
342 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

Understanding Code Mobility
Alfonso Fuggetta, Member, IEEE, Gian Pietro Picco, Member, IEEE,

and Giovanni Vigna, Member, IEEE

Abstract—The technologies, architectures, and methodologies traditionally used to develop distributed applications exhibit a variety of
limitations and drawbacks when applied to large scale distributed settings (e.g., the Internet). In particular, they fail in providing the
desired degree of configurability, scalability, and customizability. To address these issues, researchers are investigating a variety of
innovative approaches. The most promising and intriguing ones are those based on the ability of moving code across the nodes of a
network, exploiting the notion of mobile code. As an emerging research field, code mobility is generating a growing body of scientific
literature and industrial developments. Nevertheless, the field is still characterized by the lack of a sound and comprehensive body of
concepts and terms. As a consequence, it is rather difficult to understand, assess, and compare the existing approaches. In turn, this
limits our ability to fully exploit them in practice, and to further promote the research work on mobile code. Indeed, a significant symptom
of this situation is the lack of a commonly accepted and sound definition of the term “mobile code” itself.

This paper presents a conceptual framework for understanding code mobility. The framework is centered around a classification
that introduces three dimensions: technologies, design paradigms, and applications. The contribution of the paper is two-fold. First, it
provides a set of terms and concepts to understand and compare the approaches based on the notion of mobile code. Second, it
introduces criteria and guidelines that support the developer in the identification of the classes of applications that can leverage off
of mobile code, in the design of these applications, and, finally, in the selection of the most appropriate implementation technologies.
The presentation of the classification is intertwined with a review of state-of-the-art in the field. Finally, the use of the classification is
exemplified in a case study.

Index Terms—Mobile code, mobile agent, distributed application, design paradigm.

——————————���F���——————————

1 INTRODUCTION

OMPUTER networks are evolving at a fast pace, and this
evolution proceeds along several lines. The size of net-

works is increasing rapidly, and this phenomenon is not
confined just to the Internet, whose tremendous growth
rate is well-known. Intra- and inter-organization networks
experience an increasing diffusion and growth as well, fos-
tered by the availability of cheap hardware and motivated
by the need for uniform, open, and effective information
channels inside and across the organizations. A side effect
of this growth is the significant increase of the network traf-
fic, which in turn triggers research and industrial efforts to
enhance the performance of the communication infrastruc-
ture. Network links are constantly improved, and techno-
logical developments lead to increased computational
power on both intermediate and end network nodes.

The increase in size and performance of computer net-
works is both the cause and the effect of an important
phenomenon: networks are becoming pervasive and
ubiquitous. By pervasive, we mean that network connec-
tivity is no longer an expensive add-on. Rather it is a basic
feature of any computing facility, and, in perspective, also
of many products in the consumer electronics market (e.g.,

televisions). By ubiquitous, we refer to the ability of exploit-
ing network connectivity independently of the physical
location of the user. Developments in wireless technology
free network nodes from the constraint of being placed at a
fixed physical location and enable the advent of so-called
mobile computing. In this new scenario, mobile users can
move together with their hosts across different physical
locations and geographical regions, still being connected to
the net through wireless links.

Another important phenomenon is the increasing avail-
ability of easy-to-use technologies accessible also to naive
users (e.g., the World Wide Web). These technologies have
triggered the creation of new application domains and even
new markets. This is changing the nature and role of net-
works, and particularly of the Internet. They cannot be con-
sidered just plain communication technologies. Nowadays,
modern computer networks constitute innovative media
that support new forms of cooperation and communication
among users. Terms like “electronic commerce,” or “Inter-
net phone” are symptomatic of this change.

However, this evolution path is not free of obstacles and
several challenging problems must be addressed. The
growing size of networks raises a problem of scalability.
Most results that are significant for small networks are of-
ten inapplicable when scaled to a world-wide network like
the Internet. For instance, while it might be conceivable to
apply a global snapshot algorithm to a LAN, its perform-
ance is unacceptable in an Internet setting. Wireless con-
nectivity poses even tougher problems [1], [2]. Network
nodes may move and be connected discontinuously, hence
the topology of the network is no longer defined statically.
As a consequence, some of the basic tenets of research on

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� A. Fuggetta and G. Vigna are with the Dipartimento di Elettronica e Infor-
mazione, Politecnico di Milano, P.za Leonardo da Vinci, 32, I-20133 Milano,
Italy. E-mail: {fuggetta, vigna}@elet.polimi.it.

•� G.P. Picco is with the Dipartimento di Automatica e Informatica, Politec-
nico di Torino, C.so Duca degli Abruzzi 24, I-10129 Torino, Italy.
E-mail: picco@polito.it.

Manuscript received 16 July 1997; revised 18 Dec. 1997.
Recommended for acceptance by G.-C. Roman.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 106411.

C

FUGGETTA ET AL.: UNDERSTANDING CODE MOBILITY 343

distributed systems are undermined, and we need to adapt
and extend existing theoretical and technological results to
this new scenario. Another relevant issue is the diffusion of
network services and applications to very large segments of
our society. This makes it necessary to increase the custom-
izability of services, so that different classes of users are en-
abled to tailor the functionality and interface of a service
according to their specific needs and preferences. Finally,
the dynamic nature of both the underlying communication
infrastructure and the market requirements demand in-
creased flexibility and extensibility.

There have been many attempts to provide effective an-
swers to this multifaceted problem. Most of the proposed
approaches, however, try to adapt well-established models
and technologies within the new setting, and usually take
for granted the traditional client-server architecture. For
example, CORBA [3] integrates remote procedure calls
(RPCs) with the object-oriented paradigm. It attempts to
combine the benefits of the latter in terms of modularity
and reuse, with the well-established communication
mechanism of the former. However, this approach does not
ensure the degree of flexibility, customizability, and recon-
figurability needed to cope with the challenging require-
ments discussed so far.

A different approach originates in the promising re-
search area exploiting the notion of mobile code. Code mo-
bility can be defined informally as the capability to dy-
namically change the bindings between code fragments and
the location where they are executed [4]. The ability to relo-
cate code is a powerful concept that originated a very inter-
esting range of developments. However, despite the wide-
spread interest in mobile code technology and applications,
the field is still quite immature. A sound terminological and
methodological framework is still missing, and there is not
even a commonly agreed term to qualify the subject of this
research.1 In addition, the interest demonstrated by markets
and media, due to the fact that mobile code research is
tightly bound to the Internet, has added an extra level of
noise, by introducing hypes and sometimes unjustified ex-
pectations. In the next section we present the main differ-
ences between mobile code and other related approaches,
and the motivations and main contributions of this paper.

2 MOTIVATIONS AND APPROACH

Code mobility is not a new concept. In the recent past, sev-
eral mechanisms and facilities have been designed and im-
plemented to move code among the nodes of a network.
Examples are remote batch job submission [5] and the use
of PostScript [6] to control printers. The research work on
distributed operating systems has followed a more struc-
tured approach. In that research area, the main problem is
to support the migration of active processes and objects
(along with their state and associated code) at the operating
system level [7]. In particular, process migration concerns the
transfer of an operating system process from the machine
where it is running to a different one. Migration mecha-

1. Hereafter, we use interchangeably the terms code mobility and mobile
code, although other authors prefer different terms such as mobile computa-
tions, mobile object systems, or program mobility.

nisms handle the bindings between the process and its exe-
cution environment (e.g., open file descriptors and envi-
ronment variables) to allow the process to seamlessly re-
sume its execution in the remote environment. Process mi-
gration facilities have been introduced at the operating
system level to achieve load balancing across network
nodes. Therefore, most of these facilities provide transpar-
ent process migration: the programmer has neither control
nor visibility of the migration process. Other systems pro-
vide some form of control over the migration process. For
example, in Locus [8] process migration can be triggered
either by an external signal or by the explicit invocation of
the migrate system call. Object migration makes it possible
to move objects among address spaces, implementing a
finer grained mobility with respect to process-level migra-
tion. For example, Emerald [9] provides object migration at
any level of granularity ranging from small, atomic data to
complex objects. Emerald does not provide complete trans-
parency since the programmer can determine objects loca-
tions and may request explicitly the migration of an object
to a particular node. An example of system providing
transparent migration is COOL [10], an object-oriented ex-
tension of the Chorus operating system [11]. COOL is able
to move objects among address spaces without user inter-
vention or knowledge.

Process and object migration address the issues that arise
when code and state are moved among the hosts of a
loosely coupled, small scale distributed system. However,
they are insufficient when applied in larger scale settings.
Nevertheless, the migration techniques discussed so far
have been taken as a starting point for the development of a
new breed of systems providing enhanced forms of code
mobility. These systems, often referred to as Mobile Code
Systems (MCSs), exhibit several innovations with respect to
existing approaches:

Code mobility is exploited on an Internet-scale. Distributed
systems providing process or object migration have been
designed having in mind small-scale computer networks,
thus assuming high bandwidth, small predictable latency,
trust, and, often, homogeneity. Conversely, MCSs are con-
ceived to operate in large scale settings where networks are
composed of heterogeneous hosts, managed by different
authorities with different levels of trust, and connected by
links with different bandwidths (e.g., wireless slow con-
nections and fast optical links).

Programming is location aware. Location is a pervasive ab-
straction that has a strong influence on both the design and
the implementation of distributed applications. Mobile
code systems do not paper over the location of application
components, rather, applications are location-aware and
may take actions based on such knowledge.

Mobility is under programmer’s control. The programmer is
provided with mechanisms and abstractions that enable the
shipping and fetching of code fragments (or even entire
components) to/from remote nodes. The underlying run-
time support provides basic functionalities (e.g., data mar-
shaling, code check-in, and security), but does not have any
control over migration policies.

344 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

Mobility is not performed just for load balancing. Process
and object migration aim at supporting load balancing and
performance optimization. Mobile code systems address a
much wider range of needs and requirements, such as
service customization, dynamic extension of application
functionality, autonomy, fault tolerance, and support for
disconnected operations.

To cope with this variety of requirements and needs, in-
dustrial and academic researchers have proposed a number
of MCSs. This lively and sometimes chaotic research activ-
ity has generated some confusion about the semantics of
mobile code concepts and technologies.

A first problem is the unclear distinction between im-
plementation technologies, specific applications, and para-
digms used to design these applications. In an early and yet
valuable assessment of code mobility [12], the authors
analyze and compare issues and concepts that belong to
different abstraction levels. Similarly, in a recent work
about autonomous objects [13], mechanisms like REV [14]
and RPC [15] are compared to the Echo distributed algo-
rithms [16], to applications like “intelligent e-mail” and Web
browsers, and to paradigms for structuring distributed ap-
plications, like mobile agents. We argue that these different
concepts and notions cannot be compared directly. It is as
inappropriate and misleading as trying to compare the
emacs editor, the fork Unix system call, and the client-
server design paradigm.

There is also confusion about terminology. For instance,
several systems [17], [18] claim to be able to move the state
of a component along with its code. This assertion is justi-
fied by the availability of mechanisms that allow the pro-
grammer to pack some portion of the data space of an exe-
cuting component before the component’s code is sent to a
remote destination. Indeed, this is quite different from the
situation where the run-time image of the component is
transferred as a whole, including its execution state (i.e.,
program counter, call stack, etc.). In the former case, it is the
programmer’s task to rebuild the execution state of a com-
ponent after its migration, using the data transferred with
the code. Conversely, in the latter case this task is carried
out by the run-time support of the MCS. Another termino-
logical confusion stems from the excessive overload of the
term “mobile agent.” This term is used with different and
somewhat overlapping semantics in both the distributed
systems and artificial intelligence research communities. In
the distributed system community the term “mobile agent”
is used to denote a software component that is able to move
between different execution environments. This definition
has actually different interpretations. For example, while in
Telescript [19] an agent is represented by a thread that can
migrate among different nodes carrying its execution state,
in TACOMA [17] agents are just code fragments associated
with initialization data that can be shipped to a remote
host. They do not have the ability to migrate once they have
started their execution. On the other hand, in the artificial
intelligence community the term “agent” denotes a soft-
ware2 component that is able to achieve a goal by perform-
ing actions and reacting to events in a dynamic environ-

2. In this paper we ignore the implications of broader notions of agent
which are not restricted to the software domain.

ment [20]. The behavior of this component is determined by
the knowledge of the relationships among events, actions,
and goals. Moreover, knowledge can be exchanged with
other agents, or increased by some inferential activity [21].
Although mobility is not the most characterizing aspect of
these entities [22], there is a tendency to blend this notion of
intelligent agent with the one originating from distributed
systems and thus assume implicitly that a mobile agent is
also intelligent (and vice versa). This is actually generating
confusion since there is a mix of concepts and notions that
belong to two different layers, i.e., the layer providing code
mobility and the one exploiting it. Finally, there is no defi-
nition or agreement about the distinguishing characteristics
of languages supporting code mobility. In [23], Knabe lists
the essential characteristics of a mobile code language. They
include support for manipulating, transmitting, receiving,
and executing “code-containing objects.” However, there is
no discussion about how to manage the state of mobile
components. Other contributions [24], [12] consider only
the support for mobility of both code and state, without
mentioning weaker forms of code mobility involving code
migration alone—as we discuss later on in the paper.

