
EDOC’99 Page 1 of 12

Specifying distributed object applications
Using the Reference Model for Open Distributed Processing

And the Unified Modeling Language

J-M. Cornily,
M.Belaunde

France Télécom
Centre National d’Etude des Télécommunications

Technopole ANTICIPA
2, Avenue Pierre Marzin

22307 Lannion
France

Tel : + 33 2 96 05 15 63
Fax : + 33 2 96 05 39 45

E-mail : jeanmichel.cornily@francetelecom.fr, mariano.belaunde@cnet.francetelecom.fr

Abstract

This paper outlines an approach for using UML as an alternative notation for modeling
potentially distributed systems according to the standardized ITU-T G.851-01 specification
process1. The G.851-01 process, which has been elaborated in the context of
telecommunication management networking, is based on the RM-ODP viewpoints
architecture. It proposes a top-down scheme in which the requirements of the system are
firstly captured (enterprise viewpoint), then the conceptual data of the system is modeled
(the information viewpoint) and then the potentially distributed processing units are
defined (computational viewpoint).
The paper defines a UML profile for each viewpoint, which provides a precise guideline for
applying UML notations as well as the use of well-defined modeling concepts.
The increasing acceptance of UML in telecommunication domain is promising : it will
probably make easier tool support for software process engineering.

1. Introduction
Network operators manage lots of data and applications. What they call their information system is made up of
databases and software applications which, due to their history and organization, is highly heterogeneous. This
heterogeneity takes place at different levels and separation between application aspects and communication
aspects is often not well established. In this paper, we firstly introduce the Reference Model for Open Distributed
Processing which constitutes a very powerful architectural framework for specifying and modeling potentially
distributed systems. Then we present the specification process, based on the RM-ODP viewpoints architecture,
that has been elaborated and standardized by ITU-T in the context of telecommunication management
networking [G.851-01]. When standardized, that specification process made use of ad hoc notations which, due
to the growing success and the standardization of the Unified Modeling Language [UML], have now to be
replaced. This paper presents how to use UML as an alternative notation for G.851-01, together with elements on
how to define UML profiles for G.851-01 viewpoints and requirements for a software process engineering
facility enabling G.851-01 process enactment.

1 This work was partially sponsored by the French RNRT project PILOTE

EDOC’99 Page 2 of 12

2. The Reference Model for Open Distributed Processing

2.1 Scope
The RM-ODP is usually defined as a framework of abstractions, i.e. a set of modeling concepts relevant for the
specification of ODP systems and an architecture providing a structure for these concepts. RM-ODP objective is
to define modeling concepts for potentially distributed systems that are totally independent of any existing
analysis / design method or notation or programming language. The modeling concepts are object based ; they
are enough abstract and precisely defined to enable a possible mapping on to any of our favorite methods or
languages. The architecture is essentially based on the definition of a number of viewpoints providing different
perspectives on the ODP system.

2.2 Base modeling concepts
To our knowledge, the RM-ODP is one the major initiatives2 to standardize definitions of such key and base
modeling concepts as object, type, class, action, super-type / sub-type, super-class / sub-class, parent class /
derived class, etc. These concepts are generally part of the meta-model of any method but may have different
semantics. For example, the C++ keyword ‘class’ means that a type (in the sense of RM-ODP) is being declared
or defined, whereas the RM-ODP class concept is not supported by the C++ language. All these modeling
concepts are common to the whole set of viewpoints introduced here below and constitute the so-called
foundations ; in addition, viewpoint-specific modeling concepts are also defined.

