
End-host multicast communication using switch-trees protocols

David A. Helder Sugih Jamin
University of Michigan�

dhelder, jamin � @eecs.umich.edu

Abstract— Switch-trees are peer-to-peer algorithms for building
and improving end-host multicast trees. Nodes switch parents to
reduce tree cost or lower source-member latency. A node switches
parents by disconnecting from its parent and reconnecting to a new
parent. If the new parent is well chosen, the performance of the
tree is improved overall. We look at the performance of switch-trees
using the following metrics: cost, latency, link stress and number of
switches. Simulations show switch-tree algorithms can build trees of
hundreds of nodes at less than twice the optimal cost. In addition,
we describe our implementation of a switch-tree protocol. Experi-
ments show that our protocol builds low-cost trees in practice.

Keywords: end-host multicast, peer-to-peer

I. INTRODUCTION

Many peer-to-peer (P2P) systems and network applica-
tions require the ability to send data to multiple destina-
tions. For example, a multimedia conferencing applica-
tion sends audio and video data from one participant to
the others. A network game sends position updates and
user actions between players. A P2P file sharing program
sends search queries from one user to others. As these
sort of applications become more and more popular, the
ability to efficiently send data to multiple destinations is
essential.

Multicast is a network technology that allows a host to
efficiently send data to a group of other hosts. IP Multi-
cast is an implementation of multicast for IPv4. IP Mul-
ticast uses special addresses to which the sources send
data and which the receivers join to receive the sent data.
Routers maintain group state and perform the necessary
routing. However, for technical and administrative rea-
sons, IP Multicast has not been globally deployed on the
Internet.

Another approach to multicast is end-host multicast
(EM). The idea is that hosts in the multicast group con-
nect to each other to form a virtual network (i.e., a con-
nected graph). The hosts route multicast data themselves
over the virtual network so that it reaches all members.
EM does not require support from routers beyond regular
unicast forwarding. Examples of EM include Overcast
[7], Narada [1], ALMI [10], and Yoid [2].

Figure 1 shows an example end-host multicast graph
(solid lines) on top a physical network (dotted lines). In
this example, nodes � , � , � , � , and � (but not � ) are
members of the multicast group and connect over the
physical network to form a virtual network. Consider how
node � routes multicast data. When node � receives data
from node � , it unicasts it to nodes � and � . When node

� sends data (i.e., � is the originator), it unicasts it to � ,

A

B

C D

E

Physical
network

End-host
network

s

Fig. 1. Network and end-host multicast tree

� , and � .
End-host multicast has several problems: it will likely

use more network resources than IP Multicast (e.g., in
the previous example, three multicast packets would cross
node � in EM while in IP multicast only one would), it
may not scale well beyond a few hundred users, and it re-
quires a bootstrap process for members to join the group.
However, it can be easily and immediately deployed since
it can be implemented at the user level. EM is suitable
for many applications that require small multicast groups
(tens to hundreds of members) such as video conferenc-
ing, network games, and P2P file sharing. Until IP multi-
cast is widely deployed, EM can be used to provide mul-
ticast service.

Multimedia conferencing applications and network
games require low latency delivery. Data sent by a par-
ticipant should reach all other participants as soon as pos-
sible. Ideally, the EM topology is a shortest-path-first
(SPF) tree, which has the lowest possible source-member
latency. P2P file sharing applications do not require low
latency so may use low cost groups. Low cost groups at-
tempt to use as few network resources as possible. Ideally,
the topology is a minimum-spanning tree (MST), which
has the lowest possible cost. In Section II, we show build-
ing SPF trees and MSTs for EM is impractical because of
bandwidth constraints and protocol complexity.

In Section III, we present practical algorithms for
building and improving EM trees. We call these algo-
rithms switch-trees because the nodes switch parents to
reduce tree cost or lower source-member latency. Par-
ent switching is where nodes disconnect from their parent
and reconnect to a new parent. If the new parent is well
chosen, the tree can have low cost, like an MST, or low
source-member latency, like an SPF, while obeying any
bandwidth constraints. We present four parent-switching
algorithms of varying complexity and performance. Sim-



20

40

60

80

100

120

140

160

180

200

220

100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Members

Fig. 2. MST maximum degree on various topologies

ulation results are presented in Section IV. In Section V,
we present the Banana Tree Protocol (BTP), a switch-tree
protocol we designed and implemented. Experimental re-
sults show BTP can create low-cost trees for small groups.

