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A Formal Specification Framework for
Object-Oriented Distributed Systems

Didier Buchs and Nicolas Guelfi

Abstract—In this paper, we present the Concurrent Object-Oriented Petri Nets (CO-OPN/2) formalism devised to support the
specification of large distributed systems. Our approach is based on two underlying formalisms: order-sorted algebra and algebraic
Petri nets. With respect to the lack of structuring capabilities of Petri nets, CO-OPN/2 has adopted the object-oriented paradigm. In this
hybrid approach (model- and property-oriented), classes of objects are described by means of algebraic Petri nets, while data
structures are expressed by order-sorted algebraic specifications. An original feature is the sophisticated synchronization mechanism.
This mechanism allows to involve many partners in a synchronization and to describe the synchronization policy. A typical example of
distributed systems, namely the Transit Node, is used throughout this paper to introduce our formalism and the concrete specification
language associated with it. By successive refinements of the components of the example, we present, informally, most of the notions
of CO-OPN/2. We also give some insights about the coordination layer, Context and Objects Interface Language (COIL), which is built
on top of CO-OPN/2. This coordination layer is used for the description of the concrete distributed architecture of the system. Together,
CO-OPN/2 and COIL provide a complete formal framework for the specification of distributed systems.

Index Terms—Formal specifications, object-orientation, distributed systems, concurrency, algebraic Petri nets, refinement, subtyping,

algebraic specifications.

1 INTRODUCTION

FOR important applications, distributed processing pro-
vides a general, flexible, and evolutionary approach.
Distributed processing offers many advantages: availability
and reliability through replication; performance through
parallelism; sharing and interoperability through intercon-
nection; flexibility and incremental expansion through
modularity.

However, distributed systems introduce several new
considerations that must be necessarily taken into account.
Interactions between independent components give rise to
new issues such as nondeterminism, contention, and
synchronization.

In a formal and rigorous specification process, it is
necessary to have a sound mathematically-based formalism
which allows to express all of the characteristics of the
systems. When we are faced with large problems, it is also
necessary to have at one’s disposal some structuring
facilities. Moreover, the ever-increasing complexity of soft-
ware systems imposes a progressive adaptation based on
abstraction, refinement, and enrichment. Thus, specifying a
system in a formal and incremental way offers several
benefits. Indeed, the initial perception of the system to be
built may be very vague. As the analysis and the
simultaneous validation progress, the definition of the
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architecture, of the algorithms, and of the associated data
structures gradually improve; finally, the implementation
can take form.

In this paper, we present a formal framework for the
development of distributed systems. The approach we
propose has adopted the object-oriented paradigm as a
structuring principle. On the one hand, we have devised a
general formalism which can express both abstract and
concrete aspects of systems, with emphasis on the descrip-
tion of concurrency and abstract data types. This approach,
called Concurrent Object-Oriented Petri Nets (CO-OPN/2)
extends its object-based predecessor COOPN [9]. On the
other hand, a coordination layer, called Context and Objects
Interface Language (COIL), has been developed on top of
this formalism in order to be able to deal with distributed
architectures. The objective of this paper is to introduce our
approach in an intuitive way. Thus, the presentation is
organized around expressiveness aspects and methodolo-
gical considerations rather than theoretical matters which
are described in [6] and [7], with respect to CO-OPN/2, and
in [13] for COIL.

For the presentation of our approach, we use a typical
example of distributed systems, namely the Transit Node
(TNode), and progressively build a distributed commu-
nication system composed of TNodes. The presentation is
divided into several steps. The first one deals with the
abstract data types used in the example and constructs a
basic version of the communication system in which all
the TNodes can transmit messages to each other. This
first simple version allows us to introduce most of the
fundamental concepts of CO-OPN/2. The second step
enriches the basic system regarding the data input/
output ports. In the third step, the routes are added; the
construction of this new system is based on inheritance.

0098-5589/00/$10.00 © 2000 IEEE
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A more realistic system of a heterogeneous distributed
system is then introduced. This system takes into account
the timing information, the error detection algorithms,
and the heterogeneous distributed systems gateway. A
last evolution of the communication system introduces
the coordination layer COIL to support the design of
distributed architectures.

Finally, we discuss some semantic aspects of CO-OPN/2,
and present the state of the art of various object-oriented
formal methods based on a work that we did with other
colleagues on this subject [16].

2 CO-OPN/2 PRINCIPLES

In order to give the reader a quick overview of our
approach, this section introduces the main characteristics
of CO-OPN/2. More detailed explanations as well as
illustrations of these features will be provided throughout
the paper.

CO-OPN/2 is a formalism devised for the specification
and the modeling of large concurrent systems. The two
underlying formalisms of CO-OPN/2 are the algebraic
specifications and the Petri nets which are combined in a
way similar to algebraic nets [24]. The former is used to
describe the data structures and the functional aspects of a
system, while the latter is used to model its operational and
concurrent characteristics. However, both these formalisms
are not suitable to specify “in the large.” To compensate for
the lack of structuring capabilities of the Petri nets, the
object paradigm has been adopted by the CO-OPN/2
approach. Thus, a system is considered as being a collection
of independent entities which interact and collaborate with
each other to accomplish the various tasks of the system.

In order to overcome some limitations of its predecessor,
CO-OPN/2 introduces some notions specific to object-
orientation such as the notions of class, inheritance, and
subtyping. Moreover, order-sorted algebraic specifications
[15] which support subsorting have been adopted for the
description of data structures.

2.1 Object and Class

An object is considered as an independent entity composed
of an internal state and which provides some services to the
exterior. The only way to interact with an object is to request
its services; the internal state is then protected against
uncontrolled accesses. Our point of view is that encapsula-
tion is an essential feature of object-orientation and there
should not be any means to violate it.

CO-OPN/2 defines an object as being an encapsulated
algebraic net in which the places compose the internal
state and the transitions model the concurrent events of
the object. A place consists of a multiset of algebraic
values. The transitions are divided into two groups: The
methods—transitions which may possess parameters—and
internal transitions. The former correspond to the services
provided to the outside, while the latter compose the
internal behaviors of an object. Contrarily to the methods,
the internal transitions are invisible to the exterior world
and may be considered as being spontaneous events. Later
on the term event is often used as synonym of method or
internal transition.

An important characteristic of the systems we want to
consider is their potential dynamic evolution in terms of the
number of objects they may include. Thus, the dynamic
creation of objects is a major objective. In order to describe
similar dynamic evolving systems, the objects are grouped
into classes. A class describes all the components of a set of
objects and is considered as a template from which objects
are instantiated. Thus, all the objects of one class have the
same structure.

2.2 Object Interaction

In the CO-OPN/2 approach, the interaction between objects
is synchronous. That is to say, when an object requires the
service of another object, it requests a synchronization with
the method of the object provider.

An innovative feature of CO-OPN/2 is the possibility of
expressing the synchronization policy by means of a
synchronization expression attached to an internal transi-
tion or a method. Such a synchronization expression' may
involve the events of many partners joined by three
synchronization operators (one for simultaneity, one for
sequence, and one for alternative or nondeterminism). For
example, a transition of an object can simultaneously
request two different services from two different partners,
followed by the service request to a third object.

From an operational point of view, the synchronization
mechanism can be viewed as a generalization of the
“rendezvous” or transaction mechanism found in other
synchronous approaches. Informally, the event of a given
object which requests a synchronization with events of
several partners can occur, if and only if:

1. The conditions or guards® of the caller object
transition are satisfied.

2. All the events of the partners involved in the
synchronization can occur according to the policy
of the synchronization expression.

It is important to note that a method should not be
considered as a function which returns a value. Indeed
values are exchanged between the partners involved in a
synchronization by the unification of all the formal and
actual parameters. Hence, the data flow of a synchroniza-
tion is not explicitly expressed here at the specification
level, but at a more concrete level, i.e., in the coordination
layer. Several examples of synchronization as well as
additional remarks will be provided throughout the paper.

