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Abstract—Over the past two decades, rollback-recovery via checkpoint-restart has been used with reasonable success for long-

running applications, such as scientific workloads that take from few hours to few months to complete. Currently, several commercial

systems and publicly available libraries exist to support various flavors of checkpointing. Programmers typically use these systems if

they are satisfactory or otherwise embed checkpointing support themselves within the application. In this paper, we project the

performance and functionality of checkpointing algorithms and systems as we know them today into the future. We start by surveying

the current technology roadmap and particularly how Peta-Flop capable systems may be plausibly constructed in the next few years.

We consider how rollback-recovery as practiced today will fare when systems may have to be constructed out of thousands of nodes.

Our projections predict that, unlike current practice, the effect of rollback-recovery may play a more prominent role in how systems may

be configured to reach the desired performance level. System planners may have to devote additional resources to enable rollback-

recovery and the current practice of using “cheap commodity” systems to form large-scale clusters may face serious obstacles. We

suggest new avenues for research to react to these trends.

Index Terms—Distributed systems, distributed applications, performance of systems, fault tolerance, modeling techniques, reliability,

availability, serviceability, measurement, evaluation, modeling, simulation of multiple-processor systems.
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1 INTRODUCTION

ROLLBACK-RECOVERY has been particularly popular in
high-performance computing systems, where applica-

tions run from hours to weeks. In this paper, we leap
forward to the end of the decade and attempt to project the
future of rollback-recovery in light of current technology
trends. The goal of this study is twofold, one to predict how
rollback-recovery as we know it today may fare in the
future within the context of large-scale systems with
increasing scalability demands, and another to identify
potential problems and research areas. To provide a context
for the study, we propose to study rollback-recovery in a
“notional” system that could deliver one Peta Flop per
second (PF/s) throughput circa 2010. Many researchers in
the high-performance computing area consider such a
performance level as the next grand challenge.

A system that delivers 1PF/sec will be a challenge to

build because of projected technology trends, which

stipulate that the continuous improvement in semiconduc-

tor technology that the industry enjoyed over the past

40 years may slow down [13]. The so-called Moore’s law

about the doubling of chip density every 18 months [16]

may not apply in the future due to the difficulties of

powering, cooling, and manufacturing denser chips. These

difficulties may limit the harnessed performance that can be

obtained from a single processor. Moreover, shrinking the

devices in size implies transistors may become more
susceptible to soft error rates due to cosmic rays. Therefore,
system performance could suffer further as designers
deploy more rigorous mechanisms to harden the circuits
from which future computers will be built, thereby slowing
down the basic devices or diverting away resources that
otherwise could be used to boost performance [10].

Conducting a study like this is difficult as there are many
unknowns, and predicting basic system performance has a
lot of caveats. In fact, some may argue that the systems of
the future may not look at all like the systems of today and
ambitious performance goals may require fundamentally
different architectures and system structures. We do not
wish to enter into such arguments, and we note that
software inertia will inevitably require backward compat-
ibility with existing system structures. Therefore, we
consider an evolution of systems as we know them today.

We have selected coordinated checkpointing style of
rollback-recovery as the basis for our study. This selection is
motivated by the nature of high-performance computing
applications, which often follow the data parallel approach
in which all available processing nodes partition the work
on a data set and cooperate via message passing to
synchronize. A popular form of synchronization in these
applications is to use barriers followed by data exchange
messages between consecutive iterations of compute-in-
tensive loops. This style of structuring applications may
render ineffective more efficient checkpointing protocols
that exploit application communication patterns to limit the
number of processing nodes that need to participate in a
coordinated checkpoint [14].

We use validated analytic and simulation models to
predict the requirements and performance of rollback-
recovery in a “notional” system that delivers a 1PF/sec
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system, using different plausible configurations that feature
different node sizes. Our study uses different checkpointing
intervals, Mean Time to Failure (MTTF), and Mean Time to
Repair (MTTR). It suggests that the current practice of using
small, “cheap commodity” nodes to build clusters of super-
computers may break down because the large scale deploy-
ment may cause a very large number of failures. We argue
also that building such clusters of “expensive” very large-
scale shared memory systems (e.g., 1,024-way Non-Uniform
Memory Access (NUMA) systems) may not be resilient
toward some types of hardware failures. A good trade off
appears to be in the use of small to mid-size Symmetric
Multiprocessors (SMP) systems. Regardless of the size of the
node, however, we argue that reliability requirements in the
future may increase to the point where some system
resources may be devoted to providing spare cycles to
account for the overhead of rolling back and restarting. The
conclusions of the study are summarized in Table 1.

