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Abstract

We present a pragmatic approach using formal methods
to increase the quality of distributed component based
systems: Based on UML class diagrams annotated with
OCL constraints, code for runtime checking of compo-
nents in J2EE/EJB is automatically generated. Thus, a
UML–model for a component can be used in a black–box
test for the component. Further we introduce different de-
sign patterns for EJBs, which are motivated by different
levels of abstraction, and show that these patterns work
smoothly together with our OCL constraint checking.

A prototypic implementation of the code generator,
supporting our patterns with OCL support, has been inte-
grated into a commercial software development tool1.

Keywords: OCL, Constraint checking, EJB, J2EE, De-
sign by Contract, Design pattern

1 Introduction

The commercial success of CASE tools supporting the
Unified Modeling Language(UML) [9], defined by Ob-
ject Management Group (OMG), indicates that diagram-
matic methods are a promising approach to introduce
semi–formal techniques into conventional software engi-
neering practice. Extended by theObject Constraint Lan-
guage(OCL) [8], UML attempts to bridge the gap be-
tween semi–formal and formal techniques, even though
OCL is still under development and many nitty–gritty
problems of its formal semantics have not yet been set-
tled.

On the technological front, a new challenge appeared
some years ago in the shape ofcomponent based systems.
The overall idea is to partition a system into parts (compo-
nents) that are language and machine independent and can
be connected via a network. Offering flexible migration
to legacy systems and enabling reuse of code, component
technologies are viewed in industry as a way of speeding

1This work was partially funded by Interactive Objects Software
GmbH (http://www.io-software.com) in collaboration with the
Software Engineering Group at the University Freiburg.

up development and organizing systems with increasing
size. However, the increasing complexity of such systems
also increases the need for specification and validation.
Thus, the component technologies like J2EE/EJB [10] or
CORBA [7] open a new field for formal specification and
its applications.

In this paper, we present such an application of for-
mal specifications: namely dynamic constraint check-
ing of preconditions and postconditions and class invari-
ants generated from UML diagrams annotated with OCL
constraints. Our main contribution is to providecon-
cepts, design patternsand integrated constraint checking
code generation techniquesfor UML/OCL-specifications
of distributed J2EE/EJB-components. Our implementa-
tion in a CASE tool enables black-box testing of compo-
nents and provides thus the technical basis for more ad-
vanced approaches such as systematic test case generation
or formal refinement proofs.

Our paper is structured as follows: After a brief de-
scription of component based systems using J2EE and a
description of UML/OCL, we will adopt common spec-
ification techniques to J2EE and provide design patterns
for EJBs.

2 Component based distributed sys-
tems

Distribution is a key issue in modern system design. Al-
most every system using the Internet can be seen as a
distributed system consisting of one or more servers and
clients. In typical applications, the servers provide infor-
mation or data management, while the clients collect user
data and display results.

In the last years several middleware component stan-
dards for designing and implementing client server archi-
tectures were introduced. The most well known of these
are the CORBA (Common Object Request Broker Ar-
chitecture) from the OMG and J2EE/EJB from Sun Mi-
crosystems. Any of these standards provides a way for
describing the interface of the distributed components, as
used by the clients. Seen from the formal methods per-
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spective, interfaces are just signatures, and it is natural to
enrich them by formulae specifying the functional or the
dynamic behavior; if these formulae have a well–defined
semantics, it is possible to analyze and to reason over the
expected behavior of a component.

In our setting with the J2EE/EJB middleware and
UML/OCL, we have to consider that the EJB standard
requests a split in the interface of the component into two
parts: Thehome interfacedescribing the functions for
life–cycle management (such as object creation and de-
struction) of the EJB and theremote interfacedescribing
the functional behavior. The home interface and remote
interface are implemented by thebean implementation.
Together, these three parts build anEnterprise Java Bean
(EJB), thedistributed componentin the J2EE model. As
we will see later, this interface splitting has a great impact
on the organization of the specification and the black–box
testing of the EJB.

3 UML/OCL: An overview

One of the more important diagram types of the UML
is the class diagramshowing the static structure of the
software design; its main purpose is to illustrate the de-
pendencies (any kind of associations, inheritance,etc.)
of classifiers (components, classes, interfaces, tem-
plates,etc.) used in the system.

With version 1.1 of the UML standard, UML was ex-
tended by the textual formal specification language OCL,
which is a classical logic with equality and undefinedness
based on the signature of side–effect free UML meth-
ods. Since UML‘s type discipline offers built–in type
constructors such asset, seqor bag, OCL enables to spec-
ify constraints on graphs of object instances. In the con-
text of class–diagrams, OCL is used for specifying class–
invariants, preconditions and postconditions of methods.

