
A Modular Approach toFault-Tolerant Broadcastsand Related ProblemsVassos Hadzilacos �Department of Computer ScienceUniversity of TorontoToronto, Ontario, Canada M5S 1A1 Sam Toueg yDepartment of Computer ScienceCornell UniversityIthaca, New York 14853, USA1 IntroductionThe design and veri�cation of fault-tolerant distributed applications is widely viewed as acomplex endeavor. To a large extent this is due to the fact that the communication prim-itives available in distributed systems are too weak. For example, many systems supportprimitives that allow a process to send a message to only one other process. If a process pwishes to send a message m to all processes, it must do so by sending m to each one sepa-rately. Should p fail in the middle of this activity, it is possible that some of the processesreceive m while others do not. Similar inconsistencies may arise even in networks suchas Ethernet that support broadcast as a low-level communication primitive: failures cancause a message to be received by some processes but not by others. Such inconsistenciescomplicate the task of building fault-tolerant distributed software.Fault-tolerant broadcasts are communication primitives that facilitate the developmentof fault-tolerant applications. The weakest among these is Reliable Broadcast. Roughlyspeaking, this allows processes to broadcast messages such that all processes agree on the setof messages they deliver, despite failures. Stronger variants of Reliable Broadcast impose ad-ditional requirements on the order in which messages are delivered. For example, processesmay have to deliver all messages in the same order. Systems and applications based on fault-tolerant broadcasts include SIFT [WLG+78], State Machines [Lam78a,Sch90], Atomic Com-mitment [BT93], Isis [BJ87,BCJ+90], Psync [PBS89], Amoeba [Kaa92], Delta-4 [VM90],Transis [ADKM92], Highly Available System [Cri87], and Advanced Automation System[CDD90].Another paradigm that simpli�es the task of designing fault-tolerant distributed ap-plications is Consensus. Roughly speaking, Consensus allows processes to reach a common�Supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada.ySupported in part by NSF grants CCR-8901780 and CCR-9102231.1



decision that depends on their initial inputs, despite failures. Consensus algorithms canbe used to solve many problems such as electing a leader or agreeing on the value of areplicated sensor. Theoretical research on fault-tolerant distributed computing has largelycentered on Consensus, while applied research has focused on Reliable Broadcast and itsvariants. In fact, as we shall see in this paper, the two problems are closely related.Given their wide applicability, fault-tolerant broadcasts and Consensus have been ex-tensively studied for over a decade. This has resulted in a voluminous literature which,unfortunately, is not distinguished for its coherence. The di�erences in notation and thehaphazard nature of the assumptions obfuscates the close relationship among these prob-lems.Our primary goal here is to develop this material in a coherent way so as to expose itsintrinsic unity. We also strive to make it as simple as possible, without sacri�cing precisionor rigor. Our approach consists of the following elements. First, we draw a sharp linebetween the speci�cation of problems and the algorithms that solve them. Second, wegive modular speci�cations of the various types of fault-tolerant broadcasts: Starting withReliable Broadcast we de�ne progressively stronger types of broadcasts by adding one ormore requirements on the order of message delivery. Third, we also derive algorithms foreach of these broadcasts in a modular way: We �rst give an algorithm for Reliable Broadcast,and then describe a set of transformations that can be used to convert weaker broadcastalgorithms into stronger ones. Each of the transformations enforces one of the messagedelivery order requirements. In this way, the modular derivation of algorithms parallels ourmodular speci�cation of broadcasts. A crucial and novel feature of our methodology is thatthese transformations are generic: they work for a large class of failures, and regardless ofthe type or synchrony of the communication network.The rest of this paper is organized as follows. In Section 2 we describe commonly usedmodels of computation. In Section 3 we give modular speci�cations for Reliable Broadcastand its variants. Our development of broadcast algorithms follows a particular methodology,explained in Section 4. In Section 5 we exhibit our generic transformations that can beused to convert weaker broadcast algorithms into stronger ones. In Section 6 we focus on aparticular type of system, namely point-to-point networks, and derive Reliable Broadcastalgorithms for such a system. Applying the transformations of Section 5 to these algorithmsresults in a suite of broadcast algorithms of various strengths for point-to-point networks. InSection 7, we �rst de�ne the Consensus problem, and then determine its relation to AtomicBroadcast, one of the broadcasts that we consider here. In Section 8 we de�ne a variantof Reliable Broadcast and explain its relation to the Consensus problem. A variation ofbroadcast where a process can target its messages to a speci�ed subset of the processes iscalled a multicast. In Section 9, we give modular speci�cations for various types of fault-tolerant multicasts.To enhance the readability of this paper, many references, historical notes, and othertangential and potentially distracting material are collected at the end of each section. Giventhe vastness of the literature on this subject, the bibliographic references are extensive, butincomplete. A more comprehensive treatment of the subject matter of this paper, includingmany results that are not presented here, will be found in the forthcoming book [HJT].2



2 PreliminariesSeveral computational models of distributed computing have been studied. Such models fallinto two broad categories, message-passing and shared-memory. In the former, processescommunicate by exchanging messages; in the latter, they communicate by accessing sharedobjects, such as registers, queues, etc. In this paper we focus on message-passing models.The chief characteristics of a message-passing model are: the type of communicationnetwork, the model of process and communication failures that may occur, and the syn-chrony of the system.2.1 Types of Communication NetworksThe type of network determines how processes communicate. In a point-to-point networkcommunication takes place over links that connect pairs of processes. In this type of networka process can send a message to a single process through a link. In a broadcast channelnetwork communication takes place over a single shared channel that connects all processes.In such a network a process can broadcast a message to all other processes. Examples areEthernet, Token Bus, Token Ring, and FDDI networks. Other types of networks includeredundant broadcast channel networks (e.g., Delta-4 [VM90] and [Cri90b]), packet radionetworks (e.g., ALOHA [Abr85]), switch-based networks (e.g., AN2 [Owi93]), etc.Many of the results in this paper are independent of the type of communication network.When we need to focus on a particular type of network we concentrate on point-to-pointones. This is because this is the most basic type, in the sense that it supports the mostlimited communication primitives and can be easily emulated by the other types of networks.We now turn our attention to the remaining characteristics of a message-passing system,namely types of failure and synchrony. Since these depend on the network type, we focus onpoint-to-point networks (similar de�nitions exist for other types of networks as well). Ourtreatment in this section is informal; a more precise and detailed exposition of point-to-pointnetworks is given in the Appendix.2.2 Point-to-Point NetworksA point-to-point network can be modeled as a directed graph, with nodes representing pro-cesses, and edges representing communication links between processes. In such a network,any pair of processes that are connected by a link can communicate with each other bysending and receiving messages, as described below.Consider the link from a process p to a process q. Associated with this link are twocommunication primitives, called send and receive. If p invokes send with a message mas a parameter, we say that p sends m to q; when it returns from that invocation we saythat p completes the sending of m to q. When a process q returns from the execution ofreceive with message m as the returned value, we say that q receives m (from p).Also associated with the link from p to q are an outgoing message bu�er at p and an3



incoming message bu�er at q. Informally, when p sends a message m to q, p inserts m intoits outgoing message bu�er, the link transports m to q's incoming message bu�er, and mis then removed and received by q. Thus, we assume that:1. If p sends a message m to q then q eventually receives m.1Every process p executes a sequence of steps, where each step is the execution of anoperation such as the writing of a local variable, or the sending or receipt of a message. As-sociated with p is an automaton, whose transition relation de�nes the set of legal sequencesof steps that p can execute. We assume that:2. Every process executes an in�nite sequence of steps.2The preceding description of a point-to-point network assumes that no failures occur.In the next section we consider some of the failures that can a�ect processes and links.2.3 Some Failure TypesFailures can be de�ned as deviations from correct behavior. To model the violation ofProperty 2, we introduce a special step called crash. Every process p can execute a crashat any time, and after doing so it stops executing further steps. This is modeled by theaddition of a new terminal state to the automaton associated with p, and a transition fromevery other state of p to that terminal state. The step associated with such a transition isde�ned as a crash.Following is a list of some types of process failures that have been studied:� A process commits a crash failure if it executes a crash step.� A process commits a send-omission failure on a message m if it completes the sendingof m but m is not inserted into its outgoing message bu�er.� A process commits a receive-omission failure on a message m if m is inserted into itsincoming message bu�er but it does not receive m.� A process commits an arbitrary (sometimes called Byzantine or malicious) failure ifthe sequence of steps that it executes deviates arbitrarily from the sequence prescribedby its associated automaton. Thus, it can exhibit any behavior whatsoever.We also consider the following type of link failure:1Note that messages are not necessarily received in the order in which they are sent.2A distributed system in which a process p can terminate (i.e., p's automaton has a terminal state), canbe modeled by replacing each terminal state of p by a state with a single \no-op" transition to itself.4



� A link l from a process p to a process q commits an omission failure on a messagem if m is inserted into p's outgoing bu�er bu�er but l does not transport m into q'sincoming bu�er.If a process or a link commits a failure, we say that it is faulty ; otherwise it is correct.In a network with failures, Properties 1 and 2 hold only for correct processes and for correctlinks that connect correct processes. In other words, they hold only in the subnetwork thatconsists entirely of correct processes and links.2.4 Synchronous and Asynchronous NetworksA point-to-point network is synchronous if it has the following properties (in addition tothe ones stated in Section 2.2):3. There is a known upper bound on the time required by any process to execute a step.4. Every process has a local clock with known bounded rate of drift with respect to realtime.5. There is a known upper bound on message delay; this consists of the time it takes tosend, transport, and receive a message over any link.It is important to realize that all of the above properties are necessary for the use oftimeouts to detect crash failures. If any of the three properties is violated, and a process ptimes-out on a message expected from a process q, p cannot conclude that q has crashed:The message delay could have been longer than expected, the clock used by p to measurethe timeout could have been running too fast, or q could be executing steps slower thanexpected.A point-to-point network is asynchronous if there are no timing assumptions whatso-ever. In particular, there are no assumptions on the maximum message delay, clock drift, orthe time needed to execute a step. This model is attractive and has recently gained muchcurrency for several reasons: It has simple semantics; applications programmed on the basisof this model are easier to port than those incorporating speci�c timing assumptions; andin practice, variable or unexpected workloads are sources of asynchrony | thus synchronyassumptions are at best probabilistic.Synchronous and asynchronous point-to-point networks are the two extremes of a spec-trum of possible models. Many intermediate models of partial synchrony have also beenstudied. For example, there may be known bounds on clock drift and step execution time,but message delays could be unbounded. Or there may be bounds on clock drift, stepexecution time and message delay, but these bounds may be unknown.2.5 Clock and Performance Failures in Synchronous NetworksThe failure types described in Section 2.3 apply to both synchronous and asynchronousnetworks. Certain failures, however, are only pertinent to synchronous networks; these5



occur when the assumed bounds on clock drift, message delay, or the time needed to executea step are violated. Such failures are de�ned below.Consider a synchronous network, i.e., one where processes and links are supposed tosatisfy timing Properties 3{5 (of Section 2.4). A process commits a clock failure if it violatesProperty 4; i.e., there is some interval of time during which its clock drifts with respect toreal time at a rate that exceeds the speci�ed maximum. A process commits a performancefailure if it violates Property 3; i.e., it completes a step in more time than the speci�edmaximum. Similarly, a link commits a performance failure if it transports some messagein more time than its speci�ed bound. Recall that the message delay consists of the timeneeded for the sender to send the message, the link to transport it, and the receiver toreceive it. Thus, a violation of Property 5 may be due to a performance failure of thesender, the receiver, or the link between them.In a synchronous network with clock and performance failures, the bounds on the timeto execute a step and on clock drift apply only to correct processes. Similarly, the bound onmessage delay applies only to messages sent between correct processes over correct links. Inother words, only the subnetwork consisting entirely of correct processes and links is reallysynchronous.2.6 Classi�cation of Failures and TerminologyIt is convenient to group failures into two classes that include both process and link failures:� omission failures consist of crash, send-omission, and receive-omission failures of pro-cesses, as well as link omission failures.� timing failures consist of omission, clock and performance failures.A network with a certain class of failures, is one where processes and links may commit anyof the failures included in that class, but no other failures. Thus, a network with omissionfailures is not subject to clock, performance, or arbitrary failures. Similarly, one with timingfailures is not subject to arbitrary failures.Benign failures is synonymous to omission failures in asynchronous networks and totiming failures in synchronous networks. In a system with benign failures, processes do notcommit arbitrary failures. Thus, the sequence of steps executed by every process, whethercorrect or faulty, is always consistent with the automaton associated with that process. Inparticular, a faulty process does not change its state arbitrarily, or send a message that itwas not supposed to send | two behaviors allowed by arbitrary failures. Benign failuresare the most common in practice, and in this paper we focus almost exclusively on them.2.7 Causal PrecedenceWe can view the computation of a distributed system as a partial order on a set of stepsthat processes execute, including communication steps. For example, consider systems6



where processes communicate by broadcasting and delivering messages. In such systems, astep is any operation executed by a process, such as the writing of a local variable, or thebroadcast or delivery of a message. A given subset of steps (\the steps of interest") inducesa partial order as follows. Step e causally precedes step f , denoted e! f , if and only if:1. the same process executes both e and f , in that order, or2. e is the broadcast of some message m and f is the delivery of m, or3. there is a step h, such that e! h and h! f .The causal precedence relation ! is acyclic because the broadcast of a message alwaysprecedes (in real time) the delivery of that message. By Clause 3, ! is also transitive, andhence a partial order.This causal precedence relation plays a central role in distributed computing: In asyn-chronous message-passing systems, step e can \in
uence" step f only if there is a sequenceof steps starting with e and ending with f such that consecutive steps are related as in (1)or (2) above, i.e., only if e! f .2.8 Properties of clocksEven in asynchronous systems, processes may have access to local clocks. Although suchclocks do not measure real time, they can still be useful by capturing some temporal infor-mation. The minimum requirement for a local clock is that its values are non-decreasing inreal time. Of course, to be useful, local clocks must satisfy stronger properties. One suchproperty is:� Clock Monotonicity: The local clock of a process p (whether correct or faulty) neverdecreases or skips values. Furthermore, if p is correct then its clock eventually reachesc, for any time c.Another useful property for clocks is that they be consistent with the causal precedencerelation ! de�ned in Section 2.7. More precisely, let p be any process and e be a step thatoccurs at p; let Cp(e) denote the value of p's local clock when e occurs. We say that thelocal clocks are consistent with ! if they satisfy the following property:� Logical Clocks: For any processes p and q, and any steps e and f that occur at p andq, respectively, if e! f then Cp(e) < Cq(f).In other words, if e can in
uence f then the time at which e occurs is before the time atwhich f occurs according to the local clocks.Recall that in a synchronous system the clocks of correct processes have a boundedrate of drift with respect to real time. As time progresses, however, the actual values of7



the clocks may drift arbitrarily far apart. It turns out that in synchronous systems it ispossible to implement approximately synchronized clocks, which not only have a boundedrate of drift with respect to real time, but also satisfy the following property:� �-Synchronized Clocks: The clock values of correct processes at any real time t di�erby at most a known constant �.Note that such clocks may violate the Clock Monotonicity and Logical Clock properties. Itis possible, however, to implement approximately synchronized clocks that satisfy both ofthese properties.Bibliographic NotesCrash failures, in the context of broadcast and Consensus problems, were �rst consideredin [LF82]. [SS83] de�ned a more restricted type of process failure, referred to as fail-stop.A fail-stop process fails by crashing but, in addition, all correct processes are informed ofthe crash, and they have access to any information written by the faulty process in itsstable storage before it crashed. Send-omission failures were introduced in [Had84]. [PT86]introduced the class of general-omission failures consisting of crash, send- and receive-omission failures. Timing failures were �rst considered in [CASD85], and arbitrary failuresin [PSL80,LSP82]. [PSL80,LSP82] also consider message authentication, a mechanism thatrestricts the faulty behavior of processes that are subject to arbitrary failures. A precisede�nition of the properties of message authentication, and a mechanism for providing themwithout digital signatures in point-to-point networks appears in [ST87b].There are methods for automatically increasing the fault-tolerance of algorithms. Thisis achieved by translations that transform any given algorithm tolerant of a certain type offailure into an algorithm that tolerates a more severe type of failure. Such translations aregiven in [Bra87,Coa87,ST87b,NT90,BN91,BN92]. They can be used to transform any algo-rithm tolerant of crash failures into one tolerant of arbitrary failures, in both synchronousand asynchronous systems.Much of the theoretical work on fault-tolerant algorithms focused on synchronous mod-els, including the so-called \synchronous round model" where processes execute in lock-stepfashion. The asynchronous model has been adopted by many systems, such as those de-scribed in [BJ87,PBS89,ADKM92]. Theoretical investigation of this model was spurred bythe surprising result of Fischer, Lynch and Paterson, stating that Consensus cannot besolved deterministically in this model [FLP85]. A variety of models of partial synchronyare studied in [DDS87,DLS88].The causal precedence relation, which is widely viewed as one of the most fundamentalconcepts in distributed computing, was introduced by Lamport in a seminal paper [Lam78b].(The relation was called \happens-before" in [Lam78b], and was de�ned in terms of send andreceive communication primitives, instead of the broadcast and deliver primitives we used inour de�nition.) In that paper Lamport also de�ned logical clocks and showed how to imple-ment them. [NT87,Wel87] show that, for a large class of problems, access to logical clocks8



is as good as access to real-time clocks. Many clock synchronization algorithms are known,including [Lam78b,HSSD84,LM85,CAS86,DHS86,BD87,KO87,ST87a,WL88,Cri89].3 Broadcast Speci�cationsRoughly speaking, Reliable Broadcast | the weakest type of of fault-tolerant broadcastthat we consider | guarantees three properties: (1) all correct processes agree on the set ofmessages they deliver, (2) all messages broadcast by correct processes are delivered, and (3)no spurious messages are ever delivered. While these properties may be su�cient for someapplications, Reliable Broadcast imposes no restriction on the order in which the messagesare delivered. In some applications this order is important. Thus, we de�ne a collection ofstronger broadcasts, di�ering in the guarantees they provide on message delivery order.Informally, FIFO Broadcast is a Reliable Broadcast that guarantees that messagesbroadcast by the same sender are delivered in the order they were broadcast. CausalBroadcast, a strengthening of FIFO Broadcast, requires that messages be delivered accordingto the causal precedence relation discussed in Section 2.7: Roughly speaking, if the broadcastof m causally precedes the broadcast of m0, then m must be delivered before m0. If twomessages are not causally related, however, di�erent processes can deliver them in di�erentorders. Atomic Broadcast prevents this undesirable behavior by requiring processes todeliver all messages in the same order. Finally, FIFO Atomic Broadcast combines therequirements of FIFO Broadcast and Atomic Broadcast, and Causal Atomic Broadcastcombines the requirements of Causal Broadcast and Atomic Broadcast.In our de�nitions of the various types of broadcast, we assume that we are only dealingwith benign failures. This not only simpli�es the de�nitions, but also makes it possibleto strengthen the properties of broadcasts in ways that are important in practice. InSection 3.10, we shall describe the few modi�cations necessary for arbitrary failures.3.1 Reliable BroadcastInformally, Reliable Broadcast requires that all correct processes deliver the same set ofmessages (Agreement), and that this set include all the messages broadcast by correctprocesses (Validity) but no spurious messages (Integrity). Formally, Reliable Broadcast isde�ned in terms of two primitives: broadcast and deliver. When a process p invokesbroadcast with a message m as a parameter, we say that p broadcasts m. We assume thatm is taken from a set a set M of possible messages. When a process q returns from theexecution of deliver with message m as the returned value, we say that q delivers m.Since every process can broadcast several messages, it is important to be able to deter-mine the identity of a message's sender, and to distinguish the di�erent messages broadcastby a particular sender. Thus, we assume that every message m includes the following �elds:the identity of its sender, denoted sender(m), and a sequence number, denoted seq#(m).If sender(m) = p and seq#(m) = i, then m is the ith message broadcast by p. These �eldsmake every message unique. 9



Reliable Broadcast is a broadcast that satis�es the following three properties:� Validity: If a correct process broadcasts a message m, then it eventually delivers m.� Agreement: If a correct process delivers a message m, then all correct processes even-tually deliver m.� Integrity: For any messagem, every correct process delivers m at most once, and onlyif m was previously broadcast by sender(m).Validity together with Agreement ensures that a message broadcast by a correct processis delivered by all correct processes. It is important to realize that if the sender of amessage m is faulty, the speci�cation of Reliable Broadcast allows two possible outcomes:either m is delivered by all correct processes or by none. For example, if a process pcrashes immediately after invoking broadcast(m), correct processes will never be awareof p's intention to broadcast m, and thus cannot deliver anything. On the other hand, ifp invokes broadcast(m) and fails during the execution of this primitive after having sentenough information about m, then correct processes may be able to deliver m.3.2 FIFO BroadcastIn general, each message has a context without which it may be misinterpreted. Such amessage should not be delivered by a process that does not know its context. In someapplications, the context of a message m consists of the messages previously broadcast bythe sender of m. For example, in an airline reservation system, the context of a messagecancelling a reservation consists of the message that previously established that reservation:the cancellation message should not be delivered at a site that has not yet \seen" thereservation message. Such applications require the semantics of FIFO Broadcast, a ReliableBroadcast that satis�es the following requirement on message delivery:� FIFO Order: If a process broadcasts a message m before it broadcasts a message m0,then no correct process delivers m0 unless it has previously delivered m.Our de�nition of FIFO Order is subtler than meets the eye. Some alternative formu-lations of FIFO Broadcast which have appeared in the literature have a similar 
avor, butare ambiguous or do not fully capture the desirable property described above. For example,consider the following de�nition: \all messages broadcast by the same process are deliveredto all processes in the order they are sent." Suppose process p broadcasts messages m1, m2,and m3 in that order, and correct process q delivers m1 and then m3 (but never deliversm2). This scenario could happen if p su�ers a transient failure while broadcasting m2. Notethat m3 was delivered without its proper context, namely m2. This undesirable behavioris allowed by the alternative de�nition (since m1 and m3 are indeed delivered in the orderthey are broadcast), but not by our de�nition of FIFO Order.33This alternative de�nition, taken from the literature, is also 
awed in another way: it requires messagesbe delivered by all processes. Clearly, this is impossible, since a faulty process cannot be forced to deliverany message. 10