2.3 Viewpoints-based architecture
Five viewpoints compose the architecture of the RM-ODP, as illustrated in figure 1. Every viewpoint focuses on
particular aspects of the ODP system and provides specific concepts to describe these aspects whereas other
aspects are out of scope. The viewpoints are (intentionally listed in alphabetical order as RM-ODP gives no
sequencing between viewpoints) :

• the computational viewpoint : focuses on the definition of potentially distributed functional units together
with their communication interface(s). The computational viewpoint specifications are made by and for
distributed application designers;

• the engineering viewpoint : focuses on the description of the platform that makes it possible for functional
units identified in the computational viewpoint to actually communicate. The engineering specifications are
made by and for system designers;

engineering

 viewpoint
information

 viewpoint

enterprise
viewpoint

computational
viewpoint

technology
viewpoint

ODP system

Figure 1. RM-ODP viewpoints architecture

2 Of course, UML, from the OMG, is also a major contribution in that domain.

EDOC’99 Page 3 of 12

• the enterprise viewpoint : focuses on the describing the ODP system with regard to its functionality, how it
takes place in its environment, how it interacts with it and what are the business requirements and
management / usage rules that govern its design. The enterprise specification is made by and for decision-
makers;

• the information viewpoint focuses on the definition of the data that is present in the ODP system, its possible
states and transitions. The information viewpoint is made by and for information system designers;

• the technology viewpoint focuses on defining which actual components are being used in terms of operating
systems, database management systems, programming languages, communication protocols, etc. The
technology viewpoint is made by and for developers.

The five RM-ODP viewpoints enable to partition the specification of the ODP system ; depending on the people
to whom one is presenting the ODP system, the appropriate viewpoint language must be selected. RM-ODP does
not prescribe the use of any concrete language, i.e. syntax, though it defines the vocabulary and its associated
semantics ; nor RM-ODP claims to be an object-oriented analysis and design method : viewpoints may be used
separately or as a whole but, in the latter case, no process is prescribed by the RM-ODP.

2.4 From RM-ODP to G.851-01
It is commonly agreed that a specification method must include the three following ingredients :

1. A set of modeling concepts;
2. A (set of) notation(s);
3. A process.

The Reference Model for Open Distributed Processing provides a very complete and powerful set of modeling
concepts. It does not prescribe a particular notation for viewpoint languages, nor it forces to use its viewpoints in
a precise way.

In the context of the specification of standardized network-level management services in ITU-T, a process based
on RM-ODP viewpoints architecture has been invented and standardized. Also, ad hoc notations were developed
and standardized. Chapter 3 introduces the G.851-01 specification process based on the RM-ODP viewpoints.

3. The ITU-T G.851-01 distributed systems specification process
Figure 2 depicts the essentially top-down process that was developed and standardized in ITU-T for the
specification of standardized network management services.

E n t e r p r i s e
S p e c i f i c a t i o n

I n f o r m a t i o n
S p e c i f i c a t i o n

C o m p u t a t i o n a l
S p e c i f i c a t i o n

E n g i n e e r i n g
S p e c i f i c a t i o n

S t a r t

E n d

Figure 2. The G.851-01 modeling process.

EDOC’99 Page 4 of 12

This process is not specific to network management but can be applied to the specification of any open
distributed system. As said earlier, the G.851-01 process is essentially top-down as it was invented to specify and
standardize new network management services.

Naturally, the enterprise viewpoint is the appropriate place to capture requirements, in terms of what is expected
from the service defined. The service is defined as a contract between a client and a provider. Expected behavior
of both the client and the provider are defined together with the externally observable behavior. Provided they
respect the contract policies, what the service does is defined. Enterprise viewpoint language concepts include
objects having roles and forming a community ; policies are attached to roles.

Secondly, the information viewpoint specification defines the data that characterize the ODP system as well as
data processing. Information viewpoint language concepts include schemas which can be either static, dynamic or
invariant. The information viewpoint pays no attention at whether the ODP system is distributed or not ; the
resulting object model is conceptual. For a given enterprise specification, a number of information specifications
can be imagined.

Then the computational viewpoint specification defines the potential for distribution, i.e. it describes units that
are subject to distribution and their interfaces. Computational viewpoint language concepts include interfaces
which can either have a server or a client role, operations associated to the interface and the operations signature.
The computational viewpoint is the first place in our process where distribution scenarios may be defined. The
computational viewpoint does not deal with how communication can actually occur between distributed objects.
For a given information specification, a number of computational specifications are possible.