Regarding the synchronous aspects, CO-OPN/2 can be
assimilated to other strong synchronous approaches, like
Esterel [5] and Statecharts [17], in the sense that any
operation, event, synchronization, or change of state occur
instantaneously. Nevertheless, the underlying semantics of
CO-OPN/2 is not restricted to finite state automata.

2.3 Concurrency

Intuitively, each object possesses its own behavior and
evolves independently from or, let us says concurrently
with, the others. This is known as inter-object concurrency.

1. How synchronization expressions are established is explained in
Section 4.3.

2. The global pre and postconditions of Section 4.3 can be viewed as
guards.
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When operations of an object can be performed indepen-
dently, we call this intraconcurrency. The Petri net model
introduces naturally both interobject and intraobject con-
currency into CO-OPN/2, because objects are not restricted
to sequential processes.

The CO-OPN/2 semantics is expressed in terms of
transition systems whose the events are either atomic or
composite. Atomic events are methods, while composite
events are events corresponding to synchronization expres-
sions. A composite event is used to describe the behavior of
an object for a complex call by a client object of its methods.

The step semantics of CO-OPN/2 allows for the
expression of true concurrency which is not the case of
interleaving semantics. Nevertheless, the purpose of
CO-OPN/2 consists in capturing the abstract concurrent
behavior of each modeled entity, with the concurrency
granularity associated to method invocations rather than to
objects. A set of method calls can be concurrently
performed on the same object. Furthermore, it must be
noticed that as internal transitions are stabilized after a
method call, then the overall concurrent behavior is seen
atomic from the caller object point of view.

2.4 Object Identity

Within our framework, each class instance has an identity,
also called an object identifier, that is used as a reference.
Because a type is associated with each class, each object
identifier belongs to at least one type (many in case of
subtyping).

An original feature of CO-OPN/2 is the construction of a
specific order-sorted algebra for the management of object
identifiers. This order-sorted algebra is constructed in order
to reflect the subtyping relationship between class types,
i.e., two carrier sets of object identifiers are related by
subsorting (or inclusion) if, and only if, the two correspond-
ing types are related by subtyping. This order-sorted
algebra is equipped with operations that are used to define
membership predicates over types.

Since object identifiers result from an order-sorted
algebra, they can be handled as algebraic values. Thus, it
is possible, on the one hand, to store object identifiers in
object attributes and, on the other hand, to define abstract
data types built upon object identifiers, e.g., a stack or a
queue of object identifiers.

2.5 Inheritance and Subtyping

We believe that inheritance and subtyping are two different
notions which should be used for two different purposes.
Inheritance is considered as being a syntactic mechanism
which frees the specifier from the necessity of developing
classes from scratch and is mainly employed to reuse parts
of existing specifications. A class may inherit all the features
of another and may also add some services, or change the
description of some services already defined.

Our subtyping relationship is based on the strong
version of the substitutability principle [2], [20]. This
principle implies that, in any context, any class instance of
a type may be substituted for a class instance of its
supertype while the behavior of the whole system remains
unchanged. In other words, the instances of the subtype
have a strong semantic conformance relationship with the
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Fig. 1. The Transit Node.

supertype definition. This conformance relationship is
based, in CO-OPN/2 , upon the bisimulation between the
semantics of the supertype and the semantics of the subtype
restricted to the behavior of the supertype.

Both inheritance and subtyping relationships must be
explicitly given but the respective hierarchies generated by
these relationships do not necessarily coincide. In other
words, two classes related by inheritance are not necessarily
related by subtyping. Identifying both inheritance and
subtyping hierarchies leads to several limitations as pointed
out by Snyder [26] and America [1], and as illustrated by
our approach.

3 THE TRANSIT NODE CASE STUDY

This section introduces the CO-OPN/2 approach by means
of a well-known case study, the Transit Node (TNode). A
transit node is a node in a communication system which
receives messages on various input ports and routes them
toward various output ports. This case study was defined in
the RACE Project 2039 and one may find assorted
specifications of the transit node in [22], [23]. Slight changes
have been made to the TNodes definition in the RACE
project and an informal description of the transit node is
given in Section 3.1.

Our aim is to develop a heterogeneous distributed
communication system—which consists of different kinds
of TNodes interconnected by means of wires—and to
introduce progressively the syntactic and semantics aspects
of CO-OPN/2. Among the concepts we are going to
present, the concepts of data types and algebraic nets, as
well as the object-oriented notions (including class defini-
tion, creation of dynamic objects, inheritance as well as
subtyping) are particularly important. We begin by describ-
ing a basic and abstract version of the TNodes and the
wires. Therefore, this allows us to present the main ideas of
the language and to enrich and refine this version
progressively.

3.1 Informal Description of the TNode

The RACE project has defined a Transit Node as being a
node in a communication system which receives messages
on its input ports, and then routes them onwards its output
ports, according to some designated route.

A TNode, as depicted in Fig. 1, consists of N data input
ports, M data output ports, N routes, one control input
port, and one control output port. Each port is serialized
and represents a specific entity which is independent from
all others. The node is “fair,” i.e., all messages are treated
equally when a selection has to be made. Furthermore, all
messages will eventually leave the node, or be placed
within a collection of faulty messages. The control ports can
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Fig. 2. A system of TNodes.

be used to configure the TNode or to get statistical
informations such as the number of faulty messages, the
average transit time, etc.

3.2 TNode-Based Distributed System

A system of interconnected TNodes is called a distributed
communication system. The interconnection is realized by
means of wires, each of which links an input port of one
TNode to an output port of another TNode. Fig. 2 illustrates
a distributed system composed of three interconnected
TNodes which are identical.

However, a distributed communication system may
involve different kinds of TNodes, and form what we call
a heterogeneous distributed communication system. Fig. 3
shows such a communication system based on four
different types of TNodes (i.e., T'N,, TNy, T'N,, T Ny). Four
types of links are used to ensure communications between
them. In those distributed systems, TNodes, wires, and
messages can be of different nature. Then, complex
organizing notions such as communication protocol, gate-
ways, etc. have to be defined.

3.3 Presentation Overview

Our informal introduction of CO-OPN/2 is divided into
two stages, which are then split into different steps:

e In the first stage we begin to specify, on the one
hand, the data types which are used in the example
by means of algebraic specifications and, on the
other hand, a basic version of the TNodes in which
all TNodes can transmit messages to each other. The
second step is concerned with the enrichment of the
basic system regarding the data input/output ports.
In the third step, the routes are added. The fourth

TNb
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TNb’

TNa

hN

TNa’

TNb

TNa
B —

Fig. 3. A heterogeneous system of TNodes.

Fig. 4. Relation between the different kinds of TNodes and wires.

step introduces the input/output control ports and a
communication system which involves two different
kinds of TNodes is finally developed.

e In the second stage, a more realistic example of a
heterogeneous distributed communication system is
added. It takes into account the timing informations,
the error detection algorithms and the heteroge-
neous distributed systems gateway.

In Fig. 4, the organization scheme of all these steps is

described by a graph of the entities of the different
evolution phases using the following conventions:

e Dashed arrows indicate the synchronization re-

quests between class instances (not the data flow).

e Thick white arrows indicate inheritance.

e Vertical solid arrows indicate subtyping.

e Horizontal solid arrows describe the evolution of

classes through different development steps.

Since a TNode-based distributed system is viewed as
composed of a communication layer (the wires) and a
transmission layer (the nodes), we have two parts in the
specification corresponding to these two layers.

4 ADT AND CLASS

This section presents the first step of our progressive
presentation of CO-OPN/2 using the concrete specification
language associated with it. In this first step, we define the
basic version of the TNode and the basic communication
layer. These definitions require the description of the basic
structure of a CO-OPN/2 specification, as well as the
introduction of several fundamental concepts such as the
concept of abstract data type, class, and cooperation
between class instances using synchronization expressions.

