
Distrib. Syst. Enong 2(1995)102-111

I Disciplined approach towards the design 1
1 of distributed systems

~~

M Nikolaidout, D Lelis, D Mouzakis and P Georgiadis
Department of Informatics, University of Athens, TYPA Buildings, Panepistimiopolis,
15771 Ilissia, Athens, Greece

Received 27 October 1994, in final form 24 March 1995

Abstract. As the use of distributed systems is spreading widely and relevant
applications become more demanding, the efficient design of distributed systems has
become a critical issue. To achieve the desirable integration of distributed system
components, knowledge from d:fferent areas must be combined which leads to
increas:ng complexity. The construction and provision of appropriate software tools
may facilitate the design and evaluation of distr:buted systems architectures. In this
paper the architecture and functionality of the Intelligent Distributed System Design tool
(IDIS) are presented. IDlS integrates methodologies and techniques from the artificial
intelligence and simulation domains, in order to provide a uniform environment for
proposing altemat:ve architectural solutions and evaluating their performance.

1. Introduction

The efficient operation of distributed systems 0%)
depends critically on the collaboration of discrete com-
ponents, such as processing elements, storage devices
and communication networks. To achieve maximum
utilisation of these components, DSs must be carefully
designed. The variety of possible architectural solutions
and the integration of knowledge from different areas
makes the design a complex task. To effectively explore
all aspects of DS construction, software tools have been
developed, enabling experts to design DS architectures
and evaluate their performance.

Traditional approaches, such as simulation model-
ling, have been extensively applied during the preceding
decade to evaluate the performance of distributed sys-
tems and networks. Numerous tools can be referenced,
both in the industrial [I, 21 and academic community
[3,4]. Most of them contribute to the behaviour analysis
of a predetermined architecture, represented as a simula-
tion model and they cannot make suggestions for the
design of the architecture. Software tools have also been
built for investigating data or resource allocation prob-
lems using formal methods, mathematical models, simu-
lation techniques or, often, a combination of them 15-71.
In the artificial intelligence domain, examples can be
found of expert systems for designing single LAN and
WAN architectures 18-10]. These systems are based on
empirical and experimental rules. Most of them axe
built to explore certain design issues, such as ELAND
[8] that proposes scenarios for the physical topology of
local networks, but they cannot be used to evaluate the
performance of the proposed solutions.

The research activities presented in this paper are
t e-mail: mara@di.uoa.ariadnet.gr.

oriented towards the construction of the Intelligent
Distributed Systems Design tool (IDIS). IDIS is an
expert tool for proposing alternative distributed system
architectures according to speci6cations provided by
the operator and available technology. To facilitate
the performance evaluation of the proposed solutions, a
simulation environment is incorporated into the IDIS
framework.

2. IDlS objectives

Distributed systems range from a few workstations
interconnected by a single LAN to bank or airline
systems extended to many remote sites interconnected
via WANs. Distributed application requirements include
concurrent access to resources by many users, guaranteed
response time, service points that are geographically
widely distributed, openness and expandability. The
main objective of IDIS is to assist DS developers in the
decision making process during the design of a new
system or the reconfiguration of an existing system,
taking into account distributed application require
ments. IDIS does not provide commercial solutions. It
proposes alternative scenarios for the configuration of
the system and data and process placement. Since the
performance of a DS depends critically on the perfor-
mance of the network infrastructure, special attention is
given to the protocols used to support the distributed
applications and the network topology design.

The distributed applications described by IDIS are
considered to reside in merent locations. A location is
delined as a region in which the range does not exceed
Zkm, ensuring that all resources within a location can be.
physically connected through a LAN (the range of sites
interconnected by a fibre backbone is limited to 2h).

0967-1846/95/020102+10$19.50~1995 The British Computer Society, The institution of Electrical Engineersand iOP Publishing Ltd 102

Disciplined approach towards the design of distributed systems

Given that the scale of DSs varies from single LAh3 to
worldwide applications, IDIS should enable the operator
to define the range of the system according to his/her
needs; thus, both the delkition of locations as well as
the specification of their size are performed under the
operator's control, If, for example, an IDIS operator
describes the sales database of a small h, the locations
will most likely be different floors corresponding to the
departments in the h. If he/she is describing the infor-
mation system of an industrial complex, the locations can
be floors in the main corporate building, buildings in the
corporate park and remote branch oEces in different
cities.

Locations are used to define the access points of a DS.
Distributed applications consist of interacting processes.
An IDIS operator also specifies the processes operating
in it along with a formal description of their operation.
This is expressed in terms of processing, exchanging and
storing information. There are two kind of processes,
front-end processes which are invoked by users and
back-end processes, which are invoked by other pro-
cesses. Data storage is possibly only through system
back-end processes called file servers VS). The operator
also spedies the profiles of all the users in the distributed
environment. Profile description includes the front-end
processes invoked by the user, the probability of their
invocation and the location of the user. Process placement
is accomplished by IDIS or, alternatively, by the IDIS
operator.

placement of processes operating in the distributed
environment in order to minimise network traffic
0 design of the network infrastructure in order to satisfy
the requirements imposed by the distributed applications

evaluation of the system performance.

