Evolution of Distributed Java Programs

Susan Eisenbach, Chris Sadler and Shakil Shaikh

Department of Computing

Imperial College

London, UK SW7 2BZ

[sue, sas97]@doc.ic.ac.uk
School of Computing Science

Middlesex University

London, UK N14 4YZ
c.sadler@mdx.ac.uk

Abstract. A major challenge of maintaining object-oriented programs is to find a
means of evolving software that already has a distributed client base. This should
be easier for Java developers than for most, because dynamic linking has been
designed into the runtime system.

It turns out however that things are not so straightforward as they seem, since a
given modification can leave a remote client in one of a number of states, not all
of which are tolerable, let alone desirable. In this paper we attempt to delineate
these states, and to consider ways of avoiding the worst of them. We describe
our utility, which gives library developers a transparent version control system,
to protect their remote clients.

1 Introduction

In this paper we consider the choices faced by a programmer who wishes to de-
velop code for use by a community of heterogeneous and dispersed application
developers. We refer to the code abbamary and to its developer as thibrary
developerThe users of the library we call thdient developers

The main issue of concern in this paper is the maintenance, or evolution of the
library over time. We envisage that from time-to-time, the library developer will
modify the code in the library and that different groups of client developers will
initially join the user community at different points in its lifetime (differeyen-
erationg. We make a number of assumptions which it will be useful to clarify
here:

1. The library developer is concerned to support all clients, no matter what
generation of the library they are currently using.

2. The library developer has no idea which parts of the library are being used.
The consequences of this is that, whenever a modification is made, no mat-
ter how obscure, the library developer must considermpibtentialimpact,
whether or not there are any clients who vaititually be affected.

3. When the library developer makes a modification, he or she knows what is to
be achieved, knows how to achieve it, and modifies the code in such a way
as to achieve the desired result. We say such modificationsitargional
andeffective Many library developers can and do make modifications which

produce unintentional effects or which are not effective. We are not trying
to solve this problem— if we could solve it, we would eliminate much of
software maintenance altogether.

4. When a library developer has modified the library, they will want to make it
available to client developers and they will take any steps necessary to do so.

5. When a client developer needs to modify the client code as a result of a mod-
ification made to the library, the re-coding will be done in the light of full
knowledge about the nature of the library modification and the developer
will continue re-coding until the modification has been successfully accom-
modated.

An early choice facing the library developer is how to distribute the code. On the
one hand there is a very mature software engineering technology, which involves
delivering astaticversion of the library on a physical medium or, with improved
communications technology, by downloading from a network. The library de-
veloper can take care of his (or her) clients by imposing a good version control
system [26] and offering frequent upgrades. Once downloaded, the software re-
sides on the client system. For most of the history of software development this
has been the standard method of distribution. It is still in use today (for example,
by Sun Microsystems for delivering updated versions of the Java Development
Kit [21]).

On the other hand, improved communication technology has given rise to a num-
ber of developments in software technology, which offer the library developer
some alternatives. These include the concepbggct request brokerinft, 5, 2].

Here the library developer never loses control of the library since the code to be
executed resides at the library developer’s site. Clients wishing to make use of the
library must connect with the system and the library functions will be executed
there. Provided that the integrity of the software interface is not compromised,
this arrangement offers the library developer considerably more control over the
immediate functionality of the library. Instead of waiting for the next release’ to
implement bug-fixes or enhancements, the library developer can implement these
in situto the immediate benefit of all concerned.

However, there are some disadvantages. Firstly, the library developer must have
a system sufficiently powerful to deliver reasonable performance for an unknow-
ably large community of client developeasdtheir application users, and must

be willing to pay for this. This is therocessor problemSecondly, if the system
goes down or there are network problems, applications will not run at all, so all
clients developers and users will be vulnerablie downtime problemLastly,

object request brokering doesn'’t allow for the software re-use that comes about
through mechanisms that permit sub-classing (and sub-interfacing).

