 
internetwork, the relay nodes included in each network 
must enable the encapsulation of IP packets so that they 
can travel through an X.25 connection. 

Processing Node and Storage Device characteristics 
are determined in phases 3 and 4. The NeCoM does not 
decide the type of workstation to be used, but it suggests 
the processing power needed and determines the processes 
which can be served by a specific processing node. The 
NeCoM assumes that all front-end processes can be 
executed in the user's workstation, but back-end pro- 
cesses are executed at  specialised server workstations. 
Nodes, processing as well as relay, support the protocol 
stacks described by the Communication Elements of the 
network or internetwork they belong to. 

The NeCoM results are stored in the fact base Network 
During the fust phase, Communication Element Design, 
the NeCoM constructs the protocol stacks corresponding 
to networks and internetworks. Communication Elements 
are dividedin two parts, the Peer Communication Element 

Design Knowledge, incorporated in the Knowledge Base; 
it is presented in Figure 4. 

The NeCoM can be conditionally invoked by the 
Manager in order to increase the network resource 

communicationElement(Instance, [locationList], [PeerComID, RoutComID]). 
relayProcessingNode(1nstance. [Location, InternenvorkList, ProcessingPower], U). 
processingNode(Instance, [Location, ProcessList, ProcessingPower, Number], U). 
storageDevicefJnstance, [Location, Capacity, Speed], [I). 

Figure 4. Predicates representing Network Design Knowledge. 
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performance or to change the configuration (supported 
protocol stack) of specific networks or internetworks. The 
NeCoM is built according to the blackboard architecture, 
thus the inference engines corresponding to its operation 
phases can be independently invoked by the redesign rules 
of Manager. 

5. Performance Evaluation Tool 

As previously mentioned, the Performance Evaluation 
Toot (PET) is responsible for evaluating the architecture 
proposed by the NeCoM. PET operation includes two 
modules: 

5.1. Simulation Program Generation Tool 

Automated program generation proved to be an efficient 
technique for dealing with the numerous combinations 
encountered when designing the proposed architecture 
that ought to be represented as a simulation model. As 
illustrated in Figure 1, a module called the Simulation 
Program Generation Tool (SPGT) is incorporated within 
the IDIS framework to facilitate the construction of 
complex DS models. The SPGT performs the automated 
specification transformation into program code. Specifi- 
cations reside in the Knowledge Base and refer either to 
the model construction (i.e. combing  individnal DS 
component submodels in order to form a single 
composite model) or to the actual simulation experiment 
(control data referring to the execution of the simulation 
experiment). The SPGT extracts specifications through 
accessing different parts of the Knowledge Base and builds 
the simulation program based on the pre-constructed 
submodels residing in the Model Libraries. Models are 
imported only though their name; the SPGT is not 
involved with their implementation, which contributes to 
the latitude and flexibility of the whole process. 

Although most generators in the simulation area are 
considered to be interactive, the SPGT has no interaction 
with the IDIS operator. Instead, all specifications 
provided by the IDIS operator demand a considerable 
degree of processing by the ADT modules before they are 
transformed to simulation specifications. 

The SPGT is implementad in Prolog. The language 
selected for model implementation purposes is 
MODSIM [14], which is a high-level, object-oriented 
language for perforping simulation experiments. DS 
components models are therefore implemented as 
MODSIM objects. 

5.2. Model libraries 

Use of the ADT may result in numerous combinations of 
individual DS components in forming the overall system 
architecture. The PET should be in position to deal with all 
different scenarios; thus, it should acquire characteristics 
such as modularity and extendibility to deal with the 
complexity encountered. Process oriented simulation was 
considered to be the most appropriate methodology for 
conducting simulation studies in this domain, since DS 
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components and data exchange between them may 
be obviously represented as a model consisting of 
interacting objects. These objects reside in the Model 
Libraries, organised in class hierarchies in order to 
achieve inheritance capabilities. 

For the purpose of the simulation study, the DS 
architecPxe proposed by the ADT is a detailed descrip- 
tion of the network infrastructure, supporting the opera- 
tion of the distributed application, and distributed 
applications specifications, which are originally provided 
by the IDIS operator and are not altered while being 
processed by the ADT. 

The network infrastructure is viewed as a collection of 
individual networks and internetworks interacting 
through message interchange. Each network (or intemet- 
work) consists of network nodes (processing and relay). 
Processing nodes are represented as individual objects 
consisting of two major parts: the processing element 
and the communication element. Based on the NeCoM 
description, the communication element of the node entity 
is viewed as a set of discrete layers and each layer supports 
a single protocol. Owing to their wmmon characteristics, 
protocols corresponding to the same layer are organised in 
class hierarchies. The processing element of the node is 
viewed as a processing unit, considered to act as a CPU, 
but no modelling of the processing activity is actually 
required. Every processing node may therefore be 
modelled as an object having as components individual 
protocols and a processing unit. 