3.3 Causal BroadcastFIFO Order is adequate when the context of a message m consists only of the messages thatthe sender of m broadcast before m. A message m, however, may also depend on messagesthat the sender of m delivered before broadcasting m. In this case, the message deliveryorder guaranteed by FIFO Broadcast is not su�cient. For example, in a network newsapplication, if users distribute their articles with FIFO Broadcast, the following undesirablescenario could occur. User A broadcasts an article. User B, at a di�erent site, delivers thatarticle and broadcasts a response that can only be understood by a user who has already seenthe original article. User C delivers B's response before delivering the original article from Aand so misinterprets the response. Causal Broadcast is a strengthening of FIFO Broadcastthat prevents the above problem by generalizing the notion of a message \depending" onanother one, and ensuring that a message is not delivered until all the messages it dependson have been delivered. We capture this more general notion of dependence with the causalprecedence relation on message broadcasts and deliveries de�ned in Section 2.7.Given a causal precedence relation (induced by broadcasts and deliveries), we de�neCausal Broadcast to be a Reliable Broadcast that satis�es:� Causal Order: If the broadcast of a message m causally precedes the broadcast of amessage m0, then no correct process delivers m0 unless it has previously delivered m.The following alternative formulation of Causal Order has appeared in the literature:if the broadcast of m causally precedes the broadcast of m0, then every correct process thatdelivers both messages must deliver m before m0. In a system with failures, this de�nitionof Causal Order is 
awed. In fact, it allows the same non-FIFO execution described in theprevious section, where a faulty process broadcasts m1, m2, and m3, and a correct processdelivers m1 and then m3. This alternative de�nition also allows the following undesirablescenario from our network news example. Faulty user A broadcasts an article; faulty userB, who is the only one to deliver that message, broadcasts a response. Correct user Cdelivers B's response, although it never delivers A's original article. It is easy to see thatthis scenario satis�es all the properties of Reliable Broadcast, namely Validity, Agreementand Integrity, as well as the alternative de�nition of Causal Order (but not our de�nitionof Causal Order). Note that de�ning Causal Order as \messages that are causally relatedare delivered in the causal order" is also 
awed.Causal Order is a generalization of FIFO Order; in fact, as we show below it is equivalentto the conjunction of FIFO Order and the following property:� Local Order: If a process broadcasts a message m and a process delivers m beforebroadcasting m0, then no correct process delivers m0 unless it has previously deliveredm.Theorem 1 Causal Order is equivalent to FIFO Order and Local Order.Proof: It is obvious that Causal Order implies FIFO Order and Local Order. We now showthat FIFO Order and Local Order imply Causal Order. Let m and m0 be messages such11



that the broadcast ofm causally precedes the broadcast of m0. Consider any correct processp that delivers m0. We must show that p delivers m before m0. If m and m0 are broadcastby the same process, this follows immediately by FIFO Order. Now assume that m and m0are broadcast by di�erent processes. From the de�nition of the causal precedence relationit is easy to see that there exist processes p1; p2; : : : ; pk and messages m1; m2; : : : ; mk = m0(k � 2) such that:� p1 = sender(m);� pi broadcasts mi, for all 1 � i � k;� either m = m1 or p1 broadcasts m before it broadcasts m1; and� pi delivers mi�1 before it broadcasts mi, for all 2 � i � k;By Local Order (applied to pk, mk�1, mk and p), p delivers mk�1 before mk = m0. Byapplying Local Order again (to pk�1, mk�2, mk�1 and p), p delivers mk�2 before mk�1. Ingeneral, an easy induction shows that p delivers mi�1 before mi for all 1 < i � k. Thus pdelivers m1 before mk = m0. Recall that either m = m1, or p1 broadcasts m before m1. Inthe former case, we immediately have that p delivers m before m0. In the latter case, FIFOOrder ensures that p delivers m before m1. Thus, in both cases, p delivers m before m0, aswe wanted to show. 2By Theorem 1, we can show that a broadcast algorithm satis�es Causal Order by prov-ing that it satis�es FIFO Order and Local Order. This is easier than proving Causal Orderdirectly: in general, the causal precedence between two broadcasts involves an arbitrarilylong chain of intermediate broadcasts and deliveries. A direct proof of Causal Order requiresa tedious induction on the length of this chain analogous to that in the proof of Theorem 1.In contrast, FIFO and Local Order involve chains of length one and two, respectively. Theirproofs do not require induction, and so they are simpler. This is illustrated in the proofsof Theorems 3, 5, 6, 7, and 9.3.4 Atomic BroadcastIf the broadcasts of two messages are not related by causal precedence, Causal Broadcastdoes not impose any requirement on the order they can be delivered. In particular, twocorrect processes may deliver them in di�erent orders. This disagreement on message deliv-ery order is undesirable in some applications. For example, consider a replicated databasewith two copies of a bank account x residing at di�erent sites. Initially, x has a value of$100. A user deposits $20, triggering a broadcast of \add $20 to x" to the two copies of x.At the same time, at a di�erent site, the bank initiates a broadcast of \add 10% interestto x". Because these two broadcasts are not causally related, Causal Broadcast allows thetwo copies of x to deliver these update messages in di�erent orders. This results in the twocopies of x having di�erent values, creating an inconsistency in the database.To prevent such problems, Atomic Broadcast requires that all correct processes deliverall messages in the same order. This total order on message delivery ensures that all correct12



processes have the same \view" of the system; hence they can act consistently without anyadditional communication. Formally, an Atomic Broadcast is a Reliable Broadcast thatsatis�es the following requirement:� Total Order: If correct processes p and q both deliver messages m and m0, then pdelivers m before m0 if and only if q delivers m before m0.The Agreement and Total Order requirements of Atomic Broadcast imply that correctprocesses eventually deliver the same sequence of messages.3.5 FIFO Atomic BroadcastAtomic Broadcast does not require that messages be delivered in FIFO Order. For example,Atomic Broadcast allows the following scenario: a process su�ers a transient failure duringthe broadcast of a message m, and then broadcasts m0, and correct processes only deliverm0. Thus, Atomic Broadcast is not stronger than FIFO Broadcast.We therefore de�ne FIFO Atomic Broadcast which is a Reliable Broadcast that satis�esboth FIFO Order and Total Order. FIFO Atomic Broadcast is stronger than both AtomicBroadcast and FIFO Broadcast.3.6 Causal Atomic BroadcastFIFO Atomic Broadcast does not require that messages be delivered in Causal Order. Re-consider the earlier network news example, and suppose FIFO Atomic Broadcast is used todisseminate articles. The following undesirable scenario is possible. Faulty user A broad-casts an article; faulty user B, who is the only one to deliver that message, broadcasts aresponse and then immediately crashes (before delivering its own response). Correct userC delivers the response, although it never delivers the original article. Thus, FIFO AtomicBroadcast does not necessarily satisfy Causal Order.We therefore de�ne Causal Atomic Broadcast which is a Reliable Broadcast that sat-is�es both Causal Order and Total Order. Causal Atomic Broadcast is stronger than bothFIFO Atomic Broadcast and Causal Broadcast. This type of broadcast is the key mecha-nism of the State Machine approach to fault-tolerance [Lam78a,Sch90].3.7 Timed BroadcastsMany applications require that if a message is delivered at all, it is delivered within abounded time after it was broadcast. This property is called �-Timeliness. As usual,in a distributed system elapsed time can be interpreted in two di�erent ways: real time,as measured by an external observer, or local time, as measured by the local clocks ofprocesses. This gives rise to two di�erent ways of de�ning the �-Timeliness property. Theone corresponding to real time is: 13



� Real-Time �-Timeliness: There is a known constant � such that if a message m isbroadcast at real time t, then no correct process delivers m after real time t+ �.On the other hand, the de�nition of �-Timeliness in terms of local clocks boundsthe di�erence between the local broadcasting time and the local delivery time. To formallyspecify such a bound, we assume that each message m contains a timestamp ts(m) denotingthe local time at which m was broadcast according to the sender's clock. That is, if aprocess p wishes to broadcast a message m when its local clock shows c, then p tagsm withts(m) = c. The de�nition of �-Timeliness that corresponds to local time is:� Local-Time �-Timeliness: There is a known constant � such that no correct processp delivers a message m after local time ts(m) + � on p's clock.A broadcast that satis�es either version of the �-Timeliness property is called a TimedBroadcast. For example, Timed Reliable Broadcast is a Reliable Broadcast that satis�esLocal- or Real-Time �-Timeliness. When referring to a Timed Broadcast, one must explic-itly state which of the two Timeliness properties is assumed. The parameter � is called thelatency of the Timed Broadcast.3.8 Uniform BroadcastsThe Agreement, Integrity, Order, and �-Timeliness properties of the broadcasts de�nedso far place no restrictions on the messages delivered by faulty processes. Since we aredealing with benign failures, such restrictions are desirable and achievable. For example,the Agreement property states that if a correct process delivers a messagem, then all correctprocesses eventually deliverm. This requirement allows a faulty process to deliver a messagethat is never delivered by the correct processes. This behavior is undesirable in manyapplications, such as Atomic Commitment in distributed databases [Gra78,BHG87,BT93],and can be avoided if the failures are benign. For such failures, we can strengthen theAgreement property to:� Uniform Agreement: If a process (whether correct or faulty) delivers a message m,then all correct processes eventually deliver m.Similarly, Integrity allows a faulty process to deliver a message more than once, and todeliver messages \out of thin air" (i.e., messages that were not previously broadcast). Iffailures are benign, this behavior can be avoided and we can strengthen the Integrity prop-erty as follows:� Uniform Integrity: For any message m, every process (whether correct or faulty)delivers m at most once, and only if m was previously broadcast by sender(m).We can also strengthen each version of the �-Timeliness property by requiring that evenfaulty processes respect the bound on the broadcast latency:14



� Uniform Real-Time�-Timeliness: There is a known constant � such that if a messagem is broadcast at real time t, then no process (whether correct or faulty) delivers mafter real time t +�.� Uniform Local-Time�-Timeliness: There is a known constant � such that no processp (whether correct or faulty) delivers a message m after local time ts(m) + � on p'sclock.Likewise, we can strengthen each of the Order properties, by requiring that even faultyprocesses do not violate them. Speci�cally, we de�ne:� Uniform FIFO Order: If a process broadcasts a message m before it broadcasts amessage m0, then no process (whether correct or faulty) delivers m0 unless it haspreviously delivered m.� Uniform Local Order: If a process broadcasts a message m and a process delivers mbefore broadcasting m0, then no process (whether correct or faulty) delivers m0 unlessit has previously delivered m.� Uniform Causal Order: If the broadcast of a message m causally precedes the broad-cast of a message m0, then no process (whether correct or faulty) delivers m0 unlessit has previously delivered m.� Uniform Total Order: If any processes p and q (whether correct or faulty) both delivermessages m and m0, then p delivers m before m0 if and only if q delivers m before m0.We can now state the uniform counterpart of Theorem 1 (the proof is omitted as it is almostidentical to that of Theorem 1):Theorem 2 Uniform Causal Order is equivalent to Uniform FIFO Order and UniformLocal Order.Each broadcast type T has a Uniform counterpart obtained by replacing every one ofthe properties of T (except Validity) with the corresponding uniform version. For example,Uniform Reliable Broadcast satis�es Validity, Uniform Agreement, and Uniform Integrity.3.9 Summary of Broadcast Speci�cationsAll the broadcasts that we de�ned satisfy the properties of Reliable Broadcast, namely:� Validity: If a correct process broadcasts a message m, then it eventually delivers m.� Agreement: If a correct process delivers a message m, then all correct processes even-tually deliver m. 15



� Integrity: For any messagem, every correct process delivers m at most once, and onlyif m was previously broadcast by sender(m).They only di�er by the strength of their requirements for message delivery order. Thereare three such requirements:� FIFO Order: If a process broadcasts a message m before it broadcasts a message m0,then no correct process delivers m0 unless it has previously delivered m.� Causal Order: If the broadcast of a message m causally precedes the broadcast of amessage m0, then no correct process delivers m0 unless it has previously delivered m.� Total Order: If correct processes p and q both deliver messages m and m0, then pdelivers m before m0 if and only if q delivers m before m0.Thus we have:� Reliable Broadcast = Validity + Agreement + Integrity� FIFO Broadcast = Reliable Broadcast + FIFO Order� Causal Broadcast = Reliable Broadcast + Causal OrderEach of these broadcast types has an Atomic counterpart:� Atomic Broadcast = Reliable Broadcast + Total Order� FIFO Atomic Broadcast = FIFO Broadcast + Total Order� Causal Atomic Broadcast = Causal Broadcast + Total OrderThe relations among these six types of broadcasts, in terms of their order properties, isillustrated in Figure 1.The above broadcasts do not place any bound on message delivery time. A Timedbroadcast requires such a bound by having one of the following two properties:� Real-Time �-Timeliness: There is a known constant � such that if a message m isbroadcast at real time t, then no correct process delivers m after real time t+ �.� Local-Time �-Timeliness: There is a known constant � such that no correct processp delivers a message m after local time ts(m) + � on p's clock.Finally, we saw that every broadcast property (except Validity) has a uniform coun-terpart, which is de�ned by imposing the corresponding requirement even on messagesdelivered by faulty processes. A broadcast is Uniform if all its properties (except Validity)are uniform.In the next section, we consider the above broadcast speci�cations in the context ofarbitrary failures. This section can be skipped without loss of continuity.16



Total OrderTotal OrderTotal Order BroadcastAtomicReliableBroadcast Causal OrderFIFO OrderCausal OrderFIFO Order BroadcastCausal AtomicBroadcastCausal BroadcastFIFO AtomicBroadcastFIFO
Figure 1: Relationship among Broadcast Primitives3.10 Broadcast Speci�cations for Arbitrary FailuresThe broadcast speci�cations given so far, were written with the assumption that only benignfailures occur. When dealing with arbitrary failures, some minor modi�cations to thesespeci�cations are required.Recall that any message m 2 M that processes are allowed to broadcast and delivermust include some �elds, such as a sender's id, sender(m), a sequence number, seq#(m),and possibly a timestamp, ts(m). In a system with arbitrary failures, we cannot assumethat messages broadcast by processes that commit arbitrary failures are in M; for examplethey may not have the appropriate �elds. We assume that correct processes ignore (andthus never deliver) such messages. With this assumption, a correct process can alwaysextract sender(m), seq#(m), and when appropriate, ts(m), from any message m that itdelivers. It is important to realize that a process p that commits arbitrary failures maybroadcast a message m with sender(m) 6= p, or with the wrong sequence number, or witha totally arbitrary timestamp.Now consider Reliable Broadcast with arbitrary failures. The de�nitions of Validityand Agreement only refer to messages broadcast and delivered by correct processes. Sincethe meaning of such broadcasts and deliveries is unambiguous no matter what the failuremodel is, the de�nitions of these two properties do not change. The same is true aboutthe �rst clause of Integrity. The second clause of Integrity, however, is problematic: Sincesender(m) may commit arbitrary failures, the meaning of \m was previously broadcast bysender(m)" is not clear. Even if the sender invokes broadcast(m), the external behavior ofthis invocation may look like an invocation of broadcast(m0) to some or all other processes.The natural way to circumvent this problem is to rede�ne Integrity (for arbitrary failures)as follows: 17



� Integrity: For any message m, every correct process delivers m at most once, and ifsender(m) is correct then m was previously broadcast by sender(m).Integrity now refers only to broadcast and deliveries of correct processes.4 This de�nitionpreserves the intended meaning of Integrity, restricted to the broadcasts of correct processes:No correct process can deliver a message m \out of thin air" if its �eld sender(m) containsthe identity of a correct process. In other words, faulty processes cannot \fool" correctones into delivering a message m from a correct process that has not (yet) broadcast m.Thus, this formulation of Integrity guarantees the authentication of broadcasts. This isthe broadcast/deliver counterpart of the send/receive message authentication discussed inSection 2.3.Now consider FIFO Broadcast. The benign failure version of FIFO Order imposes anorder on the delivery of messages broadcast by a process p that may be faulty. However, ifp commits arbitrary failures, such an order is not meaningful. Thus, in the case of arbitraryfailures, we weaken the order requirement by restricting its application only to messagesbroadcast by correct processes:� FIFO Order: If a correct process broadcasts a message m before it broadcasts amessage m0, then no correct process delivers m0 unless it has previously delivered m.5A proper de�nition of Causal Broadcast in the presence of arbitrary failures is subtleand more complex. Moreover, the utility of such a broadcast is questionable: The contextof a message broadcast by a correct process, i.e., its \causal past", may include the deliveryof a message from a process that committed arbitrary failures. Thus, we do not pursueCausal Broadcast with such failures.Next consider Atomic Broadcast, i.e., Reliable Broadcast with Total Order, for arbi-trary failures. We have already given the de�nition of Reliable Broadcast in that case. Thede�nition of Total Order refers only to deliveries by correct processes, and hence remainsunchanged.Finally, we consider each version of �-Timeliness. The de�nition of Local-Time �-Timeliness refers only to actions of correct processes, and remains unchanged. Real-Time�-Timeliness, however, refers to the real time at which a message is broadcast; this isnow ambiguous as the sender of that message may be subject to arbitrary failures. Wecircumvent this problem by restricting the requirement to messages broadcast by correctprocesses only:� Real-Time �-Timeliness: There is a known constant � such that if a message m isbroadcast by a correct process at real time t, then no correct process delivers m afterreal time t+ �.4Instead of reformulating Integrity, we could use the original de�nition with the convention that if afaulty process p is subject to arbitrary failures then the statement \p broadcasts m" is true for all m 2M.5This reformulation of FIFO Order allows correct processes to deliver messages broadcast by the samefaulty sender in di�erent orders. If desired, a stronger de�nition of FIFO Order can exclude this behavior.18



With benign failures, every broadcast property (except Validity) has a uniform versionthat imposes some requirements on the messages that faulty processes deliver. With arbi-trary failures, however, it is not possible to enforce any such requirement, so uniformity isa meaningless concept in this case.3.11 Inconsistency and ContaminationConsider an application where processes communicate via fault-tolerant broadcasts (Fig-ure 2). Assume that only benign failures may occur; thus, the current state of every process(whether correct or faulty) depends on the messages that it has delivered so far. Thisstate, and the application protocol that the process executes, determines whether it shouldbroadcast a message, and if so, the contents of that message. DeliveryInterfaceBroadcast/Application ProtocolApplication Protocolbroadcast(m) deliver(m)qp Communications SubsystemFigure 2: Application Protocol using BroadcastsSuppose that a process p is faulty and omits to deliver a message that is delivered byall the correct processes. The state of p may now be \inconsistent" with respect to the stateof correct processes. Suppose further that p continues to execute, and then, based on itsinconsistent state, p broadcasts a message m that is delivered by all the correct processes.Note thatm is \corrupted", i.e., its contents re
ect p's erroneous state. Thus, by deliveringm and changing state accordingly, the correct processes incorporate p's inconsistency intotheir own state | correct processes are now \contaminated." We come to the disconcertingconclusion that, even with benign failures, broadcasts can easily lead to the corruption ofthe entire system!Unfortunately, the traditional speci�cations of most broadcasts, including Uniformbroadcasts, allow the inconsistency of faulty processes, and the subsequent contaminationof correct processes. For example, with Atomic Broadcast a faulty process may reach aninconsistent state in several ways: e.g., by omitting to deliver a message m that is deliveredby all correct processes, or by delivering an extra message m that is not delivered by any19



correct process, or by delivering messages out-of-order. With Uniform Atomic Broadcast,inconsistency may only result from skipping a message that is delivered by all correctprocesses. Once a faulty process becomes inconsistent, contamination can then follow. Anexample of inconsistency with respect to (Uniform) Atomic Broadcast is explained below.A variable x with initial value 5 is replicated at three processes, p, q, and r. Processp atomically broadcasts an instruction to increment x, and q atomically broadcasts aninstruction to double x. Processes p and q are correct, and they deliver the instructions toincrement x and to double x, in that order. Their value of x is now 12. However, r is faulty:it �rst omits to deliver p's instruction to increment x, and then delivers q's instruction todouble x. By skipping the increment x instruction, r becomes inconsistent | its new valueof x (namely, 10) is now incorrect. Note that since r is faulty, this execution does indeedsatisfy the usual speci�cation of Atomic Broadcast. In fact, this particular execution canoccur even with a Uniform Atomic Broadcast.Once r is inconsistent, it can broadcast messages that are based on its erroneous stateand thus contaminate all the correct processes. For example, suppose process r uses itsnew value of x to compute and broadcast the value of the replicated variable y, which issupposed to be 3x everywhere. Since r is inconsistent and has incorrectly computed x to be10, r broadcasts y := 30, instead of the correct y := 36. When p and q deliver the messagey := 30 and update their copies of y to be 30, they become contaminated.Note that r becomes inconsistent by committing a simple \benign" failure | justskipping the delivery of a single message. However, as a result of this undetected failure,r subsequently broadcasts an incorrect message, and this broadcast \spreads" r's error tothe rest of the system. At this point, it is almost as if r commits an \arbitrary-like" failure,even though it only fails by omission. Worse yet, r's failure corrupts the whole system.It should be clear that preventing the inconsistency of faulty processes, or at least thecontamination of correct ones, is desirable in many situations. Fortunately, this is possi-ble with all the broadcasts that we considered in this paper, and for all benign failures.6Intuitively, a process can prevent its contamination by refusing to deliver messages fromprocesses whose previous deliveries are not compatible with its own. The amount of infor-mation that each message should carry, so that every process can determine whether it issafe to deliver it, depends on the type of broadcast (e.g., FIFO Broadcast or Causal AtomicBroadcast), and on the failure assumptions. Preventing inconsistency is, however, moredi�cult and costly. Roughly speaking, it requires techniques that allow a faulty process todetect whether it is about to make a message delivery error, and, if so, to immediately stop.A precise de�nition of inconsistency and contamination with respect to broadcasts isbeyond the scope of this paper. We also omit the description of algorithms that preventinconsistency and/or contamination. For a more complete treatment of this subject thereader is referred to [GT91,Gop92].6With arbitrary failures, neither inconsistency nor contamination can be prevented. This is because thestate of a faulty process may be inconsistent even if it delivers all messages correctly. This proces maythen contaminate the rest of the system by broadcasting an erroneous message that seems correct to everyprocess. 20