The configuration of the DS is formed based on the
integration of the workstation-server and processor pull
model. A workstation is allocated to each user for the
execution of front-end processes invoked by him/her.
Back-end processes are executed on dedicated processing
nodes. Their architecture is defined by IDIS. IDIS also
proposes the network architecture for the interconnection
ofnodeswithin locations and thelocationinterconnection
schema. IDIS is based on the OSI/ISO RM in order to
specify the network architecture. The RPC mechanism is
used to describe the three upper layers. RPC is the most
common protocol for interprocess communication in DSs.
For the description of the four lower layer of OS1 RM,
IDIS supports a variety of protocols for the implementa-
tion of LANs and WANs. All protocols are selected
because they are commercial 'and organisation stand-
ards, and are considered to fulfil w e n t and future
communication needs. Networkinterconnection is carried
out according to OS1 in the data link and network layer
via bridges and gateways. The protocols supported by
IDIS for all the OS1 layers are presented in Table 1.

The tasks that must be accomplished by IDIS cannot
be achieved using algorithmic methodologies. In spite of
this, methods exist which offer partially satisfactory

To realise its goals, IDIS aims at the:

Table 1. Protocols supported by IDlS and their relation with the
OS1 RM.

OS1 Protocol
Stack

Protocols Supported By IDlS

Application

Presentation RPCs

Session

Transport DARPA DARPA HSTP IS0 VMTP
TCP UDP TP4

Network X.25 IP DARPA IP

Data Link E- HDLC IS0 LLC (IEEE 82.2)

ISDN (X.25Layer2) IEEE IEEE ANSI

Physical ATM X.21 V.35 802.3 802.5 FDDl

answers to the problems IDIS is dealing with. The time
required for the exhaustive combinatorial examination of
al l alternatives can be drastically reduced by the introduc-
tion of empirical criteria (rules of thumb usually used by
DS designers; the data and process allocation problem is
considered NP-complete 171). ADS configuration problem
that involves several complex interrelated issues can be
solved using heuristic techniques. Furthermore, since most
of these problems are semi-structural, the expert system
approach was considered as the most appropriate for
IDIS implementation [I 11. Thus, IDIS serves as a tool of
formal description and exploitation of various distributed
system design methods and techniques based on empirical
knowledge and algorithmic methodologies.

The output ofIDIS is a detailed parametric description
of the functional and performance characteristics for all
resources included in each location, processes operating
on it, and protocol-stacks used to describe networks and
internetworks. The overall performance of the proposed
architecture can be explored under actual conditions using
simulation tools. Examination of the DS behaviour under
conditions imposed by the described applications may
determine the existence of bottlenecks and low resource
utilisation. The process view simulation approach is
adopted and automated program generation capabilities
are incorporated into IDIS.

3. IDlS architecture

IDIS consists of two individual subtools, an expert system
called the Architecture Defuition Tool (ADT) and a
simulation environment called the Performance Evalu-
ation Tool PET), which operate independently and
collaborate as shown in Figure 1. The ADT maintains
the necessary knowledge to define the architecture of the
distributed system and the PET evaluates the proposed
architecture performance.

The ADT consists of three modules, co-ordinated by a
fourth one, called the Manager, which is responsible for

103

M Nikolaidou et al

Figure 1. IDlS architecture.

the invocation of all others. The modules are invoked in
the following order:

User Interface Module (USIM): The User Interface
Module enables an IDIS operator to define the locations
on which distributed applications are executed, and to
describe their operation. He/she also provides control
information concerning specific conditions for the per-
formance evaluation of the system. The user interface is
fully system guided to avoid any inconsistency, contra-
diction and incoherence, according to rules residing in the
RUSIM. The part of the Knowledge Base containing the
information obtained by an IDIS operator is called User
Knowledge.
a Topology Design Module (ToDeM): The Topology
Design Module is responsible for process placement
(user defined and File Servers) and the construction of
the internetwork topology. ToDeM also determines the
internetwork type (LAN or WAN) and instantiates the
values of the parameters describing the network infra-
structure characteristics. These parameters indicate the
maximum application requirements imposed on network
resources. As indicated in Figure 1, the ToDeM explores
two parts of the Knowledge Base, the User Knowledge
and a set of rules, called RToDeM, which consist of formal
descriptions of experimental, mathematical and empirical
techniques for data and process placement and topology
design. This knowledge is permanently stored in the
Knowledge Base and can be subjected to updates through
IDISpropermechanisms. The exploration ofknowledge by
the ToDeM produces the fact base Topology Design
Knowledge,whichisincorporatedinto theKnowledgeBase.