In this paper we considetynamic loadingwvhich lies between the extremes of
static library distribution and object request brokering. Dynamic libraries have a
long history of providing support to executables at the operating system level [20].
However, these were usually distributed statically. Today’s most prominent man-
ifestation, the Windows dynamic link library (DLL) allows for a more incremen-

tal approach to updating, but imposes some restrictions and acknowledges some
problems [1] compared with a more static approach to linking. Modern object
oriented programming languages (specifically Java) incorporate similar dynamic
loading capabilities into the runtime system and it is this technology we investi-
gate here.

In section two we describe how Java’s dynamic loading mechanism can give the
library developer more control over the immediate functionality of his (or her)
library and also some of the pitfalls which relying on this may entail. Then in
section three we develop a scheme to help the library developer keep track of
the differentmodification effectshat can arise as the library evolves. Section
four describes the design and development of a utility conceived to assist library
developers in their task in such a way that even solves the downtime problem.
In section five we report on other recent work, which has addressed this problem
and in section six give some indications of where we want to take this work in
the future.

2 Using Remote Libraries

2.1 Dynamic Loading

In most programming language environments linking occurs at compile-time and
at runtime the system loads the complete binary. In Java environments, the com-
piler embeds only symbolic references into the binary and the Java Virtual Ma-
chine (JVM) uses this information to locate and load individual classes and in-
terfaces 'on demand’ - that idynamically[12, 9]. This makes for a much more
complex loading process but there are advantages:

— There is a faster start-up because less code needs to be loaded (at least ini-
tially). In particular, there is ‘lazier’ error detection since exceptions only
need to be thrown when there is an actual attempt to link with unsafe code.

— At runtime, the program can link to the latest version of the binary, even if
that version was not available at the time of compilation.

Itis this last feature that we are interested in and it makes Java sound like the per-
fect solution for library developers with remote clients. Java is pretty good, but it

is not perfect. In the first place, the designers of the JVM could not (quite rightly)
just leave the loading mechanism at that - between loading the code and executing
it, the Verifier must be run to ensure that any changes that may have been made
to the code do not break the type checks that were originally performed by the
compiler. If they do dink error occurs.

Secondly, even if the Verifier can be persuaded to accept a modified library class,
it is possible to introduce modifications which will

— not be ‘felt’ at all by the client application;

— compromise the safe execution of the client application;

— put the code in such a state that further recompilation on the part of the client
developer will result in failure - that is, an executable application cannot be
re-created from the existing sources.

2.2 Binary Compatibility

If the Verifier detects no link errors at run time we say that the (new) library
is binary compatiblewith the client [12]. Every individual modification that led

to the existence of the new version must have been such as to maintain binary
compatibility and so is &inary compatible modification

Binary compatible modifications have been the subject of some study in the
past [10, 11, 7, 8]. The way binary compatibility works is that at compile-time

Any modification made to anything private.

Any modifications which improve performance or correct errors without mod-
ifying field types, method signatures or the positions of classes, interfaces or
members within the class hierarchy.

Any new classes, interfaces or members. Any modification which relaxes gontrol
over the class hierarchy. Thabstract — > non-abstract permitting instan-
tiation, final — > non-final permitting subclassing and any increases in the
accessibility of classes, interfaces and memberivdte — > protected
— > public

Any modification, which moves a field up the class hierarchy. At runtime, the
system attempts to resolve unresolved field references by searching up the class
hierarchy.

Fig. 1. Some Binary Compatible Modifications

the compiler embeds symbolic references (not binary code!) into the client bi-
naries. These references record the location of the library binaries together with
type information (field types and method signatures). When the library source
is modified and re-compiled, if the symbolic references are unchanged the new
binary can still link to previously compiled clients.

Figure 1 lists some important types of modifications, which do not interfere with
the symbolic references.

There are also (see Figure 2) significant and common modificationddlfivater-

fere with symbolic information and which must be assumed to be binapm-
patiblewith old clients.

Binary compatibility is a powerful concept, which, through the mechanism of
dynamic loading, can offer the library developer a great deal of support in prop-
agating the benefits of library evolution directly to clients. However, library de-
velopers should not be too comforted by binary compatibility because there are a
number of traps waiting for unwary old clients.