3.12 Ampli�cation of FailuresA fault-tolerant broadcast is usually implemented by a broadcast algorithm that uses lower-level communication primitives, such as send and receive (Figure 3). With such a broad-cast algorithm, the broadcasting or delivery of a message requires the execution of severalinstructions, and may include several sends and receives.
Send/ReceiveInterfaceInterfaceDeliveryBroadcast/Application ProtocolApplication Protocol Broadcast AlgorithmBroadcast Algorithmsend(m) receive(m)broadcast(m) deliver(m)qp

Communications NetworkFigure 3: Application/Broadcast LayeringThe models of failures commonly considered in the literature are de�ned in terms offailures that occur at the level of send and receive primitives, e.g., omissions to receivemessages (Section 2.3). How do these failures a�ect the execution of higher-level primitives,such as broadcasts and deliveries? In particular, can we assume that if a process su�ersa certain type of failure at the send/receive level, then it will always su�er the same typeof failure at the broadcast/delivery level? For example, if a faulty process omits to receivemessages, will it simply omit to deliver messages? Unfortunately, this is not always so.In general a broadcast algorithm is likely to amplify the severity of failures that occur atthe low level. For example, there are Atomic Broadcast algorithms where the omission toreceive messages causes a faulty process to deliver messages in the wrong order [Gop92].But what if processes are only subject to crash failures? Can we assume that themessage deliveries that a process makes before crashing are always \correct" (i.e., consistentwith those of correct processes)? Intuitively, this seems very reasonable, since by de�nitiona process that crashes executes perfectly until the moment it crashes. In other words,it seems impossible for such a process to make \mistakes" in its message deliveries before21



crashing. However, this intuition is wrong. We illustrate this by a coordinator-based AtomicBroadcast algorithm that exhibits a surprising behavior: even if a faulty process behavescorrectly until it crashes, it may still deliver messages out-of-order before it crashes! Thisalgorithm, which satis�es the speci�cation of Atomic Broadcast, is sketched below.When a process intends to broadcast a message m, it �rst sends m to a coordinator.The coordinator delivers messages in the order in which it receives them, and periodicallyinforms the other processes of this message delivery order. Other processes deliver messagesaccording to this order. If the coordinator crashes, another process takes over as coordinator.Now, suppose a coordinator delivers m before m0, and then crashes before informing anyother process thatm should be delivered before m0. The new coordinator cannot determinethe order chosen by the faulty coordinator, and may decide that m0 should be deliveredbefore m. In this scenario, all correct processes follow the new coordinator and deliver m0before m. Thus, the faulty coordinator delivered messages out-of-order before crashing,even though it executed its protocol perfectly until it crashed.The above example shows that even if a process is only subject to crash failures, it maybecome inconsistent before crashing. In other words, crash failures just by themselves donot guarantee reasonable behavior at the broadcast/delivery level. Furthermore, from thetime that such a process becomes inconsistent to the time that it crashes, it may broadcastmessages and thus contaminate all correct processes. Thus, even if processes can only failby crashing, inconsistency and contamination can occur.7These observations have subtle but important consequences. In particular, considerthe State Machine approach to fault-tolerance (cf. [Lam84,Sch90]). This is a client/serversystem, where the server is replicated, and clients broadcast their requests to all serversusing Causal Atomic Broadcast. Thus, all correct servers deliver the same set of requests,in the same causal order, and so they have identical state. When a server delivers a requestfrom a client, it computes the appropriate reply to that request, and sends it to the client.Suppose that up to f servers are subject to general-omission failures. Clearly, the state ofsuch a server can be erroneous, and so it may send incorrect replies. How many serversare needed to implement a fault-tolerant service? It is easy to see that 2f + 1 servers aresu�cient: a client is guaranteed to receive at least f + 1 identical replies (a majority) fromcorrect servers. This scheme works even when servers are subject to arbitrary failures.However, requiring 2f + 1 servers and computing the majority reply is expensive. Can weimplement a fault-tolerant service with fewer servers if failures are less severe?In particular, suppose that the f faulty servers are subject to crash failures only. Inthat case, it seems that f + 1 servers would now su�ce: Since a faulty server executescorrectly until it crashes, it is tempting to conclude that if any server sends a reply, thatreply must be correct. And, since we have f + 1 servers, at least one of them will reply.Unfortunately, this reasoning is 
awed. A reply may originate from a server s that willlater crash. As we saw in our previous example, the particular Causal Atomic Broadcastalgorithm used by clients to broadcast requests may be such that s delivers requests out-of-order before crashing. In other words, s could be in an inconsistent state and send the7Of course, the prevention of inconsistency and contamination is much easier with crash failures, thanwith omission or timing failures. 22



wrong reply before crashing! A single reply is guaranteed to be correct if and only if theCausal Atomic Broadcast used is speci�cally designed to prevent inconsistency, as discussedin the previous section.Bibliographic NotesThe speci�cation of the various types of broadcasts given in this section was designed by theauthors with the help of Ajei Gopal. The origins of FIFO Broadcast and Causal Broadcastare in the Isis system [BJ87], although many systems now provide such primitives, includingPsync [PBS89] and Transis [ADKM92]. Atomic Broadcast goes back to the early workof Lamport on the State Machine approach to fault-tolerance [Lam78a], and is a centralmechanism in the HAS project [CASD85].The concept of Uniformity was introduced by Neiger and Toueg in [NT87] in connectionto the Agreement property. The problems of inconsistency, contamination, and failureampli�cation, were �rst de�ned and studied in [GT91,Gop92].4 Broadcast Algorithms I | MethodologyIn the following two sections, we derive algorithms for the six types of broadcasts introducedin Section 3: Reliable, FIFO, Causal Broadcast, and their three Atomic counterparts.Our derivation and exposition of broadcast algorithms follows a particular methodologywhich is made possible by the modularity of our broadcast speci�cations. In Section 3 wede�ned six types of broadcasts by adding FIFO, Causal, or Total Order to the speci�cationof Reliable Broadcast, the weakest type of broadcast that we consider (see Figure 1). Wederive broadcast algorithms by following the same modular paradigm: We start with anygiven Reliable Broadcast algorithm, and show how to achieve each one of these three orderproperties by a corresponding algorithmic transformation.More precisely, we exhibit three transformations: one adds FIFO Order, i.e., it convertsany Reliable Broadcast algorithm into a FIFO Broadcast; one adds Causal Order, i.e., itconverts any FIFO Broadcast algorithm into a Causal Broadcast; and one adds Total Order,i.e., it converts any Reliable, FIFO, or Causal Broadcast algorithm (that satis�es Local-Time �-Timeliness) into its Atomic counterpart. These three transformations correspondto the arrows of Figure 1: The �rst one corresponds to the two top vertical arrows, thesecond one to the two bottom vertical arrows, and the last one to the three horizontalarrows.Given any Reliable Broadcast algorithm, we can now obtain algorithms for every othertype of broadcast by successively applying our transformations. For example, suppose wewant to derive a Causal Atomic Broadcast algorithm. To do so, we can select any path fromReliable Broadcast to Causal Atomic Broadcast in Figure 1 (there are three such paths) andapply to the given Reliable Broadcast algorithm the transformations that correspond to thearrows along that path. Since for some of the arrows we actually give several alternative23



transformations, there are many di�erent Causal Atomic Broadcast algorithms that we canobtain from the given Reliable Broadcast in this manner.8It is important to note that all our transformations are generic, i.e., they do not requireany assumptions on the type or synchrony of the underlying communication network, andthey work for any type and number of benign failures. Furthermore, all transformationspreserve Uniform Agreement and, under certain assumptions, both versions of �-Timeliness:If the given broadcast algorithm satis�es any of these desirable properties, then so does thealgorithm that results from the transformation.This methodology of deriving broadcast algorithms by generic transformations has sev-eral advantages. The algorithms are developed modularly | thus, they are smaller, simpler,and easier to understand. The techniques required to achieve each one of the three orderproperties (FIFO, Causal, and Total Order) are shown separately, and independently fromthe characteristics of the underlying communication network. The proofs are also modular,easier, and \safer": a broadcast algorithm that invokes a weaker broadcast primitive as a\black box" can only rely on the speci�cation of that \box", so its proof cannot erroneouslyrely on a property that is only true for a particular implementation of that \box".A modular implementation of stronger broadcasts in terms of weaker ones also increasesthe portability of the broadcast software. Whenever we wish to develop a suite of fault-tolerant broadcast algorithms for a speci�c system S, all we have to do is provide animplementation for Reliable Broadcast that works in S (this implementation must provide�-Timeliness if we wish to obtain an Atomic Broadcast). Because all our transformationswork for any type and number of benign failures, and do not rely on any assumptions aboutthe underlying network, these will automatically yield broadcast algorithms that also workin S. Thus, if we consider our suite of algorithms to be a software package for fault-tolerantbroadcasts, the layered construction allows us to port this package from one system toanother by reimplementing and �ne-tuning only Reliable Broadcast. On the other hand,layered implementations do have a disadvantage: They may lead to a decrease in e�ciency,because they hide speci�c features of the underlying communications network that may beexploited by certain algorithms.In Section 5 we present our system-independent transformations. In Section 6 we focuson a particular type of system, namely point-to-point networks, and describe a ReliableBroadcast algorithm for such a system. We also determine the conditions under which thisalgorithm achieves Uniform Agreement and Real-Time �-Timeliness, and describe a simplemodi�cation to achieve Local-Time �-Timeliness. By applying our system-independenttransformations to this Reliable Broadcast algorithm, we immediately obtain broadcastalgorithms of all types for point-to-point networks.8In this example, the given Reliable Broadcast must satisfy Local-Time �-Timeliness. This is becausethe transformation that adds Total Order requires the given broadcast algorithm to satisfy this property.24



5 Broadcast Algorithms II | Transformations5.1 IntroductionIn this section we describe our transformations. These are based on a small number oftechniques, each of which enhances a given broadcast by adding FIFO, Causal, or TotalOrder. Adding Total Order, which corresponds to the three horizontal arrows in Figure 1,is e�ected by a single transformation (that works if the given broadcast satis�es Local-Time�-Timeliness). Adding FIFO Order, which corresponds to the two top vertical arrows, isalso accomplished by one transformation. Adding Causal Order, which corresponds to thetwo bottom vertical arrows, can be done by using either one of two transformations. We alsopresent a particularly e�cient transformation for adding Causal Order to a FIFO AtomicBroadcast (this corresponds to the bottom right vertical arrow).All our transformations preserve Uniform Agreement, and, under some conditions, bothversions of �-Timeliness. This means that if the given broadcast algorithm satis�es any ofthese properties, then so does the resulting broadcast algorithm.The transformations work for any type and number of benign failures, and regardlessof the type or synchrony of the network. Thus, the resulting algorithm works in whateversystem, and under whatever assumptions, the given algorithm works.All the broadcasts that we consider here satisfy the Uniform version of Integrity. Thisis important to our modular approach because to build stronger broadcast primitives fromweaker ones the latter are often required to satisfy Uniform Integrity. For the sake of brevity,in the rest of this section, when we mention a type of broadcast we always assume that itsatis�es Uniform Integrity without explicitly saying so.5.2 De�nitions and NotationSince we build our broadcast primitives in a layered fashion, it is typical for a higher-levelbroadcast primitive to invoke a lower-level one as a procedure. To disambiguate betweenthe di�erent broadcast primitives used in an algorithm, we introduce the following notation.We �rst de�ne a short-hand notation for the type of a broadcast. In particular, R stands forReliable Broadcast, F for FIFO Broadcast, and C for Causal Broadcast. Similarly, A standsfor Atomic Broadcast, FA for FIFO Atomic Broadcast, and CA for Causal Atomic Broadcast.We denote by broadcast(T,m) and deliver(T,m), the two primitives corresponding to abroadcast of type T. When a process invokes broadcast(T,m), we say that it T-broadcastsm. When it returns from the execution of deliver(T,m), we say that it T-delivers m.For example, broadcast(R,m) is the broadcast primitive for Reliable Broadcast, and if aprocess invokes broadcast(R,m), we say that it R-broadcastsm. Similarly, deliver(CA,m)is the delivery primitive for Causal Atomic Broadcast, and if a process returns from theexecution of deliver(CA,m), we say that it CA-delivers m.Consider two problems denoted A and B. A transformation from A to B is an algorithm25



TA!B that converts any algorithm A that solves A into an algorithm B that solves B.9 Wesay that A is the given algorithm and B the resulting algorithm of the transformation.Transformation TA!B preserves property P if it converts any algorithm for A that satis�esP into an algorithm for B that also satis�es P .For example, in Section 5.4 we present an algorithm that transforms any algorithmfor Reliable Broadcast into one for FIFO Broadcast. Roughly speaking it works as follows.To F-broadcast a message, a process simply R-broadcasts it. When a process R-deliversa message m, it delays the F-delivery of m, if necessary, until it has F-delivered all themessages that the sender of m F-broadcast before m. As we will see, this transformationalso happens to preserve Total Order. This means that if the given Reliable Broadcastsatis�es Total Order, (i.e., it is actually an Atomic Broadcast), then so does the resultingFIFO Broadcast (i.e., it is a FIFO Atomic Broadcast).Informally, a transformation of one broadcast algorithm into another is blocking if theresulting broadcast algorithm has an execution in which a process delays the delivery ofa message for a later time. For example, the transformation from Reliable Broadcast toFIFO Broadcast outlined above is blocking: It is possible that when a process p R-deliversa message m it has to delay the F-delivery of m while waiting for the F-delivery of someearlier message from the sender of m. A transformation is non-blocking if it is not blocking.When we present an algorithm we give the pseudo-code for a typical process. Inour algorithms every process executes the same code. Thus, di�erent processes have localvariables with the same name, and this can lead to ambiguity. In such cases, we avoidthis problem by subscripting a variable local to a process with the identity of that process.Thus, varp denotes the value of local variable var at process p.5.3 Achieving Total OrderIn this section we describe a single algorithm that can be used to transform a Reliable, FIFOor Causal Broadcast that satis�es Local-Time �-Timeliness into its Atomic counterpart,i.e., an Atomic, FIFO Atomic or Causal Atomic Broadcast. Thus, this transformationcorresponds to the three horizontal arrows in Figure 1. It is based on a very simple ideawhich exploits the Timeliness property to guarantee Total Order, while preserving all theother properties of interest.The algorithm in Figure 4 shows how to transform any broadcast algorithm that sat-is�es Local-Time �-Timeliness into one that satis�es both Total Order and Local-Time�-Timeliness. In this �gure, B denotes the type of the given broadcast, and BA denotes thetype of the broadcast that results from the transformation. This transformation preservesValidity, Agreement, Integrity, FIFO Order and Causal Order (and their uniform counter-parts): If the given broadcast algorithm satis�es any of these properties, then so does theresulting broadcast algorithm.The transformation works as follows. If p wishes to BA-broadcast m, it uses the givenbroadcast primitive to B-broadcast m. When a process B-delivers m, it schedules the BA-9We also say that TA!B is a reduction of problem B to problem A.26



delivery ofm at local-time ts(m)+� (recall that ts(m) is the sending time ofm according tothe sender's clock, and � is the bound on message latency guaranteed by the given broadcastalgorithm). If two or more messages are scheduled to be BA-delivered at the same localtime then they are BA-delivered in an a priori agreed order, e.g., in increasing order of thesenders' ids. If a process B-delivers m after local time ts(m)+�, then it never BA-deliversm. This transformation assumes that local clocks satisfy the Clock Monotonicity property(see Section 2.8).Algorithm for process p:To execute broadcast(BA,m):broadcast(B,m)deliver(BA,m) occurs as follows:upon deliver(B,m) doschedule deliver(BA,m) at time ts(m) + �Figure 4: Adding Total Order to Timed BroadcastTheorem 3 Suppose the Clock Monotonicity property holds. The algorithm in Figure 4transforms any broadcast algorithm that satis�es Local-Time �-Timeliness into one thatsatis�es (the uniform versions of) both Local-Time �-Timeliness and Total Order. Thistransformation preserves Validity, Agreement, Integrity, FIFO Order and Causal Order,and their uniform counterparts.The signi�cance of this theorem lies in the following:Corollary 1 Suppose the Clock Monotonicity property holds. The algorithm in Figure 4transforms any Reliable, FIFO or Causal Broadcast algorithm that satis�es Local-Time �-Timeliness into its Atomic counterpart.Proof of Theorem 3: Assume that the given broadcast algorithm satis�es Local-Time �-Timeliness. We �rst show that the broadcast algorithm that results from the transformationsatis�es the uniform versions of Local-Time �-Timeliness and Total Order.Uniform Local-Time �-Timeliness: If any process (whether correct or faulty) BA-deliversa message m, it does so at local time ts(m) + �.Uniform Total Order: If any two processes p and q (whether correct or faulty) BA-deliver mand m0, they do so at local times ts(m)+� and ts(m0)+�, respectively. If ts(m) < ts(m0),by Clock Monotonicity, both p and q BA-deliver m before m0. Similarly, if ts(m0) < ts(m),they both BA-deliver m0 before m. Finally, if ts(m) = ts(m0), they both BA-deliver themessages in order of increasing sender ids. In all cases, p and q BA-deliver m and m0 in thesame order. 27



We now show that the transformation preserves each property listed in the theorem; i.e., ifthe given broadcast satis�es any of these properties then so does the resulting broadcast.Validity: If a correct process p BA-broadcastsm, it B-broadcastsm. By Validity and Local-Time �-Timeliness of the given broadcast algorithm, p B-delivers m by local time ts(m)+�,and schedules the BA-delivery of m for local time ts(m) + �. By Clock Monotonicity, peventually BA-delivers m.Agreement: If any correct process BA-delivers a message m, then it must have B-deliveredm. By Agreement and Local-Time �-Timeliness of the given broadcast algorithm, everycorrect process also B-delivers m, and does so by local time ts(m) + �. By Clock Mono-tonicity, every correct process eventually BA-delivers m at local time ts(m) + �.Integrity: Immediate from Integrity of the given broadcast algorithm.FIFO Order: Suppose a process q BA-broadcasts m before m0. Consider a correct processp that BA-delivers m0. We must show that p BA-delivers m before m0. By de�nition, qBA-broadcast m and m0 at local times ts(m) and ts(m0). By Clock Monotonicity, ts(m) <ts(m0), so ts(m)+� < ts(m0)+�. From the algorithm and the hypothesis, it is clear that qB-broadcasts m before m0, and that p B-delivers m0. By FIFO Order of the given broadcastalgorithm, p B-delivers m before m0. By the algorithm, p schedules the BA-deliveries ofm and m0 at times ts(m) + � < ts(m0) + �. Since p BA-delivers m0, its clock reachedts(m0) + �. By Clock Monotonicity, p's clock reached ts(m) + � before ts(m0) + �. Thus,p BA-delivers m before m0.By Theorem 1, Causal Order is equivalent to FIFO Order and Causal Order. Since wealready showed that the transformation preserves FIFO Order, to show that it also preservesCausal Order it now su�ces prove that it preserves Local Order.Local Order: Suppose a process q BA-delivers m before it BA-broadcasts m0. Consider acorrect process p that BA-delivers m0. We must show that p BA-delivers m before m0. Bythe algorithm, q BA-delivered m at local time ts(m)+�, and later BA-broadcast m0 at localtime ts(m0). By Clock Monotonicity, ts(m)+� < ts(m0), so ts(m)+� < ts(m0)+�. Fromthe algorithm and the hypothesis, it is clear that q B-delivers m before B-broadcasting m0,and that p B-delivers m0. The proof now continues exactly as in the proof of FIFO Order.It is easy to check that the transformation also preserves the uniform versions of Agreement,Integrity, FIFO Order and Causal Order. 2Note the absence of any induction argument in the proof of Causal Order, despite thefact that two broadcasts can be causally related by arbitrarily long chains of broadcastsand deliveries. This is the consequence of Theorem 1 whose proof factorized this induction.5.4 Achieving FIFO OrderIn this section we describe a simple algorithm that transforms any Reliable Broadcastalgorithm into a FIFO Broadcast that satis�es Uniform FIFO Order. This transformationpreserves Total Order; thus, if the given Reliable Broadcast is actually an Atomic Broadcast,the resulting algorithm is a FIFO Atomic Broadcast. In other words, this transformation28



corresponds to the two top vertical arrows in Figure 1.The transformation, shown in Figure 5, works as follows. To F-broadcast a messagem, a process s simply R-broadcasts m. Recall that if m is the ith message F-broadcast bys, then m is tagged with sender(m) = s and seq#(m) = i. Every process p maintains avector of counters next, such that next[s] is the sequence number of the next F-broadcastfrom s that p is ready to F-deliver. When a process p R-delivers m with sender(m) = s,p checks whether m is F-deliverable immediately, i.e., whether next[s] = seq#(m). If mis not F-deliverable when it is R-delivered, p inserts m into a msgSetp for possible futureF-delivery: m is now blocked. Otherwise, p F-delivers m right away and increments next[s]to re
ect that. This may cause previously blocked messages from s to become F-deliverable;p scans msgSetp and F-delivers any such messages.For example, suppose p already F-delivered messages tagged 1 and 2 from s (i.e.,next[s] = 3), and p's msgSet already contains messages tagged 4 and 8 from s. If p R-delivers message m tagged 3 from s (i.e., sender(m) = s and seq#(m) = 3), p F-deliversm immediately, and increments next[s] to 4. Now message tagged 4 from s in msgSet alsobecomes F-deliverable, and p delivers it.Theorem 4 The algorithm in Figure 5 transforms any Reliable Broadcast algorithm intoa FIFO Broadcast algorithm that satis�es Uniform FIFO Order. Furthermore, this trans-formation preserves [Uniform] Total Order.Proof: First we establish some basic facts about the transformation.Claim 1: For any process p (whether correct or faulty), if nextp[s] = k then the sequenceof messages that p has F-delivered so far is the sequence of the �rst k � 1 messages F-broadcast by s.This claim can be easily shown by induction on k and using the Uniform Integrity of thegiven Reliable Broadcast; the details are omited.Claim 2: Suppose a correct process p R-delivers a message m and F-delivers all themessages that sender(m) F-broadcast before m. Then p also F-delivers m.Proof of Claim 2: Suppose that p and m satisfy the hypothesis of the claim, and letsender(m) = s and seq#(m) = k. By hypothesis, p F-delivers all the k � 1 messages thats F-broadcast before m. Since p increments nextp[s] for each one of these F-deliveries,eventually nextp[s] � k. There are two possible cases. (i) Eventually nextp[s] reaches thevalue k + 1. By Claim 1, p F-delivers the �rst k messages F-broadcast by s, including m.(ii) Eventually nextp[s] reaches the value k and then remains forever stuck at that value.Let m0 be the message whose F-delivery by p makes nextp[s] = k. By hypothesis, p R-delivers m. If, when this occurs, m0 has already been delivered, we have nextp[s] = k andthus p will F-deliver m right away. Otherwise, p will insert m into msgSetp and when itlater F-delivers m0 and sets nextp[s] = k, it will also F-deliver m. Thus, in both cases pF-delivers m, as wanted. 2Claim 2Using the above claims, we �rst show that the algorithm that results from the transformationsatis�es the properties of FIFO Broadcast. 29