0 Network Comtmction Module (NeC0M);TheNetwork
Construction Module designs the network infrastructure
using User Knowledge, Topology Design Knowledge and
a set of rules, named RNeCoM. RNeCoM contains rules
for protocol selection and combination and for the assign-
ment of network resources to processes. It is part of the
Knowledge Base and can be updated by IDIS proper
mechanisms. The NeCoM builds the network infrastruo
ture in order to satisfy the maximum user requirements.
The proposed network architecture must conform with the
user specifications without wasting valuable processing or
communication resources. If the NeCoM cannot satisfy
user requirements, it suggests the best acceptable solution.
The exploration of knowledge performed by the NeCoM
results in the fact base Network Design Knowledge, incor-
porated into the Knowledge Base. This knowledge is used
by PET for the construction of the simulation model in
order to evaluate the proposed architecture performance.
0 Manager: The Manager is responsible for co-ordinating
the ADT operation. All the modules are invoked by the
Manager according to metarules residing in RMunuger,
which orientate the ADT inference engine during the
exploration of the Knowledge Base. The Manager is also
responsible for determining the completion of an IDIS
operation, when all the user requirements are satisfied or
the ADT Knowledge Base is exhausted. To determine if
the user requirements are satisfied, the Manager examines
the simulation results, which are stored in the fact base
Simulation Results after the completion of the simulation
process.

PET is invoked when the ADT has completed the
design of the network infrastructure and is responsible

104

Disciplined approach towards the design of distributed systems

for estimating its performance according to the user
specifications. I t consists of the following two modules:
0 SPGT: The Simulation Program Generation Tool
transforms model and program specifications to simula-
tion programs through the use of the Model Libraries. The
SPGT imports DS component models and constructs the
simulation program according to the knowledge produced
by the ADT to describe the DS model and the control ,&ta
concerning the experimentation process.
0 Model Libraries: Model Libraries are constructed to
facilitate storing and retrieving DS component models.
Models are combined during the simulation program
construction phase and form a larger composite model.
They can be viewed as object classes, organised in hier-
archies due to the advantages offered. Models are directly
imported by the SPGT, when building the overall DS
model.

4. Architecture Definition Tool

As previously mentioned, the Architecture Dehition
Tool (ADT) consists of three independent modules
exchanging information through a common Knowledge
Base. To implement IDIS objectives, the ADT must be
able to store and evaluate empirical information. It also
must facilitate the conditional invocation of modules, the
interruption of a module operation and the invocation of
another, and the mainienance of intermediate results. For
all these reasons, the blackboard architectwe [12] was
chosen for ADT implementation. The introduction of
the Manager allows the invocation of independent
inference engines consulting specific parts of the Knowl-
edge Base for thecompletion of an autonomous operation.
The same architecture is also used for the implementation
of all the modules. For the implementation, the F’rolog
programming language is used, since it offers a uniform
environment for the development of all modules.

4.1. Manager

The Manager is responsible for the invocation and
co-ordination of all modules as well as the evaluation of
the simulation results. The operation of the ADT is
supervised by the Manager and includes the following
steps:

(1) The USIM is invoked to obtain the description of the
distributed applications and their requirements from
the IDIS operator.

(2) The ToDeM is invoked to place back-end processes
andFileServers and to constructthenetwork topology.

(3) The NeCoM is invoked to instantiate the network
resources.

(4) The SPGT is invoked to generate the simulation code.
(5) After the simulation process is completed, simulation

results are evaluated. If all the operator’s requirements
are satisfied, the USIM is invoked to present the results
to the IDIS operator and intermediate knowledge is
removed. If application requirements are not satisfied

or the utilisation of the network resources exceeds
the proper limits [13], the NeCoM and ToDeM are
selectively reactivated under the supervision of
empirical redesign rules residing in m a n a g e r and
step 4 is reactivated. If there are no alternative
solutions and the IDIS operator requirements are
still not satisfied, the most efficient solution is
presented.

The completion of the simulation phase is the most
time consuming part of the IDIS operation. To accelerate
IDIS performance, redesign metarules are invoked by the
Manager so that all possible changes are canied out before
the simulation process is reactivated.

4.2. User interface

The User Interface Module (USIM) is a fully system
driven environment. The IDIS operator explicitly pro-
vides the information requested in a predefined form.
The operator is responsible for the complete description
of the system specifications, and the USIM is responsible
for testing the correctness of the description. User infor-
mation is stored in the Knowledge Base as presented in
Figure 2.