Finally, the engineering viewpoint specification describes the infrastructure needed to make things defined in the
computational viewpoint (e.g. interactions between computational objects) happen. Engineering viewpoint
concepts include transparency objects such as stubs, protocol objects and binder objects. For a given
computational specification, a number of engineering specifications may exist.

In the context of standardization, the technology viewpoint is out of scope as it is out of question to fix which
techniques, tools are going to be used by different companies. A part of the value added of each company
consists in realizing the best technology choices.

4. UML as the unifying notation all along the G.851-01 process
The G.851-01 specification approach, though widely accepted by most telecommunication companies, suffers a
number of issues that need to be solved :

• The enterprise and computational viewpoints notations are purely invented from scratch and, thus, do not
enable to promote the process in other areas having the same characteristics such as intelligent networking.
In the same spirit, the information and engineering viewpoints notations, are adaptations from OSI Systems
Management notations such as the General Relationship Model [GRM] and the Guidelines for the Definition
of Managed Objects [GDMO];

• There are not, and will never be, off-the-shelf CASE tools that support this set of notations, hence
companies have to develop their own tool.

For these reasons, the new emerging Unified Modeling Language, standardized in the OMG, was the best
candidate to replace the whole set of G.851-01 notations. The following sections illustrate, on a viewpoint basis,
what are the relevant modeling concepts and what are the relationships that exist between them and those from
the UML meta-model.

We propose hereafter to introduce the methodology by illustrating it on a concrete example. The system being
considered is typical in telecommunications as it provides means to establish and release connections across an
equipment (e.g. a switch or a cross-connect). This example will serve all along the specification process. For
every viewpoint, we first present an example of what kinds of UML constructs are relevant to that viewpoint.
Then, considering that the UML notation either offers too many concepts or lacks other ones for our purpose, we
propose to define a UML profile per viewpoint.

EDOC’99 Page 5 of 12

4.1 The profile mechanism
The OMG Process Working Group recently produced a white paper on the Profile mechanism [PROFILE].
Without going into details, one can say that four items are necessary to define a profile to UML :

• Selection of relevant concepts : consists of selecting the subset of concepts of the UML meta-model that is
sufficient for our purpose. Additionally, extensions might also be necessary to introduce new modeling
concepts using UML extensibility mechanisms. These extensions have to be identified. The result of that
process is a superset of a subset of the UML meta-model;

• Presentation rules : prescribes how the modeling concepts of interest have to be presented at the GUI (colors,
icons, etc.);

• Validation rules : consists of a list of integrity constraints that make the profile self-consistent;
• Transformation rules : consists of a set of rules stating how UML profile modeling concepts must be mapped

on to specific targets, e.g. for generating CORBA IDL or Java.

In parallel, OMG domain / task forces are currently issuing RFPs to get e.g. a UML profile for CORBA, a UML
profile for Enterprise Distributing Object Computing or a UML profile for Real-time applications. For our
purpose, related to network management standards specification, we are envisaging to define UML profiles for
G.851-01 viewpoints-based specifications. These are presented hereafter. We note that the transformation rules
are not dealt with here as, though being very important, they will be elaborated later on another document (e.g.
transformation between modeling concepts from different viewpoints).

4.2 Enterprise viewpoint specification

4.2.1 Example
The enterprise viewpoint specification can be captured using a Use Case diagram.

Figure 3. Example enterprise viewpoint specification using UML

Connect
<<EnterpriseAction>>

Disconnect
<<EnterpriseAction>>

QueryArtifac ts
<<EnterpriseAction>>

CC-Caller CC-Provider

Port
<<Artifact>>

Connection
<<Artifact>>

Equipment
< <Art ifac t>>

ConnectionAction
<<EnterpriseAction>>

T his action enab les the

cal le r to discon nect two

port s pre vi ously co nnec te d

across an equipm ent.