Certainly, confusion and disagreement are typical of a
new and still immature research field. Nevertheless, re-
search developments are fostered not only by novel ideas,
mechanisms, and systems, but also by a rationalization and
conceptualization effort that re-elaborates on the raw ideas,
seeking for a common and stable ground on which to base
further endeavors. Research on code mobility is not an ex-
ception. The technical concerns raised by performance and
security of MCSs are not the only factors hampering full
acceptance and exploitation of mobile code. A conceptual
framework is needed to foster understanding of the multi-
faceted mobile code scenario. It will enable researchers and
practitioners to assess and compare different solutions with
respect to a common set of reference concepts and abstrac-
tions—and go beyond it. To be effective, this conceptual
framework should also provide valuable information to
application developers, actually guiding the evaluation of
opportunities for exploitation of code mobility during the
different phases of application development.

These considerations provide the rationale for the classi-
fication presented in this paper. The classification intro-
duces abstractions, models, and terms to characterize the
different approaches to code mobility proposed so far,
highlighting commonalities, differences, and applicability.
The classification is organized along three dimensions that
are of paramount importance during the actual develop-
ment process: technologies, design paradigms, and application
domains. Mobile code technologies are the languages and
systems that provide mechanisms enabling and supporting
code mobility. Some of these technologies have been al-
ready mentioned and are discussed in greater detail in the
next section. Mobile code technologies are used by the ap-
plication developer in the implementation stage. Design
paradigms are the architectural styles that the application
designer uses in defining the application architecture. An
architectural style identifies a specific configuration for the
components of the system and their mutual interactions.
Client-server and peer-to-peer are well-known examples of

FUGGETTA ET AL.: UNDERSTANDING CODE MOBILITY 345

design paradigms. Application domains are classes of appli-
cations that share the same general goal, e.g., distributed
information retrieval or electronic commerce. They play a
role in defining the application requirements. The expected
benefits of code mobility in a number of application do-
mains is the motivating force behind this research field.

Our classification will break down in a vertical distinc-
tion among these three layers, as well as in an horizontal
distinction among the peculiarities of the various ap-
proaches found in literature. Section 3 presents a general
model and a classification of the mechanisms provided by
mobile code technologies. The classification is then used to
survey and characterize several MCSs. Section 4 presents
mobile code design paradigms and discusses their relation-
ships with mobile code technologies. Section 5 discusses the
advantages of the mobile code approach and presents some
application domains that are supposed to benefit from the
use of some form of code mobility. Finally, in Section 6 we
exemplify the use of the classification by applying it to a
case study in the network management application domain.

3� MOBILE CODE TECHNOLOGIES

Mobile code technologies include programming languages
and their corresponding run-time supports. At a first
glance, these technologies provide quite different concepts
and primitives. For this reason, the first part of this section
introduces some reference abstractions, and then seeks out
and classifies the different mechanisms that allow an appli-
cation to move code and state across the nodes of a net-
work. We are concerned here only with the issues strictly
related to mobility. Other aspects of mobile code technology
are indeed relevant, such as security or strategies for trans-
lation and execution. On-going work is defining a similar
framework for these aspects as well. In the second part of
the section (Section 3.3), the classification of mobility
mechanisms is used to characterize the features provided
by several existing MCSs. The classification accommodates
several technologies found in literature. The set of tech-
nologies considered is not exhaustive, and is constrained by
space and by the focus of the paper. However, the reader
may actually verify the soundness of the classification by
applying it to other MCSs not considered here, like the ones
described in [25], [26], [27]. Also, the reader interested in a
more detailed analysis of the linguistic problems posed by
the introduction of mobility in programming languages can
refer to [28], [29].

3.1 A Virtual Machine for Code Mobility
Traditional distributed systems can be accommodated in

the virtual machine shown on the left-hand side of Fig. 1.
The lowest layer, just upon the hardware, is constituted by
the Core Operating System (COS). The COS can be regarded
as the layer providing the basic operating system function-
alities, such as file system, memory management, and proc-
ess support. No support for communication or distribution
is provided by this layer. Nontransparent communication
services are provided by the Network Operating System
(NOS) layer. Applications using NOS services address ex-
plicitly the host targeted by communication. For instance,

socket services can be regarded as belonging to the NOS
layer, since a socket must be opened by specifying explicitly
a destination network node. The NOS, at least conceptually,
uses the services provided by the COS, e.g., memory man-
agement. Network transparency is provided by the True
Distributed System (TDS) layer. A TDS implements a plat-
form where components, located at different sites of a net-
work, are perceived as local. Users of TDS services do not
need to be aware of the underlying structure of the net-
work. When a service is invoked, there is no clue about the
node of the network that will actually provide the service,
and even about the presence of a network at all. As an ex-
ample, CORBA [3] services can be regarded as TDS services
since a CORBA programmer is usually unaware of the net-
work topology and always interacts with a single well-
known object broker. At least in principle, the TDS is built
upon the services provided by the underlying NOS.

Technologies supporting code mobility take a different
perspective. The structure of the underlying computer
network is not hidden from the programmer, rather it is
made manifest. In the right-hand side of Fig. 1 the TDS is
replaced by Computational Environments (CEs) layered
upon the NOS of each network host. In contrast with the
TDS, the CE retains the “identity” of the host where it is
located. The purpose of the CE is to provide applications
with the capability to dynamically relocate their compo-
nents on different hosts. Hence, it leverages off of the
communication channels managed by the NOS and of the
low-level resource access provided by the COS to handle
the relocation of code, and possibly of state, of the hosted
software components.

We distinguish the components hosted by the CE in exe-
cuting units (EUs) and resources. Executing units represent
sequential flows of computation. Typical examples of EUs
are single-threaded processes or individual threads of a
multi-threaded process. Resources represent entities that
can be shared among multiple EUs, such as a file in a file
system, an object shared by threads in a multi-threaded
object-oriented language, or an operating system variable.
Fig. 2 illustrates our modeling of EUs as the composition of
a code segment, which provides the static description for the
behavior of a computation, and a state composed of a data
space and an execution state. The data space is the set of ref-
erences to resources that can be accessed by the EU. As ex-
plained later on, these resources are not necessarily co-
located with the EU on the same CE. The execution state
contains private data that cannot be shared, as well as con-
trol information related to the EU state, such as the call
stack and the instruction pointer. For example, a Tcl inter-
preter PX executing a Tcl script X can be regarded as an EU
where the code segment is X; the data space is composed of
variables containing the handles for files and references to
system environment variables used by PX; the execution
state is composed of the program counter and the call stack
maintained by the interpreter, along with the other vari-
ables of X.

3.2 Mobility Mechanisms
In conventional systems, each EU is bound to a single CE
for its entire lifetime. Moreover, the binding between the

346 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

EU and its code segment is generally static. Even in envi-
ronments that support dynamic linking, the code linked
belongs to the local CE. This is not true for MCSs. In MCSs,
the code segment, the execution state, and the data space of
an EU can be relocated to a different CE. In principle, each
of these EU constituents might move independently. How-
ever, we will limit our discussion to the alternatives
adopted by existing systems.

The portion of an EU that needs to be moved is deter-
mined by composing orthogonal mechanisms supporting
mobility of code and execution state with mechanisms for
data space management. For this reason, we will analyze
them separately. Fig. 3 presents a classification of mobility
mechanisms.

3.2.1 Code and Execution State Mobility
Existing MCSs offer two forms of mobility, characterized by
the EU constituents that can be migrated. Strong mobility is
the ability of an MCS (called strong MCS) to allow migra-
tion of both the code and the execution state of an EU to a
different CE. Weak mobility is the ability of an MCS (called
weak MCS) to allow code transfer across different CEs; code
may be accompanied by some initialization data, but no
migration of execution state is involved.

Strong mobility is supported by two mechanisms: migra-
tion and remote cloning. The migration mechanism suspends
an EU, transmits it to the destination CE, and then resumes
it. Migration can be either proactive or reactive. In proactive
migration, the time and destination for migration are deter-
mined autonomously by the migrating EU. In reactive migra-
tion, movement is triggered by a different EU that has some
kind of relationship with the EU to be migrated, e.g., an EU
acting as a manager of roaming EUs. The remote cloning

mechanism creates a copy of an EU at a remote CE. Remote
cloning differs from the migration mechanism because the
original EU is not detached from its current CE. As in migra-
tion, remote cloning can be either proactive or reactive.

Mechanisms supporting weak mobility provide the ca-
pability to transfer code across CEs and either link it dy-
namically to a running EU or use it as the code segment for
a new EU. Such mechanisms can be classified according to
the direction of code transfer, the nature of the code being
moved, the synchronization involved, and the time when
code is actually executed at the destination site. As for di-
rection of code transfer, an EU can either fetch the code to be
dynamically linked and/or executed, or ship such code to
another CE. The code can be migrated either as stand-alone
code or as a code fragment. Standalone code is self-contained
and will be used to instantiate a new EU on the destination
site. Conversely, a code fragment must be linked in the
context of already running code and eventually executed.
Mechanisms supporting weak mobility can be either syn-
chronous or asynchronous, depending on whether the EU
requesting the transfer suspends or not until the code is
executed. In asynchronous mechanisms, the actual execu-
tion of the code transferred may take place either in an im-
mediate or deferred fashion. In the first case, the code is exe-
cuted as soon as it is received, while in a deferred scheme
execution is performed only when a given condition is sat-
isfied—e.g., upon first invocation of a portion of the code
fragment or as a consequence of an application event.

3.2.2 Data Space Management
Upon migration of an EU to a new CE, its data space, i.e.,
the set of bindings to resources accessible by the EU, must be
rearranged. This may involve voiding bindings to resources,

Fig. 1. Traditional systems vs. MCSs. Traditional systems, on the left-hand side, may provide a TDS layer that hides the distribution from the pro-
grammer. Technologies supporting code mobility, on the right hand side, explicitly represent the location concept, thus the programmer needs to
specify where—i.e., in which CE—a computation has to take place.

Fig. 2. The internal structure of an executing unit.

FUGGETTA ET AL.: UNDERSTANDING CODE MOBILITY 347

re-establishing new bindings, or even migrating some re-
sources to the destination CE along with the EU. The choice
depends on the nature of the resources involved, the type of
binding to such resources, as well as on the requirements
posed by the application.

We model resources as a triple Resource = 〈 I, V, T 〉 , where
I is a unique identifier, V is the value of the resource, and T is
its type, which determines the structure of the information
contained in the resource as well as its interface. The type of
the resource determines also whether the resource is transfer-
rable or not transferrable, i.e., whether, in principle, it can be
migrated over the network or not. For example, a resource of
type “stock data” is likely to be transferrable, while a re-
source of type “printer” probably is not. Transferrable re-
source instances can be marked as free or fixed. The former
can be migrated to another CE, while the latter are associated
permanently with a CE. This characteristic is determined
according to application requirements. For instance, even if it
might be conceivable to transfer a huge file or an entire data-
base over the network, this might be undesirable for per-
formance reasons. Similarly, it might be desirable to prevent
transfer of classified resources, even independently of per-
formance considerations.

Resources can be bound to an EU through three forms of
binding, which constrain the data space management
mechanisms that can be exploited upon migration. The
strongest form of binding is by identifier. In this case, the EU
requires that, at any moment, it must be bound to a given
uniquely identified resource. Binding by identifier is ex-
ploited when an EU requires to be bound to a resource that
cannot be substituted by some other equivalent resource.

A binding established by value declares that, at any mo-
ment, the resource must be compliant with a given type
and its value cannot change as a consequence of migration.
This kind of binding is usually exploited when an EU is
interested in the contents of a resource and wants to be able

to access them locally. In this case, the identity of the re-
source is not relevant, rather the migrated resource must
have the same type and value of the one present on the
source CE.