II. PROBLEMS WITH OPTIMAL SOLUTIONS

An end-host multicast node resides on a host on a net-
work. A node’s degree is the number of virtual links
between it and other nodes in the EM tree. Each host
has at least one interface, a physical link between it and
another host on the network. Degree affects link stress,
the number of virtual links that map onto an interface. If
link stress is high, there is greater contention for an inter-
face and congestion and packet loss are more likely. Link
stress should be minimized to avoid poor performance. To
minimize link stress, we limit the maximum degree each
EM node can have.

Constructing shortest-path-first (SPF) trees and mini-
mum-spanning trees (MSTs) is impractical because of de-
gree constraints. A SPF tree rooted at the source would
provide the theoretical best performance. The shortest
path between two hosts is a direct unicast connection,
hence in this tree all non-source hosts will be directly con-
nected to the source. Practically, any given host may not
have the bandwidth to support more than tens of concur-
rent connections. A node in an MST can have high de-
gree also, as shown in Figure 2 (experiment details are
described in Section IV). Each point plotted is the me-
dian maximum node degree of 100 MSTs. Each MST
was built over a complete graph connecting nodes ran-
domly selected from a topology of 8000 hosts. Even with
small multicast groups, at least one node was connected
to many nodes.

Constructing a SPF tree is simple — members can sim-
ply connect to the root. Constructing a MST, however,
is impractical for a large multicast group due to proto-
col complexity. All inter-node distances must be known
in advance to build the MST. Stoica et al. [3] describes
a completely distributed algorithm for building an MST,
but construction takes ������� time where � is the number
of nodes. In addition, MSTs cannot be incrementally up-
dated. If a new node joins or an existing member leaves,
the tree must be rebuilt.

III. SWITCH-TREES

Switch-trees are practical algorithms for building and
improving EM trees while obeying any given degree lim-
its. Our strategy is to perform local transformations to
improve overall tree performance. A complex algorithm
that allows a wide range of tree transformations produces
a near-optimal tree, but we show that our relatively simple
algorithms produce trees with good performance.

Each tree has a single root. If there is a single multi-
cast source, the source is the root. Otherwise, the root is
arbitrarily chosen. In practice, the root may be the mem-
ber that initially created the group. The root determines a
parent-child relationship between nodes: the root has no
parent and a non-root node’s parent is the first node on
the path to the root through the tree. We do not specify
a method for a node to join or leave the tree. In our pro-
tocol, described in section V, new nodes initially connect
to the root. When a node leaves the group its children
reconnect to the root.

We call our algorithms switch-trees because nodes
switch parents to reduce tree cost or latency. That is,
nodes disconnect from their parent and reconnect to a new
parent. Theoretically, a node can switch to any node that
is not a descendant at any time. If a node were to switch to
a descendant, it would create both a partition and a loop.
In addition to forbidding switches to descendants, we for-
bid switches that would cause a node to exceed the degree
limit.

We now define a family of switch-tree algorithms
which allow switching to different sets of nodes. Each
algorithm subsumes the previous algorithm. The switch-
trees are illustrated in Figure 3. In the figure, the gray
node is the node performing a switch and the black nodes
are the nodes that it can switch to (i.e., make its par-
ent). In switch-sibling a node can switch to any of its
siblings. Two nodes are siblings if they share the same
parent. In this algorithm, nodes move away from the root
as they switch to nearby siblings. In switch-one-hop a
node can switch to any node within one hop of its par-
ent, namely its grandparent and any of its siblings. In
switch-two-hop a node can switch to any node within two
hops of its parent, except to one of its own children. In
terms of relationships, this includes its grandparent, great-
grandparent, uncles, siblings, and nephews. In switch-any
a node can switch to any node that is not its descendant.

By parent switching, switch-tree algorithms can build
a tree that has either low tree cost, like an MST, or low
source-member latency, like an SPF, while observing any
degree constraints. To reduce tree cost, a node attempts
to switch to the closest node possible, where closeness is
determined by the round-trip time. Consider the bottom
right tree in Figure 4. Node � is the root, nodes � and

� are initially its children, and tree cost is 6. If node �
switches from node � to node � (bottom left tree), then



switch-sibling switch-one-hop switch-two-hop switch-any

Fig. 3. Switch trees. The gray node can make any of the black nodes its new parent.

A

B C
1

3

Low cost Low latency

3

A

B C
1

33

A

B C
1

33

Fig. 4. Switching example

tree cost is reduced to 4, though the latency from � to �
increases from 3 to 4.