PERM I SSION 1: the ca lle r

m ay provide ei ther the

identi ty of the two ports to

con nect or t he id en t ity o f

the connection to re lease .

T h is a cti on en ab les th

e ca ll e r t o query the

sta te of the fol lowing

ne twork resources :

1 / th e e quipm ent

2 / th e p orts

3 / th e connect ions

T his action enab les the

cal le r to connect two ports

across an equipm ent.

OBLIGAT ION 1: the cal ler

shal l provide the identi ty o

f two ports belong ing to th

e equ ipm ent.

OBLIGAT ION 2 : If one of

the two ports i s a l ready

connected, the p rovider

shou ld re ject the request.

EDOC’99 Page 6 of 12

As shown by figures 3 and 4, the enterprise community is modeled as a use case model inside which roles,
actions and policies are respectively represented by actors / classes, use cases and notes (comments). As an
illustration, RM-ODP agent roles such as the CC-Caller and CC-Provider are modeled using an UML actor ; as,
by definition, they are active roles, the interaction is oriented from them towards the use case. Artifact roles such
as Equipment, Port and Connection are represented by UML classes stereotyped <<Artifact>> ; Being passive
roles, the interactions are oriented from the use case to the artifacts. Enterprise actions such as Connect,
Disconnect and QueryArtifact are modeled using UML use cases stereotyped <<EnterpriseAction>>. For sake of
clarity, all these use cases are represented as specializations of the abstract use case ConnectionAction. Attached
to every entity, a note can capture policies ; for example, a structured documentation is attached to the use case
Connect capturing both the purpose of the action and the policies stating behavioral constraints of actors with
regard to the action Connect. For sake of readability, we choose to put them in a single note. Of course, each
policy may alternatively be specified as a separated UML constraint (a note with brackets around the text).

4.2.2 UML Profile for the enterprise viewpoint specification

4.2.2.1 Selection of relevant concepts
The following UML meta-model classes are necessary : Package, UseCase, Association, Actor.

The following extensions are needed :

• EnterpriseAction, defined as a stereotype of UseCase,
• Artifact, defined as a stereotype of Class.

4.2.2.2 Presentation rules
Some presentation rules might be prescribed, like :

1. Create a UML package to encompass the whole enterprise community specification
2. Define inside that package the three kinds of entities : use cases, artifacts and actors
3. Use a special fill color for display of enterprise artifacts.

Figure 4. Enterprise viewpoint specification presentation.

4.2.2.3 Validation rules
None.

EDOC’99 Page 7 of 12

4.3 Information viewpoint specification

4.3.1 Example
The information viewpoint specification defines the information that represents the system. In UML, we use both
class and state diagrams.

In the class diagram shown in figure 5, all object classes are stereotyped <<InformationObjectType>> to indicate
clearly that they are special kinds of object classes , i.e. they take place only at the information viewpoint.
Clearly, the information object types that are defined here are Equipment, Port and Connection which are the
result of the object-oriented modeling of artifacts (respectively Equipment, Port and Connection) identified in the
enterprise viewpoint specification. To represent this tracing relationship, a dependency link stereotyped
<<trace>> is drawn between every information object type and its corresponding artifact(s). Information object
types are defined by both attributes and operations. At this stage, operations are only named stimuli, with no
parameters, associated to state transitions.

Figure 5. Example information viewpoint specification using UML – class diagram

Equipm ent

(from Use Case V iew)

<<Arti fact>>

Port

(from Use Case V iew)

<<Arti fact>>
Connection

(f rom Use Ca se View)

<<Arti f act>>

Equ ipm e nt

overbusy : boo lean

<<Inform ationObjectT ype>>

Connection

<<Inform ationOb jectT ype>>

<<trace>>

1..1
0..*

1 ..1
+m yCon nect ions 0..*

Por t

busy : boolean

co nnec t()

d isconnect()

<<I nf orm ati onOb jec tT y pe>>

<<trace>>

1..1

0..*

1..1

+m yP orts 0..*

0. .1

1 ..1

0. .1

+aEnd

1..1

0..1

1 ..1

0..1

+z End1..1

0..1 0. .10..1

+con nect edT o

0. .1

INVARIANT : For a l l equipm ent, i f 80% of i ts ports are busy then the

equipm ent is i tse l f overbusy.