4.1 Basic Structure

A CO-OPN/2 specification is composed of two kinds of
modules: the abstract data type modules and the class
modules; the underlying formalisms of these two kinds of
modules are the order-sorted algebraic specifications and
the algebraic Petri nets, respectively.
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Both kinds of moduleshave the samebasic structure, which
is composed of three parts:3 header, interface, and body.

1. The header section includes the information about
inheritance and genericity; nongeneric modules
developed from scratch begin with the ADT or
Class keywords* followed by the module name.

2. The Interface section describes which compo-
nents of the modules are accessible by other
modules. The modules, which need components
defined in other modules have to mention the
module names where these components are defined.

3. The Body section primarily conceals the properties
of the ADT operations, or the behavior, and the state
of the class instances.

4.2 Abstract Data Types

Abstract data type modules are devoted to the data
structures of the specification described algebraically.

In the case of ADT modules, the interface section
includes usually the sorts, the generators, and the opera-
tions with their arity under the respective fields Sorts,
Generators, and Operations. As for the body section, it
includes the properties of the operations under the Axioms
field and the required variable names are given under the
Where field. The properties of the operations consist in
positive conditional equations established as follows:

[Cond =>] Expri = Exprs.

Each equation relates two expressions Expr; and Expry,
which states that both expressions denote the same value.
An optional condition Cond which determines the context
in which an axiom holds true may be added.

Specification 1 groups three ADT modules. We can see
the well-known modules of booleans and naturals with
their operations and arities under the fields Generators
and Operations. Note that the Use field in the Natural
module is followed by the modules used by the module
itself, here the module Boolean.

At this stage of the specification, all the messages
transmitted through the communication system, consist
simply (and deliberately) in the unspecified values of sort
message as defined in the Message ADT module. At first
glance such a specification does not seem pertinent,
however, the details of the messages are not relevant for
the moment. We will introduce later a more concrete kind
of message.

Specification 1. Abstract Data Types
ADT Boolean;
Interface
Sort boolean;
Generators
true, false: -> boolean;
Operations
not _ : boolean -> boolean;
_and _ : boolean boolean -> boolean;

3. Specifications 1 and 2 may help the reader to understand the meaning
of the keywords introduced here.

4. Bold face keywords correspond to reserved words of the concrete
language. These words are not case-sensitive and some of them can be
singular or plural.

Body
Axioms
not (true) = false;
not (false) = true;
true and X = X;
false and x = false;

Where x:boolean;
End Boolean;

ADT Natural;
Interface
Use Boolean;
Sort natural;
Generators
0 : natural;
succ _ : natural -> natural;
Operations
_ + _ : natural natural -> natural;
_ < _ : natural natural -> boolean;
; ; other operations
Body
Axioms
0+n =n; (succ n)+m = succ (n+m)
0<0 = false; (succn)<0 = false;
O<(succ n) = true;
(succ n)<(succm) = n<m;
;; and their associated axioms
Where n,m:natural;
End Natural;

ADT Message;
Interface

Sort message;
End Message;

4.3 Basic Transit Node

The first entities of our example which have an internal
state are the basic TNodes. A basic TNode consists of a
simple, unstructured buffer in which messages arrive on an
input port and remain inside the buffer until they are
routed towards the output port.

We may notice that the Use field allows the BasicT-
node class module to use the sort message defined in the
Message ADT module. The Type field defines the
basictnode type which will be used whenever object
identifiers of basic TNodes will be required. This field has
been introduced in order to avoid any confusion between
the name of a module or a class and the name of its type,
especially in cases where inheritance and subtyping are
required. Both names are often very similar but address two
different concepts. The Methods field lists all the para-
meterized events which are visible from the outside, here
the input and output methods. A method must be
interpreted as a predicate defined, similarly as operations,
with an arity given by a list of sorts.

The last three fields remain in the Body section, ensuring
encapsulation. In the field Places, the attribute msg
consists in a multiset containing values of sort message.
The two behavioral axioms under the Axioms field are
quite simple. They do not entail neither conditions nor
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input (d) output (d)

Fig. 5. Outline of the basic TNodes.

synchronization expressions. They simply express the fact
that the formal argument d (defined in the where field) is
added or removed from the msg multiset whenever the
input or output method is invoked.

The properties of the methods and the internal transi-
tions are described by means of behavioral axioms within
the Axioms field. It is necessary to recall that an event
(method or internal transition) may ask to be synchronized
with other partners by means of a synchronization expres-
sion. The synchronization expressions are declared after the
with keyword. The usual dot notation has been adopted
and three synchronization operators are provided: ‘//’ for
simultaneity ‘. .” for sequence, ‘+’ for alternative. Behavior-
al axioms are established as follows:

[Cond =>] Event [With Sync]: : Pre — > Post,

where Cond is an optional condition imposed on the
algebraic values involved in the behavioral axiom, Fvent
is either an internal transition name or a method along with
its parameters, and Sync is an optional synchronization
expression. Pre and Post, respectively, correspond to what is
consumed and what is produced in the different places
which compose the net.

Specification 2. The Basic TNodes
Class BasicTnode;
Interface

Use Message
Type basictnode;

Methods
input _ ,
output _ : message;
Body
Place msg _ : message;
Axioms
input (d) : : ->msgd ->;
output (d): : msgd -> ;

Where d:message;
End Basictnode;

Fig. 5 shows the graphic representation of the
BasicTnode class module. Indeed, for each class module,
a natural graphic representation can be depicted. This
graphical representation is a partial view or an outline of
the textual representation in which the following conven-
tions are adopted:

e The inside of the ellipses represents what is
encapsulated.

e The black rectangles represent the methods.

e The white rectangles correspond to the internal
transitions;

e the gray rectangles correspond to the special method
which takes charge of the dynamic creation and the
initialization of the class instances, if no creation
methods are specified, then the predefined Create
method is not drawn.

e The circles identify the places or the attributes of the
objects.

e The solid arrows indicate the data flow.

4.4 Basic Communication Layer
At this point, the communication layer is considered as the
message passing from any TNode to any other TNode at
any time. This is accomplished by synchronizing the events
“message output” and “message input” of all TNodes. This
abstract representation will be refined and enriched later.
The basic communication layer is represented by an
instance of the class module given in Specification 3. This
class is equipped with an internal transition msg-passing
in the field Transitions. This internal transition requests
the simultaneous synchronization between two TNodes.
The behavioral axiom associated to the transition should be
read “the internal event msg-passing behaves in the same
way as both the simultaneous external events input and
output of any different partners that can be identified by
two different object identifiers of TNode tnl and tn2.”

Specification 3. Basic Communication Layer Classes
Class BasicWire;
Interface
Use BasicTnode;
Type basicwire;

Body
Transition msg-passing;
Axiom
! (tnl=tn2) -> msg-passing With
tnl.input(d) // tn2.output (d):: -> ;
Where d:message; tnl,tn2:basictnode;

End BasicWire;

Note the use of both the free object identifiers variables
in the condition ! (tnl=tn2) which imposes that the
communication can be performed between any two
different TNodes. The synchronization expression
tnl.input(d) // tn2.output(d) involves the two
partners tnl and tn2 and their respective methods by
means of the simultaneous operator “//.” Finally, the pre-
and post-conditions are left empty because the transition
does not involve any attribute.

Fig. 6 depicts the outline of the BasicWire class. The
dashed arrows correspond to the synchronization request
between the communication layer and any two different
TNodes. The direction of these arrows does not represent
the data flow of the synchronization but the dependency
relationship between the modules and, consequently,
between the class instances.

4.5 Discussions

In this first step, we defined a simple version of the transit
node which consists in a unstructured buffer equipped with
an input and an output port. The basic communication layer
is defined at a abstract level in the sense that only one
instance of the class BasicWire models all the wires which
link all the basic TNodes. At a first glance, this remark
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Fig. 6. Outline of the basic communication layer class.

seems trivial, but the use of free variables in the behavioral
axiom of the BasicWire provides a nice abstract expres-
sion power. Actually, all the communications are the result
of the concurrent occurrences of the same event.