In figure 1, a UML class diagram showing a simple
banking scenario is given. The functional behavior of the
methodsmakeDeposit(), belonging to the classAccount ,
is given by the specification of its preconditions and post-
condition. FromAccount , a classCreditAccount is in-
herited, which allows only debts up to a specificcredit
limit; this is specified by a class invariant. Further, we
model by anassociationthat every instance of typeAc-
count (hereAccount or Credit Account ) “belongs to” a
Customer . The concept of associations with multiplic-
ities (similar to “cardinalities” in E/R diagrams) can be
understood as relations with certain constraints made ex-
plicit by appropriate OCL formulae. In general, an in-
variant at an association end (e.g. multiplicities) can be
converted to class invariants on all opposite ends [8]. In
our example, the multiplicities were transformed to the

following OCL formulae:

context Customer
inv: (1 <= self.accounts.size())

and
(self.accounts.size() <= 99)

context Account
inv: (1 = self.owner.size() )

Using invariants for associations, we can also describe
if such a relation is partial, injective, surjective or bijec-
tive. In our example we would like to express that the
associationsbelongsTo is surjective:

context Customer
inv: self.accounts.forall (a | a.owner = self)

context Account
inv: self.owner.accounts->includes (self)

This guarantees that every account a customer controls
(particularly, which is in the setaccounts) is owned by
this customer.

4 Concepts for EJB-Specification

Based on existing techniques to handle individual OCL
formulae, we will observe in the following subsections
that the semantic relations between collections of OCL
constraints annotated to parts of an EJB can be described
as a data refinement. This observation leads to the devel-
opment of a code generation scheme for constraint check-
ing code of an individual EJB. In the next section, we will
introduce the concept of an “extended Bean” pattern that
offers the potential to extend this scheme to systems with
n to m relations between home and remote interfaces on
the one hand and EJB implementations on the other. This
kind of systems is required by engineering practice.

4.1 General Principles

For standard Java programs, there is already an OCL con-
straint checking code generator [4, 5, 11] available, de-
veloped at the University of Dresden, that could be in-
tegrated into our work. It provides a type–checker for
OCL–formulae and a collection of libraries for their ex-
ecution. The problem lies in the rightintegrationof this
tool into the context of EJB.

The original version of EJBs does not provide a con-
cept of a “specification”. Thus, adding logical specifi-
cation concepts to existing EJB technology needs some
adaption, both on the syntactical (what are the right sig-
natures of formulae drawn from EJB interfaces?) and
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Figure 1: Modeling a simple bank scenario with UML
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Figure 2: Abstract view and concrete view



on the semantical side (do the checks mirror the in-
tended semantics?). For an EJB that consists of exactly
one home interfaceH, one remote interfaceR and one
bean–implementationI , we define itsabstract viewas the
“union” of H andR. The abstract view represents an in-
terface describing all methods accessible by the client.
Further we define theconcrete view(for an extract, see
figure 2) of the EJB by its bean implementation (together
with its signature consisting of its class declaration).

4.1.1 The syntactical side

With respect to the syntactical side we propose to merge
the signature ofH andR and enrich it by some accessor
functions derived fromI . More precisely, all side–effect
free functions (calledquery–functionsin the UML2) of
(H,R) build together with thecanonical accessor func-
tions for the public variables ofI the signature of the ab-
stract view. As an example for a canonical accessor func-
tion, considergetBalance() in figure 2, which is a derived
canonical accessor function for the public attributebal-
ance of I ; recall that accessor methods of the public at-
tributes are special query–functions. Our proposal is mo-
tivated by the fact that theH andR are not independent
from a specification point of view: For example, for spec-
ifying initial values of attributes such asbalance we have
to write a formula as postcondition of the function that
creates the EJB. This “create–function” (e.g.ejbPostCre-
ate()) clearly belongs to the home interface (where the
life–cycle is described) whereas the accessor method for
the public attributes belongs to the remote interface. This
shows, that the partitioning of the interface of an EJB,
as stated by the J2EE standard [10], can not uphold in a
specification.

4.1.2 The semantical side

With respect to the semantical side, we already observed
that the organization of EJBs suggests the distinction of
an abstract view “implemented by” a more detailed con-
crete view. The latter may provide private variables, more
methods, stronger invariants, and weaker preconditions
and stronger postconditions as the former one. In our
example in figure 2, the concrete view invariant requires
balance to be larger than5, while the abstract view re-
laxes this condition tobalance>0. In the community of
formal methods, the relation between abstract and more
concrete views on a system and their semantic underpin-
ning is well–known under the termrefinement. Various
refinement notions have been proposed (As for Z, see [12]
for example). In our setting, we chose to use only a very

2These functions have the UML attributeisQuery set to true.

simple data refinement notion which requires that any for-
mula of the abstract view is implied by the formulae of the
concrete view. Of course, following the approach taken
in this paper, we do not attempt to formally prove such a
relationship. Rather, we will generate code for runtime–
checking the formulae (constraints) both on the abstract
and the concrete view. Thus,

1. if only violations against abstract view constraints
(but not concrete ones) occur, we can conclude that
the abstract view isnota refinement (as it should be),

2. if only violations against the concrete view con-
straints occur (but not the abstract ones) the speci-
fication ofI is too tight for its purpose.