2.3 0Old Clients

New clients of course experience a ‘virgin’ library and are not our concern here.
It is the existing clients that we want to try to help to keep up-to-date. Those

Any modification, which removes (deletes) an accessible class or interface. If
no old clients actually subclass or instantiate that class, they will in fact link
without error. However, since the library developer cannot know which features
and facilities his (or her) clients are using he (or she) must assume that all features
and facilities are being used.

Any modification, which changes field types or method signatures in situ.

Any madification, which strengthens control over the class hierarchy. Thus non-
abstract— > abstract preventing instantiation, non-finat > final pre-
venting subclassing and decreases in the accessibility of classes, interfaces and
membersifublic — > protected — > private).

Any modification, which repositions a field further down the class hierarchy.

Fig. 2. Some Binary Incompatible Modifications

old clients that are likely to experience link (and other) errors are considered
in a subsequent section. For this section we consider old client developers who
may be beguiled by error-free linking into thinking that their users will benefit
directly from recent modifications and/or will run trouble-free and/or that they
themselves will be able to continue evolving their applications without difficulty.

In some cases clients will not see the effects of changes until they re-compile. We
have called thesklindclients [11]. In other cases, the clients’ sources cannot be
re-compiled without errors. These we ciadigile clients.

The Blind Client A blind client is a client binary that will link to a modified
library binary without error, but which will not see the effect of the modification
until re-compilation. One place that it can occur is in the use of shadowed fields.
There are other cases [11].

Adding a new field to an existing class is a binary compatible modification. Where
this field has the same name and type as another field farther up the class hierar-
chy, the new fieldshadowghe old. However, previously compiled binaries will

still be bound to the shadowed variable. Consider

class Coffee{String purity="pure Arabica";}

class Columbia extends Coffee{}

class SuesDiner{
public static void main(String[] args){
String cup = new Columbia().purity;
System.out.printin("Coffee - " + cup);

}

SuesDiner is the client. When compiled (using jdk 1.3 [12, 19]) and executed,
it outputs

Coffee - pure Arabica

Now suppose thafolumbia were modified as follows

class Columbia extends Coffee{
String purity="cut with chicory";}

The original purity has been shadowed and any newly compiled reference will be
resolved in Columbia. Thus

class ChrisCafe{
public static void main(String[] args){
String quality=new Columbia().purity;
System.out.printin("This coffee is " + quality);

will produce

This coffee is cut with chicory

However,SuesDiner s still bound to the old version of Columbia and so still
displays

Coffee - pure Arabica

SuesDiner is blind to the modification until re-compilation, when it will be
bound to the new purity.

The Fragile Client A fragile client is a client binary that will link to a modified
library binary, but which cannot subsequently be re-compiled from a single set of
sources.

Consider the example of the shadowed field. Suppos€iiatnbia were mod-

ified as follows

class Columbia extends Coffee{int purity=100;}

The original purity has been shadowed by a variable with the same name but a
different type. The clas€hrisCafe could be written as

class ChrisCafe{

public static void main(String[] args){

int percent=new Columbia().purity;
System.out.printin

("Serving Arabica of purity

+ percent + "%");

and produces

Serving Arabica of purity 100%

when run, while if the originaBuesDiner is executed, its version gurity
is still bound to theCoffee class so that it will once again output

Coffee - pure Arabica

However, ifSuesDiner were to be compiled the error

incompatible types
found :int
required: java.lang.String
String cup = new Columbia().purity;

will occur. Thus, if its two clients are to undergo their own maintenance, the
Coffee library hierarchy cannot simultaneously honour its contracts with both.

3 Modification Effect Analysis

In order that modifications should not lead to such surprises, it is important to
understand the possible effects of all types of modifications. In this analysis of
modification effecbutcomesve distinguish between effects that will occur with-
out any action on the part of the client developer, save simply executing the client
code (ink-time effectys and effects which occur after client developer action (i.e.
re-coding and/or recompilatior}- compile-time effects

3.1 Link-time Effects

Once the modification has been made, the library will be rebuilt and the next time
the client runs it will be dynamically linked with the new library. There are three
possible effects:

LEO: The client links without error and runs without any discernible modifica-
tion effect;

LE1: The client links without error and the modification effect is immediately
palpable;

LE2: The maodification is not binary compatible and consequently a link error
occurs.