To lower source-member latency, a node attempts to
switch to a nearby node that already has a low latency to
the root. Specifically, a node attempts to find a potential
parent through which the node’s distance to the root is
minimized. We call this distance the root-path latency.
Consider the bottom left tree in Figure 4. Node � is the
root, node � is � ’s child, node � is � ’s child, and the
latency from � to � is 4. If node � switches from node

� to node � (bottom right tree), then the latency from �
to � is reduced to 3, though the tree cost increases from
4 to 6.

If in an attempt to lower cost (or latency), a node finds
that two potential parents are equally close (or have equal
root-path latencies), the tie is broken arbitrarily. To avoid
oscillation, a node will not switch if a potential parent is
equally as close (or has an equal root-path latency) as its
current parent. Ultimately, if the network remains sta-
ble and distances do not change, no node will be able to
switch to a better parent and the tree will reach a fix-point.

While we are primarily concerned with tree cost and
latency, the metrics most visible to the end user, we also
aim to reduce protocol overhead and minimize impact
on the network. Protocol overhead is measured by total
switches. Network impact is measured by maximum link
stress, previously discussed in Section II.

Total switches is the total number of switches made by
all nodes over the lifetime of a group. We would like to
minimize total switches for the following reasons. First,
a switch incurs some overhead in processing and band-
width. Second, a switch can cause a shift in network traf-
fic if the added connection adds traffic through an inter-
face or the removed connection removes traffic. Other
hosts using the interface must adapt to any change (e.g.,
a loss in throughput). Third, multicast data can be lost
or duplicated during a switch. A switching node may not
receive a packet sent in the period between the time it re-
moves the link to its old parent and the time it adds a link
to its new parent. Alternately, if it adds a link to its new
parent before removing the link to its old parent, it may
receive a duplicate packet. While the application could
handle duplicated data or recover from loss, it adds addi-
tional processing and communication overhead.

IV. EXPERIMENTS

In this section, we evaluate switch-trees through simu-
lation. We developed an end-host multicast tree simulator
that simulates the building and improvement of various
trees and computes statistics for each tree. We find that
the switch-one-hop and switch-two-hop algorithms best
balance our performance metrics.

Trees are built over simulated Internets generated us-
ing the topology generator Inet [8]. The simulator was
run on three different Inet-generated networks. Each run
produced qualitatively similar results; for legibility of the
graphs, we present results from only one topology. The
network we use has 8000 hosts. The host with the most
interfaces has 1502 interfaces. Inet embeds the network
in a plane of 10,000 by 10,000 distance units. The tree
cost of a link is the Euclidean distance between the end
hosts.

In our simulations, we vary the number of group mem-
bers from 100 to 1000, stepping by 100 members. For
each group size, we run 100 tree building and transfor-
mation simulations. In each simulation, a group and its
root are selected randomly. Time is divided into discrete
rounds. At the end of each round, each node is allowed to
switch once. If no nodes switch, the tree is in equilibrium.
Nodes are added incrementally. At the beginning of each
round, a single node is added if there are more nodes to
be added and the tree is in equilibrium. Each added node
is initially connected to the root.

In the first experiment, we show that the switch-tree
algorithms can create trees with low cost. The ratio of
switch-tree cost to the MST cost, the theoretical lower
bound, is shown in Figure 5.a. The more potential par-
ents a node can switch to, the more likely it will find
a nearby parent and reduce the tree cost. Two extreme
tree building algorithms are included in this experiment—
random, where nodes switch to random non-descendants,
and star, where nodes connect directly to the source and
do not switch. All switch-trees perform better than ran-
dom and star, demonstrating that informed parent choice
is required for low cost. The most limited switch-tree,
switch-sibling, has the highest tree cost of all switch-
trees. The least limited switch-tree, switch-any, has the



1

1.5

2

2.5

3

100 200 300 400 500 600 700 800 900 1000

C
os

t r
at

io
 (

ov
er

 M
S

T
)

Members

random
star

switch-sibling
switch-one-hop
switch-two-hop

switch-any

a. Ratio of tree cost to MST cost

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

100 200 300 400 500 600 700 800 900 1000

C
os

t r
at

io
 (

ov
er

 M
S

T
)

Members

3
5
7
9

switch-any-5
unlimited

b. Tree cost ratio of switch-two-hop
with varying degree

1

2

3

4

5

6

7

8

9

100 200 300 400 500 600 700 800 900 1000

La
te

nc
y 

ra
tio

 (
ov

er
 S

P
F

)

Members

switch-one-hop
switch-two-hop

switch-any

c. Ratio of average latency to net-SPF
latency

Fig. 5. Cost and Latency

lowest tree cost, which is only slightly more than MST’s.
Switch-any is a good approximation of MST. All switch-
trees scale well—the added cost of adding another mem-
ber is small relative the cost of the tree. Error bars (at the
25th and 75th percentile) are shown for switch-two-hop.
The range is small, so we do not include them in latter
graphs.