The weakest form of binding is by type. In this case, the
EU requires that, at any moment, the bound resource is
compliant with a given type, no matter what its actual
value or identity are. This kind of binding is exploited typi-
cally to bind resources that are available on every CE, like
system variables, libraries, or network devices. For exam-
ple, if a roaming EU needs to access the local display of a
machine to interact with the user through a graphical inter-
face, it may exploit a binding with a resource of type “dis-
play.” The actual value and identifier of the resource are not
relevant, and the resource actually bound is determined by
the current CE. Note that it is possible to have different
types of binding to the same resource. In the example above,
suppose that the roaming EU, in addition to interact with
the local user through the display, needs to report progress
back to the user that “owns” the EU. This is accomplished
by creating, at startup, a binding by identifier to the display
of the owner and a binding by type to the same resource.
As we will explain shortly, after the first migration the
bindings will be reconfigured so that the binding by identi-
fier will retain its association with the owner’s display,
while the binding by type will be associated with the dis-
play on the destination CE.

The above discussion highlights two classes of problems
that must be addressed by data space management mecha-
nisms upon migration of an EU: resource relocation and
binding reconfiguration. The way existing mechanisms
tackle these problems is constrained both by the nature of
the resources involved and the forms of binding to such
resources. These relationships are analyzed hereafter and
summarized in Table 1.

Fig 3. A classification of mobility mechanisms.

348 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

Let us consider a migrating executing unit U whose data
space contains a binding B to a resource R. A first general
mechanism, which is independent of the type of binding or
resource is binding removal. In this case, when U migrates, B
is simply discarded. If access to bound resources must be
preserved, different mechanisms must be exploited.

If U is bound to R by identifier, two data space manage-
ment mechanisms are suitable to preserve resource identity.
The first is relocation by move. In this case, R is transferred
along with U to the destination CE and the binding is not
modified (Fig. 4a). Clearly, this mechanisms can be ex-
ploited only if R is a free transferrable resource. Otherwise,
a network reference mechanism must be used. In this case, R
is not transferred and once U has reached its target CE, B is
modified to reference R in the source CE. Every subsequent
attempt of U to access R through B will involve some com-
munication with the source CE (Fig. 4b). The creation of
inter-CE bindings is often not desirable because it exposes
U to network problems—e.g., partitioning, or delays—and
makes it difficult to manage state consistency since the data
space is actually distributed over the network. On the other
hand, moving away a resource from its CE may cause
problems to other EUs that own bindings to the moved re-
source. This latter situation may be managed in different
ways. A first approach is to apply binding removal, i.e., to
void bindings to the resource moved (see top of Fig. 4a).
Subsequent attempts to access the resource through such
bindings will rise an exception. A second approach is to
retain the bindings to the resource at its new location by
means of network references (see bottom of Fig. 4a).

If B is by value and R is transferrable, the most convenient
mechanism is data space management by copy because the
identity of the resource is not relevant. In this case, a copy R′
of R is created, the binding to R is modified to refer to R′, and
then R′ is transferred to the destination CE along with U (see
Fig. 4c). Management by move satisfies the requirements
posed by bindings by value but, in some cases, may be less
convenient. In fact, in this case R would be removed from the
source CE and other EUs owning bindings to R would have
to cope with this event. If R cannot be transferred, the use of
the network reference mechanisms is the only viable solu-
tion, with the drawbacks described previously.

If U is bound to R by type, the most convenient mecha-
nism is re-binding. In this case B is voided and re-
established after migration of U to another resource R′ on
the target CE having the same type of R (Fig. 4d). Re-
binding exploits the fact that the only requirement posed by
the binding is the type of the resource, and avoids resource
transfers or the creation of inter-CE bindings. Clearly, this
mechanism requires that, at the destination site, a resource
of the same type of R exists. Otherwise, the other mecha-
nisms can be used depending on the type and characteris-
tics of the resource involved.

The existing MCSs exploit different strategies as far as
data space management is concerned. The nature of the
resource and the type of binding is often determined by the
language definition or implementation, rather than by the
application programmer, thus constraining the mechanisms
exploited. For instance, files are usually considered a fixed

TABLE 1
BINDINGS, RESOURCES, AND DATA SPACE MANAGEMENT MECHANISMS

Free
Transferrable

Fixed
Transferrable

Fixed Not
Transferrable

By Identifier By move
(Network reference)

Network reference Network reference)

By Value By copy
(By move, Network reference)

By copy
(Network reference)

(Network reference)

By Type Re-binding
(Network reference, By copy, By move)

Re-binding
(Network reference, By copy)

Re-binding
(Network reference)

Fig. 4. Data space management mechanisms. For each mechanism, the configuration of bindings before and after migration of the grayed EU
is shown.

FUGGETTA ET AL.: UNDERSTANDING CODE MOBILITY 349

unique resource, and migration is usually managed by
voiding the corresponding bindings, although files in prin-
ciple could be migrated along with an EU. Replicated re-
sources are often provided as built-in to provide access to
system features in a uniform way across all CEs. The next
section will provide more insights about mobility mecha-
nisms in existing MCSs.

3.3 A Survey of Mobile Code Technologies
Currently available technologies differ in the mechanisms
they provide to support mobility. In this section we apply
the classification of mobility mechanisms presented so far
to a number of existing MCSs.

3.3.1 Agent Tcl
Developed at the University of Darthmouth, Agent Tcl [30]
provides a Tcl interpreter extended with support for strong
mobility. In Agent Tcl, an EU (called agent) is implemented
by a Unix process running the language interpreter. Since
EUs run in separate address spaces, they can share only
resources provided by the underlying operating system,
like files. Such resources are considered as not transferrable.
The CE abstraction is implemented by the operating system
and the language run-time support. In Agent Tcl, EUs can
jump to another CE, fork a new EU at a remote CE, or
submit some code to a remote CE. In the first case, a pro-
active migration mechanism enables movement of a whole
Tcl interpreter along with its code and execution state. In
the second case, a proactive remote cloning mechanism is
implemented. In both cases, bindings in the data space of a
migrating EU are removed. In the third case, a code ship-
ping mechanism for standalone code is exploited to per-
form remote execution of a Tcl script in a newly created EU
at the destination CE. This mechanism is asynchronous and
immediate. A copy of the variables belonging to the execu-
tion state of the EU invoking the submit may be passed as
parameters of this operation in order to migrate these vari-
ables together with the Tcl script.

3.3.2 Ara
Developed at the University of Kaiserslautern, Ara [24] is a
multilanguage MCS that supports strong mobility. Ara EUs,
called agents, are managed by a language-independent
system core plus interpreters for the languages supported—
at the time of writing C, C++, and Tcl. The core and the in-
terpreters constitute the CE, whose services are made acces-
sible to agents through the place abstraction. Mobility is
supported through proactive migration, and data space
management is simplified by the fact that agents cannot
share anything but system resources—whose bindings are
always removed upon migration.

3.3.3 Facile
Developed at ECRC in Münich, Facile [31] is a functional
language that extends the Standard ML language with
primitives for distribution, concurrency, and communica-
tion. The language has been extended further in [23] to
support weak mobility. Executing units are implemented as
threads that run in Facile CEs, called nodes. The channel ab-
straction is used for communication between threads.
Channels can be used to communicate any legal value of

the Facile language. In particular, functions may be trans-
mitted through channels since they are first-class language
elements. Communication follows the rendezvous model:
both the sender and the receiver are blocked until commu-
nication takes place. For this reason, mobility mechanisms
can be regarded as supporting both code shipping and code
fetching—depending on whether an EU is a sender or a
receiver. In addition, the programmer can specify whether
the function transmitted has to be considered as standalone
code or as a code fragment. When the function has been
transferred, the communication channel is closed, and the
receiver EU is free to evaluate the function received or defer
its evaluation. Therefore, the mechanism is asynchronous
and supports both immediate and deferred execution. As
for data space management, this takes place always by
copy, except for special variables called ubiquitous values.
They represent resources replicated in each Facile node and
are always accessed with bindings by type, exploiting a re-
binding mechanism.

3.3.4 Java
Developed by Sun Microsystems, Java [32] has triggered
most of the attention and expectations on code mobility. The
original goal of the language designers was to provide a
portable, clean, easy-to-learn, and general-purpose object-
oriented language, which has been subsequently re-targeted
by the growth of Internet. The Java compiler translates Java
source programs into an intermediate, platform-independent
language called Java Byte Code. The byte code is interpreted
by the Java Virtual Machine (JVM)—the CE implementation.
Java provides a programmable mechanism, the class loader, to
retrieve and link dynamically classes in a running JVM. The
class loader is invoked by the JVM run-time when the code
currently in execution contains an unresolved class name.
The class loader actually retrieves the corresponding class,
possibly from a remote host, and then loads the class in the
JVM. At this point, the corresponding code is executed. In
addition, class downloading and linking may be triggered
explicitly by the application, independent of the need to exe-
cute the class code. Therefore, Java supports weak mobility
using mechanisms for fetching code fragments. Such mecha-
nisms are asynchronous and support both immediate and
deferred execution. In both cases, the code loaded is always
executed from scratch and has neither execution state nor
bindings to resources at the remote host—no data space
management is needed.

One of the key success factors of Java is its integration
with World Wide Web technology. Web browsers have been
extended to include a JVM. Java classes called applets can be
downloaded along with HTML pages to allow for active
presentation of information and interactive access to a
server. From the viewpoint we took in our classification, we
regard this as a particular application of mobile code tech-
nology. However, it can be argued also that the combination
of a Web browser and a JVM is so frequent that it can be
regarded as a technology per se, conceived explicitly for the
development of Web applications. From this perspective,
the presence of a JVM is hidden and its mechanisms are
used to provide a higher-level layer where browsers con-
stitute the CEs and applets are EUs executing concurrently

350 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

within them. In this context, the downloading of applets
can be regarded as a mechanism provided by the browser
to support fetching of stand-alone code.

3.3.5 Java Aglets
The Java Aglets API (J-AAPI) [33], developed by IBM To-
kyo Research Laboratory in Japan, extends Java with sup-
port for weak mobility. Aglets [34], the EUs, are threads in a
Java interpreter which constitutes the CE. The API provides
the notion of context as an abstraction of the CE. The context
of an aglet provides a set of basic services, e.g., retrieval of
the list of aglets currently contained in that context or crea-
tion of new aglets within the context. Java Aglets provides
two migration primitives: dispatch is the primitive that
performs code shipping of stand-alone code (the code seg-
ment of the aglet) to the context specified as parameter. The
mechanism is asynchronous and immediate. The symmetri-
cal primitive retract performs code fetching of stand-
alone code, and is used to force an aglet to come back to the
context where retract is executed, with a synchronous,
immediate mechanism. In both cases, the aglet is re-
executed from scratch after migration, although it retains
the value of its object attributes which are used to provide
an initial state for its computation. The attribute values may
contain references to resources, which are always managed
by copy. Finally, being based on Java, the Aglets API sup-
ports Java mechanisms as well.

3.3.6 M0
Implemented at the University of Geneva, M0 [35] is a
stack-based interpreted language that implements the con-
cept of messengers. Messengers—representing EUs—are
sequences of instructions that are transmitted among plat-
forms—representing CEs—and executed unconditionally
upon receipt. Messengers [36], in turn, can submit the code
of other messengers to remote platforms. Resources are
always considered transferrable and fixed, and the submit-
ting messenger may copy them in the message containing
the submitted code to make them available at the destina-
tion CE. Therefore, M0 is a weak MCS providing shipping
of standalone code (whose execution is asynchronous and
immediate), and data space management is by copy.

3.3.7 Mole
Developed at the University of Stuttgart, Mole [37], [38] is a
Java API that supports weak mobility. Mole agents are Java
objects which run as threads of the JVM, which is abstracted
into a place, the Mole CE. A place provides access to the un-
derlying operating system through service agents which, dif-
ferently from user agents, are always stationary. Shipping of
stand-alone code is provided with an asynchronous, imme-
diate mechanism. The code and data to be sent are deter-
mined automatically upon migration using the notion of is-
land [39]. An island is the transitive closure over all the ob-
jects referenced by the main agent object. Islands, which are
generated automatically starting from the main agent object,
cannot have object references to the outside; interagent refer-
ences are symbolic and become void upon migration. Hence,
data space management by move is exploited.

3.3.8 Obliq
Developed at DEC, Obliq [40] is an untyped, object-based,
lexically scoped, interpreted language. Obliq allows for
remote execution of procedures by means of execution en-
gines which implement the CE concept. A thread, the Obliq
EU, can request the execution of a procedure on a remote
execution engine. The code for such procedure is sent to the
destination engine and executed there by a newly created
EU. The sending EU suspends until the execution of the
procedure terminates. Thus, Obliq supports weak mobility
using a mechanism for synchronous shipping of standalone
code. Obliq objects are transferrable fixed resources, i.e.,
they are bound for their whole lifetime to the CE where
they are created even if in principle they could be moved
across CEs. When an EU requests the execution of a proce-
dure on a remote CE, the references to the local objects used
by the procedure are automatically translated into network
references.