In relation to ‘smooth’ evolution, clearly the states LEO and LE1 are desirable in
the sense that the immediate client execution is not compromised by the modifi-
cation, whilst LE2 is undesirable.

3.2 Compile-time Effects

At some point (probably immediately in the case of a link-time or run-time error)
the client is likely to recompile. The compilation may be trouble-free or it may
be troublesome (i.e. there are compilation errors). In the case of troublesome
compilation, it is assumed in the model that the client developer will re-code
until compilation succeeds, and that re-coding will be done in the light of full
knowledge about the library modification and with a view to benefiting from the
modification. This gives rise to three possible effects:

CEOQ: The client rebuilds without error and runs without any discernible modifi-
cation effect;

CEL1: The client rebuilds without error and the modification effect appears (or
persists if it was previously palpable);

LE|CE Description Reaction

State

0 | 0 |The client feels nothing (ever). NAR

The client feels nothing until a trouble-free recompila |or,1\I
0|1 e AR

makes the modification palpable.

The client must re-code in order to experience the mod flC%—
0|2 tion RC

The client feels the modification but it disappears after ﬁ
1/0 oo AR

trouble-free compilation.
1 | 1 |The client feels the modification immediately. NAR
1] 2 The client feels the modification but the client developer W|IIERC

need to re-code as soon as recompilation occurs.

The client experiences an immediate Tinking problem.| On
2 | 0 [recompilation, the problem disappears, but the modificatidRRB
never appears.

The client experiences an immediate linking problem which ﬁ-‘ZB
trouble-free compilation resolves.

The client experiences an immediate problem, which the ('“en-IZC
developer will need to re-code to fix.

Fig. 3. Modification Effects

CE2: The client encounters a compilation error, and, after re-coding achieves
the desired modification.

CEOQ is a desirable outcome if the modification made was not intended for these
clients at all, but for a new species of client. CE1 is also desirable. CE2 places the
burden of achieving a desirable modification effect on the client developer. We

delineate all possible states by combining all LE and CE states as in Figure 3.

3.3 Classifying Reaction States

On the assumption therefore that the client is bound to use the current version
of the library (as dynamic linking presupposes), any individual modification to a
library class can result in one of nine distinct outcomes for the client. However,
from the client developer’s point of view they can be classified into feaction
states

NAR —no action required;
ERC -eventual re-code;
IRB —immediate re-build;
IRC —immediate re-code.

No Action Required The client can link to the new library and continue op-
erations without hindrance. This category covers four distinct outcomes. In some
cases (00 and 11) there are no further implications for the library developer pro-
vided that the actual outcome is the desired one.

In the case of 00 for instance, if the library developer had introduced a new class,
which was not intended for old clients, then the fact that the old clients would
never see the class is a desirable outcome.

In the case of 11, the modification would be palpable for old clients. If the effect
is intended (for example, if it achieved improved performance of an algorithm, or
corrected a spelling mistake in an error message) then the outcome is desirable.
However, the library developer could introduce a modification, which caused old
clients to compute incorrect results (for example, changing a method so that it
returned financial data in Euros rather than Pounds). Although the modification
is palpable, its effect is an undesirable one and further intervention is indicated.

Eventual Re-codeThe modification does not threaten the running of the exist-
ing client, but when the client code is re-built, the modification will compromise
the resulting binaries unless further client coding is done. Since it is not possible
for the library developer to dictate precisely when the client recompiles, it would
be safer if the client were to continue to link to the previous version.

Immediate Re-build Even though the re-build will be trouble-free, any execu-
tion before it is done will compromise the client. Once again, because the library
developer cannot force the client to rebuild, a conservative policy dictates that the
client should continue to link to the previous version of the library.

Immediate Re-code The modification has compromised the client binaries -
the client cannot link with the new library and cannot recompile without further
coding. This is the least desirable scenario of all.