We now consider the affect of degree on tree cost. De-
gree can be high in an MST, as previously shown in Fig-
ure 2. This suggests there are nodes that are natural hubs.
If the degree limit is raised, these nodes can have more
children. In addition, a node with the maximum num-
ber of children prevents other nodes from switching to
it. A node may not be able to switch to its best poten-
tial parent because it would have to first switch to a “full”
node. If the degree limit is raised, nodes are less likely
to block other nodes from switching. For these two rea-
sons, switch-tree algorithms will build trees with lower
cost if the degree limit is raised. This is demonstrated
in Figure 5.b, which shows the switch-tree cost to MST
cost ratio of switch-two-hop trees of varying degree lim-
its. For comparison, the figure includes switch-two-hop
with no degree limit and switch-any with a degree limit of
5. Degree-unlimited switch-two-hop outperforms degree-
limited switch-any. From this, we conclude that degree
limit has a more significant affect on tree cost than the
particular switch-tree algorithm.

Next, we show that switch-trees can create trees with
low source-member latency. A node reduces latency by
switching to a nearby node that already has a low latency
to the root. In this experiment, the SPF tree is built over
the physical network (denoted net-SPF henceforth). A
net-SPF tree is similar to a tree generated by a source-
rooted IP multicast protocol. A star switch-tree has an
average latency equal to a net-SPF. If degree were un-
limited, any switch-tree algorithm would simply form a
star, thus we limit degree to 5 in this experiment. As
shown in Figure 5.c, switch-any performs best, at the ex-
pense of between 2.6 and 5 times greater average latency
than net-SPF. Switch-one-hop and switch-two-hop per-
form slightly worse, with between 3 and 9 times greater
average latency than net-SPF. Switch-sibling and random

0

500

1000

1500

2000

2500

3000

3500

4000

100 200 300 400 500 600 700 800 900 1000

S
w

itc
he

s

Members

switch-any
switch-two-hop
switch-one-hop

switch-sibling

a. Total number of switches

5

10

15

20

25

30

35

40

100 200 300 400 500 600 700 800 900 1000

M
ax

 s
tr

es
s

Members

switch-any
switch-two-hop
switch-one-hop

switch-sibling

b. Maximum link stress
Fig. 6. Number of switches and link stress

perform the worst, between 5 and 50 times worse than
net-SPF, and are not included in the figure. In switch-
sibling, nodes can only move away from the root, so the
tree has a greater depth. In the other switch-tree algo-
rithms, nodes can move both up and down the tree.

In our final experiment, we consider number of
switches and maximum link stress in switch-trees built
for low tree cost. Ideally, the total number of switches
required for a switch-tree to reach equilibrium is low be-
cause a switch incurs some control overhead, causes a
shift in network traffic, and may cause data loss or dupli-
cation, as explained in Section III. Switch-tree algorithms
with more switch candidates switch more often, as shown
in Figure 6.a. Switch-any switches the most; switch-
sibling switches the least. However, switch-sibling has
the greatest maximum link stress and switch-any the least,
as shown in 6.b.

In conclusion, while switch-any has the lowest cost
(or latency) and stress, it requires the most switches.
Switch-sibling switches less frequently, but has the high-
est cost (or latency) and network stress. Switch-one-hop



and switch-two-hop provide a good balance of the metrics
overall. In the next section, we describe a switch-one-hop
protocol we have implemented and deployed.

V. THE BTP PROTOCOL

In this section we describe the Banana Tree Protocol
(BTP), a peer-to-peer, fault-tolerant, switch-one-hop pro-
tocol. We have implemented BTP and currently use it in a
peer-to-peer file sharing program and in a distributed In-
ternet distance measurement system. Our purpose is to
illustrate some of the issues that would be considered in
EM protocol design, especially when using switch-trees.
This is a high-level description that explains how nodes
join, detect partitions, and switch parents to improve the
tree. We do not include low-level details such as packet
formats.

To send a multicast packet in BTP, as well as other tree-
based EM protocols, a node forwards the packet to all of
its neighbors. When a node receives a multicast packet
from one of its neighbors it forwards the packet to its other
neighbors. A host joins a group by connecting to the root
and becoming its child. A node that joins a group with no
current member becomes the root node.