3.3.9 Safe-Tcl
Initially developed by the authors of the Internet MIME
standard, Safe-Tcl [41] is an extension of Tcl [42] conceived
to support active e-mail. In active e-mail, messages may
include code to be executed when the recipient receives or
reads the message. Hence, in Safe-Tcl there are no mobility
or communication mechanisms at the language level—they
must be achieved using some external support, like e-mail.
Rather, mechanisms are provided to protect the recipient’s
CE, which is realized following a twin interpreter scheme.
The twin interpreter consists of a trusted interpreter, which
is a full-fledged Tcl interpreter, and an untrusted interpreter,
whose capabilities have been restricted severely, so that one
can execute code of uncertain origin without being dam-
aged. The owner of the interpreter may decide to export
procedures which are guaranteed to be safe from the
trusted interpreter to the untrusted one. Presently, most of
the fundamental features of Safe-Tcl have been included in
the latest release of Tcl/Tk, and a plug-in for the Netscape
browser has been developed, allowing Safe-Tcl scripts to be
included in HTML pages [43], much like Java applets.

3.3.10 Sumatra
Sumatra [44], developed at the University of Maryland, is a
Java extension designed expressly to support the imple-
mentation of resource-aware mobile programs, i.e., programs
which are able to adapt to resource changes by exploiting
mobility. Sumatra provides support for strong mobility of
Java threads, which are Sumatra EUs. Threads are executed
within execution engines, i.e. dynamically created interpret-
ers which extend the abstract machine provided by the JVM
with methods that embody proactive migration mecha-
nisms, proactive remote cloning, and shipping of stand-
alone code with synchronous, immediate execution.
Threads or stand-alone code can be migrated separately
from the objects they need. The object-group abstraction is
provided to represent dynamically created object aggre-
gates that determine the unit of mobility as well as the unit
of persistency. Objects belonging to a group must be explic-
itly checked in and out, and thread objects cannot be
checked in an object-group. The rationale for the absence of

FUGGETTA ET AL.: UNDERSTANDING CODE MOBILITY 351

an automatic mechanism is to give the programmer the
ability to modify dynamically the granularity of the unit of
mobility. Data space management in an object-group is al-
ways by move; bindings to migrated objects owned by EUs
in the source CE are transformed into network references.

3.3.11 TACOMA
In TACOMA [17] (Tromsø And COrnell Mobile Agents), the
Tcl language is extended to include primitives that support
weak mobility. Executing units, called agents, are imple-
mented as Unix processes running the Tcl interpreter. The
functionality of the CE is implemented by the Unix operat-
ing system plus a dedicated run-time supporting agent
check-in and check-out. Code shipping of standalone code
is supported by mechanisms providing both synchronous
and asynchronous immediate execution. Initialization data
for the new EU are encapsulated in a data structure called
briefcase, while resources in the CE are contained in station-
ary data structures called cabinets. Upon migration, data
space management by copy can be exploited to provide the
new EU with a resource present within the source CE cabi-
net. In version 1.2, the system has been extended to support a
number of interpreted languages, namely Python, Scheme,
Perl, and C.

3.12 Telescript
Developed by General Magic, Telescript [19] is an object-
oriented language conceived for the development of large
distributed applications. Security has been one of the driv-
ing factors in the language design, together with a focus on
strong mobility. Telescript employs an intermediate, port-
able language called Low Telescript, which is the representa-
tion actually transmitted among engines, the Telescript CEs.
Engines are in charge of executing agents and places that are
the Telescript EUs. Agents can move by using the go op-
eration, which implements a proactive migration mecha-
nism. A send operation is also available which implements
proactive remote cloning. Places are stationary EUs that can
contain other EUs. Data space management is ruled by the
ownership concept which associates each resource with an
owner EU. Upon migration, this information is used to de-
termine automatically the set of objects that must be carried
along with the EU. Data space management always exploits
management by move for the migrating EU. Bindings to
migrated resources owned by other EUs in the source site
are always removed.

4 DESIGN PARADIGMS

Mobile code technologies are only one of the ingredients
needed to build a software system. Software development
is a complex process where a variety of factors must be
taken into account: technology, organization, and method-
ology. In particular, a very critical issue is the relationship
between technology and methodology. This relationship is
often ignored or misinterpreted. Quite often, researchers
and practitioners tend to believe that a technology inher-
ently induces a methodology. Thus “it is sufficient to build
good development tools and efficient languages.” This is
particularly evident in a critical phase of software devel-
opment: software design. The goal of design is the creation

of a software architecture, which can be defined as the de-
composition of a software system in terms of software
components and interactions among them [45]. Software
architectures with similar characteristics can be represented
by architectural styles [46] or design paradigms, which define
architectural abstractions and reference structures that may
be instantiated into actual software architectures. A design
paradigm is not necessarily induced by the technology used
to develop the software system—it is a conceptually sepa-
rate entity. This distinction is not merely philosophical: the
evolution of programming languages has clearly empha-
sized the issue. It is even possible for a modular system to be
built using an assembly language, and at the same time, the
adoption of sophisticated languages such as Modula-2 does
not guarantee per se that the developed system will be
really modular. Certainly, specific features of a language
can be particularly well-suited to guarantee some program
property, but a “good” program is not just the direct conse-
quence of selecting a “good” language.

Traditional approaches to software design are not suffi-
cient when designing large scale distributed applications that
exploit code mobility and dynamic reconfiguration of soft-
ware components. In these cases, the concepts of location,
distribution of components among locations, and migration
of components to different locations need to be taken explic-
itly into account during the design stage. As stated in [47],
interaction among components residing on the same host is
remarkably different from the case where components reside
on different hosts of a computer network in terms of latency,
access to memory, partial failure, and concurrency. Trying to
paper over differences between local and remote interactions
can lead to unexpected performance and reliability problems
after the implementation phase.

It is, therefore, important to identify reasonable design
paradigms for distributed systems exploiting code mobil-
ity,3 and to discuss their relationships with the technology
that can be used to implement them. It is also important to
notice that each of the languages mentioned in the previous
section embodies mechanisms that can be used to imple-
ment one or more design paradigms. On the other hand,
the paradigms themselves are independent of a particular
technology, and could even be implemented without using
mobile technology at all, as described in the case study pre-
sented in [49].

4.1 Basic Concepts
Before introducing design paradigms we present some basic
concepts that are an abstraction of the entities that constitute
a software system, such as files, variable values, executable
code, or processes. In particular, we introduce three archi-
tectural concepts: components, interactions, and sites.

Components are the constituents of a software architec-
ture. They can be further divided into code components, that
encapsulate the know-how to perform a particular compu-
tation, resource components, that represent data or devices
used during the computation, and computational components,
that are active executors capable to carry out a computation,

3. The reader interested in the original formulation of the paradigms de-
scribed here is directed to [4]. A case study centered around a formalization
of these paradigms using the UNITY notation is also provided in [48].

352 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

as specified by a corresponding know-how. Interactions are
events that involve two or more components, e.g., a mes-
sage exchanged among two computational components.
Sites host components and support the execution of com-
putational components. A site represents the intuitive no-
tion of location. Interactions among components residing at
the same site are considered less expensive than interac-
tions taking place among components located in different
sites. In addition, a computation can be actually carried out
only when the know-how describing the computation, the
resources used during the computation, and the computa-
tional component responsible for execution are located at
the same site.

Design paradigms are described in terms of interaction
patterns that define the relocation of and coordination
among the components needed to perform a service. We
will consider a scenario where a computational component
A, located at site SA needs the results of a service. We as-
sume the existence of another site SB, which will be in-
volved in the accomplishment of the service.

We identify three main design paradigms exploiting
code mobility: remote evaluation, code on demand, and mobile
agent. These paradigms are characterized by the location of
components before and after the execution of the service, by
the computational component which is responsible for exe-
cution of code, and by the location where the computation
of the service actually takes place (see Table 2).

The presentation of the paradigms is based on a meta-
phor where two friends—Louise and Christine—interact
and cooperate to make a chocolate cake. In order to make
the cake (the results of a service), a recipe is needed (the
know-how about the service), as well as the ingredients
(movable resources), an oven to bake the cake (a resource
that can hardly be moved), and a person to mix the ingredi-
ents following the recipe (a computational component re-
sponsible for the execution of the code). To prepare the cake
(to execute the service) all these elements must be co-
located in the same home (site). In the following, Louise
will play the role of component A, i.e., she is the initiator of
the interaction and the one interested in its final effects.

TABLE 2
MOBILE CODE PARADIGMS

Before After

Paradigm SA SB SA SB

Client-Server A know-how
resource
B

 A know-how
resource
B

Remote
Evaluation

 know-how
 A

resource
B

 A know-how
resource
B

Code on
Demand

 resource
 A

know-how
B

 resource
 know-how
 A

B

Mobile Agent know-how
 A

resource
_

know-how
resource
A

This table shows the location of the components before and after the service
execution. For each paradigm, the computational component in bold face is the
one that executes the code. Components in italics are those that have been
moved.

4.1.1 Client-Server (CS)

Louise would like to have a chocolate cake, but she doesn’t know the
recipe, and she does not have at home either the required ingredients
or an oven. Fortunately, she knows that her friend Christine knows
how to make a chocolate cake, and that she has a well supplied
kitchen at her place. Since Christine is usually quite happy to pre-
pare cakes on request, Louise phones her asking: “Can you make me
a chocolate cake, please?” Christine makes the chocolate cake and
delivers it back to Louise.

The client-server paradigm is well-known and widely used.
In this paradigm, a computational component B (the server)
offering a set of services is placed at site SB. Resources and
know-how needed for service execution are hosted by site
SB as well. The client component A, located at SA, requests
the execution of a service with an interaction with the
server component B. As a response, B performs the re-
quested service by executing the corresponding know-how
and accessing the involved resources colocated with B. In
general, the service produces some sort of result that will be
delivered back to the client with an additional interaction.

4.1.2 Remote Evaluation (REV)

Louise wants to prepare a chocolate cake. She knows the recipe but she
has at home neither the required ingredients nor an oven. Her friend
Christine has both at her place, yet she doesn’t know how to make a
chocolate cake. Louise knows that Christine is happy to try new recipes,
therefore she phones Christine asking: “Can you make me a chocolate
cake? Here is the recipe: take three eggs....” Christine prepares the
chocolate cake following Louise’s recipe and delivers it back to her.

In the REV paradigm,4 a component A has the know-how
necessary to perform the service but it lacks the resources
required, which happen to be located at a remote site SB.
Consequently, A sends the service know-how to a compu-
tational component B located at the remote site. B, in turn,
executes the code using the resources available there. An
additional interaction delivers the results back to A.

4.1.3 Code on Demand (COD)

Louise wants to prepare a chocolate cake. She has at home both the re-
quired ingredients and an oven, but she lacks the proper recipe. How-
ever, Louise knows that her friend Christine has the right recipe and
she has already lent it to many friends. So, Louise phones Christine
asking “Can you tell me your chocolate cake recipe?” Christine tells
her the recipe and Louise prepares the chocolate cake at home.

In the COD paradigm, component A is already able to ac-
cess the resources it needs, which are co-located with it at
SA. However, no information about how to manipulate such
resources is available at SA. Thus, A interacts with a com-
ponent B at SB by requesting the service know-how, which
is located at SB as well. A second interaction takes place
when B delivers the know-how to A, that can subsequently
execute it.

4. Hereafter, by “remote evaluation” we will refer to the design paradigm
presented in this section. Although it has been inspired by work on the REV
system [14], they have to be kept definitely distinct. Our REV is a design
paradigm, while the REV system is a technology that may be used to actually
implement an application designed using the REV paradigm.

FUGGETTA ET AL.: UNDERSTANDING CODE MOBILITY 353

4.1.4 Mobile Agent (MA)

Louise wants to prepare a chocolate cake. She has the right recipe and
ingredients, but she does not have an oven at home. However, she
knows that her friend Christine has an oven at her place, and that she
is very happy to lend it. So, Louise prepares the chocolate batter and
then goes to Christine’s home, where she bakes the cake.