The rest of the paper provides the study, its conclusion,
and avenues for future research. In Section 2, we review the
current state of the art in rollback-recovery. In Section 3, we
discuss future technology trends and their effects and
present the bulk of the paper—the simulation study. We
summarize our conclusions and discuss avenues for future
research in Section 4.

2 ROLLBACK-RECOVERY IN DISTRIBUTED SYSTEMS

Rollback-recovery is suitable where system availability
requirements can tolerate the outage of computing systems
during recovery. It offers a resource-efficient way of
tolerating failures compared to other techniques such as
replication or transaction processing. For the purpose of this
paper, we assume fail-stop failure semantics in which a
failed host ceases to operate without sending malicious
messages [22]. One may argue that this assumption may not
be realistic in the future in light of the projected increases in
soft error rates and that more latent errors should be
expected in systems by that time. We believe, however, that
market expectations, as well as the essential requirement of
software backward compatibility, will mandate that the
reliable system abstraction that has characterized modern
computing systems will be preserved. Therefore, we expect
that system designers will opt for hardening system
components at the expense of reduced performance in
order to maintain the reliable abstraction to which
computer users and programmers are accustomed.

We assume a distributed system consisting of a collection
of application processes that communicate through a

network that does not partition. The processes have access
to a stable storage device that persists throughout all
tolerated failures. Such a device may be built by a
distributed storage farm, such as a future version of System
Area Network (SAN) technology, providing the necessary
bandwidth and scalability required by the system. Pro-
cesses achieve fault tolerance by using this device to save
recovery information in checkpoints periodically during
failure-free execution. Upon a failure, a failed process uses
the saved checkpoints to restart the application.

2.1 Rollback-Recovery in Distributed Systems

In a message-passing distributed system, messages induce
interprocess dependencies during failure-free operation.
Upon a failure of a process (or more), these dependencies
may force some of the processes that did not fail to roll
back, creating what is commonly called rollback propaga-
tion [8]. To see why rollback propagation occurs, consider
the situation where a sender of a message m rolls back to a
state that precedes the sending ofm. The receiver ofmmust
also roll back to a state that precedes m’s receipt; otherwise,
the states of the two processes would be inconsistent
because they would show that message m was received
without being sent, which is impossible in any correct
failure-free execution. Under some scenarios, rollback
propagation may extend back to the initial state of the
computation, losing all the work performed before a failure.
This situation is known as the domino effect [21].

Broadly classified, rollback-recovery falls into two
categories, one that uses checkpointing only and another
that combines checkpointing with message logging [8]. In
the first category, there are three styles of checkpointing,
namely, independent, coordinated, and communication-induced.
In independent checkpointing [4], each process is allowed
to take its checkpoints independently, regardless of the
dependencies that arise among processes due to message
exchange. This style of checkpointing is susceptible to the
domino effect, making it undesirable in practice. In contrast,
coordinated checkpointing requires the processes to co-
ordinate their checkpoints in order to save a system-wide
consistent state [7]. This consistent set of checkpoints can
then be used to bound rollback propagation. We have found
that this technique is the one of choice in practical systems
due to the simplicity of recovery. The scalability of
coordinated checkpointing, however, is a concern since it
may force all processes to take a checkpoint concurrently.
Several studies have suggested variations on this technique
to limit the number of processes that must participate in a
coordinated checkpoint by exploiting the message passing
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patterns of the application [14]. Nevertheless, even these
variations may reduce to coordinated checkpointing,
depending on the application, which is often the case in
practice. Alternatively, communication-induced check-
pointing forces each process to take checkpoints based on
information piggybacked on the application messages it
receives from other processes [5]. Checkpoints are taken
such that a system-wide consistent state always exists on
stable storage, thereby avoiding the domino effect. This
technique, however, may record checkpoints that will never
be used in any future rollback-recovery [11], and the
number of checkpoints depends on the message passing
pattern of the application. These properties lead to un-
predictable checkpointing rates, making it difficult to use
such techniques in practice [1].

The second category of rollback-recovery combines
checkpointing with logging of nondeterministic events.
This category relies on the piecewise deterministic (PWD)
assumption [24], which postulates that all nondeterministic
events that a process executes can be identified and that the
information necessary to replay each event during recovery
can be logged. By logging and replaying the nondetermi-
nistic events in their exact original order, a process can
deterministically recreate its prefailure state even if this
state has not been saved. Many algorithms to implement
various forms of logging have been studied, and a full
survey exists elsewhere [8].