During the description of the applications, the USIM
is responsible for ensuring that the information provided
by the IDIS operator conforms with the predehed
structure and form, as well as checking for any possible
contradictions and omissions (knowledge acquisition con-
trol). For example there must be aprocessing() predicate
for a back-end process each time it is invoked by a
request() predicate. USIM also extracts possible implicit
knowledge from IDIS operator descriptions. For example,
for each diskIO() predicate, a reguest() predicate is
constructed, indicating information exchange between
the process and a File Server as well as a processing()
predicate for the File Server.

The User Interface .Module is also responsible
for the presentation of the proposed architecture and
the expected performance characteristics to ‘the IDIS
operator.

4.3. Topology design

As previously mentioned, the primary goal of the
Topology Design Module (ToDeM) is to suggest
locations for processes and data and to defme the way in
which networks corresponding to locations should be
interconnected. The secondary goal is to estimate the
application requirements from the network resources. As
a result, the ToDeM operation is divided in two parts. The
first part corresponds to process placement and the design
of the intemetwork topology. The second concerns the
instantiation of the parameter values, describing the
network infrastructure characteristics.

Topology design is based on the’ following assump-
tions:

(1) Resources in the same location are connectedvia LAN
protocols.

105

M Nikolaidou et al

lwtion (Loccode)
locdist (LocA, LocB. Distance)
application (ApplCode, Bac!€EndE'rCmSsList,

FrontEudE'racessLkt)

/* locations are specifled by a unique nanre '/
P distance betweeti locarions */
/*application are speciijed by a unique name */
/*for Bach application back-md andfiont-end */
/*processes are specijed uniquely */
/*fiant-endprocess parameters */
/* ~ s e r p r ~ ~ / e p ~ r a n l e t e r s */

hntendqarameters (FrontEndCode, ResponseTime)
usergarameters(ProfileID, Location, StartTime, EndTime,

Variance, MeanRequesUntTime, Users,
FrontEndProcessList)

shared-data(ID, ProtileList)
request(Pr0fdeID. SoureeLoc, SourcePr~m~s,

P userproJles using shareable data */
/* information amount exchonged V
/* behwen processes */

/* infomation anio~iif needed to be processed */
P by mch process */

/* information amount needed to be stored */
/* by each process */

DestLoc, DestF'rocess, RequestAmounf
ResponseAmount, Kind, Shareable)

prccessing(ProfilelI3, b t i o n , Process, Amount)

teminal(PmfileID, Location, Process, Amount)
diskIO@ofilelD, Location, procesS,

Amount, Kind, Shareable)

Figure 2. Predicates representing User Knowledge.

(2) Locations are connected via LANs, when the distance
between them is less that 2km.

(3) Front-end process replicants are placed in all the
locations, where corresponding user profiles are
defined.

(4) Back-end processes can be replicated. Processes are
obliged to use the same back-end replicant, if they
share common data.

(5) File Servers are placed on all the locations with
back-end process replicants and interactive appli-
cations.

(6) At least one File Server must be placed in each LAN
internetwork.

The algorithm for the back-end process placement is based
on the avoidance of unnecessary data transfer between
locations. The algorithm is piesented in the following
manner:, .
Step 1: For each back-end process h d the profiles calling

Step 2: For each profle set construct a different back-end

(i) Find the sets of locations that can be inter-
connected via an LAN. (If a set contains only
one location, the location can not be inter-
connected via an LAN).

(ii) Find the average network throughput caused

it, that are using shareable data.

process replicant to place the replicant:

in each location from data transfer involving
profiles using shareable data.

(ii) Find the average. network throughput caused
in all possible LAN internetworks.

(iv) Place the back-end process replicant in the
LAN internetwork that has the maximum
network load.

Step 3: For each LAN internetwork with one or more
back-end process replicants, place one back-end
process replicant in the location having the
maximum load.

File Server placement is accomplished in order to satisfy
the application response time and to distribute equally the
intemetwork average load. The algorithm for File Server
placement is similar to that used for back-end process
placement.

Thesecondphase ofToDeM operationinstantiates the
values of parameters considered as necessary to determine
the DS configuration. This is an intermediate phase, which
transforms the information given by the IDIS operator to
that needed by the NeCoM to construct the network
infrastructure. The output of the ToDeM second phase
is incorporated in the Topology Design Knowledge and
consists of the predicates presented in Figure 3.

Predicates nefworkReq() contains parameters deter-
mining the requirements for networks and internetwork.

n e t w o r k R e q (I D , L O c L i s t , M a x D i r t a n c e , M a x A v g M e hroughhput)
commonNetReqOD, CommonNetList, JabsCovert, MaxAvgMessage)
relayNodeReq(ID,Lo% InterNetworkList, MaxThroughput)
processReq(ID, Lo+ Pros MaxProcThroughput, MaxNetThroughput)
comraonNodeReq(ID, LOG ProcessesList, MaxUsen)
diskReqOD,Loc, MaxThroughput. Amount)

Figure 3. Predicates representing the application requirements from the network infrastructure.