In the MA paradigm, the service know-how is owned by A,
which is initially hosted by SA, but some of the required
resources are located on SB. Hence, A migrates to SB carrying
the know-how and possibly some intermediate results. Af-
ter it has moved to SB, A completes the service using the
resources available there. The mobile agent paradigm is dif-
ferent from other mobile code paradigms since the associ-
ated interactions involve the mobility of an existing com-
putational component. In other words, while in REV and
COD the focus is on the transfer of code between compo-
nents, in the mobile agent paradigm a whole computational
component is moved to a remote site, along with its state,
the code it needs, and some resources required to perform
the task.

4.2 Discussion and Comparison
The mobile code design paradigms introduced in the previ-
ous sections define a number of abstractions for represent-
ing the bindings among components, locations, and code,
and their dynamic reconfiguration. Our initial experience in
applying the paradigms [50], [49] suggests that these ab-
stractions are effective in the design of distributed applica-
tions. Furthermore, they are fairly independent of the par-
ticular language or system in which they are eventually
implemented.

Mobile code paradigms model explicitly the concept of
location. The site abstraction is introduced at the architec-
tural level in order to take into account the location of the
different components. Following this approach, the types of
interaction between two components is determined by both
components’ code and location. Introducing the concept of
location makes it possible to model the cost of the interac-
tion between components at the design level. In particular,
an interaction between components that share the same
location is considered to have a negligible cost when com-
pared to an interaction involving communication through
the network.

Most well-known paradigms are static with respect to
code and location. Once created, components cannot
change either their location or their code during their life-
time. Therefore, the types of interaction and its quality (lo-
cal or remote) cannot change. Mobile code paradigms over-
come these limits by providing component mobility. By
changing their location, components may change dynami-
cally the quality of interaction, reducing interaction costs.
To this end, the REV and MA paradigms allow the execu-
tion of code on a remote site, encompassing local interac-
tions with components located there. In addition, the COD
paradigm enables computational components to retrieve
code from other remote components, providing a flexible
way to extend dynamically their behavior and the types of
interaction they support.

Flexibility and dynamicity are useful, but it is not clear
when these paradigms should be used, and how one can
choose the right paradigm in designing a distributed appli-
cation. In our opinion there is no paradigm that is the best
in absolute terms. In particular the mobile code paradigms
we described do not necessarily prove to be better suited
for a particular application with respect to the traditional
ones. The choice of the paradigms to exploit must be per-
formed on a case-by-case basis, according to the specific
type of application and to the particular functionality being
designed within the application. For each case, some pa-
rameters that describe the application behavior have to be
chosen, along with some criteria to evaluate the parameters
values. For example, one may want to minimize the num-
ber of interactions, the CPU costs or the generated network
traffic. In addition, a model of the underlying distributed
system should be adopted to support reasoning about the
criteria. For each paradigm considered, an analysis should
be carried out to determine which paradigm optimizes the
chosen criteria. This phase cannot take into account all the
characteristics and constraints, that probably will be fully
understood only after the detailed design, but it should
provide hints about the most reasonable paradigm to fol-
low in the design. A case study that provides guidelines on
how such analysis can be carried out is given in Section 6.

Once an application has been designed, developers are
faced with the choice of a suitable technology for its im-
plementation. Even if technologies are somewhat orthogo-
nal with respect to paradigms, some technologies are better
suited to implement application designed according to par-
ticular paradigms. For example, one can implement an ap-
plication designed following the REV paradigm with a
technology that allows EUs to exchange just messages. In
this case, the programmer has the burden to translate the
code to be shipped to the remote site into the data format
used in message payloads. Moreover, the receiving EU has
to explicitly extract the code and invoke an intepreter in
order to execute it. A mobile code technology providing
mechanisms for code shipping would be more convenient
and would manage marshaling, shipping, and remote in-
terpretation tasks at the system level.

A common case is represented by the use of a weak MCS
that allows for code shipping for implementing applica-
tions designed following the MA paradigm [51]. In this
case, the architectural concept of a moving component must
be implemented using a technology that does not preserve
the execution state upon migration. Therefore, the pro-
grammer has to build explicitly some appropriate data
structures that allow for saving and restoring the execution
state of the component in case of migration. Upon migra-
tion, the EU must pack such data structures and send them
along with the code to the remote location; then the original
EU terminates. When the new EU is started on the remote
CE to execute the code, it must use explicitly the encoded
representation of the component’s state to reconstruct, at
the program level, the component’s execution state. If a
strongly mobile technology is used, the component can be
directly mapped into a migrating EU and mobility is re-
duced to a single instruction. Therefore, the programmer is
set free from handling the management of the component’s

354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

state and can concentrate on the problem to solve. A case
study that analyzes these relationships in detail can be
found in [49].

5 MOBILE CODE APPLICATIONS

At the time of writing, applications exploiting code mobility
can still be considered as relegated to a niche, at least if com-
pared to traditional client-server based applications. This is a
consequence of the immaturity of technology—mostly as far
as performance and security [52] are concerned—and of the
lack of suitable methodologies for application development.
Nevertheless, the interest in mobile code is not motivated by
the technology per se, rather by the benefits that it is sup-
posed to provide by enabling new ways of building distrib-
uted applications and even of creating brand new applica-
tions. The advantages expected from the introduction of mo-
bile code into distributed applications are particularly ap-
pealing in some specific application domains. This fact has
sometimes led to identifying entire application classes with
terms like “mobile agent systems” or “Internet agents” that
refer more to how the applications are structured rather than
to the functionality they implement. Therefore, in order to
understand mobile code it is important to distinguish clearly
between an application (e.g., a system to control a remote
telescope) and the paradigm used to design it (e.g., the REV
paradigm to identify control modules that are sent to the
remote telescope) or the technology used to implement it
(e.g., Java Aglets).

Hence, the purpose of this section is to provide the
reader both with a grasp on the key benefits which mobile
code is expected to bring, and with a nonexhaustive review
of application domains which are being identified by re-
searchers in the field as suitable for the exploitation of mo-
bile code. This completes our conceptual framework and
provides the reader with a path from the problem to the
implementation, spanning application, design, and tech-
nology issues. Section 6 will show an example of how our
framework can be leveraged off in the network manage-
ment application domain.

5.1 Key Benefits of Mobile Code
A major asset provided by code mobility is that it enables
service customization. In conventional distributed systems
built following a CS paradigm, servers provide an a priori
fixed set of services accessible through a statically defined
interface. It is often the case that this set of services, or their
interfaces, are not suitable for unforeseen client needs. A
common solution to this problem is to upgrade the server
with new functionality, thus increasing both its complexity
and its size without increasing its flexibility. The ability to
request the remote execution of code, by converse, helps
increase server flexibility without affecting permanently the
size or complexity of the server. In this case, in fact, the
server actually provides very simple and low-level services
that seldom need to be changed. These services are then
composed by the client to obtain a customized high-level
functionality that meets the specific client’s needs.

Mobile code is proving useful in supporting the last
phases of the software development process, namely, de-

ployment and maintenance. Software engineering addressed
the problem of minimizing the work needed to extend an
application and to keep trace of the changes in a rational
way, by emphasizing design for change and the provision
of better development tools. In a distributed setting, how-
ever, the action of installing or rebuilding the application at
each site still has to be performed locally and with human
intervention. Some products, notably some Web browsers,
already use some limited form of program downloading to
perform automatic upgrade over the Internet. Mobile code
helps in providing more sophisticated automation for the
installation process. For instance, a scheme could be de-
vised where installation actions (that, by their nature, can
usually be automated) are coded in a mobile program
roaming across a set of hosts. There, the program could
analyze the features of the local platform and operate the
correct configuration and installation steps. Pushing even
further these concepts, let us suppose that a new function-
ality is needed by an application, say, a new dialog box
must be shown when a particular button is pushed on the
user interface. In a distributed application designed with
conventional techniques, the new functionality needs to be
introduced by reinstalling or patching the application at
each site. This process could be lenghty and, even worse, if
the functionality is not fundamental for application opera-
tivity there is no guarantee that it will be actually used. In
this respect, the ability to request on demand the dynamic
linking of the code fragment implementing the new func-
tionality provides several benefits. First, all changes would
be centralized in the code server repository, where the last
version is always present and consistent. Moreover,
changes would not be performed proactively by an opera-
tor on each site, rather they could be performed reactively
by the application itself, that would request automatically
the new version of the code to the central repository. Hence,
changes could be propagated in a lazy way, concentrating
the upgrade effort only where it is really needed.

Mobile code concepts and technology embody also a
notion of autonomy of application components. Autonomy
is a useful property for applications that use a heterogene-
ous communication infrastructure where the nodes of a
network may be connected by a variety of physical links
with different performances. These differences must be
taken into account since the design stage. For instance, re-
cent developments in mobile computing evidenced that
low-bandwidth and low-reliable communication channels
require new design methodologies for applications in a
mobile setting [1], [2]. In networks where some regions are
connected through wireless links while others are con-
nected through conventional links the design becomes
complex. It is important to cope with frequent disconnec-
tions and avoid the generation of traffic over the low-
bandwidth links as much as possible. The CS paradigm has
a unique alternative to achieve this objective: to raise the
granularity level of the services offered by the server. This
way, a single interaction between client and server is suffi-
cient to specify a high number of lower level operations,
which are performed locally on the server without involv-
ing communication over the physical link. Nevertheless,
this solution may be impossible to achieve in certain cases
given the specific application requirements. In any case, it

FUGGETTA ET AL.: UNDERSTANDING CODE MOBILITY 355

leads to increased complexity and size, as well as reduced
flexibility of the server. Code mobility overcomes these
limits because it allows for specifying complex computa-
tions that are able to move across a network. This way, the
services that need to be executed by a server residing in a
portion of the network reachable only through an unreli-
able and slow link could be described in a program. This
should pass once through the wireless link and be injected
into the reliable network. There, it could execute autono-
mously and independently. In particular, it would not need
any connection with the node that sent it, except for the
transmission of the final results of its computation.

Autonomy of application components brings improved
fault tolerance as a side-effect. In conventional client-server
systems, the state of the computation is distributed between
the client and the server. A client program is made of
statements that are executed in the local environment, in-
terleaved with statements that invoke remote services on
the server. The server contains (copies of) data that belong
to the environment of the client program, and will eventu-
ally return a result that has to be inserted into the same en-
vironment. This structure leads to well-known problems in
presence of partial failures, because it is very difficult to
determine where and how to intervene to reconstruct a
consistent state. The action of migrating code, and possibly
sending back the results, is not immune from this problem.
In order to determine whether the code has been received
and avoid duplicated or lost mobile code, an appropriate
protocol must be in place. However, the action of executing
code that embodies a set of interactions that should other-
wise take place across the network is actually immune from
partial failure. An autonomous component encapsulates all
the state involving a distributed computation, and can be
easily traced, checkpointed, and possibly recovered locally,
without any need for knowledge of the global state.

Another advantage that comes from the introduction of
code mobility in a distributed application is data manage-
ment flexibility and protocol encapsulation. In conventional
systems, when data are exchanged among components be-
longing to a distributed application, each component owns
the code describing the protocol necessary to interpret the
data correctly. However, it is often the case for the “know-
how” related to the data to change frequently or to be de-
termined case by case according to some external condi-
tion—thus making impractical to hard-wire the corre-
sponding code into the application components. Code mo-
bility enables more efficient and flexible solutions. For ex-
ample, if protocols are only seldom modified and are
loosely coupled with data, an application may download
the code that implements a particular protocol only when
the data involved in the computation need a protocol un-
known to the application. Instead, if protocols are tightly
coupled with the data they accompany, components could
exchange messages composed by both the data and the
code needed to access and manage such data.

5.2 Application Domains for Mobile Code
The following review of application domains for mobile
code serves two purposes. First, we want to describe some
of the domains which are expected to exploit in the near
future the benefits described previously, in order to provide

the reader with an idea of the applicability of the concepts
presented so far. Second, we want to point out that some
concepts which are often associated tout court with code
mobility are not mobile code approaches per se, rather they
are examples of the exploitation of mobile code in a given
application domain.

5.2.1 Distributed Information Retrieval
Distributed information retrieval applications gather infor-
mation matching some specified criteria from a set of infor-
mation sources dispersed in the network. The information
sources to be visited can be defined statically or determined
dynamically during the retrieval process. This is a wide ap-
plication domain, encompassing very diverse applications.
For instance, the information to be retrieved might range
from the list of all the publications of a given author to the
software configuration of hosts in a network. Code mobility
could improve efficiency by migrating the code that per-
forms the search process close to the (possibly huge) infor-
mation base to be analyzed [53]. This type of application has
been often considered “the killer application” motivating a
design based on the MA paradigm. However, analysis to
determine the network traffic in some typical cases evi-
denced that, according to the parameters of the application,
the CS paradigm sometimes can still be the best choice [4].