For the purpose of this study, we focus on coordinated
checkpointing. We believe that this is a reasonable focus
given that this is the method currently being used in
practice, e.g., supercomputing clusters. Independent check-
pointing and communication-induced checkpointing do not
seem to have caught much following in the user community
due to various complications in real implementations.
Furthermore, log-based recovery has not been in wide use
due to the resource requirements imposed by message
logging in message-passing systems and other considera-
tions [12]. These logs tend to consume a substantial fraction
of resources in main memory, stable storage, and network
bandwidth.

2.2 Implementation Flavors

We consider three ways to implement checkpointing in
practical systems, namely, by the application, by the
operating system, or the by the compiler. Application-level
implementations require the programmer to identify points
in the program at which checkpoints are taken [3]. The
programmer chooses points within the execution of the
application such that the collections of checkpoints taken by
all processes will yield consistent checkpoints. Furthermore,
the programmer needs to implement the checkpointing and
recovery code, including the decision of which data
structures need to be stored on stable storage at each
checkpoint. The recovery code reads the stored data
structures in the checkpoints and reconstructs the connec-
tions among the processes in the application. Checkpointing
implementation at the application level has several advan-
tages and disadvantages. The programmer exploits knowl-
edge about the application to insert checkpoints at the
points in the execution where the amount of data to be
stored is small. The programmer also has flexibility in

controlling the rate of checkpointing. The principal dis-
advantage of this technique is the involvement of the
programmer. Including checkpointing and recovery code in
the application increases the programmer burden and
reduces productivity. Furthermore, error-prone decisions
about what to checkpoint entail the dangerous proposition
that a bug in the checkpointing or recovering code may
prevent recovery. Finally, the programmer must include in
the recovery code routines to recreate the operating
system’s state that supports the application upon recovery
from failure.

Checkpointing can also be implemented by the operating

system [17]. The operating system effectively makes a

conservative decision of saving all application’s state,

including dead variables that may not be used any further.

Multihost coordination can be implemented by the operat-

ing system or by system services, and it has been shown

that it can be implemented efficiently in earlier prototypes

[9]. Additional techniques can be used by the operating

system to reduce the overhead. For example, copy-on-write

state capture [2] can be used to implement a version of

nonblocking checkpointing that allows the application to

proceed in parallel with saving the checkpointing. This

technique has been implemented in a publicly available

library that supports checkpointing at a very low perfor-

mance overhead [18]. Other techniques include the use of

incremental checkpointing, where the operating system

uses the memory management subsystem to decide which

data change between consecutive checkpoints [9]. Other

techniques for reducing the amount of state that needs to be

saved have also been studied [19].

A third alternative is to rely on the compiler to support

the checkpointing implementation [15]. In this variation, the

compiler performs data and control flow analysis on the

program and inserts the checkpoints at points where the

amount of data to be saved is small. Also, the compiler can

decide which data structures are to be saved based on the

data use analysis. Dead variables, for example, can be safely

ignored by the compiler. Compared to the other two

techniques, compiler-assisted checkpointing has advan-

tages and disadvantages. Like operating system checkpoint-

ing, it operates transparently without burdening the

programmer with the error-prone and tedious tasks of

maintaining the recovery code within the application. It also

is safer than programmer-assisted checkpointing since

compiler analysis tends to be conservative, eliminating the

case where an important data structure may be omitted

from a checkpoint by way of error. Unlike operating

system-assisted checkpointing, however, it cannot recover

the system state directly.

2.3 State of the Art

Several production systems today use checkpointing to
implement rollback-recovery, e.g., IBM’s AIX operating
system. These tend to be deployed in large-scale parallel
processing environments, such as those used in high-
performance and technical computing. Typically, coordi-
nated checkpointing is implemented at the application
level for those applications that run for hours or days. The

ELNOZAHY AND PLANK: CHECKPOINTING FOR PETA-SCALE SYSTEMS: A LOOK INTO THE FUTURE OF PRACTICAL ROLLBACK-... 99



checkpointing interval is usually measured in hour frac-

tions (e.g., every 30 minutes) and, therefore, the perfor-

mance impact of checkpointing is mitigated over the long

time it takes to run the application. It has been observed

that the bottleneck tends to be in the bandwidth to stable

storage, which is also used for regular I/O access.
Publicly available libraries for checkpointing also exist,

but they are not maintained at the level that is required to

support production use. As a result, checkpointing code

tends to be application-specific and nonportable. Lack of

standards and checkpointing interfaces is a problem that

hampers programmer’s productivity in this area. We also

note that there are no prototypes for compiler-assisted

checkpointing available for production systems.