106

Disciplined approach towards the design of distributed systems

Applications executed at different locations need a uni-
form network environment in order to communicate.
Since in its current state the ADT builds protocol stacks
containing one protocol per layer, common protocols
must be used in all locations for end-to-end communi-
cation between process. These protocols correspond to
upper OS1 layers (4-7) and must satisfy common param-
eters contained in predicates commonNetReq(). Predi-
cates reluyNodeReq() indicate the existence of routing
elements interconnecting networks. Each location net-
work communicates with others via one or more inter-
networks. To establish interconnection, one relay node is
deiined per location.

Predicates processReq() contain parameters indi-
cating the user requirements for the processes running in
each location, representing the maximum throughput
needed for data processing (byte/s) and maximum
throughput needed for data transfer processing (byte/$.
Predicates eommonNodeReq() indicate processes that can
be executed in the same processing node (i.e. they are not
simultaneous). Predicates diskReq() contain the require-
ments imposed on data storage in each location. The
access to data storage devices is enabled through File
Servers.

The ToDeM can be conditionally invoked by the
Manager in order to place back-end process replicants or
File Servers in speciik locations defined by redesign
metarules residing in RManager. The ToDeM is respon-
sible for determining any changes in the location inter-
connection schema and for estimating the values of
parameters representing the application requirements
from the network infrastructure. Thus the 6rst phase of
ToDeM operation can be executed conditionally, while
the second phase cannot.

4.4. Network design

The Network Construction Module (NeCoM) formulates
the proposed DS architecture based on the workstation-
server model, taking into account its extensions as the
processor pull model. NeCoM operation consists of the
following phases:

(1) Communication Element design for all networks and
internetworks

(2) Relay Processing Node design for each location
(3) Processing Node design for each location
(4) Storage Device design for each location.

which corresponds to peer-to-peer protocols (OS1 layers
4-7) and the Routing Communication Element which
corresponds to point-to-point protocols (OS1 layers
1-3). The NeCoM forms the protocol stacks by choosing
the protocol corresponding to each layer and determining
protocol parameters, such as data unit size, window size,
processing delay, etc. Protocol selection is performed top-
down, specifying &st the transport protocol parameters,
then the network protocol parameters, and so on. The
whole process is performed under the supervision of
metarules ensuring protocol compatibility (i.e. if X.25 is
selected in the Network layer, HDLC must be selected
in the Data Link layer also), and taking into account
limitation and/or specifications imposed by upper layer
protocols. NeCoM h t constructs the common Peer
Communication Elements used for the description of
networks which are involved in the execution of applica-
tions demanding a uniform network infrastructure. These
networks are specilied by commonNetReq() predicates, as
indicated in Section 4.3. Communication Elements corre-
sponding to location LANs are then structured using the
common Peer Communication Elements whenever this is
indicated. The Routing Communication Elements are
constructed using DARPA IP and local area protocols.
Finally, the Communication Elements Corresponding
to intemetworks are formed. They only include Routing
Communication Elements corresponding to protocol
combinations for LANs and WANs.

In the second phase, Relay Node characteristics
included in networks and internetworks are determined
according to the reZayNodeReq() predicates and the
configuration of the connected networks. If two U? net-
works, for example, are interconnected via a public X.25
internetwork, the relay nodes included in each network
must enable the encapsulation of IP packets so that they
can travel through an X.25 connection.

Processing Node and Storage Device characteristics
are determined in phases 3 and 4. The NeCoM does not
decide the type of workstation to be used, but it suggests
the processing power needed and determines the processes
which can be served by a specific processing node. The
NeCoM assumes that all front-end processes can be
executed in the user's workstation, but back-end pro-
cesses are executed at specialised server workstations.
Nodes, processing as well as relay, support the protocol
stacks described by the Communication Elements of the
network or internetwork they belong to.

The NeCoM results are stored in the fact base Network
During the fust phase, Communication Element Design,
the NeCoM constructs the protocol stacks corresponding
to networks and internetworks. Communication Elements
are dividedin two parts, the Peer Communication Element

Design Knowledge, incorporated in the Knowledge Base;
it is presented in Figure 4.

The NeCoM can be conditionally invoked by the
Manager in order to increase the network resource

communicationElement(Instance, [locationList], [PeerComID, RoutComID]).
relayProcessingNode(1nstance. [Location, InternenvorkList, ProcessingPower], U).
processingNode(Instance, [Location, ProcessList, ProcessingPower, Number], U).
storageDevicefJnstance, [Location, Capacity, Speed], [I).

Figure 4. Predicates representing Network Design Knowledge.

107

M Nikolaidoo et al

performance or to change the configuration (supported
protocol stack) of specific networks or internetworks. The
NeCoM is built according to the blackboard architecture,
thus the inference engines corresponding to its operation
phases can be independently invoked by the redesign rules
of Manager.