Now, the questions that have to be considered are:

e How could we refine the basic TNode in order to
obtain explicit distinct communication ports instead
of a global and abstract mechanism?

e How could we specify the definition of a distributed
system topology?

5 ENRICHMENT AND OBJECT IDENTIFIERS

This step covers the enrichment of the basic TNodes and the
basic communication layer. The notion of port is added, i.e.,
a message arrives at one of the N input ports of a TNode
and leaves the TNode from one of the M output ports. As
for the communication layer, the attribute of a wire contains
the references of the two TNodes it connects.

5.1 TNodes and Communication Ports

A TNode has N input ports and M output ports. The
messages arrive concurrently at the input ports, they are
stored in the buffer and leave the node onwards from the
output ports. A communication is viewed as the passing of
a message through a wire which links one of the N input
ports and one of the M output ports of two TNodes. A
TNode can communicate with itself and several messages
can be received or transmitted through the same port.
However, the input and output ports are different, even if
they use the same port number.

5.2 CO-OPN/2 Specifications

Both classes BasicTnode and PortTnode are similar. The
introduction of the notion of port induces, of course, a new
profile for the methods input and output, as well as a new
behavior. These changes are given in Specification 5 and in
Fig.7.The specification of sort port (not detailed here) is built
from the natural numbers and the constants M and N.

Specification 4. An Abstract Data Type of a Link

ADT Link;
Interface

Use Port, PortTnode;

Sort link;

Generator

<_ _ _ _>; porttnode, port,
porttnode, port - > link;

End Link;

input (d,p) output{(d,p)

Fig. 7. Outline of TNodes with communication ports.

For the class PortWire, we need the specification of
a link between two TNodes. This is realized by the
module Link in Specification 4. The sort link
represents a cartesian product of four components, the
two TNodes references and their respective input/output
port. Specification 6 outlined in Fig. 8, gives the
specification of the class PortWire. We observe that
the event msg-passing takes into account the attribute
linked. Moreover, the special method init takes
charge of the dynamic creation of the class instances
and initializes the linked attribute with its parameter
1n of sort 1ink. This initialization ensures that only one
quadruple is present in the place linked.

Specification 5. TNodes with Communication Ports
Class PortTnode;
Interface
Use Message, Port, Natural;
Type porttnode;

Methods
input _ _,
output _ _ : message port;

Body

Place msg _ : message;

Axioms
p<N = true => input (d,p) ::->msgd;
p<M = true => output (d,p) :: d - >;

Where d:message; p:port;
End PortTnode;

5.3 Discussions

Now, we have reached a more realistic TNode definition in
which each TNode has several distinct communication
ports. The communications are made through wires which
are instances of the class PortWire, and which link
explicitly input ports to output ports. Thus, it is possible
to define the network topology since wire parameters are
given at the instance creation. A wire does not support

’ N

=1
tnl

T~ "1 output(d)

tn2

input (d)

Fig. 8. Outline of wires between TNodes with ports.
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simultaneous message passing and no routing technique is
used inside a TNode.
The questions that have to be considered are:

e How could we easily serialize the access to the
TNode ports and add routing features?

e  What is the specification of an unreliable distributed
system which could lose or corrupt messages?

Specification 6. Wires between Tnodes with Ports
Class PortWire;
Interface
Use Message, Port, PortTnode, Link;
Type portwire;
Creation init _ : link;
Body
Transition msg-passing;
Place linked : link;
Axioms
msg-passing With
tn.input (d,p)//tn’ .output (d,p’)
linked <tnp tn’ p’>
-> linked <tnp tn’ p’>;
init (1n) :: -> linked 1n;
Where d:message; ln:1ink;
p,p’ :port; tn, tn’
End PortWire;

: porttnode;

6 INHERITANCE

This enrichment step has the objective of introducing the
routing part of the TNode. Inheritance is used in order to
derive the new classes corresponding to the TNode and to the
wire template. Both the previous classes are reused, some
services as well as new attributes are added or redefined.

6.1 Transit Nodes and Routing

Each TNode includes information for the routing of the
messages onward the output ports. This information
associates each input port with a set of permissible output
ports. It is essential that the routing information of a TNode
can be modified if necessary.

Communication remains almost identical except that a
wire now links two TNodes equipped with the new type of
routing. The following sort portset, which is necessary to
develop the specifications associated to the TNodes and the
wires, is not detailed; it is obtained by instantiation of a
generic algebraic sets specification with the module Port as
actual parameter.

Specification 7. Reuse of the PortWire Class
Class PortWire;
Inherit PortWire;
Rename portwire -> routewire;
Rename PortTnode - > RouteTnode;
End RouteWire;

6.2 CO-OPN/2 Specifications

A new attribute and two new events are inserted. These are
the route definition method routedef and the internal
event loss-msg. Their respective behavioral axioms are

input (d,p)

output (d,p)

routes Q
p,y
p.,ps

1

routedef (p,ps)

init (n)

Fig. 9. Outline of the TNodes with routes.

added in the class RouteTnode. The class RouteTnode in
Specification 8 (along with its graphic outline in Fig. 9) is
not developed from scratch, it uses the inheritance
mechanism which allows to reuse or redefine some
components. Note that this example is rather poor in terms
of reuse, because only the state definition is reused.

The keyword Redefine expresses that the behavioral
axioms of inherited method are ignored and redefined by
means of the new ones given in the current class. This is the
case of methods input and output. Moreover, the
principle may also be applied to inherited attributes but
in this case we use the The keyword Undefine because we
want to suppress everything concerning the inherited place
msg. Routes are used to determine the message port
destination. The new internal event loss-msg indicates
that some messages can be lost in the TNode according to a
given criterion. At this point the criterion is very abstract
and represented by means of a function called losscrit.
We assume that this function is defined in the module
LossCriteria, which is not detailed here. The route wire
is not changed, we only define a new class that inherits all
the preceding properties (c.f. Specification 7).

The initialization init is defined recursively on the
number of ports of the TNode. The free variable ps must be
interpreted as a definition of a random choice of the routes.
Note that the Use field restrict the visibility of the module
LossCriteria to the body section.

Specification 8. Transit Nodes with Routes
Class RouteTnode;
Inherit PortTnode;
Redefine input _ _, output _ _;
Undefine msg _;
Rename porttnode - > routetnode;

Interface
Use Message, PortSet;
Method routedef _ _ ; port portset;
Creation init _ : natural ;
Body
Use LossCriteria;
Places routes _ _ : port portset;
msg _ _ : message port;
Transition loss-msg;
Axioms
p <N = true =>
input (d,p) :: routes (p,ps)

->msg(d, select (ps)),routes(p,ps);
P <M= true =>
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output (d,p) :: msg(d,p) -> ;
routedef (p, ps)
routes (p,ps’) -> routes(p.ps);
losscrit (d) = true =>
loss-msg :: msg(d,p) -> ;
init (0) :: -> routes (p,ps);
p <N = true =>
init (succ p) With Self.init (p)
-> routes (p,ps);
Where n:natural; d:message;
p:port; ps,ps’ :portset;
End RouteTnode;

6.3 Discussions

The routing and communication interferences have been
easily obtained from a previous development step using
CO-OPN/2 refinement techniques based on inheritance.
The serialization of the input ports is performed through
the routing mechanism, which is decided at message
arrival, while no output order is imposed. The route
initialization is implemented using a recursive method call.
The questions that must be considered now are how to
refine the TNodes in order to implement the communica-
tion interferences using an error detection code, and how
we can collect messages that have to be recovered by the
system manager. Moreover, we would like to achieve this
specification without modifying the definition of the
communication layer.