3 PROJECTIONS

3.1 Technology Trends

The computing industry has enjoyed a long time of

uninterrupted scaling of semiconductor technology. This

growth has allowed higher levels of integration and speeds,

consequently improving the performance of computing

systems to the point that they have become an integral part

of our modern infrastructure. The historical growth has

followed the famous Moore’s law, which stipulates that

advances in lithography will lead to doubling chip density

every 18 months. System clock frequency also followed this

trend. This phenomenal growth, though, seems to be

slowing down. Moreover, it is now feared that soon the

growth will not be sustainable because foreseeable trends in

cooling technologies and device fabrication cannot seem to

support further increases in chip density. Therefore, the

increasing fabrication problems and soft-error rates will

require chip designers to deploy more robust mechanisms

at the circuit level to detect and mask these errors at the

same coverage rate as in today’s systems. Performance will

be reduced as more resources are devoted to ensuring

reliable operation.
The combined effects of the problems aforementioned

will yield less performance per chip than would be

available following the traditional or historical improve-

ment of performance over time. Therefore, more chips will

need to be networked together to keep the performance

trajectories according to historical trends. This will impose

more demand for scalability on rollback-recovery algo-

rithms and implementations.

3.2 Checkpointing in Peta-Scale Systems:
A Simulation Study

In this section, we present a study of the scalability of
coordinated checkpointing in future systems. We have
selected coordinated checkpointing for its simplicity and
because it is the current method of choice in real systems.
For peta-scale system implementations, however, we
project that the checkpoints will be taken locally in each
node, then stored into a highly available stable storage
system in a staggered fashion to avoid the bottleneck
resulting from all nodes “ganging up” on the stable storage
device [26].

To provide a context for the study, we consider various
configurations for a notional Peta-Flop/sec system. Con-
sidering that today’s processors have a typical performance
of about 1GF/sec after allowing various inefficiencies in
software and hardware, we project a 10-fold improvement
in performance by the end of the decade due to technology.
This is a fraction of the 16GF/sec that one would expect
following the traditional technology trajectory. This con-
servative projection accounts for the technology slowdown
that we expect as discussed previously. Considering such a
building block, several configurations are possible to build
a 1PF/sec system as shown in Table 2.

The table shows typical clusters using different system
sizes. The top configuration corresponds to a large shared-
memory system of about 1,000 processor chips used as a
single node, typically using NUMA technology. One
hundred such nodes are connected by a cluster to deliver
a PF/sec system-wide performance. The second row
corresponds to a smaller node of about 25-way Symmetric
Multiprocessor System, while the third row shows a more
popular 4-way SMP and the last one a single-chip “system-
on-a-chip” that will be typically the “commodity” systems
of the future. Traditionally, cost has been proportional to
the node size and, therefore, we consider the system in the
first row as the most expensive, while the fourth row as the
cheapest. The number of nodes N for each configuration is
shown in the table. We define N as the number of nodes in
the system and consider a node as the unit of failure. We
further make the assumption that the mean time to failure is
independent of the node size. This assumption is consistent
with what we have observed in actual installations, where
failures are mostly due to operator and software errors. One
may argue that this is not a reasonable assumption given
that a large NUMA machine, for instance, may have more
hardware components and, therefore, is likely to fail more
often. We contend, however, that, even though such a
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machine may have a larger number of components than a
low-end machine, more reliability features are added to
ensure that the combination of many components does not
bring down the reliability of the system.

To simulate coordinated checkpointing on a cluster of
N processing nodes, we adopt the standard methodology
and nomenclature of [25]. A node may be in one of two
states: functional, meaning it is available for use, or failed,
meaning that it is unavailable for use. Failed nodes may be
repaired and become functional. Our computation proceeds
on a fixed number, a � N , of active nodes. The remaining
ðN � aÞ spare nodes will be held in reserve to be available
for use upon the failure of an active node.