Variables of process p:f msgSet: set of messages that p has R-delivered gf next[s]: sequence number of the next F-broadcast by s that p is ready to F-deliver g: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Algorithm for process p:Initialization:msgSet := ;next[s] := 1, for each process sTo execute broadcast(F,m):broadcast(R,m)deliver(F,�) occurs as follows:upon deliver(R,m0) dos := sender(m0)if next[s] = seq#(m0)thendeliver(F,m0)next[s] := next[s] + 1while (9m 2 msgSet : sender(m) = s and next[s] = seq#(m)) dodeliver(F,m)next[s] := next[s] + 1elsemsgSet :=msgSet [ fm0gFigure 5: Transforming Reliable Broadcast into FIFO Broadcast
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Validity: Suppose that a correct process p F-broadcasts a message that it never F-delivers.Let m be the �rst such message that p F-broadcasts. Since p F-broadcasts m, it previouslyR-broadcastm. By Validity of Reliable Broadcast, p eventually R-delivers m. By the choiceof m, p F-delivers all the messages that it F-broadcast before m. By Claim 2, p F-deliversm, contradicting the de�nition of m. Thus, a correct process F-delivers every message thatit F-broadcasts.Uniform FIFO Order: Suppose a process p F-delivers a message m. Let sender(m) = sand seq#(m) = k. By the algorithm, just before p F-delivers m, nextp[s] = k. By Claim 1,p has already F-delivered all the k � 1 messages that s F-broadcast before m, as wanted.Agreement: Suppose, for contradiction, that Agreement is violated. Thus, there are twocorrect processes p and q such that p F-delivers a message that q does not. Let m be such amessage with the smallest possible sequence number. Since p F-delivers m, it previously R-delivered m; by Agreement of Reliable Broadcast, q also R-delivers m. Furthermore, by theUniform FIFO Order property shown above, p previously F-delivered all the messages thatsender(m) F-broadcast before m. By the choice of m, q also F-delivers all these messages.By Claim 2, q F-delivers m, a contradiction.Uniform Integrity: Suppose p F-delivers m with sender(m) = s and seq#(m) = k. Bythe algorithm, p previously R-delivered m. By Uniform Integrity of the given ReliableBroadcast, s R-broadcasts m. Therefore, s must have F-broadcast m. Furthermore, whenp F-delivers m, it increments nextp[s] from k to k + 1. Since nextp[s] never decreases, andmust be k for m to be F-delivered, m is not F-delivered again.Next we show that the transformation preserves [Uniform] Total Order.Total Order: It is easy to see that the sequence of R-deliveries uniquely determines thesequence of F-deliveries. By Agreement and Total Order of the given Reliable Broadcast,all correct processes R-deliver the same sequence of messages. Hence, they all F-deliver thesame sequence of messages. Therefore, the resulting FIFO Broadcast satis�es Total Order.Uniform Total Order: For any message m, de�ne Past(m) to be the set of messages F-broadcast by sender(m) up to and including the F-broadcast of m. By Uniform FIFOOrder (shown above), if a process p F-delivers m then it must have previously F-deliveredand thus R-delivered all the messages in Past(m). Furthermore, it is clear that p F-deliversm as soon as it has R-delivered those messages.Consider any two processes p and q that F-deliver messages m1 and m2. By the aboveargument, p and q must each R-deliver all the messages in Past(m1) [ Past(m2). Further-more, the order in which each of p and q F-delivers messages m1 and m2 is determined bythe order in which they R-deliver the messages in Past(m1)[ Past(m2). By Uniform TotalOrder of the given Reliable Broadcast, p and q R-deliver these messages in the same order.Since this order determines the order of F-delivering m1 and m2, p and q F-deliver m1 andm2 in the same order. This shows that the resulting FIFO Broadcast satis�es UniformTotal Order. 2Observation: This transformation also preserves Uniform Agreement and �-Timeliness31



(both Real- and Local-Time, and their uniform versions).10The transformation has some straightforward optimizations. First, once p F-deliversm,it can remove m from msgSet. This reduces the space needed for storing msgSet. Second,since a message from s can become unblocked only as a result of the F-delivery of some(earlier) message from s, it is more e�cient to keep a separate msgSet[s] for every processs, containing the blocked messages F-broadcast by s.5.5 Achieving Causal OrderIn the next two sections we describe two transformations from FIFO Broadcast to CausalBroadcast: one is blocking and the other not. Each of these preserves Total Order, i.e., ifthe given FIFO Broadcast algorithm is Atomic, the resulting algorithm is a Causal AtomicBroadcast. Thus, each transformation corresponds to the two bottom vertical arrows inFigure 1.Both transformations require that the given FIFO Broadcast algorithm satisfy UniformFIFO Order. Luckily, our transformation from Reliable Broadcast to FIFO Broadcastdoes result in such an algorithm (see Theorem 4 in the previous section). Thus, thesetransformations can be \chained" together.5.5.1 Non-Blocking TransformationIn Figure 6, we give a non-blocking transformation of FIFO to Causal Broadcast. To C-broadcast a messagem, a process p uses the given FIFO Broadcast algorithm to F-broadcastthe sequence of messages rcntDlvrsjjm, where rcntDlvrs is the sequence of messages thatp C-delivered since its previous C-broadcast (\jj" is the concatenation operator). When aprocess q F-delivers such a sequence, q C-delivers all the messages in the sequence that itdid not previously C-deliver.Theorem 5 The algorithm in Figure 6 transforms any FIFO Broadcast algorithm thatsatis�es Uniform FIFO Order into a Causal Broadcast algorithm that satis�es UniformCausal Order. Furthermore, this transformation preserves Total Order.Proof: We �rst show that the algorithm that results from the transformation satis�es theproperties of Causal Broadcast.Validity: Suppose p is correct and C-broadcasts m. Thus, p F-broadcasts hrcntDlvrs jjmi,and by Validity of FIFO Broadcast, p eventually F-delivers hrcntDlvrs jjmi. From thealgorithm, p C-delivers m.Agreement: Suppose p is correct and C-delivers m. From the algorithm, it is clear thatp F-delivered some sequence hm1; m2; : : : ; mli that contains m. From Agreement of FIFOBroadcast, all correct processes eventually F-deliver hm1; m2; : : : ; mli, and thus C-deliverm.10The preservation of Local-Time �-Timeliness requires that local clocks never decrease (Section 2.8).32



Variable of process p:f rcntDlvrs: sequence of messages that p C-delivered since its previous C-broadcast g: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Algorithm for process p:Initialization:rcntDlvrs := ?To execute broadcast(C,m):broadcast(F,hrcntDlvrs jjmi)rcntDlvrs := ?deliver(C,�) occurs as follows:upon deliver(F,hm1; m2; : : : ; mli) for some l dofor i := 1::l doif p has not previously executed deliver(C,mi)thendeliver(C,mi)rcntDlvrs := rcntDlvrs jjmiFigure 6: Transforming FIFO Broadcast into Causal Broadcast: Non-Blocking Version
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Uniform Integrity: From the algorithm, a process C-delivers a message m only if it hasnot previously executed deliver(C,m). Thus, a process delivers m at most once. Considerthe �rst process that C-delivers message m. It must have F-delivered hrcntDlvrs jjmi, forsome rcntDlvrs. By Uniform Integrity of FIFO Broadcast, some process p F-broadcasthrcntDlvrs jjmi. This occurred when p C-broadcast m.To prove Uniform Causal Order it su�ces to prove Uniform FIFO Order and Uniform LocalOrder (see Theorem 2). To do so, we �rst show:Claim: Suppose some process q F-broadcasts hrcntDlvrs0 jjm0i, and either q previouslyF-broadcast hrcntDlvrs jjmi or m is in rcntDlvrs0. Then no process (whether correct orfaulty) C-delivers m0 unless it has previously C-delivered m.Proof of Claim: The proof of this claim is by contradiction. Assume that the hypothesisholds, and some process C-delivers m0 but does not C-deliver m before m0. Let p be the�rst process to do so (in real time). There are two cases depending on what caused p toC-deliver m0:1. p F-delivered hrcntDlvrs0 jjm0i. By hypothesis, there are two possible subcases.(a) Process q F-broadcast hrcntDlvrs jjmi before hrcntDlvrs0 jjm0i. By UniformFIFO Order of FIFO Broadcast, p must have F-delivered hrcntDlvrs jjmi beforehrcntDlvrs0 jjm0i. (b) m is in rcntDlvrs0. In both subcases, it is clear from thealgorithm that p C-delivered m before m0, a contradiction.2. p F-delivered a message hrcntDlvrs00 jjm00i, wherem0 is in rcntDlvrs00 andm is not be-forem0 in rcntDlvrs00. Let s = sender(hrcntDlvrs00 jjm00i). Sincem0 is in rcntDlvrs00,s C-delivered m0 before F-broadcasting hrcntDlvrs00 jjm00i. By Uniform FIFO Orderof FIFO Broadcast, p F-delivered all the previous F-broadcasts of s. Since p does notC-deliver m before m0, m was not included in any of these F-broadcasts. Further-more, m did not appear before m0 in rcntDlvrs00. Thus, when s C-delivered m0, ithad not previously C-delivered m. Since s C-delivered m0 before p, this contradictsthe de�nition of p.Since both cases lead to a contradiction, the claim follows. 2ClaimUniform FIFO Order: Suppose a process q C-broadcastsm before m0. From the algorithm,it is clear that q F-broadcast hrcntDlvrs jjmi before hrcntDlvrs0 jjm0i, for some rcntDlvrsand rcntDlvrs0, respectively. By the above claim, no process C-delivers m0 unless it haspreviously C-delivered m.Uniform Local Order: Suppose a process q C-delivers m before it C-broadcasts m0, and aprocess p C-delivers m0. We must show that p C-delivers m before m0. Let m00 be the �rstmessage that q C-broadcast after it C-delivered m (m00 could be m0). When q C-broadcastsm00, it F-broadcasts hrcntDlvrs00 jjm00i for some rcntDlvrs00. By the de�nition of m00 andthe algorithm, rcntDlvrs00 contains m. Thus, by the above claim, p C-delivers m before m00.If the C-broadcasts of m00 and m0 are actually the same, then we are done. Otherwise, q C-broadcasts m00 before m0. By the Uniform FIFO Order property shown above, p C-deliversm00 before m0. Thus, p C-delivers m before m0, as wanted.34



Next we show that the transformation preserves Total Order (the argument is identical tothe one used in the corresponding result of Theorem 4).Total Order: It is easy to see that the sequence of F-deliveries uniquely determines thesequence of C-deliveries. By Agreement and Total Order of the given FIFO Broadcast, allcorrect processes F-deliver the same sequence of messages. Hence, they all C-deliver thesame sequence of messages. Therefore, the resulting Causal Broadcast satis�es Total Order.2Observation: This transformation preserves Uniform Agreement. In general, it does notpreserve (Real- or Local-Time) �-Timeliness. If the given FIFO Broadcast satis�es Uni-form Agreement, however, the transformation does preserve both versions of �-Timeliness.Finally, although it preserves Total Order, it does not preserve Uniform Total Order.5.5.2 Blocking TransformationIn Figure 7, we give a blocking transformation of FIFO to Causal Broadcast. Its advantageover the non-blocking one just described is that it uses shorter messages. Like the non-blocking transformation, this also requires that the given FIFO Broadcast satisfy UniformFIFO Order. It works as follows. Each process p maintains numOfAllDlvrs, a vectorof counters such that numOfAllDlvrs[s] is the number of C-broadcasts from s that p C-delivered since the beginning. To C-broadcast a message m, a process p uses the given FIFOBroadcast algorithm to F-broadcast m together with numOfAllDlvrs. When p F-deliversa message m0 from s with its corresponding vector numOfAllDlvrs0, p checks whether m0is C-deliverable immediately. This is the case if p has already C-delivered every messagethat s had C-delivered at the time it C-broadcast m0. Process p checks this by testingwhether numOfAllDlvrs � numOfAllDlvrs0. 11If m0 is not C-deliverable immediately, then p inserts m0 and the associated vectornumOfAllDlvrs0 in a msgList (where messages are kept in order of insertion) for possiblefuture C-delivery: The messagem0 is now blocked. If, on the other hand,m0 is C-deliverable,then p C-delivers it right away and updates numOfAllDlvrs to re
ect this fact. Since aC-delivery may cause some blocked messages to become C-deliverable, p scans msgListto C-deliver the �rst C-deliverable message on that list. It then repeats the scanning ofmsgList for as long as there is a C-deliverable message in the list.Theorem 6 The algorithm in Figure 7 transforms any FIFO Broadcast algorithm thatsatis�es Uniform FIFO Order into a Causal Broadcast algorithm that satis�es UniformCausal Order. Furthermore, this transformation preserves [Uniform] Total Order.Proof: We �rst show that the algorithm that results from the transformation satis�es theproperties of Causal Broadcast.11Given two n-vectors V and V 0, we say that V � V 0 if V [i] � V 0[i] for all 1 � i � n. Similarly, V + V 0denotes the vector whose i-th element is V [i] + V 0[i].35



Variables of process p:f numOfAllDlvrs[s]: number of all the messages that p C-delivered from s gf msgList: list of messages that p F-delivered but not yet C-delivered g: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Algorithm for process p:Initialization:numOfAllDlvrs[s] := 0, for each process smsgList := ?To execute broadcast(C,m):broadcast(F,hm;numOfAllDlvrsi)deliver(C,�) occurs as follows:upon deliver(F,hm0; numOfAllDlvrs0i) dos := sender(m0)if numOfAllDlvrs � numOfAllDlvrs0thendeliver(C,m0)numOfAllDlvrs[s] := numOfAllDlvrs[s] + 1while (9hm;Ni 2 msgList : numOfAllDlvrs � N) dolet hm;Ni be the �rst message in msgList s.t. numOfAllDlvrs � Ndeliver(C,m)numOfAllDlvrs[sender(m)] := numOfAllDlvrs[sender(m)] + 1msgList := msgList� hm;NielsemsgList := msgList jj hm0; numOfAllDlvrs0iFigure 7: Transforming FIFO Broadcast into Causal Broadcast: Blocking Version
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Validity: Suppose p is correct and C-broadcastsm. Thus, p F-broadcasts hm;numOfAllDlvrsi,and by Validity of FIFO Broadcast, p eventually F-delivers hm;numOfAllDlvrsi. Sincep's vector of counters numOfAllDlvrsp never decreases, p C-delivers m.Agreement: Suppose, for contradiction, that Agreement is violated. Thus, there are twocorrect processes p and q such that p C-delivers a message that q does not C-deliver.Consider the sequence of messages that p C-delivers, in the order they are C-delivered. Letmbe the �rst message on that sequence that q does not C-deliver. From the algorithm, since pC-deliveredm, it must have previously F-delivered hm;Ni for some vectorN . By Agreementof FIFO Broadcast, q eventually F-delivers hm;Ni as well. If this F-delivery occurs whennumOfAllDlvrsq � N , then q immediately C-deliversm| a contradiction to the de�nitionof m. Thus, we may assume that when q F-delivers hm;Ni, numOfAllDlvrsq 6� N and qinserts hm;Ni in msgListq for possible future C-delivery.Let Np be the value of p's vector numOfAllDlvrs when p C-delivered m. From thealgorithm, Np � N . Clearly, when p C-delivered m, it had previously C-delivered exactlyNp[r] messages that were C-broadcast by r, for every process r. By the de�nition of m, qeventually C-delivers all these messages. Thus, q eventually has numOfAllDlvrsq � Np.Consider the messagem00 whose C-delivery by q causes for the �rst time numOfAllDlvrsq �Np. When q C-delivers m00, hm;Ni is already inmsgListq. Immediately after the C-deliveryof m00, numOfAllDlvrsq � Np � N , and thus q C-delivers m when it scans msgListq | acontradiction to the de�nition of m.Uniform Integrity: From the Uniform Integrity of the given FIFO Broadcast, it is easy tosee that a process C-delivers a message m only if sender(m) previously C-broadcast m. Itremains to show that no process p C-delivers m twice. To do so, we show that p does notinsert the messages hm;Ni and hm;N 0i, for N 0 6= N , into msgList. This is true because,otherwise, by the Uniform Integrity of the given FIFO Broadcast, both of these messageswould have been F-broadcast by the same process s, namely sender(m), at two di�erenttimes. Thus, s would have C-broadcast m twice, which is impossible.To prove Uniform Causal Order it su�ces to prove Uniform FIFO Order and Uniform LocalOrder (see Theorem 2).Uniform FIFO Order: Suppose that a process s C-broadcasts m before it C-broadcasts m0,and a process p C-delivers m0. We show that p C-delivers m before m0.From the algorithm, s F-broadcasts hm;Ni before it F-broadcasts hm0; N 0i, and p musthave F-delivered hm0; N 0i, for some vectors N and N 0, with N 0 � N . By Uniform FIFOOrder of the given FIFO Broadcast, p must have F-delivered hm;Ni before hm0; N 0i. If pC-delivered m without blocking it, we are done. So we may assume that p inserted hm;Niin msgListp before it F-delivered hm0; N 0i. There are two cases:� When p F-delivers hm0; N 0i it blocks m0. Thus, p inserts hm0; N 0i in msgListp. Since(a) p C-delivers all the C-deliverable messages in msgListp in the order of they appearin that list, (b) hm;Ni is before hm0; N 0i in msgListp, (c) if m0 is C-deliverable, so ism (because N 0 � N), and (d) p C-delivers m0, we conclude that p C-delivers m beforem0, as wanted. 37