5.2.2 Active Documents
In active documents applications, traditionally passive
data, like e-mail or Web pages, are enhanced with the capa-
bility of executing programs which are somewhat related
with the document contents, enabling enhanced presenta-
tion and interaction. Code mobility is fundamental for these
applications since it enables the embedding of code and
state into documents and supports the execution of the dy-
namic contents during document fruition. A paradigmatic
example is represented by an application that uses graphic
forms to compose and submit queries to a remote database.
The interaction with the user is modeled by using the COD
paradigm, i.e., the user requests the active document com-
ponent to the server and then performs some computation
using the document as an interface. This type of application
can be easily implemented by using a technology that en-
ables fetching of remote code fragments. A typical choice is
a combination of WWW technology and Java applets.

5.2.3 Advanced Telecommunication Services
Support, management, and accounting of advanced tele-
communication services like videoconference, video on de-
mand, or telemeeting, require a specialized “middleware”
providing mechanisms for dynamic reconfiguration and user
customization—benefits provided by code mobility. For ex-
ample, the application components managing the setup, sig-
nalling, and presentation services for a videoconference
could be dispatched to the users by a service broker. Exam-
ples of approaches exploiting code mobility can be found in
[54], [55]. A particular class of advanced telecommunications
services are those supporting mobile users. In this case, as
discussed earlier, autonomous components can provide sup-
port for disconnected operations, as discussed in [56].

356 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

5.2.4 Remote Device Control and Configuration
Remote device control applications are aimed at configur-
ing a network of devices and monitoring their status. This
domain encompasses several other application domains,
e.g., industrial process control and network management.
In the classical approach, monitoring is achieved by polling
periodically the resource state. Configuration is performed
using a predefined set of services. This approach, based on
the CS paradigm, can lead to a number of problems [57].
Code mobility could be used to design and implement
monitoring components that are co-located with the devices
being monitored and report events that represent the evo-
lution of the device state. In addition, the shipment of man-
agement components to remote sites could improve both
performance and flexibility [50], [58]. A case study focused
on the application of our classification to the network man-
agement application domain is presented in Section 6.

5.2.5 Workflow Management and Cooperation
Workflow management applications support the cooperation
of persons and tools involved in an engineering or business
process. The workflow defines which activities must be car-
ried out to accomplish a given task as well as how, where,
and when these activities involve each party. A way to model
this is to represent activities as autonomous entities that,
during their evolution, are circulated among the entities in-
volved in the workflow. Code mobility could be used to pro-
vide support for mobility of activities that encapsulate their
definition and state. For example, a mobile component could
encapsulate a text document that undergoes several revi-
sions. The component maintains information about the
document state, the legal operations on its contents, and the
next scheduled step in the revision process. An application of
these concepts can be found in [59].

5.2.6 Active Networks
The idea of active networks has been proposed recently
[60], [61] as a means to introduce flexibility into networks
and provide more powerful mechanisms to “program” the
network according to applications’ needs. Although some
interpret the idea of active networks without any relation
with code mobility [62], most of the approaches rely on it.
They can be classified along a spectrum delimited by two
extremes represented by the programmable switch and the
capsule approaches [60]. The programmable switch approach
is basically an instantiation of the COD paradigm, and aims
at providing dynamic extensibility of network devices
through dynamic linking of code. On the other hand, the
capsule approach proposes to attach to every packet flowing
in the network some code describing a computation that
must be performed on packet data, at each node. Clearly,
active networks aim at leveraging off of the advantages
provided by code mobility in terms of deployment and
maintenance, customization of services, and protocol en-
capsulation. As an example, in this scenario a multiprotocol
router could download on demand the code needed to
handle a packet corresponding to an unknown protocol, or
even receive the protocol together with the packet. The
work described in [63] is an example of an active network
architecture exploiting the COD paradigm.

5.2.7 Electronic Commerce
Electronic commerce applications enable users to perform
business transactions through the network. The application
environment is composed of several independent and pos-
sibly competing business entities. A transaction may in-
volve negotiation with remote entities and may require ac-
cess to information that is continuously evolving, e.g., stock
exchange quotations. In this context, there is the need to
customize the behavior of the parties involved in order to
match a particular negotiation protocol. Moreover, it is de-
sirable to move application components close to the infor-
mation relevant to the transaction. This problems make
mobile code appealing for this kind of applications. Actu-
ally, Telescript [64] was conceived explicitly to support
electronic commerce. For this reason, the term “mobile
agent” is often related with electronic commerce. Another
application of code mobility to electronic commerce can be
found in [65].

6 A CASE STUDY IN NETWORK MANAGEMENT

The purpose of this section is to illustrate how the classifi-
cation we presented so far can be used to guide the soft-
ware engineer through the design and implementation
phases of the application development process. To this end,
we focus on the typical functionality required to a network
management application, i.e., the polling of management
information from a pool of network devices. Current proto-
cols are based on a centralized client-server paradigm that
exhibits several drawbacks [57], discussed in Section 6.1.
The identification and evaluation of alternative solutions
will be discussed in the remainder of this section.

The suggested development process proceeds as follows.
Given an application whose requirements have been al-
ready specified, the first step is to determine if the mobile
code approach is suited to meet the application needs—that
is, whether we should use code mobility at all. This early
evaluation is performed on the basis of the discussion at the
beginning of Section 5. The second step involves identifying
the suitable paradigms for the design of the application at
hand. This is done informally and qualitatively, as in the
case described in Section 6.2. Then, the tradeoffs among the
various paradigms must be analyzed for each application
functionality whose design could involve code mobility. To
achieve this, in Section 6.3 we build a model of the applica-
tion functionality that enables quantitative analysis of the
tradeoffs, along the lines of [4]. Finally, after the suitable
paradigms have been chosen, the technology for imple-
mentation has to be selected by examining the tradeoffs
highlighted in Section 4, e.g., trading ease of programming
for lightweight implementation. This will be discussed in
Section 6.4.

We chose network management as the application do-
main for our case study because, although it is often indi-
cated as the ideal testbed for code mobility, efforts in this
direction are still in their early stages [58], [60]. The results
illustrated in the remainder of this section represent the
preliminary achievements of on-going work on the subject
[50], [66].

FUGGETTA ET AL.: UNDERSTANDING CODE MOBILITY 357

6.1 The Problem: Decentralizing Network Traffic
The world of network management research can be split
roughly in two worlds: management of IP networks, where
the Simple Network Management Protocol [67] proposed by
IETF is the dominant protocol, and management of ISO net-
works, based on the Common Management Information Protocol
[68]. Both protocols are based on a CS paradigm where a
network management station—the client—polls information
from agents5—the servers—residing on the network devices.
Each agent is in charge of managing a management information
base (MIB)6 a hierarchical base of information that stores the
relevant parameters of the corresponding device. In this set-
ting, all the computation related to management, e.g., statis-
tics, is demanded to the management station. Polling is per-
formed using very low level primitives—basically get and
set of atomic values in the MIB. This fine grained CS interac-
tion is often called micro management, and leads to the genera-
tion of intense traffic and computational overload on the man-
agement station. This centralized architecture is particularly
inefficient during periods of heavy congestion, when man-
agement becomes important. In fact, during these periods the
management station increases its interactions with the devices
and possibly uploads configuration changes, thus increasing
congestion. In turn, congestion, as an abnormal status, is likely
to trigger notifications to the management station which
worsen network overload. Due to this situation, access to de-
vices in the congested area becomes difficult and slow.

These problems have been addressed by IETF and ISO
with modifications of their management architecture. For
instance, SNMPv2 [69] introduced hierarchical decentraliza-
tion through the concept of proxy agents. A proxy agent is
responsible for the management of a pool of devices (to-
wards which it acts as a client) on behalf of the network
management station (towards which it acts as a server). An-
other protocol derived from SNMP, called Remote MONi-
toring (RMON) [70], assumes the existence of stand-alone
dedicated devices called probes. Each probe hosts an agent
able to monitor “global” information flowing through links
rather than information “local” to a device. Although these
decentralization features improve the situation, experimen-
tation showed that they do not provide the desired level of
decentralization needed to cope with large networks.

As discussed in Section 5, network management appli-
cations may overcome some of these limits by taking ad-
vantage of the benefits of the mobile code approach, such as
dynamicity in service deployment and customization,
autonomy, and fault tolerance.

6.2 Identifying the Design Paradigms
In this section, we analyze if and how the mobile code de-
sign paradigms described in Section 4 can provide a suit-
able alternative to the CS paradigm fostered by SNMP, and
thus help in solving the problems depicted above.

The rationale for the management architecture proposed
in SNMP and CMIP, which provides very low-granularity

5. Despite the name, management agents are conventional programs which
cannot move and in general do not exhibit a great deal of intelligence.

6. MIB is actually the term used for information bases in SNMP only.
CMIP uses the term management information tree (MIT) database instead.
Hereinafter, we will ignore the difference for the sake of simplicity.

primitives, is to keep the agents on the devices small and
easily implementable, keeping all the complexity on the
management station. Nevertheless, as we described earlier,
this is going to dramatically increase congestion and de-
crease performance. For instance, tables are often used to
store information into devices. To search a value in a table
using a CS approach, either the table has to be transferred
to the management station and searched there for the de-
sired value, or the agent has to be modified to provide a
new search service. Neither solution is desirable. The for-
mer leads to bandwidth waste for large tables. The second
increases the size of the agent as a larger number of rou-
tines are implemented—maybe without a substantial payoff
if the routines are used only now and then.

The REV paradigm could be used to pack together the set
of SNMP operations describing the search and send them on
the device holding the table for local interaction.7 After exe-
cution, only the target value should be sent back—thus per-
forming semantic compression of data. Intuitively, this solu-
tion is likely to save bandwidth at least for big tables and
small routines. As an aside, this solution provides a desirable
side-effect: it raises the level of abstraction of the operations
available to the network manager. One could envision a sce-
nario where the manager builds her own management pro-
cedures upon lower level primitives, stores them on the
management station, and invokes their remote evaluation on
the appropriate device whenever needed.

On the other hand, the capability to retain the state
across several hops implicit in an MA design adds a new
dimension to the benefits achievable through an REV de-
sign: autonomy. In the REV paradigm each remote evalua-
tion on a device must be initiated explicitly by the man-
agement station. In the MA paradigm, the management
station can exploit the capability of a mobile component to
retain its state and demand to it the retrieval of information
from a specified pool of devices. Thus, it can delegate to it
the decision about when and where to migrate, according
to its current state. Whether this is actually improving traf-
fic load is still unclear at this point, because the state of the
mobile component is likely to grow from hop to hop. This
issue will be analyzed later. Nevertheless, some other ad-
vantages which can determine the choice of the MA para-
digm independently of the issue of traffic are worth to be
mentioned. For instance, let us consider a scenario where
the pool of devices to be managed resides in a LAN, and
assume that the management station is connected to the
managed devices by a long-haul link, likely to be unreliable
and slow. In this case the mobile component, once injected
into the LAN, can collect information about all the man-
aged devices without any need to be connected with the
management station. Even if the state of the mobile compo-
nent increases during this operation, bandwidth is assumed
to be cheaper within the LAN than on the long-haul link.
In addition, mobile components could have the capability
to operate even when network level routing is disrupted.
If the management station does not have network level

7. We assume the presence of a run-time support for mobile code on net-
work devices. This assumption could be considered unrealistic only a cou-
ple of years ago. Today, some device manufacturers already announced
support for Java in the next releases of their systems.

358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

connectivity with a node to be managed, it can provide its
mobile component with a route calculated from historical
routing information and send it to the first hop on the
route. Whenever the mobile component resumes execution
on an intermediate hop, it tries to reach one of the next hop
towards the target node using its internal route, until it
reaches the target and performs the management task.

The COD paradigm gives only a partial solution to the
problem, as it provides the capability to extend dynamically
the set of services offered by a device. This is convenient if
many identical queries have to be performed on a device:
once the code to perform the SNMP queries locally is in-
stalled, it can be remotely invoked by the management sta-
tion. On the other hand, if few different queries have to be
performed, COD does not help that much: either a REV or
MA paradigm need to be exploited. In the following, we
will focus our discussion only on these two paradigms.

6.3 Evaluating the Design Tradeoffs
The previous section has emphasized from an informal and
qualitative viewpoint several advantages of mobile code
design paradigms over the traditional CS paradigm. Nev-
ertheless, as we pointed out in Section 4, mobile code de-
sign paradigms are not good per se. Rather their applica-
tion must be carefully analyzed on a case-by-case basis,
taking into account traditional paradigms as well. In this
section, we exemplify this concept by comparing formally
and quantitatively different solutions to the problem of
polling device data with respect to the traffic they generate.