7 INHERITANCE VERSUS SUBTYPING

The previous versions of the running example led to a
simple distributed system composed of transit nodes of
class RouteTnode linked using basic wires. The RouteT-
node class inherits from PortTnode without any subtype
relation. Thus, it is not possible to define a distributed
system made of RouteTnode and PortTnode objects
linked by means of the wire class because they are not
substitutable. In this version, we define a new class of
transit node CtrlTnode in order to illustrate the notion of
subtype, which is used to specialize the previous TNode
into a particular error detection and recovery mechanism.

These new transit nodes filter erroneous messages as they
did before, from the point of view of the output port i.e.,
messages that are corrupted when they are transiting inside
the TNode. But these messages are redirected to a special
port which can be used to collect faulty messages. This new
class of TNode allows the client of the TNode to recover
corrupt messages thanks to an error detection algorithm.

The class CtrlTnode is a subtype of RouteTnode. As
previously explained, the subtyping relation is a semantic
constraint. In our case, it means that each CtrlTnode
behaves at least as a RouteTnode, in order to satisfy the
substitutability principle. This notion of subtyping is
strongly related to the notion of observational equivalence
of objects and depends on the observers, which are
generally the methods defined in the object interface. In
our case, it is easy to show that the general class
RouteTnode has a greater number of behaviors, due to
the new method collect-msg. So, a CtrlTnode object
can be substituted to a RouteTnode object without
modifying the behavior of the system.

input (d,p)

output (d,p)

routedef (p,ps) collect-msg(d)

init (n)
Fig. 10. Outline of TNodes with error message and recovering.

In our case, the objective is also to allow the use of
polymorphic wires which can link RouteTnode as well as
CtrlTnode because the message passing does not depend
on the filtering semantics. Thus, the communication layer is
exactly the same as in the previous part.

7.1 Design of the Loss of Messages

The state and event part is enriched from the previous
version in order to collect all the faulty messages. Specifica-
tion 9, as it’s outlined in Fig. 10, shows the CO-OPN/2
specification of this class.

Specification 9. TNodes with Error Message and Recovering
Class CtrlTnode;
Inherit RouteTnode;
Redefine loss-msg;
Rename routetnode -> ctrltnode;
Interface
Use Message;
Subtype ctrltnode -> routetnode;
Method collect-msg _ : message;
Body
Use Message, PortSet, Port;
Place faultymsg _ _ : message port;
Axioms
losscrit (d) = true =>
loss-msg :: msg(d,p)-> faultymsg(d, p);
collect-msg(d) :: faultymsg(d,p) ->;
Where d:message; p:port;
End CtrlTnode;

A class CtrlTnode inherits from the class RouteTnode
and is extended with the following components: A place
faultymsg contains values of the sort messageport
which are the faulty messages; An internal transition
errdetect selecting the erroneous messages; A method
collect-msg with a parameter of sort message which is
invoked to collect the faulty messages.

7.2 Discussions

Refinement using subtyping is exploited in order to create
easily new kinds of TNodes which are compatible with their
supertypes. This allows to modify the TNode without
changing the communication layer. Moreover, timing
considerations could be considered in order to control
message contention. We may ask how to reach a complex
heterogeneous distributed system in which time could be
managed, and a gateway between heterogeneous subsys-
tems established.
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Fig. 11. Outline of the Clock Class.

8 POLYMORPHIC REFERENCES

In this part, we are interested in specifying the distributed
systems which are made of two different kinds of nodes,
and modeled by two different classes of TNodes and wires.
The first kind of system is composed of TNodes and wires,
as has been defined in the class RouteTnode, while the
second is obtained from the first one by additionally
managing timing information meant to model the timing
latency inside the TNodes. This section introduces the
ability of CO-OPN/2 to model heterogeneous systems.

8.1 Requirements and Design

Each new TNode has a local clock. The messages in transit
across the system are composed of a timing information in
addition to the useful data. The timing part indicates the
duration of the total transit within the nodes having a clock.
That is to say, if a message is a couple <t d> where t stands
for the time information, then each TNode must increment
t according to the number of time units between the
message arrival and its time of departure. Furthermore, we
must take into account the delay taken to pass through the
physical links between TNodes.

We must transform the TNode of class RouteTNode
by adding the clock features at the TNode level and by
managing the transit delay. We do this for the TNode
class RouteTNode and we suppose that it is done for the
CtrlTnode class in the same way. Classes called
TimedRouteTnode and Clock are defined. We suppose
that there is also a class TimedCtrlTnode for the timed
controlled TNodes.

8.2 The Clock Class

The time reference is given by one object of class Clock.
This object provides two services. The time (described by
the sort time as instance of naturals) is incremented after
activating the method tick, and the current time value is
given when activating the method gettime. Concurrent
access to gettime and tick is allowed, although the
method gettime is not self-concurrent and then sequen-
tializes the access to the time reference.

We realize the clock (see Specification 10 and its outline
in Fig. 11) using two places, the number of not yet
registered tick which is equal to the number of token in
the place tickcount and the current time value for the
place currenttime. The internal transition incr imme-
diately reacts after a tick event in order to adjust the
currenttime value. This last event is necessary to make
the methods tick and gettime concurrent.

Specification 10. The Clock Class
Class Clock;
Interface
Use Time;
Type clock;
Methods
gettime _ : time;
tick;
Creation init;
Body
Use Boolean;
Places
currenttime _ : time;
tickcount _ : boolean;
Transition incr ;
Axioms
gettime (t)
currenttime t -> currenttime t;
tick :: -> tickcount true;
incr :: tickcount true, currenttime t
-> currenttime succ(t);
init :: -> currenttime 0;
Where t:time;
End Clock;

8.3 The TimedRouteTnode Class

Each TimedRouteTnode instance calls its associated local
clock instance to get the time information needed to
determine how long a message has been delayed inside.
The new kind of messages are now couples of Time and
Message in order to have an indication of the time spent
inside the system.

The modeling of the messages has been made with sorts
instead of classes for conceptual reasons. It implies that we
cannot use subtyping to specialize message into time-
dmessage and consequently, we cannot have relations
between those types. As defined before in RouteTnode, the
data inside a TNode must be associated to an output port
number, and furthermore with a time stamp. The main
difference is that time stamping will be performed when
entering the TNode and when leaving the TNodes. This
allows for future versions of the TNodes to perform some
latency control, in order to avoid excessive contention of
messages inside a TNode. The new version of the TNodes,
described in Specification 11, which includes a subtype
relation, completely extends the previous one, including the
synchronization with the clock myclock and the stamping
of the messages. The clock is created at the initialisation of
the nodes using the dedicated method init (this method
has the number of routes as parameter).

Specification 11. The Timed TNode

Class TimedRouteTnode;

Inherit RouteTNode;

Interface
Type timedtnode;
Subtype timedtnode -> routetnode;
Use TimedMessage, PortSet;
Methods

input _ _, output_ _ :timedmessage port;
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routedef _ _ : port portset;
Creation init _ : natural;
Body
Places

routes : port portset;
msg : time message time port;
theclock : time;
Axioms
p < N => input (<t’ d>,p)
With myclock.getttime(t)
routes (p,ps), theclock myclock
->msg(t’,d,t,select(ps)),
routes (p,ps), theclock myclock;

p<M=>output(<t -t’’+t’ d>,p)
With myclock.getttime(t)
msg(t’,d,t’’,p), theclock myclock
-> theclock my clock;

routedef (p, ps)
routes (p,ps’) -> routes (p,ps) ;
init (0) withmyclock.init ::
-> theclock my clock;
init (succ(n)) With Self.init (n)
-> routes(n,ps);
Where n:natural; d:message;
p:port; ps,ps’:portset;
t,t’,t’’:time; myclock:clock;
End TimedRouteTnode;

8.4 The Communication Layer

The idea is to give a description of how we can connect
different TNodes expressed in specifications RouteTnode
and TimedRouteTnode. The communication layer of class
TimedRouteTnode integrates two new features: A trans-
mission delay for the messages which are in transit between
two TNodes of class TimedRouteTnode, and one for
transmissions between TNodes of class RouteTnode and
TNodes of class TimedRouteTnode. We have four kinds of
wires defining the four different kinds of links between
heterogeneous TNodes:

e The wires linking TNodes of class RouteTnode as it
was presented before.

e The wires linking TNodes of class Timed-
RouteTnode. This is simply a rewriting of the
class RouteTnode wire where message is
replaced with timedmessage and the time
stamp of the message entering a TNode is
incremented by a constant representing the cost
of the transit through the wires.

e The wires linking in an unidirectional way
TNodes of class RouteTNode to TNodes of
class TimedRouteTnode: The time stamp is set
to zero when entering the TNodes of class
TimedRouteTnode.

o The wire linking in an unidirectional way TNodes
of class TimedRouteTnode to TNodes of class

RouteTnode lose the time stamps attached to the
messages.