Relay Nodes are represented as individual objects 
consisting of two major parts: the relay element and the . 
communication element. To achieve interconnection, 
spat protocols for the relevant OS1 layer have to be 
supported in order to achieve message interchange. Relay 
element modelling explicitly requires the provision of these 
protocol models, which occasionally turns out to be a 
drawback since interconnection mechanisms are not yet 
standardised. 

The communication channel, as a basic component of 
every network of internetwork, is also modelled as an 
object. The most important channel characteristics for 
simulation purposes, namely throughput and error rate, 
are represented as object properties. 

Distributed applications are modelled as individual 
objects, organised in class hierarchies. Each application 
model represents a set of processes (front-end and back- 
end) as described by the IDIS operator. Each process 
corresponds to a processing node, that is, there should 
be a single process feeding with input data a single 
processing node, since there are no simultaneous pro- 
cesses operating on the same node according to the 
NeCoM description. Input data consist of requests for 
processing, exchanging and storing information used by 
the ADT to describe the functionality of distributed 
applications. The method by which input data are 
generated and forwarded to the processing nodes is 
characterised by the statistical distributions defined by 
the IDIS operator during user proiile description. 

The above observations may be summarised as 
follows: the overall DS model consists of a network 
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Protocol Models Network and Internetwork 

1 protocol model for 
every layer supported 

Communication 
Channel Models 

Application Models & c y .  
Network I&astmcture Model 

6 DS Model 

Figure 5. Abstract view of the proposed modelling schema. 

infrastructure model and the distributed application 
models. The network infrastructure model consists of 
network and internetwork models, which are formed as 
a collection of node models (process or relay nodes), that 
in turn are composed of communication protocol 
models, and communication channel models. An abstract 
view of the proposed modelling schema is presented in 
Figure 5. 

After the completion of the simulation process, 
simulation results are stored using the frame formalism 
in the fact base Simulation Results and are consequently 
processed by the Manager. Performance measurements 
are obtained for all resources, communication networks 
and distributed applications, as average response time and 

delay for all the front-end processes, total network 
throughput, resource and protocol utilisation. 

6. Applicability and examples 

To demonstrate IDIS functionality, a simple application 
case study is examined. This study concerns the distributed 
database used in the Admission Office of our Department 
in the University of Athens. The Admission Office 
premises are located in four different buildings, three in 
the University Campus (Main Ofice, Department A 
and Deportment B) and one at the Central University 
Building downtown (Department C). Two applications 

Word Processing Front End 
Data Retrieval Batch 

13.4 Km _~,_,,_.___.... ...---- 

Interactive 2 
_.___... ____... .. _._..- ... 

Department C ;6.s Km ;.;o,2 

Main Office 
Data Modification 1 
Data Modification 2 

... 

Department B 
Data Retrieval Interactive 2 

Figure 6. A simple distributed system example. 
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are examined. The first application is the Admission Office 
Database, which consists of two individual databases 
viewed as back-end processes, one for staff information 
and statistics and one for students. Both are updated and 
examined from different locations, as shown in Figure 6. 
The second application is a simple word-processing appli- 
cation. For all processes corresponding to each applica- 
tion their characteristics and functionality are described 
by the IDIS operator. For example, the Data Modijication 
I front-end process is invoked in Main Ofice by three 
persons from 9a.m. until 615p.m. with 15min variation. 
Each time it is executed, the application code must be 
fetched from the File Server, and the database DBI, which 
contains s ta f f  information, is invoked. All actions per- 
formed during the execution of Data Modijication I 
are specified via processing( ) , request( ) and diskI0 ( ) 
predicates. 

The back-end process placement is accomplished by 
the ToDeM according to the algorithms described in 
Section 4.1. Only one possible LAN internetwork inter- 
connects locations within the university campus. Both 
back-end processes, DBI and DB2, are placed within this 
LAN since DB2 is accessed from locations within the 
campus and DBI is accessed mainly from the Main 
Office (for modiiication and retrieval) and partially from 
Department C. File Servers are placed in all locations 
except Department B, which uses the FS in Department 
A. When backend process placement is completed, the 
internetwork type is determined and the User Knowledge 
predicates are updated. 

An example of the architecture proposed by NeCoM 
for the location Department A is presented in Figure 7. 
Note that since there is a remote location connected with 
the Main Office through a WAN, a connection oriented 
protocol is chosen for the transport layer (TCP). The 
network protocol chosen for the LAN internetwork is 
IF', but the X.25 public network is used for the 
interconnection of the Main Ofice and Department C. 

For the LAN within location Department A, the Token 
Ring protocol is suggested since most jobs are interactive 
and a predetermined execution time limit is imposed. For 
the internetwork connecting locations within the Univer- 
sity Campus, the CSMA/CD protocol is suggested, due to 
low trattic levels and the small distances between locations. 