� When p F-delivers hm0; N 0i it C-delivers m0 immediately. Thus, when this F-deliveryoccurs numOfAllDlvrsp � N 0. Consider the message m00 whose C-delivery by p�rst causes numOfAllDlvrsp � N 0. The C-delivery of m00 occurs after p F-deliveredhm;Ni (because p blocked m), and before p F-delivered hm0; N 0i (because p did notblock m0). Thus, when p C-delivers m00, hm;Ni is already in msgListp. Since theC-delivery of m00 results in numOfAllDlvrsp � N 0, and N 0 � N , p C-delivers mwhen it scans msgListp immediately after it C-delivers of m00. Hence, p C-delivers mbefore m0, as wanted.Uniform Local Order: Suppose a process q C-delivers m before it C-broadcasts m0. ByUniform Integrity shown above, m was C-broadcast by some process s. Suppose m was thekth message C-broadcast by s. By Uniform FIFO shown above, when q C-delivers m, thisis the kth message q has C-delivered from s. Thus, immediately after the C-delivery of m,q has numOfAllDlvrsq[s] = k. Therefore, when q later C-broadcasts m0, it F-broadcastshm0; N 0i with N 0[s] � k.Suppose some process p C-delivers m0. This occurs after p F-delivers hm0; N 0i andnumOfAllDlvrsp � N 0. Thus, when p C-delivers m0 it has numOfAllDlvrsp[s] � N 0[s] �k, and therefore p has already C-delivered at least k messages C-broadcast by s. By UniformFIFO shown above, these include the �rst k messages C-broadcast by s, and thus m. So pC-delivers m before m0, as wanted.Next we show that the transformation preserves [Uniform] Total Order.Total Order: This proof is identical to the one given in the corresponding result of Theo-rem 5.Uniform Total Order: This proof is the same as the one given in the corresponding result ofTheorem 4, except that Past(m) must be rede�ned. Let C! be the causal precedence relationinduced by C-broadcasts and C-deliveries (see Section 2.7). We now de�ne Past(m) =fm0 j m0 = m or broadcast(C; m0) C! broadcast(C; m)g; intuitively, Past(m) is the set ofmessages in the \causal past" of m. With this de�nition, the argument follows along thelines of the proof of Theorem 4. 2Observation: This transformation also preserves Uniform Agreement and Real-Time �-Timeliness. Moreover, under some assumptions explained below, the transformation alsopreserves Local-Time �-Timeliness. In Section 2.7, we de�ned the causal precedence re-lation ! induced by the broadcast and delivery events. In Section 2.8 we explained whatit means for local clocks to be consistent with !. When executing the transformation inFigure 7, there are F-broadcasts and F-deliveries, which induce the causal precedence rela-tion F!, and also C-broadcast and C-deliveries, which induce the relation C!. We can showthat if the local clocks are consistent with F! then they are also consistent with C!, and thetransformation in Figure 7 preserves Local-Time �-Timeliness.This transformation can be improved in the following way. In its present form, eachprocess p keeps track of the number of all the messages it has C-delivered from everyprocess, and sends this information, in the form of a vector of counters, along with everymessage it wishes to C-broadcast. Instead, p can send a vector containing only the number38



of new messages that p C-delivered from each process since p's previous C-broadcast. Thesevectors contain smaller numbers, so messages are shorter. By maintaining the right kindof information, each process can use these vectors to determine if a message is immediatelyC-deliverable or should be blocked. We desist from giving the details of this optimization,as we shall describe in detail some transformations that use the same idea in Sections 5.6.2and 5.6.3.5.6 From FIFO Atomic to Causal Atomic BroadcastIn the previous section we described two di�erent ways of transforming FIFO Broadcast intoCausal Broadcast while preserving Total Order. Each of these transformations correspondsto both bottom vertical arrows in Figure 1. In this section, we describe three e�cienttransformations that correspond to the right bottom arrow only: each of these add CausalOrder to a FIFO Atomic Broadcast. Surprisingly, these transformations are non-blockingeven though they tag each message with just a vector of counters (like the blocking algorithmin Figure 7) rather than piggybacking a list of messages (like the non-blocking algorithmin Figure 6). It is now possible to use vectors of counters to achieve Causal Order withoutblocking because we start from a stronger broadcast algorithm | one that satis�es TotalOrder.5.6.1 Basic TransformationIn the blocking transformation from FIFO to Causal Broadcast that we saw in Figure 7,if a process p F-delivers a message hm0;�i and cannot C-deliver m0 immediately, it insertshm0;�i in msgList for possible future C-delivery: m0 is now blocked. We can obtain anon-blocking transformation from FIFO Atomic to Causal Atomic Broadcast with a simplemodi�cation (see Figure 8). When p FA-delivers hm0;�i such that it cannot CA-deliver m0immediately, p simply discardsm0 and inserts sender(m0) into suspectsp | a set of processesthat p suspects to be faulty. Process p routinely discards every subsequent message thatoriginates from any process in that set. Thus, now p never saves any message for futuredelivery and messages are never blocked. This eliminates msgList and the need to scanthis list for possible deliveries.Theorem 7 The algorithm in Figure 8 transforms any FIFO Atomic Broadcast algorithmthat satis�es Uniform FIFO Order into a Causal Atomic Broadcast algorithm that satis�esUniform Causal Order.Proof: We show that the algorithm that results from the transformation satis�es the prop-erties of Causal Atomic Broadcast.Validity: We �rst claim that for all processes p (whether correct or faulty), p is never insuspectsp. The proof is by contradiction. Consider the �rst time t a process p inserts p intosuspectsp. From the algorithm, it is clear that this occurs when p FA-delivers a messagehm0; N 0i such that p = sender(m0) and Np 6� N 0, where Np is the value of numOfAllDlvrsp39



Variables of process p:f numOfAllDlvrs[s]: number of all the messages that p C-delivered from s gf suspects: set of processes that p suspects to be faulty g: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Algorithm for process p:Initialization:numOfAllDlvrs[s] := 0, for each process ssuspects := ;To execute broadcast(CA,m):broadcast(FA,hm;numOfAllDlvrsi)deliver(CA,�) occurs as follows:upon deliver(FA,hm0; numOfAllDlvrs0i) dos := sender(m0)if s =2 suspects and numOfAllDlvrs � numOfAllDlvrs0thendeliver(CA,m0)numOfAllDlvrs[s] := numOfAllDlvrs[s] + 1elsediscard m0suspects := suspects [ fsgFigure 8: Transforming FIFO Atomic Broadcast into Causal Atomic Broadcast: BasicVersion
40



at time t. By Uniform Integrity of FIFO Atomic Broadcast, p must have previously FA-broadcast hm0; N 0i. Thus, N 0 is the value of numOfAllDlvrsp at some time before t. Sincethe elements of vector numOfAllDlvrsp never decrease, Np � N 0, a contradiction.We now show that if a correct process p CA-broadcastsm then it eventually CA-deliversm. Suppose p CA-broadcasts m. By the algorithm, p FA-broadcasts hm;Ni for some N .By Validity of FIFO Atomic Broadcast, p eventually FA-delivers hm;Ni. If p does notCA-deliver m, it inserts p in suspectsp. Our previous claim shows that this cannot occur.Thus, p CA-delivers m, as wanted.Agreement: Suppose, for contradiction, that Agreement is violated. Thus, there are twocorrect processes p and q such that p CA-delivers a message that q does not CA-deliver.Consider the sequence of messages that p CA-delivers, in the order in which p CA-deliversthem. Let m be the �rst message on that sequence that q does not CA-deliver. Fromthe algorithm, p CA-delivers m upon FA-delivering a message hm;Ni for some vector ofcounters N . By Agreement of FIFO Atomic Broadcast, q eventually FA-delivers hm;Ni aswell.Let s = sender(m). Let Sp and Np be the values of suspectsp and numOfAllDlvrsp,respectively, when p FA-delivered hm;Ni. Similarly, Sq and Nq are the values of suspectsqand numOfAllDlvrsq, respectively, when q FA-delivered hm;Ni. Since p CA-delivers m,s =2 Sp and Np � N . Since q does not CA-deliver m, s 2 Sq or Nq 6� N (*).Consider the (possibly empty) sequence � of messages that p FA-delivers before hm;Ni.By Agreement and Total Order of FIFO Atomic Broadcast, � is also the sequence of mes-sages that q FA-delivers before hm;Ni. For all i, let �i = fm0 j hm0;�i is in � andsender(m0) = ig. Note that Np[i] is the number of messages in �i that p CA-delivers.Furthermore, i =2 Sp if and only if p CA-delivers all the messages in �i. Symmetric remarkshold for Nq[i] and Sq.By the de�nition of m, for all i, every message in �i that p CA-delivers is also CA-delivered by q. Thus, for all i, Nq[i] � Np[i]. Since s =2 Sp, p CA-delivered all the messagesin �s. Thus, q also CA-delivered all the messages in �s. So s =2 Sq. In summary, s =2 Sq andNq � Np | a contradiction to (*).Uniform Integrity: The proof is immediate from the Uniform Integrity of the given FIFOAtomic Broadcast and the observation that a process CA-delivers a message m only if itpreviously FA-delivers some message hm;�i.To prove Uniform Causal Order it su�ces to prove Uniform FIFO Order and Uniform LocalOrder (see Theorem 2).Uniform FIFO Order: Suppose that a process s CA-broadcasts m before it CA-broadcastsm0, and a process p CA-delivers m0. We show that p CA-delivers m before m0. Fromthe algorithm, s FA-broadcasts hm;Ni before it FA-broadcasts hm0; N 0i, and p FA-delivershm0; N 0i, for some vectors N and N 0. By Uniform FIFO Order of the given FIFO AtomicBroadcast, p FA-delivers hm;Ni before hm0; N 0i. Assume, for contradiction, that when p FA-delivers hm;Ni it does not CA-deliver m. In this case, p immediately inserts s = sender(m)in suspectsp. Since s is also the sender ofm0 and it is now in suspectsp, when p subsequentlyFA-delivers hm0; N 0i p does not CA-deliver m0 | a contradiction to our initial assumption.41



Thus, p CA-delivers m immediately after it FA-delivers hm;Ni. This occurs before p FA-delivers hm0; N 0i, and thus before it CA-delivers m0.Uniform Local Order: The proof is the same as the one given in Theorem 6. 2Observation: The transformation in Figure 8 preserves Uniform Agreement and bothversions of �-Timeliness.5.6.2 First OptimizationIn the basic transformation in Figure 8, when a process p wishes to CA-broadcast m, it FA-broadcasts hm;numOfAllDlvrsi, where numOfAllDlvrs is a vector of counters indicatingthe number of all the messages that p CA-delivered from each process since the beginning.In our �rst optimization (Figure 9), we seek to reduce the size of these counters: Whena process p wishes to CA-broadcast m, it FA-broadcasts hm;numOfRcntDlvrsi, wherenumOfRcntDlvrs is a vector indicating the number of messages that p CA-delivered fromeach process since its previous CA-broadcast only. Clearly, numOfRcntDlvrs is smallerthan numOfAllDlvrs.Unfortunately, in order to piggyback numOfRcntDlvrs rather than numOfAllDlvrsonto messages, we need to increase the local space required by each process. Each processp must now maintain a local matrix of counters, Mp, which it uses to reconstruct theinformation necessary to determine whether a message is CA-deliverable. The s-th row ofMp, denoted Mp[s; �], is de�ned as follows. Let t be the time when s CA-broadcast the lastmessage that p CA-delivered from s. Mp[s; �] is a vector of counters indicating the numberof messages that s CA-delivered from each process by time t.The optimized transformation, shown in Figure 9, works as follows. When a pro-cess p wishes to CA-broadcast m, it FA-broadcasts hm;numOfRcntDlvrsi, and resetsnumOfRcntDlvrs to h0; 0; : : : ; 0i. When p FA-delivers a message hm0; numOfRcntDlvrs0ifrom some process s, p uses the matrix M to reconstruct numOfAllDlvrs0 | the vectorthat s would have piggybacked onto m0 in the basic version of the transformation. Specif-ically, p computes numOfAllDlvrs0 by adding numOfRcntDlvrs0 to M [s; �]. Now p cantest whetherm0 is CA-deliverable exactly as in the non-optimized version, namely by check-ing whether s =2 suspects and numOfAllDlvrs � numOfAllDlvrs0. If p CA-delivers m0,it updates its local vectors numOfAllDlvrs and numOfRcntDlvrs in the obvious way,and sets M [s; �] to numOfAllDlvrs0.The correctness of the optimized version (Figure 9), follows from the correctness ofthe basic version (Figure 8), and the fact that the value of the vector numOfAllDlvrs0,(piggybacked in the �rst version and reconstructed in the second one) is the same in bothversions. So, the \CA-deliverability test" is actually the same in both versions.5.6.3 Second OptimizationThe �rst optimization requires each process p to maintain the vector numOfAllDlvrs,where numOfAllDlvrs[s] indicates the total number of messages that p CA-delivered from42



Variables of process p:f numOfAllDlvrs[s]: number of all the messages that p CA-delivered from s gf numOfRcntDlvrs[s]: number of messages that p CA-delivered from s gf since p's previous CA-broadcast gf M [s; r]: number of messages that s CA-delivered from r by the time gf s CA-broadcast the last message that p CA-delivered gf suspects: set of processes that p suspects to be faulty g: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Algorithm for process p:Initialization:numOfAllDlvrs[s] := 0, for each process snumOfRcntDlvrs[s] := 0, for each process sM [s; r] := 0, for all processes s; rsuspects := ;To execute broadcast(CA,m):broadcast(FA,hm;numOfRcntDlvrsi)numOfRcntDlvrs := h0; 0; : : : ; 0ideliver(CA,�) occurs as follows:upon deliver(FA,hm0; numOfRcntDlvrs0i) dos := sender(m0)numOfAllDlvrs0 :=M [s; �] + numOfRcntDlvrs0if s =2 suspects and numOfAllDlvrs � numOfAllDlvrs0thendeliver(CA,m0)numOfRcntDlvrs[s] := numOfRcntDlvrs[s] + 1numOfAllDlvrs[s] := numOfAllDlvrs[s] + 1M [s; �] := numOfAllDlvrs0elsediscard m0suspects := suspects [ fsgFigure 9: Transforming FIFO Atomic Broadcast into Causal Atomic Broadcast: First Op-timization 43



s since the beginning. It also requires p to maintain a local matrix M , where, roughlyspeaking, M [s; r] is a counter indicating the total number of messages that s CA-deliveredfrom r in p's causal's past. The elements of numOfAllDlvrs and M are monotonicallyincreasing, and may grow to be too large in practice. The second optimization replaces thesetwo data structures with a matrix that has smaller elements. More speci�cally, it maintainsthe matrix numAhead, such that numAhead[s; r] = numOfAllDlvrs[r]�M [s; r].We now describe how numAhead can be used to replace bothM and numOfAllDlvrs.In Figure 9, we use M and numOfAllDlvrs only to test whether numOfAllDlvrs �numOfAllDlvrs0. Since numOfAllDlvrs0 is set toM [s; �]+numOfRcntDlvrs0 just beforethis test is executed, the test is equivalent to checking whether numOfAllDlvrs �M [s; �]+numOfRcntDlvrs0. Since numAhead[s; �] = numOfAllDlvrs�M [s; �], the test is alsoequivalent to checking whether numAhead[s; �] � numOfRcntDlvrs0. This is the test usedby our second optimization (Figure 10).We now describe how p maintains numAhead. By de�nition, numAhead[s; r] =numOfAllDlvrs[r]�M [s; r]. Thus, the second optimization must update numAhead ev-ery time numOfAllDlvrs or M is updated in the �rst optimization. There are two suchupdates (after the CA-delivery of a message m0 in Figure 9):� numOfAllDlvrs[s] is incremented by one. By de�nition, the corresponding updateis numAhead[�; s] := numAhead[�; s] + h1; 1; : : : ; 1i.� M [s; �] is set toM [s; �]+numOfRcntDlvrs0. By de�nition, the corresponding updateis numAhead[s; �] := numAhead[s; �]� numOfRcntDlvrs0.The correctness of the second optimization (Figure 10), follows directly from the cor-rectness of the �rst optimization (Figure 9), and the fact that it correctly maintains theinvariant numAhead[s; �] = numOfAllDlvrs�M [s; �] that links the second optimizationto the �rst one.6 Broadcast Algorithms III | Point-to-Point NetworksIn the preceding section, we described a set of system-independent transformations that canconvert Reliable Broadcast algorithms into algorithms for every other type of broadcast.In this section, we describe a simple Reliable Broadcast algorithm for a particular typeof system, namely, point-to-point networks with benign process and link failures that donot disconnect correct processes. This algorithm satis�es Uniform Integrity, a necessaryrequirement for our transformations. Under some additional assumptions on the type offailures, it also satis�es Uniform Agreement. Moreover, if the system is synchronous, thisReliable Broadcast algorithm satis�es Real-Time �-Timeliness, and, with a simple modi-�cation, Local-Time �-Timeliness. Finally, if the links of the point-to-point network areFIFO (an assumption that holds in many systems), it satis�es Causal Order, i.e., it isactually a Causal Broadcast! 44



Variables of process p:f numOfRcntDlvrs[s]: number of messages that p CA-delivered from s gf since p's previous CA-broadcast gf numAhead[s; r] = numOfAllDlvrs[r]�M [s; r] gf suspects: set of processes that p suspects to be faulty g: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Algorithm for process p:Initialization:numOfRcntDlvrs[s] := 0, for each process snumAhead[s; r] := 0, for all processes s; rsuspects := ;To execute broadcast(CA,m):broadcast(FA,hm;numOfRcntDlvrsi)numOfRcntDlvrs := h0; 0; : : : ; 0ideliver(CA,�) occurs as follows:upon deliver(FA,hm0; numOfRcntDlvrs0i) dos := sender(m0)if s =2 suspects and numAhead[s; �] � numOfRcntDlvrs0thendeliver(CA,m0)numOfRcntDlvrs[s] := numOfRcntDlvrs[s] + 1numAhead[�; s] := numAhead[�; s] + h1; 1; : : : ; 1inumAhead[s; �] := numAhead[s; �]� numOfRcntDlvrs0elsediscard m0suspects := suspects [ fsgFigure 10: Transforming FIFO Atomic Broadcast into Causal Atomic Broadcast: SecondOptimization 45



In asynchronous point-to-point networks, we can apply our transformations to this Reli-able Broadcast algorithm, and automatically obtain FIFO and Causal Broadcast algorithmsfor such systems. In synchronous point-to-point networks, we can apply the transformationsto the version of the Reliable Broadcast algorithm that satis�es Local-Time �-Timeliness,to obtain algorithms for every one of the six types of broadcast. Since our transformationspreserve Uniform Agreement and, under some assumptions, both versions of �-Timeliness,if we start from the Reliable Broadcast algorithm that satisfy some of these properties, theresulting broadcast algorithms satisfy the same properties.Note that the above approach does not yield an Atomic Broadcast algorithm (and afortiori a FIFO Atomic or Causal Atomic Broadcast algorithm) in asynchronous point-to-point networks. This is not a limitation of this particular approach: Atomic Broadcastcannot be solved in such a system. In fact, this impossibility result holds even if the networkis completely connected, has correct links, at most one process may fail, and it can only failby crashing (see Theorem 13 in Section 7.2.1).6.1 Model of Point-to-Point NetworksRecall from Section 2.2 that in a point-to-point network, a pair of processes connected bya link can communicate by means of send and receive primitives. We now establish someterminology regarding these primitives and state two properties that they satisfy. (A moredetailed model of point-to-point networks is given in the Appendix.)Consider the send and receive associated with the link from process p to processq. If p invokes send with a message m as a parameter we say that p sends m to q; inour algorithms we denote this invocation by \send(m) to q". When p returns from thatinvocation we say that p completes the sending of m to q. When a process q returns fromthe execution of receive with message m as the returned value, we say that q receivesm; we denote this by \receive(m)". For convenience, we assume that every process can\send" messages to itself, and that it \receives" such messages instantaneously. This is onlya �ctional device, as a process does not really invoke the primitives send and receive forsuch messages. These primitives satisfy the following two properties:12� Validity: If p sends m to q, and both p and q and the link from p to q are correct,then q eventually receives m. (If p = q then p receives m instantaneously.)� Uniform Integrity: For any message m, q receives m at most once from p, and only ifp previously sent m to q.6.2 Assumptions and NotationAll our Reliable Broadcast algorithms rely on the following two assumptions:12To simplify the formulation of these properties, we assume that each message sent from p to q is unique.This can be easily enforced by using link sequence numbers.46



a. Benign Failures: Process and link failures are benign.b. No Partitioning: Every two correct processes are connected via a path consistingentirely of correct processes and links.In these algorithms, a process p is required to send a message m to every one of itsneighbors in the network (i.e., to every process q that is connect to p by a link). We usethe notation \send(m) to all neighbors" as a short-hand for \for all q such that q is aneighbor of p do send(m) to q." If p fails while executing this for loop, it is possible thatsome neighbors of p receive m while others do not.In this section, instead of R-broadcasts and R-deliveries we refer simply to broadcastsand deliveries: The algorithms do not use any other type of broadcast, and thus there is noambiguity.6.3 Reliable BroadcastWith the above assumptions, Reliable Broadcast can be easily implemented as follows. Tobroadcast a message, a process sends it to itself. When a process receives a message for the�rst time, it sends this message to all its neighbors, and then delivers it. This \messagedi�usion" algorithm is shown in Figure 11.Some obvious optimizations are possible (e.g., if p receives m from q, it need not sendm to q), but we do not consider such details here. It is important to note that this algorithmworks even if the network is asynchronous.Algorithm for process p:To execute broadcast(R,m):send(m) to pdeliver(R,m) occurs as follows:upon receive(m) doif p has not previously executed deliver(R,m)thensend(m) to all neighborsdeliver(R,m)Figure 11: Reliable Broadcast for Point-to-Point NetworksTheorem 8 The algorithm in Figure 11 is a Reliable Broadcast.1313All the Reliable Broadcast algorithms in this section satisfy the Uniform version of Integrity. For brevitywe omit to state this in our theorems. 47



Proof: We have to show that the algorithm satis�es the three properties of Reliable Broad-cast, namely, Validity, Agreement, and Uniform Integrity.Validity: If a correct process p broadcasts m, it sends m to itself. By Validity of send andreceive, p receives m. So p delivers m.Agreement: Let p and q be any correct processes. Suppose p delivers m. We must showthat q also delivers m. By Assumption (b), there is a path p1 = p; p2; : : : ; pk = q consistingentirely of correct processes and links. By induction on i we prove that each pi deliversm. The basis, i = 1, is true by assumption. For the induction step, suppose pi deliversm; we show that pi+1 also delivers m. By the algorithm, since pi delivers m, it must havepreviously sent m to every one of its neighbors, including pi+1. By Validity of send andreceive, pi+1 receives m and, being correct, delivers m.Uniform Integrity: From the algorithm, p delivers m only if it has not previously executeddeliver(R,m), i.e., p delivers m at most once. Suppose some process delivers m; we mustshow that sender(m) did in fact broadcast m. This follows from the Uniform Integrity ofsend and receive, and the fact that with benign failures if a process p broadcasts m thensender(m) = p. 2If we make further assumptions about the given point-to-point network, the algorithmin Figure 11 satis�es additional properties, namely, Uniform Causal Order, Uniform Agree-ment and Real-Time �-Timeliness. With a modi�cation, it can also satisfy Local-Time�-Timeliness. This is shown in the next sections.6.4 Achieving Uniform Causal OrderIn many point-to-point networks, data-link layer transmission protocols provide reliableFIFO links. More precisely, they provide send and receive primitives that satisfy Validityand Uniform Integrity, as well as the following property:� Uniform FIFO Order: If p sends m to q before it sends m0 to q, then q does notreceive m0 unless it has previously received m.With such links the algorithm given in the previous section is actually a Causal Broadcast!Theorem 9 Assume that the send and receive primitives satisfy Uniform FIFO Orderand the upon statement is indivisible.14 The Reliable Broadcast algorithm in Figure 11satis�es Uniform Causal Order.Proof: We say that a process p relays m when it begins executing the statement \send(m)to all neighbors". Since p could fail during the execution of this statement, saying that prelayed m does not necessarily imply that all its correct neighbors will receive m.14That is, each execution of the upon statement cannot be interrupted by another execution of thisstatement. 48