The class HeteroWire described in Specification 12
shows the selection of the four kinds of transmissions
between TNodes. The mechanism used to select the kind
of TNode concerned by the transmission is based on the
use of a fine discrimination of the reference hierarchy
(routetnode is the supertype of timedtnode) using
the following conditions:

e tn isa timedtnode is satisfied, if and only if, the
value of tn, which is of type routetnode, belongs
to the domain timedtnode.

e tn isa routetnode is satisfied, if and only if, the
value of tn belongs to the domain routetnode but,
not, to timedtnode.

This is a typing condition expressed on tn by means of

the reference operations such as isa and isany which
does not consider all the super types.

Specification 12. The wire for heterogeneous TNodes
Class HeteroWire;

Interface
Use Link;
Type wire;
Creation init _ : link;
Body
Use Message, Port, RouteTnode,
TimedRouteTNode;

Transition msg-passing;
Places linked : link;
Axioms
tn isa timedtnode
& tn’ isa timedtnode =>
msg-passing
With tn.input (<t+delay,d>,p)
// tn’ .output (<t d>,p’) ::
linked <tnp tn’ p’>
-> linked <tnp tn’ p’>;

tn isa routenode
& tn’ isa timedtnode =>
msg-passing
wWith tn.input(d,p)

// tn’ .output (<t d>,p’) ::
linked <tnp tn’ p’>
-> linked <tnp tn’ p’'>;

tn isa timedtnode
& tn’ isa timedtnode =>
msg-passing
With tn.input (<0 d>,p)

// tn’ .output(d ,p’) ::
linked <tnp tn’ p’>
-> linked <tnp tn’ p’>;

tn isa routetnode

& tn’ isa routetnode =>
msg-passing

With tn.input(d,p)
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// tn’ .output (d ,p’) ::
linked <tnp tn’ p’>
-> linked <tnp tn’ p’>;

init(ln) :: -> linked 1n;
Where d:message; 1n:link;
p,p’:port; tn,tn’:routetnode;

End HeteroWire;

8.5 Discussions

The local clock is modeled using reactive object instances,
which could be controlled by a physical mechanism like a
quartz system. Complex heterogeneous distributed systems
are defined upon different message frames, transit time
management schemes, network gateways, etc. In order to
control access to different elements of the classes of the
TNode hierarchy, fine reference control mechanisms are
defined by the language to separate accesses to sub/

superclass instances.

In the previous modeling, nothing was said about the
way the whole system would be realized. It was naturally
admitted that physical nodes and wires are modeled using
the classes with the same names. This kind of implicit
assumptions is difficult to deal with when we consider
complex systems in which the boundaries of the system
components are not known.

For instance, if we want to describe more elaborate
messages, we can consider messages as objects. In this case,
it appears that the use of object references as messages
induces object localization problems.

In the following section, we will use an additional layer
over CO-OPN/2 dealing with such types of information:
Namely, the coordination layer that will be expressed with
the language COIL.

9 DisTRIBUTED DESIGN OF THE TRANSIT NODE

This section introduces the management of concrete
distribution using Context and Objects Interface Language
(COIL) [13] coordination layer. COIL is a coordination
model for distributed object systems. This model, namely
the contextual coordination model, is based on execution
contexts encompassing and coordinating objects. The
configuration structures are given by means of hierarchies
of contexts and objects, allowing to adapt the granularities
of the processes and the objects, and providing localization
information to the objects. Dynamic configurations, by
means of object migrations, are also provided by the model
and are usefull when the architecture of the distributed
system changes during the system evolution.

9.1 The Transit Node with Active Messages

In this section, the evolution of the transit node model is
continued in the direction of a distributed system in
which the messages are not only data values but more
complex entities possessing their own behavior. Other
entities of the transit Node are taken from the simple
model of Section 5.

9.2 Messages are Objects
Activities of messages are not fully detailed here, but they
can be of various natures: check consistency of message,
signal an alarm, etc. In order to illustrate more concretely
these actions, we provide two operations which are
supposed to model the possible alteration of messages
and the correction of possible inconsistencies.

The active concrete messages are not precisely defined in
this paper, they should be derived by subtyping from an
abstract class given in Specification 13.

Specification 13. Messages as Objects
Abstract Class Message;
Interface

Use Natural;
Type message;
Methods
crc: natural;
iserror;
Body
End Message;

9.3 Boundaries and Synchronizations

The components of the distributed system are obviously
nodes and wires. The boundaries of these components are
modeled by methods and gates.

In COIL, methods have the same meaning as in
COOPN/2 , they provides services from a context while
gates describes services requested by a context. The methods
for input of TNodes and gates for outputs are described in
Specification 14. Graphically a component is a gray circle
with black and white boxes at its border, the black part
being at the exterior for the methods and the white part at
the exterior for the gates. Contexts have the same structure
but they have a rectangular shape. This context encapsu-
lates the object tnode, limiting the access to this object from
outside of this context to the use of DistributedTNode
context. The wires which are illustrating the physical
connectors that exist in the reality are described in
Specification 15. We transform the wire object previously
defined into a component in which the methods that can be
called are explicitely described by gates. All these contexts
encapsulate the behavior of the entities tnode and wire
and manage the object mobility. The whole system is
modelled by synchronizing at the system context level
(Fig. 12) the gate and methods belonging to the contexts.

9.4 Object Mobility

The intrinsic complexity of active messages as well as
their localization need to introduce additional informa-
tions in the connection points as in Specification 14. The
keywords Take and Give are used for that purpose in
COIL, indicating a permanent localization change in a
chosen direction. Other COIL keywords Lend and
Borrow have the same meaning, but the move is valid
for the duration of the transactions. It must be noted that
only the move that can be observed after firing methods
needs to be managed by Take/Give keywords as in the
DistributedWire context.
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Fig. 12. A distributed system of TNodes.

Specification 14. TNodes Expressed by Contexts
Context DistributedTNode;
Interface

Use Message, PortTNode;
Object tnode:porttnode;

Methods
input _ _ : Give message, port;
Gate
output _ _ : Take message, port;
Body
Axioms

input (d,p) with tnode. input (d,p) ;
Output (d,p) with tnode.output (d,p) ;
Where d:message; p:port;
End DistributedTNode;

Specification 15. Wires Expressed by Contexts
Class ComponentPortWire;
Interface

Use Message, Port;
Type portwire;
Gates
out: message port;
inp: message port;
Body
Transition msg-passing;
Axioms
msg-passing with
inp(d,p) // out(d,p’)
_> ,-
Where d:message;
p:port;
End ComponentPortWire;

Context DistributedwWire;
Interface
Use Message, ComponentPortwire;
Object wire:portwire;
Gate

input _ _ : message, port;
output _ _ : message, port;
Body
Axioms

wire.out (d,p) With input (d,p);
wire.inp(d,p) With output (d,p) ;
Where d:message; p:port;
End DistributedWire;

9.5 Construction of a Distributed System

The creation of a particular system is performed by
instanciating the various TNodes and by interconnecting
them in the system context as shown in Specification 16.
This model reflects that wires can represent physical entities
with TNode independent behavior.