The system is functional when there are at least a active
nodes. Upon a failure of one or more nodes, nodes from the
spare pool are redesignated as active. All active nodes then
restore the last committed checkpoint. The time that this
takes is denoted by R. Once recovery is complete, the nodes
resume normal operation. We also assume that a coordi-
nated checkpoint is taken every I seconds after computa-
tion begins until an active node fails. Coordinated
checkpointing algorithms are numerous, and a summary
is available elsewhere [8]. The checkpoint latency, L, is the
time that it takes for the checkpoint to be available for
recovery and includes all phases of checkpointing, such as
synchronization, logging of outstanding messages, state
saving, and garbage collection. The overhead of the
checkpoint, C, is the time that it takes from the computa-
tion. Standard checkpointing techniques, such as copy-on-
write [2], [17], allow a large amount of checkpointing to
proceed concurrently with the running application, so C is
often quite a bit less than L.

When one of the active nodes fails, the computation
stops and, if there are a remaining functional nodes, then
recovery begins anew. If there are fewer than a remaining
functional nodes, then the system remains idle until nodes
are repaired, and a nodes are functional again.

A segment of such a computation is denoted in Fig. 1.
The computation cycles through three distinct phases: 1) a
System Recovery phase, which starts with recovery from a
checkpoint, and finishes when the first checkpoint com-
pletes; 2) a System Up phase, where the nodes periodically
checkpoint themselves every I seconds; 3) a System Down

phase, where there are fewer than a functional nodes

available for computation. A failure of an active node will

take the system in the Recovery or Up phases either to the

Down phase (if there are no longer a functional nodes) or to

the Recovery phase (if there are still a functional nodes). A

repair of a failed node will take the system from the Down

phase to the Recovery phase when there are a functional

nodes following the repair.
We define the concept of Useful Work (W ), which is the

time that the system spends on the computation that will

not be lost following a failure. In the System Recovery

phase, this is I seconds of computation. In the System Up

phase, it is ðC � IÞ seconds per completed checkpoint.

There is none in the System Down Phase. The ratio of useful

work to total time is the Useful Work Factor, U , which

indicates how much of the a active nodes’ time is devoted to

move the computation forward.
To summarize, we use the following definitions:

. C: The overhead per checkpoint.

. L: The checkpoint latency.

. R: The recovery time from a checkpoint.

. MTTF : The mean time to failure of a processing
node.

. MTTR: The mean time to repair of a processing
node.

. N : The total number of processing nodes in the
system as defined above.

Failures and repairs are assumed to be independent and

exponentially distributed. The user selects a and I to

optimize performance. Both values involve trade offs in

performance: Larger values of a mean more processing

power devoted to advancing the computation; however,

they also mean that there are fewer spares, exposing the

system to the possibility of having more Down phases.

Similarly, larger values of I mean that the system spends

less time checkpointing and, therefore, may have less

induced overhead. However, they also mean that the

system may lose more work as a result of a failure. We

have written a stochastic simulator which simulates failures

and repairs coming from their respective distributions and

runs until the Useful Work factor converges on a value to a
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given tolerance. All data presented in this section come
from the simulator.

3.2.1 Performance as the Number of Nodes Scales

For the first experiment, we selected the following
parameters for study: Given the parameters of Peta-Scale
computing defined above, C is set to one minute, L and R to
5 minutes. These are reasonable values for checkpointing
the memory state and assume advanced checkpointing
implementations such as incremental and copy-on-write [2],
[9], [17]. There are no published studies about node failure
rates for machines such as these. However, researchers at
Los Alamos National Lab have anecdotally reported that
the 1,024-node ASCI-Q supercomputer stays up for roughly
6 hours at a time. This corresponds to a single-node MTTF
of 256 days, when failures are independently and exponen-
tially distributed. Rather than work in units of 256 days, we
selected an MTTF of one year per node, reflecting a slight
improvement in operator, hardware, and software qualities
for years to come. We selected an MTTR of one hour, a
conservative estimate of the time to reset a failed node on a
complex system. We also highlight the four configurations
that we described in the previous section, namely, for
N ¼ 100, 4; 000, 24; 000, and 100; 000, although we ran the
simulation for many intermediate points ofN that we use to
plot the figures below and to study if there are any
discontinuities in the graphs.