If a node’s parent leaves the tree or fails, a partition
is formed. The node then reconnects to the root. This
cannot create a loop because the root cannot be the node’s
descendant. If a node’s child fails, the node does nothing.
If the child had children, they will reconnect to the root
themselves. Unfortunately, the root will be flooded with
connections if many nodes fail. One solution is to have
nodes connect to their grandparent, or some other non-
descendant. However, if we assume nodes will not leave
or fail frequently, connecting to the root is adequate. This
is what is done in the current implementation.

A node improves the tree by switching to a nearby sib-
ling or grandparent. Because the applications that use
BTP do not require low latency, we attempt to reduce tree
cost. Each node will occasionally request from its parent
a list of the parent’s neighbors. It will then ping its parent
and each node in the list. If it finds a node that’s closer to
it than its parent, it will initiate switching to that node. We
will call this node the potential parent. When switching,
care must be taken to ensure when the switch occurs that
1) the potential parent is not simultaneously attempting to
switch to another node and 2) the potential parent is still
the node’s sibling or grandparent. We now discuss these
two cases in detail.

When a node wants to switch to a potential parent, it
must first send a switch request to the potential parent and
wait for an acceptance or rejection message. If two sib-
lings switch to one another at the same time they would
clearly form a loop. To ensure this does not happen, we
could require that a node trying to switch to a potential
parent will always reject a switch request from the po-

tential parent. However, this policy is not sufficient to
ensure loop freedom when the switch involves more than
two nodes. Consider the case in Figure 7.a where node �
attempts to switch to its sibling � . If simultaneously �
switches to � and � switches to � a loop forms. To pre-
vent such loops from forming, we adopted the policy that
a node will reject all switching attempts if it is itself in the
process of switching parents. This is a conservative pol-
icy in that there are cases where simultaneous switching
can take place without forming a loop.

In addition, when a node attempts to switch to a poten-
tial parent, it must ensure that the potential parent is still
its sibling or grandparent. For example, consider the case
in Figure 7.b where nodes � , � , and � are siblings in the
tree. Subsequently � switches to � and � switches to � .
If � then switches to � , a loop is formed. This happened
because � and � acted on out-of-date information— �
believed � was its sibling and � believed � was its sib-
ling. Hence when a node requests to switch to another, it
must include its current parent information in the switch
request. Before accepting the switch, the potential parent
checks that either the node and itself are actually sharing
the same parent, and therefore siblings, or the node’s par-
ent is its child, and therefore its grandchild. This is again
a conservative policy. For example, in the above scenario,
after � switched to � , � will be prevented from switch-
ing to � even though no loop would be formed by the
switch.

We now describe an experiment that shows BTP pro-
duces a low cost tree in practice. In our experiment, we
compare the cost of a MST to the cost of a BTP tree.
The MST is calculated from the round-trip-time measure-
ments between each pair of hosts. The cost of the BTP
tree is determined by traversing the tree to discover the
tree’s edges and then summing the corresponding round-
trip-time measurements.

In this experiment, the end-host multicast group con-
sisted of nineteen members. Each member was located
on one of nineteen hosts. Seven hosts were at U.S. edu-
cational sites, six at European educational sites, three at
U.S. commercial sites, and two were in U.S. homes. Two
of the US educational sites were on the west coast and the
other five on the east cost. The six European educational
sites were in England, France, Germany, Greece, Swe-
den, and Switzerland. The three commercial sites were in
Washington, D.C., California, and Michigan. The two in
homes were both in Ann Arbor, Michigan and connected
to the Internet by cable modem.

Round-trip-time was measured using the TCP Ping
utility [11], based on the technique described in [4]. Each
host made eight round-trip-time measurements to every
other host. Therefore, for each pair of hosts there were
sixteen round-trip-time measurements in total. Of the six-
teen measurements, only the minimum is used in our cal-



A B C

P

A B C

P

a. Simultaneous switching creates loop

A B C

P

A

B

C

P

A

B

C

P

A

B

C

P

b. Switching with outdated information creates loop
Fig. 7. BTP switching examples

culations.
The experiment was conducted on November 13, 2001

and consisted of ten runs. There was a two-hour interval
between each run. In each run, we measured the round-
trip-times between the hosts and then ran our BTP client
on each host. Node degree was limited to five. Each node
requested a neighbor list from its parents every twenty
seconds, pinged each node in the list, and attempted to
switch if it found a better potential parent. The root of
the BTP trees was at the University of Michigan. After
starting the clients, the nodes were allowed to switch for
ten minutes and then the tree was traversed to discover the
edges. An MST was calculated from the round-trip-time
measurements. The cost of the BTP tree was calculated
from the round-trip-time measurments and the edges dis-
covered during the traversal.