3.4 An Evolutionary Development Strategy

How can Java library developers evolve their classes without forcing their dis-
tributed clients into undesirable reaction states?

One possibility is to restrict modifications only to those that lead to the No Action
Required state. To help library developers to achieve this, we want to be able to
determine, for any particular modification, whether

1. the client code will link and run (i.e. the modification is binary compatible,
LE=0 or LE=1);

2. the client code will compile without error (CE=0 or CE=1);

3. the client code will execute correctly (LE=1, CE=1 and the palpable effect
is desirable).

In any utility designed to assist Java library developers with distributed evolution,
it should be possible to implement (1) and (2), although (3) will always be the
developer's responsibility.

The restriction to a No Action Required state is severely limiting for develop-
ers and we need to find a way to overcome this limitation. One idea is to devise
a method of compromising the dynamic loading mechanism so that, under con-
trolled conditions, potentially incompatible clients can link to earlier versions of
the library (with which they are compatible). This can be incorporated relatively
easily into any utility for the evolution of distributed Java programs. Another idea
would be to develop techniques for embedding the code of undesirable modifica-
tions into structures that can mitigate their effects.

Finally, the discussion above identified several situations when it would be highly
desirable for the library developer to be able to communicate with the client de-
veloper - for example to advise of an essential bug-fix which can be made pal-
pable by means of a simple rebuild (01 or 21) or to warn not to rebuild (12). To
achieve this it is not necessary to maintain a large contact list of clients or to re-
quire clients to go through a registration process, since every time a client runs, it
‘touches base’ with the library. We would like a Java evolution utility to help the
library developer achieve this communication.

In the next section we discuss the design of a Distributed Evolution for Java
Utility D eJavu which has been developed to implement and experiment with
some of the ideas discussed above.

4 DEeJavu — The Distributed Evolution for Java Utility

We set out to design a utility to help library developers and their client application
developers to overcome the problems discussed above. To limit the scope and also
to exploit the potential embedded in its design, we decided to restrict ourselves
to distributed program development using Java.

The operation of the utility was specified as follows:

1. It should accept copies (versions) of libraries from the library developer.

2. Having accepted a new version, it must compare it with the existing version.
In making this comparison, it must detect significant modifications and must
assess their impact at some level.

3. The utility must report its findings to the library developer.

4. Onthe basis of the report (or otherwise), it must permit the library developer
to publish the new version - that is to make it available to clients.

5. When a client developer wishes to compile, the utility must provide access
to the appropriate library code.

6. When a client application attempts to link at runtime, the utility must de-
termine whether or not the compile-time library version corresponds to the
current runtime version. If not, it must determine whether or not the modi-
fications involved are binary compatible. Then it must ensure that the client
application links to (and hence runs with) the appropriate (updated if neces-
sary) version of the library.

7. The utility must be able to report to the client developer where and how the
client application’s most recently compiled version of the library diverges
from the latest published version.

4.1 Architecture

Providing the client developer with a custom classloader, which is sensitive to the
various versions of the library, could solve this problem. When this classloader
detected a class that had been updated since the last build or run, it could analyze
subsequent versions of the library to determine the most recent compatible one
from which to load the class.

However, this was not a feasible solution for distributing libraries because of the
way the current JVM works (see [25]). Either the client developer or the library
developer would have to alter their programming style quite radically for such

a system to work. (The client developer would need to use reflection to invoke

Check for any deleted public classes.

Check for any change in the inheritance chain.
Check for any deleted public fields.

Check for any deleted public methods.

Check for classes that have become abstract.
Check for classes that have become final.
Check for classes that are no longer public.
Check for any deleted constructors.

Check for a breaking change of access of fields.
Check for a breaking change of access of methods.