We first present the results of these simulations in Fig. 2.
We vary a from N=4 to N and plot the best U for each value
of a. To determine the best value of U , we perform a binary
search on the checkpoint interval, from its minimum value
(L ¼ 5 minutes) to a maximum value, refining at each
iteration. The figure also plots the optimal I for each
configuration under study. Two trends emerge from these
figures. First, as N and a get larger, U decreases. This is
because there are more nodes that can fail and trigger
System Recovery. Also, U decreases sharply when a
approaches N . This is because more time is spent in the
System Down phase, where no spare nodes are available for
recovery. Finally, when N ¼ 100; 000 and a > 40; 000, the

optimal checkpoint interval becomes equal to L, meaning
the system is constantly checkpointing. The reason for this
behavior is that the mean time to the first failure among
a nodes is less than (1 year)/(40,000) = 13 minutes, which is
less than the 15 minutes that it takes to get out of the System
Recovery Phase.

The Useful Work Factor impacts the performance of the
application in the following way: Suppose we characterize
the application according to Amdahl’s Law—its running
time is composed of a serial portion S and a parallelizable
portion P . Thus, when running on a nodes with no
checkpointing and no failures, the running time is
S þ P=a. Let the running time of the program be normal-
ized on one node so that S þ P ¼ 1 or, alternatively,
P ¼ ð1� SÞ. Then, the speedup of a program is defined as:

speedupðS; aÞ ¼ 1=ðS þ ð1� SÞ=aÞ ¼ a=ðða� 1ÞS þ 1Þ:

The above equation does not take failures or checkpoint-
ing into account. To do so, we determine the Useful Work
Factor U and multiply it by the speedup: speedupðS; a; UÞ
¼ U speedupðS; aÞ. This is the expected speedup of the
program over its optimal serial performance when employ-
ing a active nodes with checkpointing.

Fig. 3 displays the results of applying these calculations
to our simulation scenario. For each value of N displayed
and for four values of S (0, 0.0001, 0.001, 0.01), we
determine the value of a that maximizes speedupðS; a; UÞ.
This determination was done using a second binary
search—for each potential value of a (starting with 1 and
N as the endpoints), the value of I which maximizes U is
determined. Then, the binary search proceeds in refining
values of awhich maximize speedupðS; a; UÞ. The left side of
Fig. 3 shows the best speedup attained in this way, and the
right side shows the best values of a.

The main feature of this figure is that, for each value of S,
there comes a point beyond which adding more nodes does
not improve the performance of the computation. There are
two potential reasons. First, the computation may not scale
past a certain point. Second, the failure rate becomes too
high relative to the costs of checkpointing.
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To explore this further, we plot the same results in a

different way in Fig. 4. Here, the speedup is presented as a

percentage of the optimal speedup, 1=ðS þ ð1� SÞ=NÞ.
What is interesting about this graph is that for all values

of S > 0, the percentage speedup follows the percentage for

S ¼ 0 very closely, until N increases past the natural scaling

limit for each value of S. For S ¼ 0, the percentage speedup

decreases rapidly as N increases past 10,000.
There are two important implications on the system

structure that the study reveals:

. There is a certain minimum performance that must

be expected from each node, below which it may not

be feasible to build a system with an overall

performance that reaches a desired 1PF/sec. In the
study, the minimum workable configuration is a

4-way SMP corresponding to N ¼ 4; 000. Going with

cheaper nodes (single chip systems) may not work

since about half the nodes must be used as spares,

and the system may be continuously checkpointing.

This is not likely to work in practice.
. It is important that spares are taken into account

when configuring a system. We often find that
systems are procured with the assumption that all
nodes will be up all the time doing useful work. In
the future, because of the large scale that will be
required to reach the desired level of performance, a
substantial number of cycles will be devoted to
rolling back. Note that, in a real installation, it will be
unlikely that the spares will be left unused while the
system is in its Up phase, according to our
simplifying assumption. However, it will be im-
portant to understand the effect of rollback-recovery
on the system and there should be an allocation of
resources that will count toward the cycles needed
for rollback-recovery. This will depart from current
practice and expectations.

3.2.2 The Effect of Modifying C, L, R, MTTF , MTTR

In this section, we present the results of modifying some of
the fixed parameters of the previous section to assess their
impact on performance. All other parameters are held
constant and have the same values as in the previous
section. In the first test, we set C to zero and L and R to
10 microseconds. The purpose of this test is to project what
happens when the performance impact of checkpointing
and recovery is negligible. These parameters effectively
describe a system where node failures are detected
immediately and where a spare node substitutes a failed
one with zero downtime. The results are in Fig. 5. Not
surprisingly, when the overheads of checkpointing and
repair are negligible, the system is able to attain nearly
optimal performance. The reason is that, as long as the
system does not enter the Down Phase (fewer than a nodes
available), the useful work is nearly 100 percent. It should
be noted that, even in this case, we do not attain perfect
performance. Fig. 6 provides detail—in this figure, we plot
a=N as a function of N for the case when S ¼ 0. As the
figure shows, although a is close to N , it is still necessary to
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Fig. 3. Speedup for different degrees of parallelization.