Claim: For any messages m and m0, if sender(m0) relays m and m0 in that order, thenno process relays m0 unless it has previously relayed m.Proof of Claim: Suppose sender(m0) relays m and m0, in that order. Assume, forcontradiction, that some process relays m0 without having previously relayed m. Let qbe the �rst process to do so (in real time). Clearly, q 6= sender(m0). Thus q relayed m0because it previously received m0 from a process s 6= q. By the Uniform Integrity of sendand receive, s must have relayed m0 to q. Note that the relay of m0 by s precedes the oneby q. By the choice of q, s relayed m before m0. So, s sent m to q before m0. By UniformFIFO Order of send and receive, q received m before receiving m0. By the indivisibilityof the upon statement, q relayed m before receiving m0, and therefore before relaying m0.This contradicts the de�nition of q. 2ClaimWe now show that the algorithm satis�es Uniform Causal Order by proving that itsatis�es Uniform FIFO Order and Uniform Local Order (see Theorem 2). Suppose thatsender(m0) broadcasts m or delivers m, before it broadcasts m0. We must show that noprocess delivers m0 unless it has previously delivered m. We �rst prove that:If sender(m0) relays m0, then no process relays m0 unless it has previously relayed m.(�)Assume that sender(m0) relays m0. By the above claim, it is su�cient to show thatsender(m0) relayed m before m0. There are two cases to consider:� sender(m0) delivers m before it broadcasts m0. From the algorithm, sender(m0) re-layed m before delivering m, and it relayed m0 after broadcasting m0. Thus, it relayedm before m0.� sender(m0) broadcasts m before it broadcasts m0. From the algorithm, sender(m0)sends m to itself before m0. By the Uniform FIFO Order of send and receive,sender(m0) receivesm beforem0. By the indivisibility of the upon statement, sender(m0)relays m before m0.This concludes the proof of (�). Now consider a process q that delivers m0. We show thatq delivers m before m0. Since q delivered m0, it must have previously received and relayedm0. By Uniform Integrity of send and receive, it is easy to show that sender(m0) relayedm0. By (*), q relayed m before m0. By the indivisibility of the upon statement, q deliveredm before m0, as wanted. 2Note that the Uniform FIFO Order property of send and receive, applies even be-tween two faulty processes (that is why we call it Uniform). This uniformity is crucialto Theorem 9: without it, the Reliable Broadcast algorithm in Figure 11 would not evensatisfy FIFO Order, let alone Uniform Causal Order. The same is true about the requiredindivisibility of the upon statement.6.5 Achieving Uniform AgreementThe Reliable Broadcast algorithm in Figure 11 works for any type of benign failures, pro-vided that correct processes remain connected (see Assumption (b)). We now show that if49



we restrict the type of failures and strengthen the connectivity assumption, this algorithmalso satis�es Uniform Agreement.Consider a point-to-point network where processes do not commit send-omission fail-ures. With this restriction, the send and receive primitives satisfy a stronger Validityproperty than the one given in Section 6.1. If send-omission failures cannot occur then thefollowing property holds (see Appendix):� Strong Validity: If a process p (whether correct or faulty) completes the sending of amessagem to a correct process q, and the link from p to q is correct, then q eventuallyreceives m.We can now show the following:Theorem 10 Consider a network such that: (1) processes do not commit send-omissionfailures, and (2) every process p (whether correct or faulty) is connected to every correct pro-cess via a path consisting entirely of correct processes and links (with the possible exceptionof p itself). The Reliable Broadcast algorithm in Figure 11 satis�es Uniform Agreement.Proof: We have already proved that the algorithm satis�es Validity and Uniform Integrityof Reliable Broadcast (cf. Theorem 8). It remains to prove that it satis�es:Uniform Agreement: Let p be any process (correct of faulty) that delivers m, and let q bea correct process. We must show that q also delivers m. By assumption, there is a pathp1 = p; p2; : : : ; pk = q consisting entirely of correct processes and links (with the possibleexception of p). By induction on i we prove that each pi delivers m. The basis, i = 1, istrue by assumption. For the induction step, suppose pi delivers m; we show that pi+1 alsodelivers m. By the algorithm, since pi delivers m, it must have previously completed thesending of m to every one of its neighbors, including pi+1. Since pi+1 and the link frompi to pi+1 are correct, by Strong Validity of send and receive pi+1 eventually receives m.Since it is correct, pi+1 delivers m. 2Achieving Uniform Agreement in systems with send-omission and receive-omission failurescan be done using techniques described in [NT90].6.6 Impossibility of �-Timeliness in Asynchronous SystemsConsider an asynchronous point-to-point network. Clearly, no Reliable Broadcast algorithmcan achieve Real-Time �-Timeliness in such a system. Can it achieve Local-Time �-Timeliness? If local clocks are required to satisfy the Clock Monotonicity property, theanswer is negative. In fact, this impossibility result holds even if the network is completelyconnected, has correct links, at most one process may fail, and it can only fail by crashing.The proof is by contradiction. Suppose there is a Reliable Broadcast algorithm that satis�esLocal-Time �-Timeliness in such a system. We could transform it into an Atomic Broadcastalgorithm, as shown in Figure 4 (Section 5.3). This contradicts the impossibility of solvingAtomic Broadcast in such a system (see Corollary 2 in Section 7.2.1).50



6.7 Achieving �-Timeliness in Synchronous SystemsIn contrast to the impossibility results above, both versions of �-Timeliness can be achievedin synchronous point-to-point networks: Real-Time �-Timeliness in networks with omissionfailures, and Local-Time �-Timeliness in networks with timing failures. To show this, we�rst state the properties of synchronous point-to-point networks.6.7.1 Model of Synchronous Point-to-Point NetworksRoughly speaking, a point-to-point network is synchronous if there are known bounds onmessage delay, clock drift, and the time to execute a local step. More precisely, a point-to-point network is synchronous if, in addition to the properties in Section 6.1, it also satis�esthe following three synchrony properties (in this de�nition the word \time" refers to realtime):1. � -Local Step: There is a known constant � � 0 such that no process p completes astep later than � time units of when it started that step.2. �-Clock Drift: There is a known constant � � 0 such that every process p has a localclock whose drift with respect to time is bounded by �. That is, if Cp(t) denotes thevalue of the local clock of p at time t, then for all t > t0:11 + � � Cp(t)� Cp(t0)t� t0 � 1 + �3. �-Timeliness: There is a known constant � � 0 such that for any processes p and qconnected by a link then q does not receive m after time t+ �.In a synchronous point-to-point network with omission failures the above propertiesare never violated. In one with timing failures, however, Properties 1 and 2 hold only if pis correct, and Property 3 holds only if p, q, and the link from p to q are all correct. Inother words, in a synchronous point-to-point network with timing failures the synchronyproperties hold only in the subnetwork consisting entirely of correct processes and links.6.7.2 AssumptionsTo achieve �-Timeliness we make the following assumptions:c. f -Failures: There is a known upper bound f on the number of faulty processes.d. d-Diameter: There is a known constant d such that every two correct processes areconnected via a path of length at most d, consisting entirely of correct processes andlinks.e. 0-Local Step: The time to execute a local step is 0. More precisely, we take � = 0 inProperty 1 in the de�nition of synchronous point-to-point networks.51



Regarding the �rst two assumptions, note that f and d can be taken to be the number ofprocesses in the network, if no better bounds on these quantities are available. Regardingthe third assumption, we note that it is not really necessary but it simpli�es the algorithmsand their analyses. Moreover, this assumption is reasonable for the type of algorithms thatwe are considering: The amount of local processing is negligible and can be absorbed in theupper bound on message delay �.6.7.3 Achieving Real-Time �-TimelinessIn a network with timing failures, no Reliable Broadcast can satisfy Real-Time �-Timeliness.Roughly speaking, the argument runs as follows. Suppose that the clocks of correct pro-cesses show real time, while faulty processes have clocks that are �0 ahead of real time,for some �0 > �. Assume that a faulty process p broadcasts a message m at real timet ��0, i.e., at time t according to the clocks of faulty processes. Suppose the set of faultyprocesses \withhold" m for �0 real-time units, and then \release" m into the rest of thenetwork at real-time t. To any correct process q, it now seems that the broadcast of m wasinitiated at real time t, and that the sender of m, namely p, is actually correct. Thus, qhas to assume that p delivers m (by Validity). To satisfy Agreement, q must also deliver mthereby violating Real-Time �-Timeliness.In contrast, in a network where only omission failures occur (i.e., one where the syn-chrony assumptions are not violated), the Reliable Broadcast algorithm in Figure 11 doessatisfy Real-Time �-Timeliness:Theorem 11 In a synchronous network with omission failures the Reliable Broadcast al-gorithm in Figure 11 satis�es Real-Time �-Timeliness, with � = (f + d)�.Proof: We �rst show the followingClaim: For any two correct processes s and r, if s delivers a message m at real time ts,then r delivers m at real time tr such that tr � ts + d�.Proof of Claim: Suppose s delivers m at real time ts. By Assumption (d), there is apath p1 = s; p2; : : : ; pk = r (for some k, 1 � k � d + 1) from s to r, consisting entirely ofcorrect processes and links. We now show that:for all i, 1 � i � k, pi delivers m by real time ts + (i� 1)�. (*)The proof of this is by induction on i. For i = 1, we have p1 = s and the inductionhypothesis obviously holds. Suppose it holds for i; we show it also does for i+ 1. By theinduction hypothesis, pi delivers m by real time ts + (i� 1)�. By the algorithm, just beforedelivering m, pi sent m to all its neighbors, including pi+1.Since pi, pi+1, and the link between them are correct, by Validity and �-Timeliness ofsend and receive, pi+1 receives m by real time ts + i�. By Assumption (e), pi+1 deliversm by real time ts + i� | concluding the proof of (*). By (*), pk = r delivers m by realtime ts + (k � 1)�. Noting that k � d+ 1 concludes the proof of the claim. 2Claim52



We now prove that the algorithm satis�es Real-Time �-Timeliness.Real-Time �-Timeliness: Suppose a process p broadcasts a message m at real time t, andsome correct process q delivers m at real time t0. We must show that t0 � t + �, where� = (f + d)�. If p = q, then t0 = t (by Validity of send and receive, the message delayof the \link" between p and itself is 0), and the result holds. Now assume p 6= q. From thealgorithm, Uniform Integrity and �-Timeliness of send and receive, and Assumption (e),there must be a sequence of k � 2 distinct processes p1 = p; p2; : : : ; pk = q, such that forall i, 2 � i � k, pi receives m from pi�1 and delivers it by real time t + (i � 1)�. Letpj be the �rst correct process in this sequence. It delivers m by real time t + (j � 1)�.Since p1; : : : ; pj�1 are faulty, and there are at most f faulty processes (Assumption (c)),j � 1 � f . Thus, pj delivers m by real time t + f�. By the above claim, q delivers m atmost d� real-time units later, i.e., by real time t+ (f + d)�. 26.7.4 Achieving Local-Time �-TimelinessConsider a synchronous point-to-point network with timing failures. In such networks, onecan implement approximately synchronized clocks, i.e., clocks that are always close to eachother and whose drift with respect to real time is bounded (for example, see [LM85,ST87a,Cri89]). More precisely these clocks satisfy:f. (�; �)-Clock Synchronization: There are known constants � � 0 and � � 0 such thatfor all correct processes p and q, and all real times t > t0:� jCp(t)� Cq(t)j � �, and� 11 + � � Cp(t)� Cp(t0)t� t0 � 1 + �With such clocks, we can modify the Reliable Broadcast algorithm in Figure 11 so thatit satis�es Local-Time �-Timeliness even if timing failures occur. The modi�ed algorithm,shown in Figure 12, works as follows. With each message m we now associate a counterthat indicates how many links m has traversed so far. Thus, processes send messages of theform hm; ki, where k is the counter associated with message m. When a process wishes tobroadcast a message m, it tags m with the local sending time ts(m), and then sends hm; 0ito itself. When a process p receives a message hm; ki, p checks whether the local receipttime is less or equal to ts(m) + k(�(1+ �) + �). If so, p relays hm; k+1i to all its neighbors,and then delivers m. Otherwise, p simply discards m.Theorem 12 In a synchronous network with timing failures and approximately synchro-nized clocks (Assumption (f)), the algorithm in Figure 12 is a Reliable Broadcast that sat-is�es Local-Time �-Timeliness, with � = (f + d)�(1 + �) + (f + 1)�.Proof: We �rst show the followingClaim: For any two correct processes s and r, if s delivers a message m at local time ts,then r delivers m at local time tr such that tr � ts + d�(1 + �) + �.53



Algorithm for process p:To execute broadcast(R,m):send(hm; 0i) to pdeliver(R,m) occurs as follows:upon receive(hm; ki) doif p has not previously executed deliver(R,m) andlocal time � ts(m) + k(�(1 + �) + �)thensend(hm; k+ 1i) to all neighborsdeliver(R,m)Figure 12: Reliable Broadcast with Local-Time �-TimelinessProof: Suppose s delivers m at local time ts on its clock. By Assumption (d), there is apath p1 = s; p2; : : : ; pk = r (for some k, 1 � k � d + 1) from s to r, consisting entirely ofcorrect processes and links. We now show that: For all i, 1 � i � k,pi delivers m at time tis � ts + (i� 1)�(1 + �) according to the clock of s. (*)The proof of this is by induction on i. For i = 1, we have p1 = s and t1s = ts, and so theinduction hypothesis holds. Suppose it holds for i; we now show it also does for i+1. By theinduction hypothesis, pi delivers m. By the algorithm, it does so upon receiving a messagehm; kii at local time ti (on pi's clock) such that ti � ts(m) + ki(�(1+ �)+ �). Furthermore,immediately after the receipt of hm; kii, pi sends hm; ki + 1i to all its neighbors, includingpi+1. By Assumption (e) pi sends hm; ki + 1i to pi+1 at time ti (on pi's clock). Sincepi, pi+1, and the link between them are correct, by Validity of send and receive, pi+1eventually receives hm; ki + 1i. By �-Timeliness of send and receive, this receipt occurswithin � units of real time from the time pi sent hm; ki + 1i. Thus, by Assumption (f),pi+1 receives hm; ki + 1i at local time ti+1 � ti + �(1 + �) + � on its clock. Note that ti+1� ts(m)+(ki+1)(�(1+�)+�). Thus, by the algorithm and Assumption (e), pi+1 delivers mby local time ti+1. By the induction hypothesis, pi delivers m at time tis � ts+(i�1)�(1+�),according to the clock of s. Since pi+1 delivers m within � units of real time from this, pi+1delivers m at time ti+1s � ts+ i�(1+�), also according to the clock of s. Thus, the inductionhypothesis holds for i+ 1 | concluding the proof of (*).By (*), process pk = r delivers m at time tks � ts + (k � 1)�(1 + �), according to theclock of s. By Assumption (f), this delivery occurs at time tr � tks + � on r's clock, i.e., attime tr � ts + (k � 1)�(1 + �) + �. Noting that k � d+ 1 concludes the proof of the claim.2ClaimWe now prove that the algorithm satis�es the three properties of Reliable Broadcast as wellas Local-Time �-Timeliness.Validity: If a correct process p broadcasts m, it sends hm; 0i to itself at local time ts(m).54



By �-Timeliness of send and receive, the message delay of the \link" between p and itselfis 0. Thus, p receives hm; 0i at local time ts(m). By the algorithm, p delivers m.Agreement: Immediate from the above claim.Uniform Integrity: The proof, similar to the one given for the Algorithm in Figure 11, isomitted.Local-Time �-Timeliness: Suppose some correct process q delivers a message m at localtime tq. We must show that tq � ts(m) + �, where � = (f + d)�(1 + �) + (f + 1)�. Ifq = sender(m), then tq = ts(m) (by Validity of send and receive, the message delay of the\link" between q and itself is 0), and the result holds. Now assume q 6= sender(m). In thiscase, from the algorithm and Uniform Integrity of send and receive, there is a sequenceof k � 2 distinct processes p1 = sender(m); p2; : : : ; pk = q such that for all i, 1 � i � k� 1,pi receives hm; i� 1i by local time ti � ts(m) + (i � 1)(�(1 + �) + �), and sends hm; ii topi+1 (before delivering m). Let pj be the �rst correct process in this sequence. It receiveshm; j � 1i by local time tj � ts(m) + (j � 1)(�(1 + �) + �) on its clock. Since p1; : : : ; pj�1are faulty, and there are at most f faulty processes (Assumption (c)), j � 1 � f . Thus,tj � ts(m) + f(�(1 + �) + �). By the above claim, since pj delivers m at local time tj , qdeliversm at local time tq � tj+d�(1+�)+�. Thus, tq � ts(m)+f(�(1+�)+�)+d�(1+�)+�,i.e., tq � ts(m) + �, where � = (f + d)�(1 + �) + (f + 1)�. 2Observation: As in Theorem 9, if the links are FIFO then the algorithm in Figure 12 isactually a Causal Broadcast that satis�es Local-Time �-Timeliness! More precisely, thisholds when the send and receive primitives satisfy Uniform FIFO Order and the uponstatement is indivisible.6.8 Obtaining Stronger BroadcastsWe now describe how to obtain algorithms for every type of broadcast in point-to-pointnetworks. Starting from the Reliable Broadcast algorithm in Figure 11, we apply the generictransformation that adds FIFO Order (Figure 5) to obtain a FIFO Broadcast algorithm.We then add Causal Order by applying either the non-blocking transformation in Figure 6,or the blocking one in Figure 7. This results in two Causal Broadcast algorithms. Notethat the algorithms that we get this way satisfy the uniform versions of FIFO and CausalOrder.To obtain Atomic, FIFO Atomic, or Causal Atomic Broadcast algorithms in a syn-chronous point-to-point network, we can proceed as follows:151. Run a clock synchronization algorithm that yields approximately synchronized clocks(Assumption (f) in Section 6.7.4) that also satisfy the Clock Monotonicity property.162. With such clocks, the Reliable Broadcast algorithm in Figure 12 satis�es Local-Time�-Timeliness.15Recall that Atomic Broadcast cannot be solved in asynchronous systems.16Typically, clock synchronization algorithms satisfy this property, or can be easily modi�ed to do so.55



3. Obtain FIFO and Causal Broadcast algorithms by successively applying the blockingtransformations of Figure 5 and 7 to the Reliable Broadcast algorithm of Step 2.Under reasonable assumptions about the local clocks, these transformations preserveLocal-Time �-Timeliness. Since the given Reliable Broadcast algorithm satis�es thisproperty, so do the resulting FIFO and Causal Broadcast algorithms. 174. Apply the transformation that adds Total Order (Figure 4) to the Reliable, FIFO,and Causal Broadcast algorithms that were obtained in the previous steps. This givesAtomic, FIFO Atomic and Causal Atomic Broadcast algorithms.Another way to obtain FIFO Atomic and Causal Atomic Broadcast algorithms is:(1) Derive an Atomic Broadcast by adding Total Order to our Timed Reliable Broadcastas explained above, (2) add FIFO Order (recall that this transformation preserves TotalOrder), and (3) add Causal Order by applying one of the three non-blocking transformationsof Section 5.6.If a synchronous point-to-point network has FIFO links, one can also implement aCausal Atomic Broadcast algorithm as follows. Start with the algorithm in Figure 12. Aswe observed in Section 6.7.4, this is already a Causal Broadcast that satis�es Local-Time�-Timeliness. Now apply the transformation that adds Total Order (Figure 4).Bibliographic NotesThe algorithm for Reliable Broadcast that satis�es Local-Time �-Timeliness and toleratestiming failures (Figure 12) is due to [CASD85]. That paper also presented an AtomicBroadcast algorithm for point-to-point networks using the idea of delaying the deliveryof a message m until local time ts(m) + �. This technique is the basis of our generictransformation that adds Total Order to any type of Timed Broadcast (Figure 4). Manyother broadcast algorithms for speci�c network types, synchrony assumptions, and failuremodels have appeared in the literature, including those described in [CM84,BD85,BJ87,PBS89,GSTC90,VM90,BSS91,GMS91,ADKM92].7 Consensus7.1 Speci�cationIn the Consensus problem, all correct processes propose a value and must agree on somevalue related to the proposed values. Formally, we de�ne the Consensus problem in termsof two primitives, propose and decide. If p invokes propose with a value v as a parameterwe say that p proposes v; in our algorithms we denote this invocation by \propose(v)".17In general we cannot apply the non-blocking transformation from FIFO to Causal Broadcast describedin Figure 6, because it does not preserve �-Timeliness unless the given FIFO Broadcast satis�es UniformAgreement. We can apply this transformation if, in Step 1, we start with an Reliable Broadcast that satis�esUniform Agreement. 56