<<trace>>

EDOC’99 Page 8 of 12

free

inUse

connect disc onnect

busy == false

busy == true

Figure 6. Example information viewpoint specification using UML – state diagram of the class Port

Figure 6 shows the state machine attached to the class Port. States are defined by a label (e.g. free or inUse) and
the relationship between the state and the attributes of the information object type is captured through a note. For
example, the state « free » corresponds to the case where the value of the attribute « busy » is false, though it
could imply several attributes.

4.3.2 UML Profile for the information viewpoint specification

4.3.2.1 Selection of relevant concepts
The following UML meta-model concepts are selected :
Package, Association, StateMachine, State, Attribute, Operation, Trace Dependency stereotype.

Additional concepts are needed such as :

• InformationObjectType, defined as a stereotype of the UML meta-class Class

4.3.2.2 Presentation rules
Information viewpoint modeling concepts such as InformationObjectType and State are displayed using a fill
color which is different from the other viewpoints ones. Also, a package is defined to gather the whole
information specification.

4.3.2.3 Validation rules
Every information object type must be associated via a dependency link to one (or more) enterprise artifact(s).
This is a means to ensure that no information is introduced by the designer, which would not be justified by a
business requirement.

4.4 Computational viewpoint specification

4.4.1 Example
The computational specification defines functional units that are potential for distribution. More precisely, it
consists of the definition of a number of computational object types together with their various interfaces. Every
interface is described by the list of the operations that may be invoked through this interface (see figure 7). Every
operation is defined by its name, its parameters defined each by their name and type and its return type.

EDOC’99 Page 9 of 12

Figure 7. Example computational viewpoint specification using UML

Whereas interfaces are the units of designation in RM-ODP, computational objects are units of distribution. The
relationship between interfaces and the information that they encapsulate must be captured. This is done through
the dependency relationship stereotyped <<trace>>. As an illustration, one can see on figure 7 that the
operational interface type EquipmentInterface encapsulates and thus provides for access to the information object
type Equipment. More complex, the operational interface type ConnectionPerformerInterface exhibited by the
provider computation object type, encapsulates and gives indirect access to both the information object types
Connection and Equipment. That interface has operations which behavior specification implies the creation and
deletion of connections. As the computation object type Connection is not part of the same distribution unit, the
operational interface type ConnectionPerformerInterface has to interact with the interface ConnectionInterface
to request for creation / deletion of relevant computational objects.
A unit of distribution (a computational object) provides support for one or more interfaces. This is specified
using a dependency stereotyped <<exhibits>>.

4.4.2 UML Profile for the computational viewpoint specification

4.4.2.1 Selection of relevant concepts
The following UML meta-model concepts are selected for the computational viewpoint specification : Package,
Interface, Usage and Trace Dependency stereotype.
The following modeling concepts are introduced :
• ComputationalObjectType, defined as a stereotype of Class,

Provider

<<Com putationalObjectT ype>>

Conn ect io nInte rf ace

ge tAe nd() : Port In terf ace

ge tZe nd() : Po rt In terf ace
crea te()

de le te()

<<I nt erfa ce>>

Po rt In terf ace

isBusy : boolean()

getConnectedT o() : PortInstance

<<Interface>>

Equipm entInterface

isOverbusy() : boolean
getM yPorts : SetOf (Po rtIn terface)

<<Interface>>

C onnec tionP erform erInterf ace

connect()

d isconnect()