IDIS results are also applicable when designing 
distributed systems in the banking sector. IDIS was used 
to support our efforts towards designing and evaluating 
the new version of the DS operated by a medium size 
commercial bank to support its branches. Although for 
historical reasons most banking system implementations 
do not currently exploit general purpose DS techniques, 
all the requirements imposed are in areas for which formal 
distributed system design methods can be introduced. 

The headquarters of the bank are located in 
Thessalonika. The bank also maintains 64 branches 
located in Thessalonika, Athens and ten other smaller 
cities in Greece. The bank supports one central database in 
its headquarters, where all transactions are recorded, and 
local databases in all branches. For the communication 
purposes, leased lines are used. Since back-end processes 
were strictly d&ed and located for protection reasons, 
IDIS was used to allocate Ne servers, define the network 
topology and evaluate the performance of the system. It 
also helped us considerably during the description of the 
user requirements, since it enabled us to estimate the exact 
amount of data processed and transferred within and 
between branches. 

IDIS suggested that the HSTP protocol was the most 
suitable for the implementation of the transport layer and 
IP for the network layer. For the implementation of most 
ofthelocal branchnetworks, theToken Ringprotocol was 
chosen to ensure a predefined response time for all 
client transactions, although for some of the branches 
CSMA/CD was preferred due to low traffic. For the 
interconnection of all branches with the headquarters, 
IDIS determined the throughput necessary for the Greek 

communicationElement( l,[DepartmentA], 
[peerCommunicationElement( 1,[],[ 

/*Comn,unicrmOan EIemenf describing fheprafmal stack */ 
/*prapsedfir  lacmion Deprfment4 V 

application( 1, n,[rpcapl( 1 ,[0,2550,0,2550,bloc~ckin&request-reply,at-l~st~nce,no,inte~ctive].[])]), 
presentation( 1,~,[rpcpres(1,[1,2550,0,2550],0~1), 
session( l,n,[rpwes( l,[O,2564,2550,14,client- server],U)]), 
transport(l,0,[transConOR(l,[tcp,O,2572,8 2572, ,bytes,go-back-n,3-way,2-way,yes, l]],U)])l)]), 

nehvorkl( l,lJ,[netconless( 1,[ip,0,2608,36,8192,25~;24$8',desuibut~,so~~~ath],[])l), 
~talink(l ,~,[l lc(l ,[O,2612,4,7~P~s',go-back-~2-~vay-~ds~e,2-way- handshake,3],[]), 

physical( 1, [twistedPair,baseband],U)1)1). 

routingCommunicationElement( I,[],[ 

mac(l,[],[token-ring(l,[O,26 12,26,4,3,2,4,'10msec',int], U)])]), 

relayPrccessingNcde(1, pepartmen* [3], 104850], [I). 

processingNode(Pl,[ Departmentq PSI, 66550,1], U). 
processingNcde(P2, pepartmen* pB2],45078,1], 0). 
processingNcde(P3, pepartmen& pataMcdilication2], 14650,61,0). 
processingNcde(P4, pepartmentq pataRetrevalInteractive], 35750,2], 0). 
storageDevk@l, ~ep&en~20000000,66500], U). 

/*Relay Node uszdfir hterconnecfionV 

I* wifh fhe bockbane infernelwork */ 
r p r o c e s s i n g n a d e r n e i "  locorionDeparfmenL4 */ 

PSrorngeDedve neecedfir rheminDeprrmenc4 */ 

Figure 7. NeCoM's proposed architecture for location Department A. 
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PTT. For all the branches the workstation-server model 
was suggested, although the bank was already using host 
RISC computers with terminals. The bank uses the TCP 
instead of the HSTF' for commercial reasons. 

The main contribution of IDIS was in the performance 
evaluation of the system, since it help us to determine the 
weak points of the previous version of the system and to 
ensure the response time expected for all client trans- 
actions. The average transaction response time was 
20-25 s with the previous version of system, although with 
the new system this is expected to be reduced to 15-17 s. 
Finally, while the new version was being tested, IDIS also 
indicated that the processing power of the hardware 
supporting the central database was not enough in order 
to support all client transactions within the predefined 
response time. This was proved to be correct, forcing the 
bank to upgrade the obtained hardware. 

7. Conclusions 

Our main objective was to build a unilied environment for 
both the design and evaluation o f  distributed systems. 
To achieve this, artificial intelligence and simulation 
methodologies were integrated in an IDIS framework. 
IDIS has been developed to assist DS designers during 
the construction of both experimental and commercial 
systems. It allows them to explore many different options 
in critical situations, and thus to increase the DS perfor- 
mance. IDIS is running in a SunOS environment. All ADT 
modules and SPGT are implemented using Sepia Prolog, 
and Model Libraries are implemented using the MODSIM 
II simulation language for SunOS. Future work will focus 
on the integration of new protocols parametrically 
described by IDIS operator and the development of a 
graphical user interface. 
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