Fig. 4. Rules Implemented

methods. The library developer would need to establish fixed static interfaces). In-
stead we adopted the idea of updating at the level of the library as a whole. On the
library developer side, we proposed a Controller component, which allows devel-
opers to maintain multiple versions of the library. One version is labelled 'latest’
and this is the default version with which all new clients will link. Older clients
will originally have compiled using an earlier version. The Controller needs to
know, for any given client, whether the linked version is compatible with the lat-
est version, and if not, which is the most recent version that it is compatible with.
The crucial question here is to determine what constitutes 'compatible’ in these
circumstances. In our system we define compatibility via a set of 'rules’ govern-
ing one or more differences between versions of a class. If all the rules are sat-
isfied the two versions will be considered compatible. By enunciating new rules
and expanding the ruleset, we plan incrementally to extend the support, which
the utility can provide to developers. The component of the system that applies
Rules to two versions of a any library class is the RuleEngine.

4.2 The Rule Engine

In order to drive the RuleEngine, an abstract Rule class was developed. The con-
crete rules that are currently implemented can be seen in Figure 4.

The RuleEngine works with java.lang.reflect to examine and compare class ver-
sions. To do this the relevant classes must be loaded in the normal way. However
the routine classloader provided with the JVM [19] is not capable of loading two
classes with the same name from different locations. To bypass this a server-
based custom classloader was developed capable of loading named classes from
arbitrary locations.

4.3 The Controller and Synchroniser

On the client side, the system provides a Synchronizer component, which must
be invoked as a part of the client application initialization. The client developer
must start with an initial version of the library, downloaded into a local Class-
Cache, and containing the Synchroniser class ClassSynchr with the method sync-
Classes(). Itis this method that must be invoked early in the execution of the client
application. At compile time the client code will link to the local version of the

library and build the binaries accordingly. At runtime, the call to syncClasses()
will create a connection to the remote RuleServer to test to see if the library needs
updating. If is does then the entire library is replaced by the latest compatible ver-
sion before loading continues once again from the local ClassCache.
The Controller provides the interface for all the users of the system. It must be
able to

1. accept updated versions of the library and, when requested, publish these.

2. interact with the ClassSyncr object of each client to determine whether a new

library version is required and, if so, which one to download.

In order to manage multiple simultaneous clients, the Contoller is implemented
using a Controller/Slave pattern. Every library developer request causes a RuleRe-
moteObj slave to be created. This manages the upload of the new library files and
invokes the RuleEngine to generate the version compatibility data.
This is not an ideal arrangement since the library developer cannot deduce the
precise compatibility circumstances governing the current modifications in any
interactive way, but must instead wait until the new library has been uploaded.
For this reason the upload occurs in two stages. First the library is uploaded.
Then is can be checked by the RuleEngine and a report for the library developer
generated. Only then may the library developer 'publish’ the new version, mak-
ing it available to external clients. Correspondingly, on receiving a request from
a remote ClassSyncr object, the controller creates a slave RuleRemoteCL to re-
trieve and examine the LocalVersionSettings file of the requester and choose an
appropriate library version to download to the remote ClassCache.

5 Related Work

The work described here arose directly out of theoretical work on binary com-
patibility done in collaboration with Drossopoulou and Wragg [7, 8]. As binary
compatibility was conceived to assist with the development of distributed li-
braries [10, 11], we examined its effect on evolving libraries. Drossopoulou then
went on to model dynamic linking in [6] and we looked at the nature of dynamic
linking in Java [9]. We have looked at the problems that arise with binary com-
patible code in [10] and built a less powerful tool, described in [11]. Other formal
work on distributed versioning has been done by Sewell in [24], but this work
does not consider the issue of binary compatibility.

Other related work falls into three categories - firstly there are groups who alter
code delivered to them to get it to behave as desired. Then there are groups,
primarily software engineers, working on distributed configuration management;
and finally groups, primarily language designers, who are investigating support
for dynamic loading.

5.1 Altering Library Binaries

[18, 3, 27] have done work on altering previously compiled code. Such systems
enable library code to be mutated to behave in a manner to suit the client. Al-
though work on altering binaries preceded Java [27] it really came into its own
with Java since Java bytecode is quite high level, containing type information.
In both the Binary Component Adaptation System [18] and the Java Object In-
strumentation Environment [3] class files are altered and the new ones are loaded

and run. One of the main purposes of this kind of work is extension of classes for
instrumentation purposes but these systems could be used for other changes. We
have not taken the approach of altering library developers’ code because it makes
the application developer responsible for the used library code. Responsibility
without source or documentation is not a desirable situation. There is also the
problem of integrating new library releases, which the client may find it difficult

to benefit from.