<<I nte rfac e>>

Connection

(from Logica l V iew)

<<In form ationObjectT ype>>

Port

(from L ogica l V iew)

<<Inform ationObjectT ype>>

Equipm ent

(from Logica l V iew)

<< Inform at ionObj ectT ype>>

<< trace>>

<<trace>>

Port In terf ace
<<Interface>>

Connect ion Interf ace
<< Int erface> >

Equ ipm entInterface
<<Interface>>

ConnectionPerform erInterface
<<Interface>>

PortAndConnection

<<Co mp uta ti ona lObj ec tT y pe>>

<<exhib i ts>>

<<exhib i ts>>

<<exhib i ts>>

<<e xhib i ts>>

<< trac e>>

< <use s>>

<<trace>>

<<trace>>

EDOC’99 Page 10 of 12

• exhibits, defined as a stereotype of Dependency.

4.4.2.2 Presentation rules
Computational viewpoint modeling concepts such as ComputationalObjectType and Interface are displayed using
a fill color which is different from the other viewpoints ones. Also, a package is defined to gather the whole
computational specification

4.4.2.3 Validation rules
None

4.5 Engineering process
The resulting computational viewpoint specification makes no assumption on how the basic engineering objects
that are the implementation of computational objects are going to be grouped together into clusters, capsules,
nodes. For sake of simplicity, we will not detail this in the paper. Also, this part of the work, dealing with the
study of what UML profile is needed for capturing engineering concerns, is still in progress. However, figures 8
and 9 provide for an illustration of how a given computational specification can be mapped on to different
architectures.

““ ManagedManaged ””
 Object Object

“Manager”“Manager”
 Object Object

NetworkNetwork
Mgt SystemMgt System

“Simple”“Simple”
 NEs NEs

Figure 8. A computational model superimposed over a centralized physical architecture.

This is shown on a concrete example in the context of the Telecommunication Management Network (TMN). A
management application specified using the G.851-01 methodology leads to the definition of distribution-
independent computational objects which can be mapped, according the deployment scenarios, on to different
implementation solutions. The first scenario (cf. figure 8) illustrates the case where a centralized management
system manages the whole set of network elements ; in that case, communication mechanisms must be provided
to enable the actual communication between the « manager objects » and the « managed objects ». The second
scenario (cf. figure 9) shows a completely distributed architecture where no more centralized management system
remains ; conversely, « management objects » are widely distributed over network elements ; of course, a
communication protocol between distributed objects has to be specified. This is part of the engineering viewpoint
specification.

EDOC’99 Page 11 of 12

“Management”“Management”
 Objects Objects

“Intelligent”“Intelligent”
 NEs NEs

Figure 9. Same computational model superimposed over a distributed physical architecture.

5. Relationship with OMG work on process
Whereas the models that have been presented earlier on in this paper take place in the layer M1 of the OMG
layered modeling architecture, work is on progress to reify these specifications. A draft result is presented by
figure 10 below, in the case of the computational viewpoint.

ComputationalSpecification
compSpecName

ComputationalObjectType
objectTyp eName

1..1

0..*

1..1 defines

ComputationalInterfaceT ype
interfaceTypeName

1..1

0. .*

1..1defines

1..11. .* 1..11. .*

<isCom posedOf

StaticSchema (from InformationViewpoint)

ComputationalException
name
type

0. .1

0. .*

<violatedConditionTriggers

C omputa tionalBehaviour
behaviourDescript ion 1..*

0..*

+preCondition 1..*

1. .1

0. .1

+postCondition
1. .1

ComputationalParameter
paramName
inOut : {in, out, inout}
paramType
paramDescript ion

OperationalInterfaceType
ro le : {c li ent, server} = server

ComputationalOperation
operationName

1..1
0..*

1..1

1. .1

1..1

1. .1
+behaviour

1..1

1..1

0..*

1..1

1..1

1..*

1..1

1..*

0..*0. .*

0. .1

0. .*

0. .1

0..*

0..*

0..*

Figure 10. The computational viewpoint specification meta-model.