5. Performance Evaluation Tool

As previously mentioned, the Performance Evaluation
Toot (PET) is responsible for evaluating the architecture
proposed by the NeCoM. PET operation includes two
modules:

5.1. Simulation Program Generation Tool

Automated program generation proved to be an efficient
technique for dealing with the numerous combinations
encountered when designing the proposed architecture
that ought to be represented as a simulation model. As
illustrated in Figure 1, a module called the Simulation
Program Generation Tool (SPGT) is incorporated within
the IDIS framework to facilitate the construction of
complex DS models. The SPGT performs the automated
specification transformation into program code. Specifi-
cations reside in the Knowledge Base and refer either to
the model construction (i.e. combing individnal DS
component submodels in order to form a single
composite model) or to the actual simulation experiment
(control data referring to the execution of the simulation
experiment). The SPGT extracts specifications through
accessing different parts of the Knowledge Base and builds
the simulation program based on the pre-constructed
submodels residing in the Model Libraries. Models are
imported only though their name; the SPGT is not
involved with their implementation, which contributes to
the latitude and flexibility of the whole process.

Although most generators in the simulation area are
considered to be interactive, the SPGT has no interaction
with the IDIS operator. Instead, all specifications
provided by the IDIS operator demand a considerable
degree of processing by the ADT modules before they are
transformed to simulation specifications.

The SPGT is implementad in Prolog. The language
selected for model implementation purposes is
MODSIM [14], which is a high-level, object-oriented
language for perforping simulation experiments. DS
components models are therefore implemented as
MODSIM objects.

5.2. Model libraries

Use of the ADT may result in numerous combinations of
individual DS components in forming the overall system
architecture. The PET should be in position to deal with all
different scenarios; thus, it should acquire characteristics
such as modularity and extendibility to deal with the
complexity encountered. Process oriented simulation was
considered to be the most appropriate methodology for
conducting simulation studies in this domain, since DS

108

components and data exchange between them may
be obviously represented as a model consisting of
interacting objects. These objects reside in the Model
Libraries, organised in class hierarchies in order to
achieve inheritance capabilities.

For the purpose of the simulation study, the DS
architecPxe proposed by the ADT is a detailed descrip-
tion of the network infrastructure, supporting the opera-
tion of the distributed application, and distributed
applications specifications, which are originally provided
by the IDIS operator and are not altered while being
processed by the ADT.

The network infrastructure is viewed as a collection of
individual networks and internetworks interacting
through message interchange. Each network (or intemet-
work) consists of network nodes (processing and relay).
Processing nodes are represented as individual objects
consisting of two major parts: the processing element
and the communication element. Based on the NeCoM
description, the communication element of the node entity
is viewed as a set of discrete layers and each layer supports
a single protocol. Owing to their wmmon characteristics,
protocols corresponding to the same layer are organised in
class hierarchies. The processing element of the node is
viewed as a processing unit, considered to act as a CPU,
but no modelling of the processing activity is actually
required. Every processing node may therefore be
modelled as an object having as components individual
protocols and a processing unit.

Relay Nodes are represented as individual objects
consisting of two major parts: the relay element and the .
communication element. To achieve interconnection,
spat protocols for the relevant OS1 layer have to be
supported in order to achieve message interchange. Relay
element modelling explicitly requires the provision of these
protocol models, which occasionally turns out to be a
drawback since interconnection mechanisms are not yet
standardised.

The communication channel, as a basic component of
every network of internetwork, is also modelled as an
object. The most important channel characteristics for
simulation purposes, namely throughput and error rate,
are represented as object properties.

Distributed applications are modelled as individual
objects, organised in class hierarchies. Each application
model represents a set of processes (front-end and back-
end) as described by the IDIS operator. Each process
corresponds to a processing node, that is, there should
be a single process feeding with input data a single
processing node, since there are no simultaneous pro-
cesses operating on the same node according to the
NeCoM description. Input data consist of requests for
processing, exchanging and storing information used by
the ADT to describe the functionality of distributed
applications. The method by which input data are
generated and forwarded to the processing nodes is
characterised by the statistical distributions defined by
the IDIS operator during user proiile description.

The above observations may be summarised as
follows: the overall DS model consists of a network

Disciplined approach towards the design of distributed systems

Protocol Models Network and Internetwork

1 protocol model for
every layer supported

Communication
Channel Models

Application Models & c y .
Network I&astmcture Model

6 DS Model

Figure 5. Abstract view of the proposed modelling schema.

infrastructure model and the distributed application
models. The network infrastructure model consists of
network and internetwork models, which are formed as
a collection of node models (process or relay nodes), that
in turn are composed of communication protocol
models, and communication channel models. An abstract
view of the proposed modelling schema is presented in
Figure 5.