5.2 Configuration Management

Often configuration management is about configuration per se - technical is-
sues about storage and distribution; or management per se - policy issues about
what should be managed and how. Network-Unified Configuration Management
(NUCM) [14, 15] embraces both in an architecture, incorporating a generic model
of a distributed repository. The interface to this repository is sufficiently flexible

to allow different policies to be manifested.

World Wide Configuration Management (WWCM) [16, 22] provide an API for

a web based client-server system. It is built around the Configuration Manage-
ment Engine (CME) to implement what is effectively a distributed project. CME
allows elements of a project to be arranged in a hierarchy and working sets to
be checked in and out, and the project as a whole can be versioned so several
different versions may exist concurrently.

In this paper we have mostly discussed changes that should propagate without
requiring such explicit management. Where there are more major modifications,
which will need substantial rebuilding, Configuration Management systems such
as those described will be necessary.

5.3 Language Desigr— C# and Visual Basic

The designers of & [13] also recognized that versioning is a problem that they
needed to tackle and in particular that compile-time constants present a binary
compatibility problem. @ has a keywordeadonly for constants whose values

are determined at run-time.

When one method overrides another, it is ambiguous whether this was a de-
liberate override or an accidental name clash. Tke @@mpiler has keywords
new/override to help make this distinction and warns developers when the ambi-
guity is detected. Early versions of th&# documentation had an empty chapter
entitled Versioning. Versioning information is kept in the manifests of assemblies.
Finally Visual Basic [23] allows server dlIs to be installed with a binary compati-
bility switch turned on. This allows server bug fixes without having to re-compile
all clients.

6 Conclusions and Future Work

We have attempted to address the problems faced by a library developer who
wishes to support remote clients by means of Java’s dynamic loading mechanism.
Although we started by considering binary compatibility as a key criterion for

safe evolution, our analysis indicates that the situation is more complicated and

that there is a greater variety of modification effects. We have developed a utility
that helps to manage some of the issues raised and which we believe has the
potential to be extended to cover a wider range of the issues.

In contemplating the further development of our project we see a number of ideas,
which could serve to enhance the utility. These include:

1. Support for library development at the package level [17]. We have consid-
ered a library to be simply a hierarchy of classes. The Java language design-
ers envisage libraries more in terms of Packages and we need to consider
what issues this raises.

2. Library clients. It is possible that the client developer is developing a library
for use by downstream clients. This leads to a multi-layered development
model and we need to consider how our utility might work when a down-
stream client tries to link to several libraries each linked to a different version
of the original.

3. Touching Base. Every time a client application runs, dynamic loading causes
it to ‘touch base’ with the library’s home system. There are many ways in
which this communication could be exploited, such as
(a) transmitting warnings and other updating information;

(b) collecting information about the numbers of users and frequency of use
of different versions of the library;

(c) managing licenses and intellectual property data;

(d) charging users on a ‘per use’ basis. Sun is developing support for this
via its JIMX (Java Management Extensions) specification [17]. We need
to see whether this technology can serve our purposes.

Acknowledgements

We acknowledge the financial support of the EPSRC grant Ref GR/L 76709.
Some of this work is based on more formal work done with Sophia Drossopolou.
We thank the JVCS implementation team Y. Lam, K. Lin, Y. Gojali, C. Xu and
D. Woo for their contributions to the predecessor tool of DEJaVU.

References

[1] R. Anderson, The End of DLL Hell Microsoft Corporation,
http://msdn.microsoft.com/library/techart/dlidangerl.htm, January 2000.

[2] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah
Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, Dave Winer,
SOAP: Simple Object Access Protadattp://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnsoapsp/ html/ soapspec.asp.

[3] G. Cohen, J. Chase, and D. Kaminskytomatic Program Transformation
with JOIE, USENIX Annual Technical Symposium, New Orleans, 1998.

[4] CORBA http://www.corba.org/.

[5] DCOM, http://www.microsoft.com/com/tech/DCOM.asp.