Fig. 4. Speedup, presented as a percentage of optimal speedup.



have some spare nodes to prevent the system from entering
the System Down Phase.

Modifying C. In Fig. 7, we display the effect of
modifying C to 0 minutes and 5 minutes (while keeping L

and R at 5 minutes each). As one would expect, the
performance improves when C is reduced and gets worse
when C is increased. Interestingly, though, the improve-
ment is not drastic (as when C, L, and R are all reduced to
negligible quantities). The reason is that the latency and
recovery time are both responsible for nonuseful work
being performed, especially in the initial interval following
recovery, even when the checkpointing overhead is zero.

Modifying L and R. In Fig. 8, we display the results of
modifying L and R to 70 seconds (just 10 seconds more than
the checkpoint overhead), and to 10 minutes. Fig. 8 is quite
interesting compared to Fig. 7. Again, as we would expect,
decreasing L and R improves performance and increasing
them penalizes performance. However, modifying C has a
greater impact on the programs with less parallelism
(S ¼ 0:01 and S ¼ 0:001). Modifying L and R has a greater
impact on the programs with more parallelism (S ¼ 0:0001
and S ¼ 0). The reason for this is that C has more impact
when many checkpoints are taken between recovery and
failure. L and R have more impact when zero or few
checkpoints are taken between recovery and failure—their
effect is amortized as more intervals pass. When S is larger,
extremely large numbers of active nodes are of little use
(e.g., see the bottom line in the right side of Fig. 3).
Therefore, as N grows beyond this number, the effect of the

additional nodes is negligible because a remains fixed. If a
is small enough (e.g., < 10,000), then the mean time in the
System Up phase will have multiple checkpointing inter-
vals. Thus, lowering C has greater impact.

However, when S is small or zero, increasing a to large
numbers still improves performance. Thus, as N grows, a
grows to the point where it is unlikely that even one
checkpoint is taken before a failure occurs. In these cases, L
and R have a greater impact than C.

Modifying MTTF . In Fig. 9, we present the impact of
the MTTF on the performance of the system. Like L and R,
the s has a significant impact. Thus, increasing the MTTF
by a factor of two has a significant beneficial impact on the
performance of the system and decreasing it by a factor of
two induces a similar penalty.

Modifying MTTR. In Fig. 10, we modify the mean time
to repair significantly, from one hour, to one month, to six
months. Increasing the MTTR beyond an hour models
failures that are of a nature that requires maintenance
beyond simple detection and system reboot. For example,
this models hardware failures. Although a six month repair
time does not seem to be realistic, we include it to help
understand the impact of modifying the MTTR. The major
effect of increasing the MTTR is to penalize the perfor-
mance of the smaller values of N and the more parallel
programs. Again, this makes sense because the true effect of
increasing the MTTR is to reduce the average number of
nonfailed nodes at any one time. If a is large enough with
respect to N , increasing the MTTR results in the system
spending more time in the Down phase, where the number
of nonfailed nodes is less than a. When the system is not in
the Down phase, theMTTR has no impact. WhenN is small
and S is small, the optimal values of a are large, relative to
N , and modifying the MTTR has significant impact. As N
grows and S grows, the optimal values of a with respect to
N are smaller and theMTTR has little or no impact. Indeed,
for N greater than 100,000, even the huge MTTR of six
months has no impact on the performance of the system.
Similarly, for S ¼ 0:01, the optimal values of a do not grow
larger than 2,000 (again, see Fig. 10), the performance of all
MTTRs is the same once N grows past 2,000.
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Fig. 5. Speedup when the overheads of checkpointing and repair are negligible.

Fig. 6. The ratio of active nodes to N when the overheads of

checkpointing and recovery are negligible, S ¼ 0.
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Fig. 7. The effect of modifying C.

Fig. 8. The effect of modifying L and R.

Fig. 9. The effect of modifying the MTTF .



Combining this study with the previous ones indicates

that clusters of relatively large, powerful nodes will fare

better if most failures are transient. Nontransient failures

will take away a substantial portion of the processing power

of the system, impacting scalability and performance.