After the completion of the simulation process,
simulation results are stored using the frame formalism
in the fact base Simulation Results and are consequently
processed by the Manager. Performance measurements
are obtained for all resources, communication networks
and distributed applications, as average response time and

delay for all the front-end processes, total network
throughput, resource and protocol utilisation.

6. Applicability and examples

To demonstrate IDIS functionality, a simple application
case study is examined. This study concerns the distributed
database used in the Admission Office of our Department
in the University of Athens. The Admission Office
premises are located in four different buildings, three in
the University Campus (Main Ofice, Department A
and Deportment B) and one at the Central University
Building downtown (Department C). Two applications

Word Processing Front End
Data Retrieval Batch

13.4 Km _~,_,,_.___.... ...----

Interactive 2
_.___... ____... .. _._..- ...

Department C ;6.s Km ;.;o,2

Main Office
Data Modification 1
Data Modification 2

...

Department B
Data Retrieval Interactive 2

Figure 6. A simple distributed system example.

109

M Nikolaidou et al

are examined. The first application is the Admission Office
Database, which consists of two individual databases
viewed as back-end processes, one for staff information
and statistics and one for students. Both are updated and
examined from different locations, as shown in Figure 6.
The second application is a simple word-processing appli-
cation. For all processes corresponding to each applica-
tion their characteristics and functionality are described
by the IDIS operator. For example, the Data Modijication
I front-end process is invoked in Main Ofice by three
persons from 9a.m. until 615p.m. with 15min variation.
Each time it is executed, the application code must be
fetched from the File Server, and the database DBI, which
contains s ta f f information, is invoked. All actions per-
formed during the execution of Data Modijication I
are specified via processing() , request() and diskI0 ()
predicates.

The back-end process placement is accomplished by
the ToDeM according to the algorithms described in
Section 4.1. Only one possible LAN internetwork inter-
connects locations within the university campus. Both
back-end processes, DBI and DB2, are placed within this
LAN since DB2 is accessed from locations within the
campus and DBI is accessed mainly from the Main
Office (for modiiication and retrieval) and partially from
Department C. File Servers are placed in all locations
except Department B, which uses the FS in Department
A. When backend process placement is completed, the
internetwork type is determined and the User Knowledge
predicates are updated.

An example of the architecture proposed by NeCoM
for the location Department A is presented in Figure 7.
Note that since there is a remote location connected with
the Main Office through a WAN, a connection oriented
protocol is chosen for the transport layer (TCP). The
network protocol chosen for the LAN internetwork is
IF', but the X.25 public network is used for the
interconnection of the Main Ofice and Department C.

For the LAN within location Department A, the Token
Ring protocol is suggested since most jobs are interactive
and a predetermined execution time limit is imposed. For
the internetwork connecting locations within the Univer-
sity Campus, the CSMA/CD protocol is suggested, due to
low trattic levels and the small distances between locations.

IDIS results are also applicable when designing
distributed systems in the banking sector. IDIS was used
to support our efforts towards designing and evaluating
the new version of the DS operated by a medium size
commercial bank to support its branches. Although for
historical reasons most banking system implementations
do not currently exploit general purpose DS techniques,
all the requirements imposed are in areas for which formal
distributed system design methods can be introduced.

The headquarters of the bank are located in
Thessalonika. The bank also maintains 64 branches
located in Thessalonika, Athens and ten other smaller
cities in Greece. The bank supports one central database in
its headquarters, where all transactions are recorded, and
local databases in all branches. For the communication
purposes, leased lines are used. Since back-end processes
were strictly d&ed and located for protection reasons,
IDIS was used to allocate Ne servers, define the network
topology and evaluate the performance of the system. It
also helped us considerably during the description of the
user requirements, since it enabled us to estimate the exact
amount of data processed and transferred within and
between branches.

IDIS suggested that the HSTP protocol was the most
suitable for the implementation of the transport layer and
IP for the network layer. For the implementation of most
ofthelocal branchnetworks, theToken Ringprotocol was
chosen to ensure a predefined response time for all
client transactions, although for some of the branches
CSMA/CD was preferred due to low traffic. For the
interconnection of all branches with the headquarters,
IDIS determined the throughput necessary for the Greek

communicationElement(l,[DepartmentA],
[peerCommunicationElement(1,[],[

/*Comn,unicrmOan EIemenf describing fheprafmal stack */
/*prapsedfir lacmion Deprfment4 V

application(1, n,[rpcapl(1 ,[0,2550,0,2550,bloc~ckin&request-reply,at-l~st~nce,no,inte~ctive].[])]),
presentation(1,~,[rpcpres(1,[1,2550,0,2550],0~1),
session(l,n,[rpwes(l,[O,2564,2550,14,client- server],U)]),
transport(l,0,[transConOR(l,[tcp,O,2572,8 2572, ,bytes,go-back-n,3-way,2-way,yes, l]],U)])l)]),

nehvorkl(l,lJ,[netconless(1,[ip,0,2608,36,8192,25~;24$8',desuibut~,so~~~ath],[])l),
~talink(l ,~,[l lc(l ,[O,2612,4,7~P~s',go-back-~2-~vay-~ds~e,2-way- handshake,3],[]),

physical(1, [twistedPair,baseband],U)1)1).