Ideally, the ratio of the cost of the BTP tree to the cost
of the MST is 1. The median cost ratio in our experi-
ment was 1.19. The mean ratio was 1.27, the minimum
1.11, and the maximum 1.83. In the case of the maximum
ratio, over half of the BTP cost came from a single link
between Greece and Britain. In this run, round-trip-times
to Greece were much higher than in other runs, indicating
its network was temporarily congested. In all ten runs,
the BTP tree had only one link between the west and east
coasts of the U.S. and only one link between the U.S. and
Europe.

VI. RELATED WORK

Yoid builds both a tree and a mesh [2]. The tree is used
for normal data transfer and the mesh is used for con-
trol data, fault tolerance, and partition detection. Overcast
builds a single-source EM tree that maximizes bandwidth
available from the source to members through the tree [7].
Nodes perform switch-one-hop-like optimizations to find
good positions in the tree. ALMI builds an MST in a cen-
tralized fashion [10]. A controller ensures member con-
nectivity, handles failures, and periodically recalculates
and rebuilds the MST. Hypercast builds a hypercube over
which source-specific trees are built for each member [5].
Hosts join the hypercube in a strict order and are assigned
Grey-code node IDs, used for routing. Narada creates a
mesh and then builds delivery trees over the mesh using
a DVMRP algorithm [1]. Nodes periodically exchange
distance vectors which are used for routing, optimization,

and partition detection.

VII. CONCLUSION

We have presented switch-trees, a family of algo-
rithms for building and improving end-host multicast
trees. Switch-any switch-trees have the lowest cost or
latency but they require many switches to achieve this.
Switch-sibling trees have highest cost or latency and re-
quire very few switches. A good balance is provided by
switch-one-hop and switch-two-hop trees. We have im-
plemented BTP, a switch-one-hop protocol, and shown
that it produces low cost trees. BTP is currently used in
Jungle Monkey (JM) [9], our P2P file sharing program,
and IDMaps [6], our distributed Internet distance mea-
surement system. The source code for BTP is available
for download as part of our open-source EM toolkit in-
cluded in JM.

REFERENCES

[1] Yang-hua Chu, Sanjay G. Rao, and Hui Zhang. A case for EndSys-
tem multicast. Proc. of ACM SIGMETRICS’00, pages 1–12, June
2000.

[2] Paul Francis. Yoid: extending the internet multicast architecture.
Technical report, NTT, April 2000.

[3] I. Stoica H. Abdel-Wahab and F. Sultan. A Simple and Fast Dis-
tributed Algorithm to Compute a Minimum Spanning Tree in the
Internet. Proc. of Joint Conference on Information Sciences ’95,
pages 429–433, 1995.

[4] Martin Horneffer. Assessing Internet Performance Metrics Using
Large-Scale TCP-SYN Based Measurement. Passive and Active
Measurement Workshop, 2000.

[5] Tyler K. Beam J. Liebeherr. A Protocol for Maintaining Multicast
Group Members in a Logical Hypercube Topology. Proc. First In-
ternational Workshop on Networked Group Communication (NGC
’99), pages 72–89, 1999.

[6] Sugih Jamin, Cheng Jin, Yixin Jin, Dan Raz, Yuval Shavitt, and
Lixia Zhang. “On the Placement of Internet Instrumentation”.
Proc. of IEEE INFOCOM, March 2000.

[7] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans
Kaashoek, and James W. O’Toole, Jr. Overcast: Reliable multi-
casting with an overlay network. Proceedings of the Fourth Sym-
posium on Operating Systems Design and Implementation, pages
197–212, October 2000.

[8] C. Jin, Q. Chen, and S. Jamin. Inet: Internet Topology Generator.
Technical Report CSE-TR-433-00, EECS Department, University
of Michigan, 2000.

[9] Jungle Monkey homepage, November 2001.
http://www.junglemonkey.net.

[10] Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel
Waldvogel. ALMI: an application level multicast infrastructure.
3rd USENIX Symposium on Internet Technologies and Systems,
March 2001.

[11] Amgad Zeitoun. TCP Ping homepage, November 2001.
http://www.eecs.umich.edu/ azeitoun/tools.html.