Systems composed of small, least powerful nodes will be

resilient in the face of nontransient failures, but the

frequency of failures will increase. Combining the two, it

seems that medium sized nodes will offer a good trade off

in the face of both transient and nontransient failures.

3.2.3 Penalty of Deviating from the

Optimal Checkpointing Interval

When N grows into the 10,000s, the optimal checkpointing

interval starts to approach the checkpoint latency. While this

may optimize the Useful Work Factor, it means that, while

the system is up, it will be checkpointing nearly constantly.

Since checkpointing makes extensive use of the system’s

resources (disk, networking), if the system spends most of

its time checkpointing, these resources will be less available

to the application, which may impact performance. To

assess the penalty of choosing a checkpointing interval that

is not optimal, we display the performance of the system

when I is limited to values greater than 20 minutes. Fig. 11

shows the variations of speedup and the percentage of

optimal performance for various values of N .
The figures show that restricting the checkpointing

interval to no less than 20 minutes has a performance
impact. For small values of N � 4; 000, the optimal
checkpointing interval is greater than 20 minutes and,
therefore, the policy has no effect on speedup or efficiency.
As N increases, the choice of a checkpointing interval less
than the optimal one leads to a slight performance
degradation, especially for applications that scale well. It
is therefore necessary from a practical standpoint to reduce
the checkpointing interval depending on the number of
nodes in the system.
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Fig. 10. The effect of modifying the MTTR.

Fig. 11. The effect of restricting I to greater than 20 minutes.



4 SUMMARY AND FUTURE WORK

We have presented a study to predict the scalability of
checkpointing as system size grows to meet the next
performance goals of the high-performance computing
community. We have argued that the pending technology
slow down in device speed, together with cooling
problems, power limitations, and the necessary overhead
to overcome increased soft error rates, will reduce the
relative improvement in the performance of future
processors. As a result, the number of nodes in a typical
super computer circa 2010 will increase by up to two
orders of magnitude from today’s 1,024-nodes range,
depending on the node size. This will challenge the
implementation of rollback-recovery algorithms.

We used the projections that we have in technology to
study several potential configurations of a notional system
that can deliver 1PF/sec of performance in the future. At
one extreme, we used a 1,024-way node that is an example
of NUMA machines, with 100 of these clustered together to
deliver the needed performance. At the other extreme, we
considered a cluster of “cheap commodity” systems using
one-chip systems, requiring up to 100,000 nodes clustered
together. Our simulation study shows that the character-
istics and needs of rollback-recovery will play an important
role in how systems should be configured in the future
(more so than today’s):

. As the number of nodes increases, the rate of failures
increases. At the extreme, a 100,000-node system will
devote a substantial portion of hardware resources
to tolerating failures. The data-parallel model of
most compute-intensive applications will force the
system to be continuously checkpointing at the
extreme.

. A system of relatively large nodes will not be
resilient to permanent failures (however infrequent
they may be). Therefore, and combined with the
previous point, it appears that mid-sized nodes
(4-way to 32-way SMP systems) will form the best
trade off in terms of tolerating transient failures and
yet be resilient to the loss of a few components to
permanent failures.

. Regardless of the size of node used in the cluster, a
fraction of a future system will need to be devoted to
providing spare cycles to accommodate the needs of
rollback-recovery in the system. This would be a
departure from the current practice of configuring
systems without allocating resources to accommo-
date the needs of rollback-recovery.

. For very large clusters (those of cheap commodity
systems), there will be a need to set a maximum limit
on the frequency of checkpointing (minimum check-
pointing interval); otherwise, the checkpointing
requirements will likely overwhelm storage and
networking resources. We have shown that depar-
ture from the optimal checkpointing interval will
have a tolerable impact on application performance,
especially for those that have a high speed up.

For future work, we would like to study the impact of
using checkpointing algorithms that limit the rollback of

the system. This could be done simply by adapting Chandy

and Lamport’s algorithm to limit the rollback to those

nodes that have acquired dependencies on the failed ones.

Another idea is to divide the system into recovery domains

[23] such that failures in one domain are confined to the

domain and do not force further failure effects across

domains. This would require that applications be determi-

nistic and that interdomain messages be synchronously

logged to stable storage.
While our study has focused on the performance and

scalability aspects of checkpointing, we would like to

emphasize that a lot of engineering work is needed to

advance the usability and robustness of checkpointing

implementation from the current state of the art. In

particular, advances in automatic, programmer-transparent

checkpointing would lead to better productivity, less

susceptibility to bugs, and overall better performance.
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