Specification 16. System of TNodes Expressed by Contexts
Context nodel as DistributedTNode () ;
End nodel;
Context node2 as DistributedTNode () ;
End node2;
Context node3 as DistributedTNode () ;
End node3;
Context node4 as DistributedTNode () ;
End node4;
Context wirel as DistributedWire() ;
End wirel;
Context wire2 as DistributedTWire () ;
End wire2;
Context wire3 as DistributedWire() ;
End wire3;
Context System;
Interface
Body
Use message, Port;
Use Context nodel, node2, node3, node4,
wirel, wire2, wire3;
Axioms
wirel.input (m,p) With
nodel.output (m, p) ;
wirel.output (m,p) With
node2. input (m,p) ;
wire2.input (m,p) With
node2.output (m,p) ;
wire2.output (m,p) With
node3.input (m,p) ;
wire3.input (m,p) With
node2.output (m,p) ;
wire3.output (m,p) With
node4.input (m,p) ;
Where m:message; p:port;
End System

This simple example shows how the context modules can
be used in order to take into account physical characteristics
of the modeled distributed system. Mapping into a real
implementation is another level of use of context diagram in
which contexts are assign to physical entities. The mapping
must preserve localization principles in which subcontexts
are assigned to the same context as their enclosing contexts,
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Fig. 13. Model for the management of object identitiers.

with the opportunity that some larger context could not be
assigned to a specific physical entity.

10 SEMANTIC ASPECTS OF CO-OPN/2

This section is aimed at giving some insights about the
semantic aspects of CO-OPN/2 and at answering the
following questions:

e What kind of semantics is defined?
e How is the semantics constructed?
e How object identifiers are managed?

We answer these questions in an informal way, but a
formal treatment of all these notions can be found in
[6] and [7] .

As already mentioned, our approach is based on two
underlying formalisms: order-sorted algebra and algebraic
nets. From a static semantics point of view, a CO-OPN/2
specification is a set of ADT modules and class modules. A
specification is said well-formed when it is complete,” when
the syntactic conditions over subsorting and subtyping
(contravariance of method arguments) are satisfied, and
when there is no cycle in the dependency graphs induced
by the modules of the specification.

10.1 Abstract Data Types

With regard to the dynamics semantics, both the abstract
data types and algebraic nets dimensions of the formal-
ism are obviously considered differently. The former is
based on order-sorted algebra as described in [15]. For
the sake of simplicity, we have adopted the initial
approach. Note that, for a given CO-OPN/2 specification,
the initial model of the abstract data type dimension is
composed of two disjoint parts. The first one consists of
all the carrier sets defined by the ADT modules of the
specification, while the second one deals with the
management of the object identifiers. In fact, this second
part, called object identifier algebra, is induced by the
information defined in the class modules, namely the
types and the subtypes. The object identifier algebra
forms an order-sorted algebra of object identifiers,
organized to reflect the subtyping relationship between
class types, i.e., two carrier sets of object identifiers are
related by subsorting (or inclusion) if, and only if, the
two corresponding types are related by subtyping. Fig. 13
illustrates an example of such an object identifier algebra

5. A CO-OPN/2 specification is complete when every symbol is defined
either in the module, which uses it, or in another module of the
specification.

based on five classes of ’cype6 t; (1 <i<5) such that
ty < tg, ty <ts3, t5 <ts, to <1y, and ty < . This subtyping
relation is depicted on the left side of the figure. On the
right side, we can observe the five carrier sets of object
identifiers, denoted A; (1 <i<5), which are related by
subsorting (inclusion) according to the subtyping relation
given on the left. Operations over these carrier sets are
provided. The generators “init;,” and “new;” constructs
the values, while the operations “super;,” and “sub;,”
are mainly used to determine the type of a given object
identifier. These semantic operations are used to define
the semantics of the keywords isa and isany.

10.2 Algebraic Nets

The semantics of the algebraic nets dimension is given in
terms of transition systems, a widespread basic formalism
used for expressing the evolution a system. A transition
system is based on the set of all possible states of the
system, one of which is the initial state, and all the events
which can occur.

In the Petri nets community, the state of a system
corresponds to the notion of marking, that is to say a
mapping which returns, for each place of the net, a multiset
of algebraic values. However, this current notion of
marking is not suitable in the CO-OPN/2 context. It is
worthwhile to recall that CO-OPN/2 is a structured
formalism which allows the description of a system by
means of a collection of entities. Moreover, this collection
can dynamically increase or decrease in terms of number of
entities. This implies that the system has to retain,
throughout its evolution, two additional informations:

1. A function which returns, for each class type, the last
object identifier used so as to be able to compute a
new object identifier, whenever, a new object is
dynamically created.

2. A function which returns, for each class, the set of all
the active object identifiers, i.e., the object which
have already been created.

Thus, in our approach, a state consists of both the functions
as above, as well a the usual marking. An event is either a
transition or a method found in the classes. Then, we define
a transition system as a ternary relation over the states and
the events.

On this basis, we are now able to describe how, and by
means of which tools, the semantics (i.e., the transition
system) of a given CO-OPN/2 specification is built.

The idea behind the construction of the semantics of a
specification composed of several class modules, is to build
the semantics of each individual class modules first, and
compose them subsequently by means of synchronizations.
The semantics of an individual class module is called a
partial semantics in the sense that it is not yet composed with
other partial semantics.

The distinction between the methods (observable events)
and the internal transitions (invisible and spontaneous
events) implies a stabilization process. This process is
necessary so that the methods are performed only when
all transitions have occurred. A system in which no more
invisible event can occur is said to be in a stable state.

6. The notation ¢ < ¢’ means that ¢ is a subtype of ¢/, graphically we
represent this by t—t'.
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Another operation called the closure operation is necessary
to take into account the synchronization requests, as well as
the three operators (sequence, simultaneity, and alterna-
tive). Such a closure operation determines all the sequential,
concurrent, and nondeterministic behaviors of a given
semantics and composes the different parts of the semantics
by means of synchronization requests.

The successive composition of both the stabilization
process and the closure operation over all the class modules
of the specification will provide a transition system in
which:

e  All the sequential, concurrent, and nondeterministic
behavior will have been inferred;

e all the synchronization requests will have been
solved; and

e all the invisible or spontaneous events will have
been eliminated; in other words, every state of the
transition system is stable.

Finally, we define the step semantics of a CO-OPN/2
specification from the above semantics in which we only
retain the events that are atomic or simultaneous. Moreover,
we only consider the transitions from states that are
reachable from the initial state.

In order to perform the three steps mentioned above,
three different sets of inference rules are provided. The first
set copes with the construction of the partial semantics of an
individual class. It is composed of two rules which generate
the events (methods and internal transitions) that follow
from the behavioral axiom of the class, the first rule for the
dynamic creation of objects, and the second rule for their
destruction. The second set of inference rules aims at
performing the internal transitions by collapsing them with
non-internal events. The third set is composed of three rules
for the three operators (sequence, simultaneity, and alter-
native), as well as one rule which takes into account the
synchronization requests, that is to say which composes the
various partial semantics established previously. The
subsequent application of these inference rules induces
three functions, let us say PSem (partial semantics),
Closure, Stab. The semantics is calculated starting from
the partial semantics of the least class module (according a
total order over the class modules of the specification), and
repeatedly adding the partial semantics of a new class
module. Whenever the partial semantics of a class module
is introduced, it is necessary to apply the function Stab, and
subsequently the function Closure, over the semantics
which includes the new class module.

Fig. 14 illustrates the step semantics of an hypothetical
CO-OPN/2 specification composed of only one basic
TNode (see Specification 2 and Fig. 5). For the sake of
clarity, only a few events are represented, and only two
messages a and b are considered. Moreover, the figure
shows the transitions system for a single object o in
which the states are simply represented as multisets of
messages. One observes that the black arrows represent
atomic events which were generated by the PSem partial
semantics function. The grey arrows, which denotes the
simultaneous events, were generated by the Closure
operation. The Closure operation generates not only all
the simultaneous events, but also all the sequential and

laa]

o.input a
o.input a // o.input a
o.output a

[a]
o.input a o.output b

0.oulput a
o.input b

o-create o.input a // o.input b .