The scenario we assume is the following. A network man-
agement station retrieves management data from a pool of
devices, e.g., the load on every network interface of each de-
vice. Data retrieval is conceptually a single query on the de-
vice, but is actually implemented by several SNMP instruc-
tions. Table 3 shows a set of parameters needed to model this
scenario. Such parameters define an oversimplified model.
For instance, CPU time is considered an infinite resource
and, even more important, the network is considered uni-
form, with no difference in bandwidth or latency among the
links—a heavy assumption for network management. Fi-
nally, in real protocols like TCP the overhead h actually de-
pends on the payload size. Nevertheless, our goal here is to
illustrate some guidelines to evaluate the tradeoffs among
paradigms: a quantitative comparison among paradigms,
encompassing a precise characterization of network man-
agement functionalities and an accurate model of network
protocols, can be found in [66].

A design exploiting the CS paradigm fostered by SNMP
would lead to an overall traffic described by the expression

TCS = (2h + i + r) QN.

In fact, due to the SNMP architecture, each of the Q in-
structions implementing the query has to be sent sepa-
rately on each of the N nodes and returns a single result r
which is collected and subsequently elaborated by the
management station.

Exploitation of the REV paradigm assumes that the set of
Q SNMP instructions representing the query are embedded
in mobile code sent to each device and executed remotely.
If the management station is interested in all the results

returned by each SNMP instruction (which are shipped
altogether) and we assume a value CREV for the size of the
code sent, the expression for the traffic is:

TREV = (2h + CREV + rQ)N.

Finally, in a design based on the MA paradigm the code
encapsulating the query can move autonomously among
the network devices retaining its state, which is growing as
long as the mobile component collects information. The
expression for the overall traffic, assuming a value CMA for
the size of the mobile component, is then:

T h C N
rQN N

MA MA= + + +
+

()()
()

1
1

2 .

This analysis shows that the MA paradigm is never con-
venient, at least as far as overall network traffic is con-
cerned. On the other hand, assuming that 2h ! CREV, REV is
more convenient than CS if

C
Q h iREV < +()2

holds, where variables in the right-hand side depend on the
SNMP protocol and those in the left hand side depend on
the particular network configuration and functionality. The
formula above proves the intuition that REV is convenient
when a set of SNMP instructions can be “packed” effi-
ciently into mobile code, e.g., by exploiting loops. Never-
theless, the formula gives a quantification about when to
use a paradigm rather than the other.

Although overall traffic is an important parameter to
optimize, we pointed out earlier that one of the key benefits
of mobile code is that it enables decentralized network
management, reducing the load on the management sta-
tion. With the CS and REV paradigms, the expression for
the traffic around the management workstation coincides
with the expression for the overall traffic. Instead, an MA
design involves the management station only when the
mobile component is injected into the network and when it
comes back to the station, giving the expression:

T h C rQNMA
Mgm

MA= + +2() .

In other words, the traffic around the workstation is di-

minished, that is ∆T = TCS − TMA
Mgm > 0, when:

C
QN

h iMA <
+()2

2 ,

TABLE 3
PARAMETERS MODELING A SIMPLE NETWORK MANAGEMENT

DATA RETRIEVAL FUNCTIONALITY

parameter unit description

N node number of managed network devices
Q instruction number of SNMP instructions needed to

perform a single device query
i bit size of an SNMP instruction
h bit message header and other auxiliary

data encapsulating message content
r bit average size of the result of an SNMP

instruction

FUGGETTA ET AL.: UNDERSTANDING CODE MOBILITY 359

assuming QN @ 1. Again, this provides quantitative evi-
dence for the fact that improvement of traffic increases with
the number of nodes being managed autonomously by the
mobile component and with the number of instructions that
can be packed efficiently into the component code.

It is worth noting that small changes in the model can
modify slightly the tradeoff. For example, if semantic com-
pression of data is performed, e.g., because the manage-
ment station is interested only in the maximum among the
Q values retrieved on each the device, the expression for
the traffic in the MA case becomes:

′ = + +
+

T h C N
rN N

MA MA()()
()

1
1

2 ,

and can even become linear, that is:

′′ = + + +T h C N rNMA MA()()1 ,

when semantic compression can be performed across all the
devices (e.g., because the management station is interested
in finding the maximum value among all the devices). This
would make MA a candidate even in absence of congestion
around the management station.

The analysis just carried out evidences that, as far as
code mobility is concerned, REV and MA are the design
paradigms one may want to exploit in designing a polling
functionality for a network management application. Nev-
ertheless, if the actual values of the application parameters
are in a certain range, it still desirable to use a CS paradigm.
Hence, the choice of the paradigm is constrained by the
actual values for the parameters of the application.

As a final remark, it should be pointed out that, although
network traffic is a key parameter in the context of network
management, in other applications it might be completely
irrelevant and other factors may be predominant, e.g., CPU
usage. In these cases, the same approach based on quanti-
tative analysis can be put in place.

6.4 Choosing the Implementation Technology
In principle, design paradigms and the technology used for
their implementation are orthogonal, as discussed at the
end of Section 4. Nevertheless, we have already pointed out
that this is true only partially, and that an inappropriate
technology may put an unnecessary burden on the pro-
grammer—at least as far as code mobility is concerned. In
particular, we showed how a strong MCS is the natural
choice for implementing an MA design. Mobility is reduced
to a single instruction, and the migrating EU can be
mapped directly to a roaming component in the higher-
level design. Conversely, a weak MCS constrains the pro-
grammer to manage explicitly the execution state, which
degradates programmer productivity, program readability,
and ease of debugging. In the context of our case study,
however, there is an additional drawback. The formulas we
derived in the previous section show how the size of the
transferred code is a key parameter in the expressions of
network traffic. Implementing an MA design with a weak
MCS is likely to end up in creating bigger code (because of
the explicit management of execution state), thus reducing
the benefits potentially achievable.

Nevertheless, the final choice might be influenced by
other considerations as well. The analysis described in the
previous section aims at identifying the best paradigm to

design a single functionality within an application. Of
course, an application is composed of several functionali-
ties, each with its own peculiarities that may lead to com-
pletely different designs. For instance, suppose we want to
implement a network management application that pro-
vides, among the others, a first functionality to determine
the most loaded interface on a given path, a second func-
tionality that determines all the parameters for a given in-
terface, and a third one that allows the manager to set a
given value in a device’s MIB. The analysis carried out ear-
lier tells us that in the first case we may want to take advan-
tage of the opportunity to perform global semantic compres-
sion, and exploit the MA paradigm; in the second, we may
want to follow the REV paradigm to save bandwidth—MA is
overshooting. In the third one, CS will suffice.

The choice of the technology used to implement the ap-
plication must take into account not only which is the best
technology to implement a given functionality designed
following a certain design paradigm, but also how the
technology fits the global application development. For
example, let us suppose that we are faced with the choice
between a strong MCS that does not provide good support
for stand-alone code shipping and a weak MCS that pro-
vides it. In the context depicted above, the first functional-
ity is likely to be used less frequently than the others: in this
case, we may want to sacrifice the traffic optimization
achievable with the strong MCS and use the weak one, to
obtain better support in the key functionalities and keep the
uniformity of the development tools.

7 CONCLUSIONS

Mobile code is a promising solution for the design and
implementation of large scale distributed applications,
since it overcomes many of the drawbacks of the tradi-
tional client-server approach. However, most research
efforts in this field have been focused on the development
of mobile code technologies, and little attention has been
payed so far to the formulation of a sound conceptual
framework for code mobility.

In this paper, we proposed a conceptual framework
structured along three classes of concepts: applications, design
paradigms, and technologies. Applications are the solutions to
specific problems. Paradigms guide the design of applica-
tions. Technologies support application development. We
surveyed each of these concepts and pointed out features,
advantages, and disadvantages of existing approaches and
proposals. The purpose of the framework presented in this
work is to foster progress towards a common understanding
of the issues and contributions in the area of code mobility.
The framework will be a useful guideline to practitioners,
who can use it to exploit the potential of the different mobile
code concepts and technologies.

Certainly, the work presented in this paper needs to be
incrementally enriched and revised, taking into account
experiences, results, and innovations as they emerge from
the research activity. In particular, we need to improve our
understanding of the properties and weaknesses of the ex-
isting design paradigms. We also need to consolidate a de-
tailed conceptual framework for mobile code languages,

360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 5, MAY 1998

that makes it possible to compare them as we do for tradi-
tional programming languages [71]. Another issue is the
development of models enabling formal reasoning and
verification. Finally, we need to further explore the rela-
tively unknown world of applications and problems that
can benefit from the adoption of technology and methodol-
ogy based on mobile code. Nonetheless, we believe that the
concepts presented in this paper can be instrumental in the
creation of a mature and comprehensive background for the
evolution and further diffusion of mobile code applications
and techniques.

ACKNOWLEDGMENTS

We wish to thank Mario Baldi, Antonio Carzaniga, Gian-
paolo Cugola, and Carlo Ghezzi. Without the lively disci-
sions with them and the related work developed jointly,
this paper would never have been written.

REFERENCES

[1]� G.H. Forman and J. Zahorjan, “The Challenges of Mobile Com-
puting,” Computer, vol. 27, no. 4, pp. 38–47, 1994.

[2]� T. Imielinsky and B.R. Badrinath, “Wireless Computing: Chal-
lenges in Data Management,” Comm. ACM, vol. 37, no. 10, pp. 18–
28, 1994.

[3]� Object Management Group, CORBA: Architecture and Specification.
Aug. 1995.

[4]� A. Carzaniga, G.P. Picco, and G. Vigna, “Designing Distributed
Applications with Mobile Code Paradigms,” Proc. 19th Conf. Soft-
ware Eng. (ICSE’97), R. Taylor, ed., pp. 22–32, ACM Press, 1997.

[5]� J.K. Boggs, “IBM Remote Job Entry Facility: Generalize Subsystem
Remote Job Entry Facility,” IBM Technical Disclosure Bulletin 752,
IBM, Aug. 1973.

[6]� Adobe Systems Inc., PostScript Language Reference Manual.
Addison-Wesley, 1985.

[7]� M. Nuttall, “Survey of Systems Providing Process or Object Mi-
gration,” Technical Report Doc 94/10, Dept. of Computing, Impe-
rial College, May 1994.

[8]� G. Thiel, “Locus Operating System, A Transparent System,” Com-
puter Comm., vol. 14, no. 6, pp. 336–346, 1991.

[9]� E. Jul, H. Levy, N. Hutchinson, and A. Black, “Fine-Grained Mo-
bility in the Emerald System,” ACM Trans. Computer Systems, vol.
6, no. 2, pp. 109–133, Feb. 1988.

[10]� R. Lea, C. Jacquemont, and E. Pillevesse, “COOL: System Support
for Distributed Object-Oriented Programming,” Comm. ACM, vol.
36, no. 9, pp. 37–46, Nov. 1993.

[11]� M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M.
Guillemont, F. Herrmann, C. Kaiser, P. Leonard, S. Langlois, and
W. Neuhauser, “Chorus Distributed Operating Systems,” Com-
puting Systems, vol. 1, pp. 305–379, Oct. 1988.

[12]� C.G. Harrison, D.M. Chess, and A. Kershenbaum, “Mobile
Agents: Are They a Good Idea?” Vitek and Tschudin [73], pp. 25–
47. Also available as IBM Technical Report.

[13]� L. Bic, M. Fukuda, and M. Dillencourt, “Distributed Computing
Using Autonomous Objects,” Computer, Aug. 1996.

[14]� J.W. Stamos and D.K. Gifford, “Implementing Remote Evalua-
tion,” IEEE Trans. Software Eng., vol. 16, no. 7, pp. 710–722, July
1990.

[15]� A. Birrell and B. Nelson, “Implementing Remote Procedure
Calls,” ACM Trans. Computer Systems, vol. 2, no. 1, pp. 29–59, Feb.
1984.

[16]� E.J.H. Chang, “Echo Algorithms: Depth Parallel Operations on
General Graphs,” IEEE Trans. Software Eng., July 1982.

[17]� D. Johansen, R. van Renesse, and F.B. Schneider, “An Introduction
to the TACOMA Distributed System—Version 1.0,” Technical Re-
port 95-23, Dept. of Computer Science, Univ. of Tromsø and Cor-
nell Univ., Tromsø, Norway, June 1995.

[18]� A.S. Park and S. Leuker, “A Multi-Agent Architecture Supporting
Services Access,” Rothermel and Popescu-Zeletin [72], pp. 62–73.