routingCommunicationElement(I,[],[

mac(l,[],[token-ring(l,[O,26 12,26,4,3,2,4,'10msec',int], U)])]),

relayPrccessingNcde(1, pepartmen* [3], 104850], [I).

processingNode(Pl,[Departmentq PSI, 66550,1], U).
processingNcde(P2, pepartmen* pB2],45078,1], 0).
processingNcde(P3, pepartmen& pataMcdilication2], 14650,61,0).
processingNcde(P4, pepartmentq pataRetrevalInteractive], 35750,2], 0).
storageDevk@l, ~ep&en~20000000,66500], U).

/*Relay Node uszdfir hterconnecfionV

I* wifh fhe bockbane infernelwork */
r p r o c e s s i n g n a d e r n e i " locorionDeparfmenL4 */

PSrorngeDedve neecedfir rheminDeprrmenc4 */

Figure 7. NeCoM's proposed architecture for location Department A.

110

PTT. For all the branches the workstation-server model
was suggested, although the bank was already using host
RISC computers with terminals. The bank uses the TCP
instead of the HSTF' for commercial reasons.

The main contribution of IDIS was in the performance
evaluation of the system, since it help us to determine the
weak points of the previous version of the system and to
ensure the response time expected for all client trans-
actions. The average transaction response time was
20-25 s with the previous version of system, although with
the new system this is expected to be reduced to 15-17 s.
Finally, while the new version was being tested, IDIS also
indicated that the processing power of the hardware
supporting the central database was not enough in order
to support all client transactions within the predefined
response time. This was proved to be correct, forcing the
bank to upgrade the obtained hardware.

7. Conclusions

Our main objective was to build a unilied environment for
both the design and evaluation o f distributed systems.
To achieve this, artificial intelligence and simulation
methodologies were integrated in an IDIS framework.
IDIS has been developed to assist DS designers during
the construction of both experimental and commercial
systems. It allows them to explore many different options
in critical situations, and thus to increase the DS perfor-
mance. IDIS is running in a SunOS environment. All ADT
modules and SPGT are implemented using Sepia Prolog,
and Model Libraries are implemented using the MODSIM
II simulation language for SunOS. Future work will focus
on the integration of new protocols parametrically
described by IDIS operator and the development of a
graphical user interface.

Disciplined approach towards the design of distributed systems

References

[l] Mills R and Skinner S 1993 C0MNE.T I11 The new
enterprise-wide performance analysis tool MASCOTS
'93, Simulation Series, vol25, (1)

of communications networks: The state of the art
IEEE Communications Magazine

[3] Vemuri V 1991 Simulation of a distributed processing
system: a case study Simulation Magazine

[4] Jones S P W and Smythe C 1993 A generic framework for
the simulation analysis of protocol layered
communication systems MASCOTS '93 Simulation
Series, vol25, no 1

Distributed Systems Proc 5th ACM SIGOPS
Workshop on Models and Paradigmr for Distributed
Systems Structuring, Mont St. Michel. September
I992

[6l Bagrodia R Land Shen C 1991 MIDAS: integrated design
and simulation of distributed systems IEEE Trans. on
Software Engineering, 17

distributing for locally distributed systems IEEE
Computer Magazine December 1992

[SI Ceri S and Tanca L 1990 Expert design of local area
networks IEEE Expert Magazine October 1990

191 hung K S and Wong M H 1990 An expert-system shell
using structured knowledge-an object-oriented
approach IEEE Computer Magazine March 1990

[lo] Sat0 A and Hamalainen R P 1990 Seteli: The Strategy
Expert for Telecommunication Investments IEEE
Expert Magazine October 1990

[ll] Riveline C 1986 L'enseignement du dur et l'enseignement
du mou Girer et comprendre Dkembre 1986, pp 42-5

[12] Nikolaidou M, Lelis D et a1 1994 Intelligent design
of distributed systems Proc. 5th Int. Con$ on
Database and Expert System Applications. September
1994

[2] Law A M and McComas M G 1994 Simulation software

[5] Kramer 3, Magee J and Sloman M 1992 Configuring

[7l Shivaratri N G, Krueger P and Singhal M 1992 Load

[13] Stallings W 1989 Local Networks: An Introduction 3rd edn
1141 CACI Products Company 1993 MODSIMII: the language

for object-orientedprogramming Reference Manual,
January 1993

111