1 ——I1 [a,b]

o.output b // 0.output a .
o.input a
o.output b
o.input b o.output a

[b]

output b
o.input b // o.input b A
o.inputb g

[bb]

Fig. 14. Step semantics of the basic TNode.

alternative events. However, being not essential for the
step semantics, these latter events have been removed
during the last process.

11 STATE OF THE ART

CO-OPN/2 is considered as a formal method for system
specification, since it allows to state the system properties
using language with a precise syntax and a semantics given
using mathematical concepts.

In the field of formal methods for computer science and
more especially for software specification, we can classify
the existing approaches into two classes: the property
oriented one where the system properties are given
explicitly and the model oriented approach where they
are implicitly given.

In the property oriented class, we found approaches
which are naturally based on mathematical logic. There are
classical approaches like pure logic and temporal logic, or
approaches which combines logic and set theory like Z and
VDM, or logic and algebra like algebraic specifications. In
all these approches the specifier must write logical formula
which define the properties that must be verified by the
future program.

The model oriented specification formalisms are always
based on a metamodel which provides basic elements and
composition operators. Thus, a specifier builds a model of
its system by composing basic element or already composed
elements. In this class, we found an approach where the
metamodel is Petri nets, process algebra or state charts.

The property oriented approaches are better suited for
engineering process where reasoning on the system proper-
ties is important. For example if deductive mathematical
proofs are important, or if a logical implementation
language is used. They are also usefull since they force
the specifier to think explicitly at its system’s properties,
thus trying to avoid hidden properties.

The model oriented approaches are better suited for
system design in the sense that they often build operational
models of the software to be developed. These approaches
are also interesting since they can provide a metamodel
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having rich elements thus reducing the size complexity of
the specification.

CO-OPN/2 is a specification formalism using a Petri net
like approach for modeling concurrent behaviors, and
algebraic specifications for describing the state values of
the modeled system. That is why CO-OPN/2 must be seen
more as a model oriented specification formalism in the
spirit of Petri nets, than as a property-oriented specification
formalism like algebraic specification or temporal logic.

Furthermore, CO-OPN/2 provides an object-oriented
way of describing its specifications. Many of the classical
specification formalisms have been extended in order to
provide object orientation. A study of some of these
approaches can be found in [16]. Concerning approaches
close to CO-OPN/2, we have studied more precisely
Cooperative Objects (CO), Object Petri Nets (OPN), and
CLass Orientation With Nets (CLOWN). We provide below
a comparison of these approaches which will allow the
reader to understand precisely the main differences
between these formalisms.

11.1 Comparison with CO-OPN/2

In this section, we describe the main specification formal-
isms which are based on Petri nets and which intend to
achieve the same objectives than CO-OPN/2. These
formalisms are: CLass Orientation With Nets (CLOWN)
[4], Cooperative Objects (CO) [25], Object Petri Nets (OPN)
[19], [18]. A general comparison of these approaches, with
respect to CO-OPN/2, is provided at the end of this section.

We discuss in this paragraph the similarities and
differences of the formalisms presented above with respect
to CO-OPN/2 . We address four main categories of object
oriented specification formalisms which are: object based
aspects, object-oriented aspects, semantics foundations, and
process model supported.

Object-Based Aspects: All the four formalisms possess a
notion of object and each object has a persistent and unique
identity, but in CLOWN, the behavior of each class of
objects is governed by a net and the tokens (data structures)
that circulate in the net represent the objects, while in the
other approaches, each object corresponds to a net and the
places play the role of the attributes. Only CO does not
ensure encapsulation.

Concerning data structures, only CO-OPN/2 and
CLOWN have the ability to describe abstract data types,
as distinct from individual objects and only CLOWN cannot
define data structures of objects (e.g., stack of objects).

Concerning concurrency, they all have the ability to
express concurrent events inside an object (intraobject
concurrency) and concurrent progress of objects (interobject
concurrency) apart form CLOWN which have only inter-
object concurrency.

Concerning communications, they all provide synchro-
nous service request and only CO and CO-OPN provide a
direct way for asynchronous communications (nonblocking
message passing). The synchronization mechanism offered
by CO-OPN/2 (i.e., synchronization expressions) appears to
be the most flexible with respect to concurrency.

Object-Oriented Aspects: They all consider a class as a
template which describes the common aspects of objects
and each class defines a type which is associated with all

instances of the class (statically or dynamically created). No
notion of class as a collection exists in these formalisms (i.e.,
extensional description of an homogeneous collection of
existing objects).

Inheritance and subtyping is proposed in all these
formalisms apart from OPN which does not provide
subtyping. It must be noticed that, only CO-OPN/2 makes
the difference between inheritance and subtyping (as
explained in this paper). CLOWN provides multiple
inheritance but with some limitations due to semantic
aspects.

They all provide in some way some mechanisms for
genericity or parameterization, but for CO and OPN it is
provided in a limited way only, for data structures and not
classes.

Process Model: The integration of the specification
formalism in a well-defined process model is mandatory
for industrial software development. Currently, only
CO-OPN/2 covers this aspect. It does it by providing a
development methodology based on formal refinement of
CO-OPN/2 specification as presented in [21]. A process
model starts with an abstract specification of the system of
interest, and then several refinements steps are made
according to a precise notion of refinement. The objective
is to achieve a specification as concrete as possible which
integrates all the design decisions and which can be directly
translated into a programming language. The programming
language considered in [21] is Java for which a important
work has been provided in order to control the implemen-
tation phase (from the more concrete CO-OPN/2 specifica-
tion to the Java program). A way of verifying properties
during all the development process is provided based on a
notion of contract (associated to each specification phase),
which is a set of temporal logical formulae that must be
satisfied at all the following refinement levels.

Furthermore, other aspects of the development process
are covered like testing [3] which is integrated with our
refinement methodology, and distributed system architec-
ture modeling [13] presented in this paper.

Future work will consist in providing a way of
addressing requirement specification using a semiformal
method Fusion.

12 CONCLUSION

In this paper, we have presented a formal approach called
CO-OPN/2 which can be used for the development of large
distributed systems. This approach is flexible enough to be
adapted to the modeling of many different kinds of
applications (including the development of distributed
algorithms [12], the development of parallel algorithms
[8]) as well as to the semantics of concurrent language (by
modeling the actor languages [10]). The transit node has
been used to describe completely and informally particular
aspects of the CO-OPN/2 language.

CO-OPN/2 supports modularity and the expression of
various kinds of concurrencies. In this paper, we have
shown how CO-OPN/2 can handle concurrency issues and
classification requirements. The following major points of
our approach have been presented: We express intraobject
and interobject true concurrency; We differentiate
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inheritance as a syntactic mechanism from subtyping which
is a semantic concern; We give a way to express hierarchies
of abstraction; We allow modular construction of specifica-
tions; we give a formal model of specification refinement.

Nevertheless, important research topics around
CO-OPN/2 have not been presented here, such as verifica-
tion issues that can be found in [3], validation issues that are
presented in [11] and refinement for distributed system
development and verification based on temporal logic that
are presented in [14]. Complete CO-OPN/2 semantics is
presented in [6]and [7].

With the progressive development of the Transit node,
we have shown the possible ways of refining specifications,
starting from an abstract description and progressively
introducing concrete aspects. The validation of each step of
the refinement process was possible through the use of
prototyping or proving tools available in the SANDS
environment [8].

Future studies will be conducted along three directions:
Tools to support the new features of the CO-OPN/2
language for the already developed environment SANDS
will be developed (you can download the tool at:
http:/Iglwww.epfl.ch). A distribution model of CO-OPN/
2 objects will be defined for heterogeneous systems with its
operational semantics; Experiment will be performed with
CO-OPN/2 on different practical case studies.
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