The value proposed is taken from some set V . When a process q returns from the executionof decide with value v, we say that q decides v; we denote this by \decide(v)". TheConsensus problem requires that if each correct process proposes a value then the followinghold:� Termination: Every correct process eventually decides exactly one value.� Agreement: If a correct process decides v, then all correct processes eventually decidev.� Integrity: If a correct process decides v, then v was previously proposed by someprocess.Integrity ensures that the decision of a correct process is not created \out of thin air".In particular, if all processes that propose a value, propose the same value v, then thisdecision can only be v. As usual, we can strengthen the Agreement and Integrity propertiesby requiring Uniformity:� Uniform Agreement: If a process (whether correct or faulty) decides v, then all correctprocesses eventually decide v.� Uniform Integrity: If a process (whether correct or faulty) decides v, then v waspreviously proposed by some process.Now consider the speci�cation of Consensus in the case of arbitrary failures. If a process pis subject to such failures, the meaning of \p proposes v" or \p decides v" is now ambiguous.To circumvent this problem, the properties of Consensus should now refer only to proposalsand decisions of correct processes (see Section 3.10). This already holds for Terminationand Agreement, but for arbitrary failures Integrity must be rede�ned as follows:� Integrity: If all processes are correct and a process decides v, then v was previouslyproposed by some process.7.2 Relating Consensus and Atomic BroadcastIn this section we examine the relation between Consensus and Atomic Broadcast. We shallsee that the two problems are, under certain conditions, equivalent to each other. That iswe can transform any algorithm for one into an algorithm for the other.The transformation from Atomic Broadcast to Consensus tolerates any number of be-nign failures. The one from Consensus to Atomic Broadcast assumes that Reliable Broad-cast is available and that only crash failures occur.18 Both transformations make no as-sumptions on the type or synchrony of the communication network.18A more complex transformation can actually work for any type of failures [CT92], but it is beyond thescope of this paper. 57



These two transformations have important consequences regarding the solvability ofAtomic Broadcast in asynchronous point-to-point networks with crash failures:1. Atomic Broadcast can not be solved, even if we assume that links are reliable, at mostone process may fail, and it can only fail by crashing (Corollary 2).2. Atomic Broadcast can be solved using randomization or failure detectors (Corollary 5).7.2.1 Transforming Atomic Broadcast to ConsensusIn Figure 13, we show how to transform any Atomic Broadcast algorithm into a Consensusalgorithm. To propose a value v, a process uses the given Atomic Broadcast algorithmto A-broadcast v. To decide a value, a process selects the value of the �rst message thatit A-delivers. By Agreement and Total Order of Atomic Broadcast, all correct processeschoose the same value; hence Agreement of Consensus is satis�ed. It is easy to verifythat Termination and Integrity of Consensus also hold. This transformation makes noassumptions on the type or synchrony of the communication network, and it tolerates anynumber of benign failures.Algorithm for process p:To execute propose(v):broadcast(A,v)decide(�) occurs as follows:upon deliver(A,u) doif p has not previously executed deliver(A, {)then decide(u)Figure 13: Transforming Atomic Broadcast into ConsensusTheorem 13 The algorithm in Figure 13 transforms any Atomic Broadcast algorithm intoa Consensus algorithm.Corollary 2 Atomic Broadcast cannot be solved in an asynchronous point-to-point network,even if the network is completely connected, all the links are correct, at most one processmay fail, and it can only fail by crashing.Proof: It is well-known that Consensus cannot be solved in such a system [FLP85]. Theresult now follows from the previous theorem. 2The impossibility of Atomic Broadcast in asynchronous systems seems paradoxicalsince this primitive is a basic service provided by many practical systems which, on the58



face of it, appear to be asynchronous. (Such systems include Isis [BJ87,BCJ+90], Amoeba[Kaa92], Delta-4 [VM90], and Transis [ADKM92].) There is no contradiction here. Whatthis indicates is that such systems, at some level, explicitly or implicitly use of one of themechanisms previously mentioned for circumventing the impossibility result. For example,the Isis Atomic Broadcast algorithm uses a failure detector mechanism based on timeouts.This means that it relies, at some level, on synchrony assumptions.We close this section with a word of caution against confusing the impossibility ofAtomic Broadcast and Consensus in asynchronous systems with a seemingly similar but, infact, quite di�erent impossibility result in fault-tolerant distributed computing, sometimesknown as \the generals' paradox" [Gra78]. This concerns a problem, technically known asNon-Blocking Atomic Commitment [BHG87], that cannot be solved if the communicationnetwork may partition into two or more components, so that no messages can be exchangedbetween processes in di�erent components. It is the possibility of network partioning thatmakes Non-Blocking Atomic Commitment unsolvable. In fact, this problem cannot besolved even if the network is synchronous (i.e., each message is either delivered within aknown bound or not at all). In contrast, the impossibility of Consensus is due to thecombination of asynchrony and process failures, and it holds even if communication isreliable, i.e., even if partitioning cannot occur. The di�erence in the reasons underlying thesetwo impossibility results is re
ected in their proofs, which are based on entirely di�erentideas (compare [FLP85] and [Gra78]).7.2.2 Transforming Reliable Broadcast and Consensus to Atomic BroadcastIn Figure 14, we show how to transform any Reliable Broadcast and Consensus algorithmsinto an Atomic Broadcast algorithm [CT91]. This transformation uses repeated (possiblyconcurrent but completely independent) executions of Consensus. Informally, the kth ex-ecution of Consensus is used to decide on the kth batch of messages to be A-delivered.Processes disambiguate between these executions by tagging all the messages pertaining tothe kth execution of Consensus with a counter k. Tagging with such counters constitutesa minor modi�cation to any given Consensus algorithm. The propose and decide prim-itives corresponding to the kth execution of Consensus are denoted by propose(k;�) anddecide(k;�).When a process wishes to A-broadcast a message m, it uses the given Reliable Broad-cast algorithm to R-broadcast m (Task 1). When a process p R-delivers m, it adds m tothe set R deliveredp (Task 2). Thus, R deliveredp contains all the messages submitted forAtomic Broadcast (since the beginning) that p is aware of. When p A-delivers a messagem, it adds m to the set A deliveredp (in Task 3). Thus, R deliveredp � A deliveredp isthe set of messages that were submitted for Atomic Broadcast but not yet A-delivered, ac-cording to p. This set is denoted by A undeliveredp. Process p periodically checks whetherA undeliveredp is not empty; if so, p participates in the next execution of Consensus, saythe kth one, by proposing A undeliveredp as the kth batch of messages to be A-delivered.It then waits for the decision msgSet of this Consensus execution. Finally, it A-delivers allthe messages in msgSet except those it previously A-delivered. More precisely, p A-deliversall the messages in batchp(k) = msgSet�A deliveredp, and it does so in some deterministic59



Algorithm for process p:Initialization:R delivered := ;A delivered := ;k := 0To execute broadcast(A,m): f Task 1 gbroadcast(R,m)deliver(A,�) occurs as follows:upon deliver(R,m) do f Task 2 gR delivered := R delivered[ fmgdo forever f Task 3 gA undelivered := R delivered�A deliveredif A undelivered 6= ; thenk := k + 1propose(k; A undelivered)wait for decide(k;msgSet)batch(k) := msgSet�A deliveredA-deliver all messages in batch(k) in some deterministic orderA delivered := A delivered[ batch(k)Figure 14: Transforming Consensus and Reliable Broadcast into Atomic Broadcast
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order that was agreed a priori by all processes, e.g., in lexicographical order.This transformation assumes that the given Reliable Broadcast algorithm satis�es Uni-form Integrity, and that only crash failures occur. On the other hand, it makes no assump-tions on the type or synchrony of the communication network, and it tolerates any numberof crash failures.The following sequence of lemmata show that the transformation in Figure 14 resultsin an algorithm that satis�es all the properties of Atomic Broadcast.Lemma 1 For any two correct processes p and q, and any message m, if m 2 R deliveredpthen eventually m 2 R deliveredq.Proof: If m 2 R deliveredp then p R-delivered m (in Task 2). Since p is correct, byAgreement of Reliable Broadcast q eventually R-deliversm, and insertsm into R deliveredq.2Lemma 2 For all correct processes p and all k � 1:1. batchp(k) is a set of messages.2. p does not A-deliver the messages in batchp(k+1) unless it has previously A-deliveredthose in batchp(k).Proof: Let v be p's decision value of the kth execution of Consensus. By Integrity ofConsensus, some process must have proposed v. By the algorithm, v is a set of messages.Part (1) of the lemma follows from the observation that batchp(k) = v�A deliveredp, andA deliveredp is also a set of messages. Part (2) of the lemma is obvious from Task 3. 2Lemma 3 For any two correct processes p and q, and all k � 1:1. If p executes propose(k;�), then q eventually executes propose(k;�).2. If p A-delivers messages in batchp(k), then q eventually A-delivers messages in batchq(k),and batchp(k) = batchq(k).Proof: The proof is by simultaneous induction on (1) and (2). For k = 1, we �rstshow that if p executes propose(1;�), then q eventually executes propose(1;�). When pexecutes propose(1;�), R deliveredp must contain some message m. By Lemma 1, m iseventually in R deliveredq. Since A deliveredq is initially empty, eventually R deliveredq�A deliveredq 6= ;. Thus, q eventually executes Task 3 and propose(1;�).We now show that if p A-delivers the messages in batchp(1), then q eventually A-deliversthe messages in batchq(1), and batchp(1) = batchq(1). From the algorithm, if p A-deliversmessages in batchp(1), it previously executed propose(1;�). From part (1) of the lemma,all correct processes eventually execute propose(1;�). By Termination of Consensus, every61



correct process eventually executes decide(1;�) exactly once. By Agreement of Consensus,all correct processes execute decide(1; msgSet) with the same msgSet. Since A deliveredpand A deliveredq are initially empty, batchp(1) = batchq(1) = msgSet.Now assume that the lemma holds for all k; 1 � k < l. We �rst show that if p executespropose(l;�), then q eventually executes propose(l;�). When p executes propose(l;�),R deliveredp must contain some message m that is not in A deliverp. Thus, m is not inSl�1k=1 batchp(k). By the induction hypothesis, batchp(k) = batchq(k) for all 1 � k � l � 1.So m is not in Sl�1k=1 batchq(k). Since m is in R deliveredp, by Lemma 1, m is eventuallyin R deliveredq. Thus, there is a time after q A-delivers batchq(l � 1) such that m is inR deliveredq �A deliveredq. So q eventually executes Task 3 and propose(l;�).We now show that if p A-delivers messages in batchp(l), then q A-delivers messagesin batchq(l), and batchp(l) = batchq(l). Since p A-delivers messages in batchp(l), it musthave executed propose(l;�). By part (1) of this lemma, all correct processes eventuallyexecute propose(l;�). By Termination of Consensus, every correct process eventually exe-cutes decide(l;�) exactly once. By Agreement of Consensus, all correct processes executedecide(l;msgSet) with the same msgSet. Note that batchp(l) = msgSet�Sl�1k=1 batchp(k),and batchq(l) = msgSet � Sl�1k=1 batchq(k). By the induction hypothesis, batchp(k) =batchq(k) for all 1 � k � l � 1. Thus batchp(l) = batchq(l). 2Corollary 3 Agreement and Total Order of Atomic Broadcast are satis�ed.Proof: Immediate from Lemmata 2, 3, and the fact that correct processes A-deliver mes-sages in each batch in the same deterministic order. 2Lemma 4 Validity of Atomic Broadcast is satis�ed.Proof: The proof is by contradiction. Suppose some correct process p A-broadcasts mbut never A-delivers m. By Corollary 3, no correct process A-delivers m. By Task 1 ofthe algorithm, p R-broadcasts m. By Validity and Agreement of Reliable Broadcast, everycorrect process q eventually R-delivers m, and inserts m in R deliveredq (Task 2). Sincecorrect processes never A-deliver m, they never insert m in their A delivered set. Thus,for every correct process q, there is a time after which m is permanently in R deliveredq �A deliveredq. By the algorithm and Lemma 3, it is easy to show there is a k1, such that forall l > k1, all correct processes execute propose(l;�), and they do so with sets that alwaysinclude m.Since all faulty processes eventually crash, there is a k2 such that no faulty processexecutes propose(l;�) with l > k2. Let k = maxfk1; k2g. Since all correct processesexecute propose(k;�), by Termination and Agreement of Consensus, all correct processesexecute decide(k;msgSet) with the samemsgSet. By Integrity of Consensus, some processq executed propose(k;msgSet). From our de�nition of k, q is correct and msgSet containsm. Thus all correct processes, including p, A-deliver m | a contradiction that concludesthis proof. 2Lemma 5 Integrity of Atomic Broadcast is satis�ed.62



Proof: We must show that for any message m, every correct process A-delivers m at mostonce, and only if m was A-broadcast by sender(m). Suppose a correct process p A-deliversm. After p A-delivers m, it inserts m in A deliveredp. From the algorithm, it is clear thatp cannot A-deliver m again. Furthermore, since p A-delivers m, it must have previouslyexecuted decide(k;msgSet) for some k and some msgSet that contains m. By Integrityof Consensus, some process q must have executed propose(k;msgSet). So q previouslyR-delivered all the messages in msgSet, including m. By Uniform Integrity of ReliableBroadcast, sender(m) R-broadcast m, and therefore it A-broadcast m. 2Theorem 14 In a system with crash failures, the algorithm in Figure 14 transforms anyalgorithms for Reliable Broadcast and Consensus into an Atomic Broadcast algorithm.Proof: Immediate from Lemmata 4, 5, and Corollary 3. 2From the proof of Lemma 5, it is easy to see that if the given Consensus algorithm satis�esUniform Integrity, the resulting Atomic Broadcast also does so. From Theorems 13 and 14:Corollary 4 Consensus and Atomic Broadcast are equivalent in any system with crashfailures where Reliable Broadcast can be implemented.Theorem 14 does not make any assumption on the type or synchrony of the commu-nication network. Now consider asynchronous point-to-point networks with crash failures.In such systems, Reliable Broadcast can be implemented (see Section 6), and Consensuscan be solved using randomization [CD89] or failure detectors [CT91]. These results andTheorem 14 imply:Corollary 5 In asynchronous point-to-point networks with crash failures, Atomic Broad-cast can be implemented using randomization or failure detectors.Bibliographic NotesFischer, Lynch and Paterson [FLP85] proved the basic result that Consensus is not solv-able deterministically in asynchronous systems. Soon after this result was �rst published,it was shown that Consensus can be solved with randomized algorithms in asynchronoussystems. Such algorithms include [Ben83,Rab83,Bra87], and are surveyed in [CD89]. Un-reliable failure detectors were introduced by Chandra and Toueg in [CT91], who gave Con-sensus algorithms based on failure detectors of varying strength. [CT91] also shows thatReliable Broadcast together with Consensus can be transformed into Atomic Broadcast(Theorem 14). [CHT92] determines the weakest failure detector that can be used to solveConsensus. Ricciardi and Birman consider failure detectors in the context of the groupmembership problem in [RB91].Agreement-like problems that are solvable in asynchronous systems in the presence offailures are described in [DLP+86,ABD+87,BW87,Fek90,Fek93]. [BMZ88] gives a graph-theoretic characterization of the problems that can be solved (deterministically) in asyn-63



chronous systems with one crash failure. Similar results in the context of shared-memorydistributed systems are given by [BG93,HS93,SZ93].8 Terminating Reliable Broadcast8.1 Speci�cationRecall that with Reliable Broadcast any process is allowed to broadcast any message from asetM of possible messages, at any time. In particular, processes have no a priori knowledgeof the impending broadcasts. Thus, as we noted before, if a process p fails immediately afterinvoking the broadcast primitive, the correct processes cannot be required to deliver anymessage, as they were not even aware of p's intention to broadcast.In contrast, in some applications there is a priori knowledge that a particular process,say sender s, is supposed to broadcast a single message in M. For example, a distributedcontrol system may have a temperature sensor process s that is supposed to reliably broad-cast the temperature at a particular time to three monitoring processes. This broadcast isan instance of Terminating Reliable Broadcast for sender s, a type of broadcast that requirescorrect processes to always deliver a message (\from" s) | even if the sender s is faulty and,say, crashes before the broadcast! For this requirement to be satis�able, processes must beallowed to deliver a message that was not actually broadcast by s. Thus, we now allow thedelivery of a special message Fs =2 M stating that the sender s is faulty. By convention, weassume sender(Fs) = s.With Terminating Reliable Broadcast (TRB) for sender s, s can broadcast any messagem 2M, processes can deliver any message m 2 M[ fFsg, and the following hold:� Termination: Every correct process eventually delivers exactly one message.� Validity: If s is correct and broadcasts a message m, then it eventually delivers m.� Agreement: If a correct process delivers a message m, then all correct processes even-tually deliver m.� Integrity: If a correct process delivers a message m then sender(m) = s. Furthermore,if m 6= Fs then m was previously broadcast by s.The reader should verify that the speci�cation of TRB for sender s implies that a correct pro-cess delivers Fs only if s is faulty. Just as with Reliable Broadcast, we can strengthen TRBby requiring it to satisfy Uniform Agreement, or one of the two versions of �-Timeliness.This problem has been studied extensively in the case of arbitrary failures under thename of \Byzantine Agreement" or \Byzantine Generals' Problem". If the sender s is sub-ject to arbitrary failures, the second clause of Integrity, namely the sentence \Furthermore,if m 6= Fs then m was previously broadcast by s", is now ambiguous. To circumvent thisproblem in the usual manner (see Section 3.10), we must reformulate this statement so that64



it applies only to the case that s is correct. In that case, however, the other three propertiesof TRB already determine that correct processes must deliver the message broadcast by s,and only that. Hence, for arbitrary failures, we can simply drop this second clause, andIntegrity reduces to: \If a correct process delivers a message m then sender(m) = s."8.2 Relating Consensus and Terminating Reliable BroadcastIn this section we relate Consensus and Terminating Reliable Broadcast:� In some synchronous point-to-point networks, Consensus is equivalent to TRB. Thisallows us to translate both positive and negative results proven for one problem, tothe other. For example, the transformation from Consensus to TRB is message- andtime-e�cient. In particular, it can convert any constant-time randomized Consen-sus algorithm (such as the one in [FM90]), into a constant-time randomized TRBalgorithm.� In asynchronous systems, these two problems are not equivalent: TRB can be trans-formed to Consensus, but the converse does not hold (Consensus is solvable withrandomization, but TRB is not).8.2.1 Transforming Terminating Reliable Broadcast to ConsensusThe transformation from TRB to Consensus requires the concurrent execution of severalindependent copies of the given TRB algorithm, one for each process as the sender. LetTRB(p) denote the copy of TRB for sender p, and F be the set fFqj for all processes qg.The transformation is shown in Figure 15. To propose a value v (we assume thatv =2 F), a process p uses TRB(p) to broadcast v. When p delivers a value from a processq, it inserts that value into entry V [q] of a vector V that has one entry per process. Onceall the entries of V have been �lled, p decides the �rst non-F value in V (i.e., the �rstcomponent of V whose value is not in F).This transformation makes no assumptions on the type or synchrony of the communi-cation network, and it works with any type and number of benign failures.Theorem 15 The algorithm in Figure 15 transforms any Terminating Reliable Broadcastalgorithm into a Consensus algorithm.Proof: We show that the algorithm that results from the transformation satis�es the prop-erties of Consensus.Termination and Integrity: Consider any correct process p. From the structure of thealgorithm, it is clear that p decides at most once. We now show that p does decide, andthat its decision value was previously proposed by some process. Suppose p proposes, andhence broadcasts, v. By assumption, v =2 F . By Validity of TRB(p), p delivers v. Sincesender(v) = p, it sets V [p] := v. By Termination and Integrity of TRB, p never delivers65



Algorithm for process p:To execute propose(v):broadcast(TRB,v)decide(�) occurs as follows:V := h?;?; : : : ;?icobeginupon deliver(TRB,u) do V [sender(u)] := u// wait for (8q; V [q] 6= ?)decide(�rst non-F value of V )coendFigure 15: Transforming Terminating Reliable Broadcast into Consensusany other message u such that sender(u) = p. Therefore p never sets V [p] to a value udi�erent than v.By Termination of TRB(q) for each process q, p eventually delivers exactly one messagefrom q. Thus, p's execution of the wait for statement eventually terminates, and at thattime V contains at least one non-F value, namely V [p] = v. Therefore, p eventually decidesa non-F value u, where u = V [s] for some process s. From the algorithm, p previouslydelivered u and sender(u) = s. By Integrity of TRB, the delivery of u occurred during theexecution of TRB(s). By Integrity of TRB(s), u was previously broadcast by s. Thus, uwas previously proposed by s.Agreement: By Agreement of TRB(q) for each process q, all correct processes have the samevector V when they use it to decide. Thus, they all decide the same value. 28.2.2 Transforming Consensus into Terminating Reliable BroadcastIn Figure 16 we show how to transform any Consensus algorithm into a TRB algorithm forany given sender s. In contrast to the converse transformation, this one requires severalassumptions: The system is a synchronous point-to-point network, it is completely con-nected with no link failures, and faulty processes are subject to send-omission failures only.Furthermore, we assume that processes have a priori knowledge of the time t0 at which thesender s is supposed to broadcast, and have perfect real time clocks (i.e., Cp(t) = t for allprocesses p). Recall that in a synchronous point-to-point network there is a known upperbound � on message transmission time over a link (Condition 3 in Section 6.7).To broadcast a message m, s sends m to every process at the designated time t0. Attime t0+�, if a process previously received a message from s then it uses the given Consensusalgorithm to propose that message, otherwise it proposes Fs. To deliver a message, a process66



waits for the decision value of the Consensus algorithm and delivers it.broadcast(TRB,m) occurs as follows:The sender s at time t0:send(m) to all processes f m 6= Fs gEvery process at time t0 + �:if receive(m) from s by time t0 + �then propose(m)else propose(Fs)deliver(TRB,�) occurs as follows:Every process:upon decide(v) do f v is a message m or Fs gdeliver(TRB,v)Figure 16: Transforming Consensus into Terminating Reliable Broadcast for Sender sTheorem 16 Consider a synchronous point-to-point network that satis�es the assumptionslisted above. The algorithm in Figure 16 transforms any Consensus algorithm into a Ter-minating Reliable Broadcast algorithm for any given sender s.The proof is omitted.9 Multicast Speci�cationsSo far we have assumed that each broadcast is targeted to all the processes in the system.In some applications, the system is con�gured as a collection of (possibly overlapping)groups, each consisting of a subset of processes. A multicast is a broadcast that is targetedexclusively to the members of some particular group. We shall assume that groups are static,and that each process knows to which groups it belongs and the members of each of thesegroups. We shall not address the question of how these groups are formed, or how processesjoin or leave them. This is the group membership problem discussed in [Cri90a,RB91], andis outside the scope of this paper.Formally, a group G is a name for a subset of the processes in the system. We say thatprocess p is in G (or p is a member of G), and write p 2 G, when p is in the subset ofprocesses named G. Since each message m is multicast to a particular group, it is taggedwith the name of that group, i.e., we assume that m has a �eld denoted group(m).Multicasts are de�ned in terms of two primitives, multicast and deliver. When aprocess p invokes multicast with a message m as a parameter, we say that p multicasts m67