[19]� J.E. White, “Telescript Technology: Mobile Agents,” Software Agents,
J. Bradshaw, ed. AAAI Press/MIT Press, 1996.

[20]� P. Maes, “Agents that Reduce Work and Information Overload,”
Comm. ACM, vol. 37, no. 7, July 1994.

[21]� M. Genesereth and S. Ketchpel, “Software Agents,” Comm. ACM,
vol. 37, no. 7, July 1994.

[22]� M. Wooldridge and N.R. Jennings, “Intelligent Agents: Theory
and Practice,” Knowledge Eng. Rev., vol. 10, no. 2, June 1995.

[23]� F.C. Knabe, “Language Support for Mobile Agents,” PhD thesis,
Carnegie Mellon Univ., Pittsburgh, Penn., Dec. 1995. Also avail-
able as Carnegie Mellon School of Computer Science Technical
Report CMU-CS-95-223 and European Computer Industry Centre
Technical Report ECRC-95-36.

[24]� H. Peine and T. Stolpmann, “The Architecture of the Ara Platform
for Mobile Agents,” Rothermel and Popescu-Zeletin [72], pp. 50–
61.

[25]� D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet,
“Concordia: An Infrastructure for Collaborating Mobile Agents,”
Rothermel and Popescu-Zeletin [72], pp. 86–97.

[26]� M. Fukuda, L. Bic, M. Dillencourt, and F. Merchant, “Intra- Inter-
Object Coordination with MESSENGERS,” First Int’l Conf. Coordi-
nation Models and Languages (COORDINATION’96), 1996.

[27]� J. Kiniry and D. Zimmerman, “A Hands-On Look at Java Mobile
Agents,” IEEE Internet Computing, vol. 1, no. 4, pp. 21–30, 1997.

[28]� D. Volpano, “Provably-Secure Programming Languages for Re-
mote Evaluation,” ACM Computing Surveys, vol. 28A, Dec. 1996.
Participation statement for ACM Workshop on Strategic Direc-
tions in Computing Research.

[29]� G. Cugola, C. Ghezzi, G.P. Picco, and G. Vigna, “Analyzing Mo-
bile Code Languages,” Vitek and Tschudin [73], pp. 93–111.

[30]� R.S. Gray, “Agent Tcl: A Transportable Agent System,” Proc. CIKM
Workshop on Intelligent Information Agents, Baltimore, Md., Dec.
1995.

[31]� B. Thomsen, L. Leth, S. Prasad, T.-M. Kuo, A. Kramer, F.C. Knabe,
and A. Giacalone, “Facile Antigua Release Programming Guide,”
Technical Report ECRC-93-20, European Computer Industry Re-
search Centre, Munich, Germany, Dec. 1993.

[32]� Sun Microsystems, “The Java Language: An Overview,” Technical
Report, Sun Microsystems, 1994.

[33]� D.B. Lange, “Java Aglets Application Programming Interface
(J-AAPI),” IBM Corp. white paper, Feb. 1997.

[34]� D.B. Lange and D.T. Chang, “IBM Aglets Workbench—Program-
ming Mobile Agents in Java,” IBM Corp. white paper, Sept. 1996.

[35]� C. Tschudin, An Introduction to the M0 Messenger Language, Univ.
of Geneva, Switzerland, 1994.

[36]� C. Tschudin, “OO-Agents and Messengers,” ECOOP’95 Workshop
W10 on Objects and Agents, Aug. 1995.

[37]� M. Straßer, J. Baumann, and F. Hohl, “Mole—A Java Based Mobile
Agent System,” Special Issue Object-Oriented Programming:
Workshop Reader of the 10th European Conf. Object-Oriented Pro-
gramming ECOOP’96, M. Mühlaüser, ed., pp. 327–334, July 1996,
dpunkt.

[38]� J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, and M.
Straßer, “Communication Concepts for Mobile Agent Systems,”
Rothermel and Popescu-Zeletin [72], pp. 123–135.

[39]� J. Hogg, “Island: Aliasing Protection in Object-Oriented Lan-
guages,” Proc. OOPSLA‘91, 1991.

[40]� L. Cardelli, “A Language with Distributed Scope,” Computing
Systems, vol. 8, no. 1, pp. 27–59, 1995.

[41]� N. Borenstein, “EMail with A Mind of Its Own: The Safe-Tcl Lan-
guage for Enabled Mail,” technical report, First Virtual Holdings,
Inc, 1994.

[42]� J. Ousterhout, Tcl and the Tk Toolkit. Addison-Wesley, 1995.
[43]� J. Ousterhout, J. Levy, and B. Welch, “The Safe-Tcl Security

Model,” technical report, Sun Microsystems, Nov. 1996, Reprinted
in [52].

[44]� A. Acharya, M. Ranganathan, and J. Saltz, “Sumatra: A Language
for Resource-Aware Mobile Programs,” Vitek and Tschudin [73],
pp. 111–130.

[45]� M. Shaw and D. Garlan, Software Architecture: Perspective on an
Emerging Discipline. Prentice Hall, 1996.

[46]� G. Abowd, R. Allen, and D. Garlan, “Using Style to Understand
Descriptions of Software Architecture,” Proc. SIGSOFT’93: Founda-
tions of Software Eng., Dec. 1993.

[47]� J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, “A Note on Dis-
tributed Computing,” Vitek and Tschudin [73]. Also available as
Technical Report TR-94-29, Sun Microsystems Laboratories.

FUGGETTA ET AL.: UNDERSTANDING CODE MOBILITY 361

[48]� G.P. Picco, G.-C. Roman, and P.J. McCann, “Expressing Code
Mobility in Mobile UNITY,” Proc. Sixth European Software Eng.
Conf. held jointly with the Fifth ACM SIGSOFT Symp. Foundations
of Software Eng. (ESEC/FSE‘97), M. Jazayeri and H. Schauer, eds.,
Zürich, Switzerland, Sept. 1997, Lecture Notes in Computer Science
1301, pp. 500–518. Springer-Verlag.

[49]� C. Ghezzi and G. Vigna, “Mobile Code Paradigms and Tech-
nologies: A Case Study,” Rothermel and Popescu-Zeletin [72],
pp. 39–49.

[50]� M. Baldi, S. Gai, and G.P. Picco, “Exploiting Code Mobility in
Decentralized and Flexible Network Management,” Rothermel
and Popescu-Zeletin [72], pp. 13–26.

[51]� K.A. Bharat and L. Cardelli, “Migratory Applications,” Technical
Report 138, Digital Equipment Corp., Systems Research Center,
Feb. 1996.

[52]� Mobile Agents and Security, G. Vigna, ed., Lecture Notes in Computer
Science, State-of-the-Art Survey, vol. 1419. Springer-Verlag, 1998.

[53]� P. Knudsen, “Comparing Two Distributed Computing Paradigms
—A Performance Case Study,” MS thesis, Univ. of Tromsø, 1995.

[54]� A. Limongiello, R. Melen, M. Roccuzzo, A. Scalisi, V. Trecordi,
and J. Wojtowicz, “ORCHESTRA: An Experimental Agent-Based
Service Control Architecture for Broadband Multimedia Net-
works,” GLOBAL Internet‘96, Nov. 1996.

[55]� T. Magedanz, K. Rothermel, and S. Krause, “Intelligent Agents:
An Emerging Technology for Next Generation Telecommunica-
tions?” INFOCOM’96, San Francisco, Mar. 1996.

[56]� R.S. Gray, D. Kotz, S. Nog, D. Rus, and G. Cybenko, “Mobile
Agents for Mobile Computing,” Proc. Second Aizu Int’l Symp. Par-
allel Algorithms/Architectures Synthesis, Fukushima, Japan, Mar.
1997.

[57]� Y. Yemini, “The OSI Network Management Model,” IEEE Comm.,
pp. 20–29, May 1993.

[58]� G. Goldszmidt and Y. Yemini, “Distributed Management by Dele-
gation,” Proc. 15th Int’l Conf. Distributed Computing, June 1995.

[59]� T. Cai, P. Gloor, and S. Nog, “DataFlow: A Workflow Management
System on the Web Using Transportable Agents,” Technical Re-
port TR96-283, Dept. of Computer Science, Dartmouth College,
Hanover, N.H., 1996.

[60]� D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, and
G.J. Minden, “A Survey of Active Network Research,” IEEE
Comm., vol. 35, no. 1, pp. 80–86, Jan. 1997.

[61]� Y. Yemini and S. da Silva, “Towards Programmable Networks,”
IFIP/IEEE Int’l Workshop Distributed Systems: Operations and Man-
agement, L’Aquila, Italy, Oct. 1996.

[62]� S. Bhattacharjee, K.L. Calvert, and E.W. Zegura, “An Architecture
for Active Networking,” High Performance Networking (HPN’97),
Apr. 1997.

[63]� D.J. Wetherall, J. Guttag, and D.L. Tennenhouse, “ANTS: A Toolkit
for Building and Dynamically Deploying Network Protocols,”
Technical Report, MIT, 1997, in Proc. OPENARCH’98.

[64]� J.E. White, “Telescript Technology: The Foundation for the Elec-
tronic Marketplace,” Technical Report, General Magic, Inc., 1994,
white paper.

[65]� M. Merz and W. Lamersdorf, “Agents, Services, and Electronic
Markets: How Do They Integrate?” Proc. Int’l Conf. Distributed
Platforms, IFIP/IEEE, 1996.

[66]� M. Baldi and G.P. Picco, “Evaluating the Tradeoffs of Mobile Code
Design Paradigms in Network Management Applications,” Proc.
20th Int’l Conf. Software Eng., R. Kemmerer, ed., 1998, to appear.

[67]� J.D. Case, M. Fedor, M. L. Schoffstall, and C. Davin, “Simple Net-
work Management Protocol,” RFC 1157, May 1990.

[68]� OSI, “ISO 9595 Information Technology, Open System Intercon-
nection, Common Management Information Protocol Specifica-
tion,” 1991.

[69]� J.D. Case, K. McCloghrie, M. Rose, and S. Waldbusser, “Structure
of Management Information for Version 2 of the Simple Network
Management Protocol,” RFC 1902, Jan. 1996.

[70]� S. Waldbusser, “Remote Network Monitoring Management In-
formation Base,” RFC 1757, Feb. 1995.

[71]� C. Ghezzi and M. Jazayeri, Programming Language Concepts, third
edition. John Wiley & Sons, 1997.

[72]� Mobile Agents: First Int’l Workshop MA‘97, K. Rothermel and R.
Popescu-Zeletin, eds., Lecture Notes in Computer Science 1219.
Springer-Verlag, Apr. 1997.

[73]� Mobile Object Systems: Towards the Programmable Internet, J. Vitek
and C. Tschudin, eds., Lecture Notes in Computer Science 1222.
Springer-Verlag, Apr. 1997.

Alfonso Fuggetta is an associate professor of
software engineering at Politecnico di Milano.
He is also senior researcher at CEFRIEL, a
research and education institute established in
Milano by universities, the regional council of
Lombardy, and several major IT industries. His
research interests are in workflow and process
modeling and support, technologies and meth-
ods for distributed and mobile systems, re-
quirement engineering. He is a member of the
IEEE, the IEEE Computer Society, and the

ACM. More information can be found at http://www.elet.polimi.it/~fuggetta.

Gian Pietro Picco holds a DrEng degree in
electronic engineering from Politecnico di Mi-
lano, Italy, and a PhD degree in computer engi-
neering from Politecnico di Torino, Italy. The
subject of his recent PhD dissertation and of his
current research is understanding, evaluating,
formalizing, and exploiting code mobility in the
context of large-scale distributed systems. Prior
to that, he published work in software process
modeling, object-oriented databases, and ro-
botics. Dr. Picco is presently a visiting re-

searcher at Washington University, St. Louis, where he is investigating
the relationships between mobile code and mobile computing. He is a
member of the IEEE, the IEEE Computer Society, and the ACM. More
information can be found at http://www.polito.it/~picco.

Giovanni Vigna received the DrEng degree in
electronic engineering in 1994 and the PhD
degree in computer engineering 1998 from
Politecnico di Milano, Italy. His PhD dissertation
focused on mobile code technologies and de-
sign paradigms, with an emphasis on security
issues. He authored several publications on
mobile code and he is editor of a special issue
of the Lecture Notes in Computer Science on
mobile code and security. He is currently with
University of California, Santa Barbara, as a

postdoctoral researcher. His research interests include mobile code,
WWW engineering, electronic commerce, network security, and intrusion
detection. He is a member of IEEE, the IEEE Computer Society, and
ACM. More information can be found at http://www.elet.polimi.it/~vigna.