[6] S. DrossopoulouAn Abstract Model of Java Dynamic Linkingoading
and Verification, Types in Compilation Montreal, September 2001.

[7] S. Drossopoulou, S. Eisenbach and D. Wra§grragment Calculus— to-
wards a model of Separate Compilation, Linking and Binary Compatibility
LEEE Symposium on Logic in Computer Science, Jul. 1999, http://www-
dse.doc.ic.ac.uk/projects/slurp/.

(8]

Bl

(10]
(11]
(12]

(13]

(14]

(15]

(16]

(17]
(18]

(19]

(20]
(21]
[22]

(23]

(24]
(25]
(26]

(27]

S. Drossopoulou, D. Wragg and S. Eisenbach, What is Bavary Com-
patibility?, OOPSLA98 Proceedings, October 1998, http:// www-dse. doc
.ic.ac.uk/ projects/ slurp/.

S. Eisenbach and S Drossopoulddanifestations of the Dynamic Link-
ing Process in JavaJune 2001, http://www-dse.doc.ic.ac.uk/projects/
slurp/dynamic-link/linking. htm.

S. Eisenbach and C. SadlEphemeral Java Source Cadd€=EE Workshop

on Future Trends in Distributed Systems, Cape Town, Dec. 1999.

S. Eisenbach and C. Sadl@hanging Java Program4.EEE Conference

in Software Maintenance, Florence, Nov. 2001.

J. Gosling, B. Joy, G. Steele and G. Brachhe Java Language Specifica-
tion Second EditionAddison-Wesley, 2000.

Hejlsberg and S. Wiltamuth, C# Language Reference
http://msdn.microsoft.com/ vstudio/ nextgen / technology/csharpintro.asp,
June 2000.

Hoek, D.M. Heimbigner, and A.L. WolfA Generic, Peer-to-Peer Repos-
itory for Distributed Configuration ManagemerAiCM 18th International
Conference on Software Engineering, March 1996.

Hoek, D.M. Heimbigner, and A.L. Wolf\ersioned Software Architec-
ture, 3rd International Software Architecture Workshop, Orlando, Florida,
November 1998.

J. J. Hunt, F. Lamers, J. Reuter and W. F. Tidbigtributed Configuration
Management Via Java and the World Wide WelProc 7th Intl. Workshop

on Software Configuration Management”, Boston, 1997.

Java Management Extensions (JMpéya.sun.com/ products/ JavaManage-
ment/, Jul. 2000.

R. Keller and U. Hizle Binary Component Adaptatioiroc. of the Euro-
pean Conf. on Object-Oriented Programming, Springer-Verlag, July 1998.
T. Lindholm and F Yellin, The Java(tm) Virtual Machine Spec-
ification, http: // java.sun.com/ docs/ books/ vmspec/2nd-edition/
html/ChangesAppendix.doc.html.

J. Peterson and A. Silberschabperating System Concepfsddison Wes-
ley, 1985.

Products and APlshttp://java.sun.com/products/.

J. Reuter, S. U. Hngen, J. J. Hunt, and W. F. Tiddistributed Revision
Control Via the World Wide Weltn Proc. 6th Intl. Workshop on Software
Configuration Management”, Berlin, Germany, March, 1996.

Salmre, Building, Versioning and Maintaining Visual Basic Compo-
nents Microsoft Corp., http: //msdn.microsoft.com/ library/techart/msdn-
bldvbcom.htm, February, 1998.

P. Sewell, ModulesAbstract Types, and Distributed Versionjrigroc. of
Principles of Programming Languages, ACM Press, London, Jan. 2001.
S. Shaikh Distributed Version Control for Jayalune, 2001, http:// www-
dse. doc .ic.ac.uk/ projects/ slurp/.

W. Tichy. RCS: A System for Version Contr8loftware—Practice and Ex-
perience, 15(7):637—654, July 1985.

R. Wahbe, S. Lucco, and S. Grahahdaptable binary programdechnical
Report CMU-CS-94-137, Carnegie Mellon University, School of Computer
Science, Pittsburgh, PA 15213, Apr. 1994.