This model (M2) defines the structure of a computational viewpoint specification which is a work product
produced by the application of the G.851-01 process. We expect that the set made up of the model of the G.851-
01 process, the models of the work products (enterprise, information and computational viewpoint
specifications), and the UML profiles definition that we presented for every viewpoint will serve as inputs to a
Software Process Engineering Facility under study in the Process Working Group of the OMG. The ultimate goal
is to make possible that any UML CASE tool might be driven by this facility. Of course, this technique may be
applied to any modeling process, other than G.851-01. This leads to the definition of the functional architecture
depicted in figure 11. Such a facility would enable to :

• define UML profiles (“Profile Modeling”) and store them in a repository (“Profile Repository”);
• provide means to define, compose, specialize, etc. processes (“Process Modeling”) and store them (“Process

Repository”)

EDOC’99 Page 12 of 12

• retrieve, from a Workflow product, any process model from the Process Repository (to which is associated a
(set of) profile(s) corresponding to the work products associated to the process) and activate any UML
CASE tool.

Standardizing the interfaces between these functional blocks would be of interest for the future.

P ro file M o d e lin g

U M L C A S E to o l

P ro ce ss M o d e lin g

W o rk f lo w

P ro c ess R e p o s ito ry P ro file R ep o s ito ry

Figure 11. Software process engineering facility functional architecture.

6. Conclusion
In this paper, we have presented an effective marriage between RM-ODP, G.851-01 and UML, each one
providing the necessary ingredients to build a methodology (respectively a set of modeling concepts, a process
and a notation). We have shown how the main benefits of the ITU-T G.851-01 modeling approach is being dealt
with UML : separation of concerns with viewpoints, traceability and transparency with regard to distribution. For
every G.851-01 viewpoint, we have defined a UML profile. Finally, as no methodology can exist without
supporting tools, we have presented what information a software process engineering facility must consider as
input for driving the modeling activity done with a CASE tool ; this is often referred to as process enactment.

7. References

[G.851-01] ITU-T Recommendation G.851-01 : Management of Transport Networks -
Application of the RM-ODP framework

[GDMO] ITU-T Recommendation X.722 : Open System Interconnection - Information
Technology – Guidelines for the Definition of Managed Objects

[GRM] ITU-T Recommendation X.725 : Open System Interconnection - Information
Technology – General Relationship Model

[RM-ODP] ITU-T Recommendation X.901 : Open System Interconnection - Information
Technology - Open Distributed processing - Overview and Guide to Use

[RM-ODP-2] ITU-T Recommendation X.902 : Open System Interconnection - Information
Technology - Open Distributed processing – Foundations

[RM-ODP-3] ITU-T Recommendation X.903 : Open System Interconnection - Information
Technology - Open Distributed processing – Architecture

[RM-ODP-4] ITU-T Recommendation X.904 : Open System Interconnection - Information
Technology - Open Distributed processing - Architectural Semantics

[UML] UML 1.3 : UML Specification– Object Management Group
[PROFILE] White Paper on the Profile mechanism – Version 1.0 – Object Management

Group – Analysis and Design Task Force – OMG Document ad/99-04-07, April 1999
[CORNILY-1] « An RM-ODP based approach to modeling distributed systems and associated

tools » – M. Belaunde, J-M. Cornily, E. Debeau – International Conference on
Software Engineering and its Applications – Paris, Dec. 1998

[CORNILY-2] « Application of ODP Modelling Techniques to SDH Network Management » -
J-M. Cornily, D. Doherty, J. Ellson, P. Mullan, C. Pageot-Millet, T. Stéphant – IEEE
Globecom – Houston, 1993

[CORNILY-3] « Application des techniques des systèmes répartis ouverts à la gestion des
réseaux SDH » - J-M. Cornily, T. Stéphant – Echo des Recherches N° 161 - 1995