(to group(m)). We assume thatm is taken from a set a setM of possible messages. When aprocess q returns from the execution of deliver(m) with message m as the returned value,we say that q delivers m (in group(m)). As with broadcasts, our de�nitions of multicastsassume benign failures. The modi�cations for arbitrary failures are similar to those givenin Section 3.10 for broadcasts, and are omitted.9.1 Reliable MulticastReliable Multicast is essentially the Reliable Broadcast problem adapted to groups. It is thebasis for all the types of multicasts that we consider. Informally, Reliable Multicast requiresthat all correct processes in each group G deliver the same set of messages, that this setinclude all the messages multicast to G by correct processes, and that no spurious messagesare ever delivered. More precisely, Reliable Multicast is de�ned in terms of multicast anddeliver primitives that satisfy the following:� Validity: If a correct process multicasts a message m, then some correct process ingroup(m) eventually delivers m or no process in that group is correct.� Agreement: If a correct process delivers a message m, then all correct processes ingroup(m) eventually deliver m.� Integrity: For any message m, every correct process p delivers m at most once, andonly if p is in group(m) and m was previously multicast by sender(m).The reader should verify that Reliable Multicast is a generalization of Reliable Broadcast:if group(m) is the set of all processes then the above speci�cation is equivalent to thespeci�cation of Reliable Broadcast given in Section 3. The key di�erence from ReliableBroadcast is that only processes in group(m) can deliver m.In some applications processes must be able to multicast messages to groups to whichthey do not belong. For example, consider a client-server application where the server isreplicated for fault-tolerance. In this case, a client broadcasting a request to the distributedserver is not a member of the group of processes that implement the service. Thus, thespeci�cation of Reliable Multicast does not require that the sender of a message m be amember of group(m).199.2 FIFO MulticastInformally, FIFO Multicast is a Reliable Multicast in which a process p delivers a messagem only if it has already delivered all messages previously multicast by the sender of m, withthe exception of those targeted to groups of which p is not a member. More precisely, FIFOMulticast is a Reliable Multicast that satis�es the following requirement:19This is why the formulation of Validity for multicasts is di�erent from the one for broadcasts: We canno longer require that the sender of a message deliver its own message.68



� Global FIFO Order: If a process multicasts a messagem before it multicasts a messagem0, then no correct process in group(m) delivers m0 unless it has previously deliveredm.In some applications, a weaker order requirement is adequate. It stipulates that FIFOOrder applies only to messages that are multicast to the same group. More precisely,� Local FIFO Order: If a process multicasts a message m before it multicasts a messagem0 such that group(m0) = group(m), then no correct process delivers m0 unless it haspreviously delivered m.To see the di�erence between the two FIFO Order properties, consider the followingexample. Suppose a process p multicasts a message m to group G = fp; q; rg and thenit multicasts a message m0 to group G0 = fp; q; r0g. Suppose, further, that there are nofailures. Since q is in both groups, it must deliver both messages. In the case of GlobalFIFO Order, q must deliver m before m0. In the case of Local FIFO Order, since m and m0were multicast to di�erent groups, q is not constrained as to the order in which it deliversthem.If the application is such that a process p delivering a message m can properly in-terpret m if it has already delivered every message that sender(m) previously multicastto group(m), then Local FIFO Order can be used. In general, however, it may be thatto properly understand m, p must have already delivered every message that sender(m)previously multicast to any group of which p is a member. In this case Global FIFO Ordershould be used.9.3 Causal MulticastAs we strengthened FIFO Broadcast to obtain Causal Broadcast, we can strengthen FIFOMulticast to obtain Causal Multicast. To do so, we must �rst de�ne the causal precedenceinduced by the multicasts and deliveries of messages. This is just the ! relation de�ned inSection 2.7 except that the word \broadcast" is substituted with \multicast" in Clause 2.We can now de�ne Causal Multicast to be a Reliable Multicast that satis�es:� Global Causal Order: If the multicast of a messagem causally precedes the multicast ofa messagem0, then no correct process in group(m) delivers m0 unless it has previouslydelivered m.In the above de�nition, the causal precedence relation crosses group boundaries: itmay relate multicasts and deliveries that \occur" in di�erent groups (hence the name GlobalCausal Order). For example, suppose there are two groups G = fp; qg and G0 = fp; q; rg,and consider the following sequence of events: (a) p multicasts m to G; (b) p multicastsm00 to G0; (c) r delivers m00 in G0; (d) r multicasts m0 to G0. By de�nition, the multicastof m causally precedes the multicast of m0. Since q is in both G and G0, Global Causal69



Order requires that q deliver m before m0, even though these two messages were multicastto di�erent groups. Similarly, it requires that q deliver m00 before m0.Local Causal Order, a weaker type of Causal Order that does not cross group bound-aries, is de�ned as follows. Given any group G, the causal precedence relation induced bythe multicasts and deliveries of messages m such that group(m) = G is called causal prece-dence in group G. Note that this relation ignores the multicasts and deliveries of messagesthat are not in group G. We now de�ne Local Causal Order as follows:� Local Causal Order: If the multicast of a messagem causally precedes in group(m) themulticast of a message m0, then no correct process delivers m0 unless it has previouslydelivered m.In the previous example, group(m) = G 6= group(m0) = G0. So, the multicast ofm does notcausally precede in group(m) the multicast of m0, and, in contrast to Global Causal Order,Local Causal Order allows q to deliver m0 andm in any order. However, the multicast ofm00causally precedes in G0 the multicast of m0, so Local Causal Order requires that q deliverm00 before m0.The following example shows that even if the multicast of m causally precedes themulticast of m0 and group(m) = group(m0), it is still possible that the multicast of m doesnot causally precede in group(m) the multicast of a m0. Consider groups G = fp; qg andG0 = fp; rg, and the following sequence of events: (a) p multicasts m to G; (b) p multicastsm00 to G0; (c) r delivers m00 in G0; (d) r multicasts m0 to G (even though r does not belongto G). By de�nition, the multicast of m causally precedes the multicast of m0. Since bothmessages are multicast to a group of which q is a member, Global Causal Order requiresthat q deliver m before m0. However, even though m and m0 were multicast to the samegroup G, the multicast of m does not causally precede the multicast of m0 in G, since thecausality is established via the multicast and delivery of m00, a message that is not in G.So, in contrast to Global Causal Order, Local Causal Order allows q to deliver m0 beforem.9.4 Atomic MulticastWe consider three types of Atomic Multicast that di�er by the strength of their messagedelivery order requirement.9.4.1 Local Atomic MulticastA Local Atomic Multicast is a Reliable Multicast that satis�es the following property:� Local Total Order: If correct processes p and q both deliver messages m and m0 andgroup(m) = group(m0), then p delivers m before m0 if and only if q delivers m beforem0. 70



This is the total order property guaranteed by the Atomic Multicast primitive that the Isissystem provides [BJ87,BCJ+90].9.4.2 Pairwise Atomic MulticastLocal Total Order allows two correct processes to disagree on the order in which theydeliver messages. For example, consider two groups G = fp; q; rg and G0 = fp; q; r0g.Suppose r multicasts m to G, and r0 multicasts m0 to G0. Local Total Order allows p andq to deliver the two messages in di�erent order. This disagreement, which is undesirablein some applications, is prevented by Pairwise Atomic Multicast, a Reliable Multicast thatsatis�es the following property:� Pairwise Total Order: If correct processes p and q both deliver messages m and m0,then p delivers m before m0 if and only if q delivers m before m0.This is the total order requirement of several Atomic Multicasts that have appeared in theliterature (e.g., [GMS91]).9.4.3 Global Atomic MulticastPairwise Total Order is not the strongest possible message ordering requirement for AtomicMulticasts. In particular, it allows cycles in message delivery order. For example, considerthree groups, G1 = fp; qg, G2 = fq; rg and G3 = fr; pg. Note that the intersection ofany two of these groups consists of exactly one process. The messages m1, m2 and m3 aremulticast to groups G1, G2 and G3, respectively. Pairwise Total Order allows process p todeliver m3 before m1, q to deliver m1 before m2, and r to deliver m2 before m3. This cycleof deliveries is counter to the intuition that Atomic Multicast must provide the abstractionof indivisible, i.e., \simultaneous", deliveries. Moreover, Pairwise Total Order is not strongenough for some applications, as we illustrate with a simple example below.Consider the Dining Philosophers' Problem with philosophers G1, G2 and G3, and forksp, q and r. G1 needs forks p and q, G2 needs forks q and r, and G3 needs forks r and p.Each philosopher Gi competes for her forks by broadcasting mi to her forks. Gi wins afork if her message is the �rst to be delivered at that fork. If the philosophers use PairwiseAtomic Multicast to broadcast their messages, and a cycle of deliveries occurs as in thescenario described above, each philosopher wins exactly one fork, and they all starve.Global Atomic Multicast is a type of Atomic Multicast that precludes such cycles.Consider the set of messages delivered by correct processes. We de�ne the relation < onthis set as follows: m < m0 if and only if any correct process deliversm andm0, in that order.A Global Atomic Multicast is a Reliable Multicast that satis�es the following property:� Global Total Order: The relation < is acyclic.71



Since < is acyclic, the set of messages delivered by correct processes can be totally orderedin a way that is consistent with <, i.e., with the order of message deliveries at each correctprocess.Global Total Order is strictly stronger than Pairwise Total Order which is strictlystronger than Local Total Order. However, none of these three properties guarantees FIFOOrder. In principle, we can de�ne six types of FIFO Atomic Multicasts by selecting oneof the two FIFO Orders (Local or Global) and any one of the three Total Orders above.Of these, the FIFO Atomic Multicast that requires the Local versions of FIFO Order andTotal Order, and the one requiring the Global versions of these two properties, seem themost sensible. The others are of questionable value.Similarly, we can de�ne six types of Causal Atomic Multicasts, by combining any oneof the two types of Causal Order with one of the three Total Orders above. As before, ofthese six combinations two seem particularly useful: the one combining the Local versionsof the order properties, and the one combining the Global versions.9.5 Timeliness and UniformityAs with broadcasts, we can impose a bound on the latency of multicasts in terms of localor real time. More precisely, we can require one of these two properties:� Local-Time �G-Timeliness: For each group G, there is a known constant �G suchthat no correct process p delivers a message m after local time ts(m) + �G on p'sclock.� Real-Time �-Timeliness: For each group G, there is a known constant �G such thatif a message m is broadcast at real time t, then no correct process delivers m afterreal time t+ �G.Note that the bound �G on the latency now depends on the group G. A multicast thatsatis�es any of the above properties is called a Timed Multicast.As with broadcast, we can also de�ne the Uniform counterparts for the Agreement,Integrity, Order, and �-Timeliness properties of multicasts. The formal de�nitions arestraightforward and are omitted.A Appendix | Model of Point-to-Point NetworksIn this appendix we describe our model of point-to-point networks in more detail than inSections 2 and 6. The overall plan is as follows: First we describe the correct behavior ofprocesses and links. We then de�ne di�erent types of (process and link) failures as violationsof some of the properties that describe correct behavior. In the case of synchronous systems,where correct behavior includes the timely occurrence of actions, correctness can be violatedin two ways: actions that are supposed to take place never occur (omission failures), or theyoccur late (performance and clock failures). 72



A.1 Networks with No FailuresA point-to-point network can be modeled as a directed graph, with nodes representing pro-cesses, and edges representing communication links between processes. In such a network,any pair of processes that are connected by a link can communicate with each other by send-ing and receiving messages, as described below. In this section we assume that processesand links do not fail.Properties of Processes:Each process is capable of executing certain operations, such as the writing of a localvariable, or the sending or receipt of a message. The execution of an operation by a processp is a step of p. We do not assume that the steps are atomic; a step consists of a sequenceof atomic events, delimited by a start and an end event. (The fact that steps are notatomic will permit us, in the next section, to model failures that interrupt the execution ofan operation in the middle.) Hence, the execution of a process p is modeled as a sequenceof events grouped into steps such that the start event of each step (except the �rst one)immediately follows the end event of the previous step. If this sequence includes the startevent of a step, we say that p has started that step; if it includes the end event of a step,we say that p completed that step. Associated with each process p is an automaton whosetransition relation describes the legal sequences of events (and thus of steps) for p. Weassume that:a. Every process completes an in�nite number of steps.This implies that every process eventually completes every step that it starts.Properties of send and receive:Let p and q be any two processes connected by a link from p to q. Associated with thislink are the communication primitives send and receive, which are among the operationsthat can be executed by p and q, respectively. The operation send takes a message as aparameter; receive returns a message. The execution of the send primitive with parameterm is a step denoted send(m); the execution of the receive primitive with return value mis a step denoted receive(m). We say that p sends m to q if p starts the step send(m); wesay that q receives m if q completes the step receive(m).Associated with the link from p to q, p has an outgoing message bu�er, denotedomb(p; q), and q has an incoming message bu�er, denoted imb(p; q). Informally, when psends a message m to q, p inserts m in omb(p; q), the link transports m from omb(p; q) toimb(p; q), and q receives m from imb(p; q). More precisely, the send and receive primitivesassociated with the link from p to q satisfy:20b. If p completes the sending of m to q, then m is eventually inserted into omb(p; q).c. If m is inserted into omb(p; q), then m is eventually inserted into imb(p; q).20To simplify the formulation of these properties, we assume that each message sent from p to q is unique.This can be easily enforced by using link sequence numbers.73



d. If m is inserted into imb(p; q), then q eventually receives m.These three properties imply:� If p sends m to q then q eventually receives m.21We also assume that:b0. m is inserted into omb(p; q) at most once, and only if p sends m to q.c0. m is inserted into imb(p; q) at most once, and only if m is in omb(p; q).d0. q receives m at most once, and only if m is in imb(p; q).Properties (b0){(d0) imply:� Uniform Integrity: For any message m, q receives m at most once from p, and only ifp previously sent m to q.To simplify the exposition and the correctness proofs of our algorithms for point-to-pointnetworks, we found it convenient to allow each process to send a message to itself. Thisis only a �ctitious device, and a message \sent" this way does not really go through anybu�er or link. We postulate the following property regarding such messages:� If p sends m to itself, then p receives m instantaneously.The preceding de�nition of a point-to-point network assumes that no failures occur. Inthe next section we consider some of the failures that can a�ect processes and links. Thesefailures will be de�ned as violations of Properties (a){(d). We will not allow the violationof Properties (b0){(d0); thus, Uniform Integrity holds even in networks with failures. Wewill also not allow the violation of the postulated property regarding messages sent by aprocess to itself.A.2 Networks with Omission FailuresFailures can be de�ned as deviations from correct behavior. In networks with omissionfailures, processes and links may violate Properties (a){(d).Violating Property (a) of Processes:To model the violation of Property (a), we introduce a special event called crash.Every process p can execute a crash at any time22, and after doing so it stops executing21Note that messages are not necessarily received in the order in which they are sent.22In particular, a crash event may occur in the middle of a step, i.e., between the start and the endevents of a step. This models a crash that interrupts the execution of a non-atomic operation in the middle.74



further events. This is modeled by the addition of a new terminal state to the automatonassociated with p, and a transition from every other state of p to that terminal state. Theevent associated with such a transition is de�ned as a crash. We say that p commits acrash failure if it executes a crash event.Since no event can follow crash, a process that crashes can execute only a �nite numberof events, and therefore completes only a �nite number of steps. Thus, a process thatcrashes violates Property (a). We assume, however, that only processes that crash violatethat property. That is, a process that does not crash completes an in�nite number of steps.Violating Properties (b), (c), and (d) of send and receive:. Process p commits a send-omission failure on m if p completes the sending of m to qbut m is never inserted into omb(p; q) (violation of Property (b)).. The link from p to q commits an omission failure on m if m is inserted into omb(p; q)but m is never inserted into imb(p; q) (violation of Property (c)).. Process q commits a receive-omission failure on m if m is inserted into imb(p; q) butq never receives m and does not crash (violation of Property (d)).If a process or a link commits a failure, we say that it is faulty ; otherwise it is correct.Recall that in networks with no failures, if p sends m to q then q eventually receives m.The properties of point-to-point networks with omission failures imply:� Validity: If p sends m to q and q does not receive m, then one of the following holds:1. p does not complete the sending of m, or2. p commits a send-omission failure on m, or3. the link from p to q commits an omission failure on m, or4. q commits a receive-omission failure on m, or5. q crashes.This formulation of Validity implies the simpler one stated in Section 6.1. It also impliesthe Strong Validity property given in Section 6.5 for systems where send-omission failuresdo not occur.A.3 Synchronous Networks with No FailuresConsider the sequence of events executed by a process. Since events are atomic, we canassociate with each the real time at which it occurred. We say that p sends m at time t(respectively, q receives m at time t), if the start event of send(m) (respectively, the endevent of receive(m)) occurs at time t. 75



A point-to-point network with no failures is synchronous if, in addition to the propertiesof Section A.1, all processes and links satisfy Properties (e){(i) below (in all our de�nitionsfor synchronous networks, the word \time" always refers to real time):Synchrony Properties of Processes:e. � -Local Step: There is a known constant � � 0 such that no process completes a steplater than � time units of when it started that step.f. �-Clock Drift: There is a known constant � � 0 such that every process p has a localclock whose drift with respect to time is bounded by �. That is, if Cp(t) denotes thevalue of the local clock of p at time t, then for all t > t0:11 + � � Cp(t)� Cp(t0)t� t0 � 1 + �Synchrony Properties of send and receive:There are known constants �1, �2, and �3 � 0, such that for any processes p and q connectedby a link from p to q:g. If p sends m to q at time t, then m is not inserted into omb(p; q) after time t + �1.h. If m is inserted into omb(p; q) at time t, then m is not inserted into imb(p; q) aftertime t + �2.i. If m is inserted into imb(p; q) at time t, then q does not receive m after time t + �3.Let � = �1 + �2 + �3. The properties of synchronous point-to-point networks imply:� �-Timeliness: There is a known constant � � 0 such that for any processes p and qconnected by a link, if p sends m to q at time t then q does not receive m after timet+ �.A.4 Synchronous Networks with Omission FailuresIn synchronous networks with omission failures, all processes and links satisfy all the syn-chrony properties (i.e., (e){(i)), but some may violate Properties (a){(d). The synchronyproperties allow us to rede�ne crash and omission failures in a way that includes informationabout the time when each failure occurred.Violating Property (a) of Processes:As in Section A.2, we introduce a crash event which can be executed by any processp at any time, but after which p may not execute any event. We say that p crashes at timet if it executes a crash event at time t.Violating Properties (b), (c), and (d) of send and receive:76



. Process p commits a send-omission failure on m during [t; t+ �1] if p sends m to q attime t, completes the sending of m, but m is never inserted into omb(p; q) (violationof Property (b) for a message m sent at time t).. The link from p to q commits an omission failure on m during [t; t+�2] if m is insertedinto omb(p; q) at time t butm is never inserted into imb(p; q) (violation of Property (c)for a message m inserted into omb(p; q) at time t).. Process q commits a receive-omission failure on m during [t; t + �3] if m is insertedinto imb(p; q) at time t but q never receives m and does not crash by time t + �3(violation of Property (d) for a message m inserted into imb(p; q) at time t).A.5 Synchronous Networks with Clock and Performance FailuresIn synchronous networks with clock and performance failures, processes and links mayviolate the synchrony properties (e), (f), (g), (h), and (i).Violating Synchrony Properties (e) and (f) of Processes:. Process p commits a performance failure if p completes a step later than � time unitsof when it started that step (violation of Property (e)).. Process p commits a clock failure if during some time interval the local clock Cp of pdrifts more than � with respect to real time (violation of Property (f)).Violating Synchrony Properties (g), (h), and (i) of send and receive:. Process p commits a performance failure on the sending of m if p sends m to q at timet and m is inserted into omb(p; q) after time t+ �1 (violation of Property (g)).. The link from p to q commits a performance failure onm ifm is inserted into omb(p; q)at time t and m is inserted into imb(p; q) after time t+ �2 (violation of Property (h)).. Process q commits a performance failure on the receipt of m if m is inserted intoimb(p; q) at time t and q receives m after time t + �3 (violation of Property (i)).A.6 Classi�cation of Failures and TerminologyIn the preceding sections, we have de�ned crash, send-omission, receive-omission failuresof processes, and omission failures of links. For synchronous systems, we also de�nedperformance and clock failures of processes, and performance failures of links.It is convenient to group failures into two classes that include both process and linkfailures:� omission failures consist of crash, send-omission, and receive-omission failures of pro-cesses, as well as link omission failures.77
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