On this basis, coding constraint checks is straight for-
ward: formulae of the abstract and concrete view are con-
verted to check code that is executed at the entry and/or
the exit of the method bodies in the implementation; pre-
conditions only at the entries, postconditions only at the
exits, and invariants at both3. An obvious exception is
made when entering or leaving object creation or destruc-
tion methods. Note that our coding scheme results also
in constraint checks for internal (e.g. recursive) method
invocations; a naive coding scheme based on wrappers of
an interface would behave differently.

5 Design Patterns for Enterprise
Java Beans

While modeling distributed systems using J2EE/EJB,
there often arises the need for a more detailed model of
the internal structure of an EJB as intended by the EJB
standard [10]. Driven by this need, we suggest to extend
an EJB by additional information to anextended EJBpat-
tern. In a CASE tool, these patterns form the basis of a
“technological mapping”, i.e. a mapping of a pattern to a
specific EJB implementation.

For example, in an extended EJB we will allow more
than one bean implementation or more remote interfaces
and show how to handle constraints during the mapping to
standard EJB technology. Because an EJB is represented
by a (H,R, I) triple, this boils down to the question of
constructing(H,R, I) triples from extended EJBs.

In the following, we will discuss three different pat-
terns.

3In the UML standard, it is required to check invariants “at any
time”; we deliberately relaxed this requirement for both practical and
conceptual reasons and treat invariants more like “loop–invariants” al-
lowing intermediate statesinsidean implementation violating the invari-
ant.



5.1 The CompactBean Pattern

The CompactBean pattern (see figure 3) is directly mo-
tivated by the highest possible level of abstraction of an
EJB: theabstract view. This pattern allows an easy way
to develop EJB applications, by abstracting away all tech-
nical details.

Using the abstract view (i.e. the pair(H,R)) we can
directly refer to the discussion of the last section. In this
pattern, there is no possibility for the designer to annotate
the interface ofI with OCL formulae. Therefore we can
only check the abstract view at runtime by generating con-
straint checking code directly into the implementation.

5.2 The ExpandedBeanHome Pattern

Motivated by the need to provide technologically opti-
mized (different) bean implementations (and thus home
interfaces) of the same remote interface, we suggest the
ExpandedBeanHome pattern. Its necessity occurs, for
example, when an extended bean should provide an op-
timized implementation for different runtime environ-
ments. Thus the CompactBean pattern allows the spec-
ification of an extended EJB composed of several pairs
(H j , I j) and a unique remote interfaceR that is imple-
mented by every bean implementation of this extended
bean.

In this scenario the partitioning of the extended EJB
into (H,R, I) triples is straight-forward: We extend every
pair (H j , I j) by the same remote interfaceR. For every
such triple an EJB is generated, thus the number of EJBs
is equal to the number of home interfaces (and thus bean
implementations).

In the ExpandedBeanHome setting, the designer is
able to specify OCL formulae on several implementa-
tions, thus we have to check for every triple(H,Rj , I j)
that I j is a refinement of(H j ,R). We implement this by
embedding runtime checking code into every bean imple-
mentation.

5.3 The ExpandedBeanRemote Pattern

The ExpandedBeanRemote pattern is based on the idea of
providing different ways of access to the same implemen-
tation. This can be useful for modeling security related
controls. For example an EJB can implement a (unique)
remote interface for every role it is interacting with. In
this scenario the designer specifies a unique pair(H, I)
and several remote interfacesRj . We build the(H,Rj , I)
triple by combining every remote interfaceRj with the
pair (H, I). For every such triple an EJB is generated,
thus the number of EJBs equals the number of remote in-
terfaces.

In the ExpandedBeanRemote setting, the designer is
able to specify OCL formulae on the bean implementa-
tions, thus we have to check for every triple(H,Rj , I)
that I is a refinement of(H,Rj). We implement this by
embedding runtime checking code into every bean imple-
mentation.

6 Conclusion and Future Work

6.1 Related Work

Considering other distributed component technologies,
there seems to be a common understanding for describ-
ing the interface of a distributed component. Whereas
every technologies defines its unique syntax, the idea is
the same: Every component is described by an “interface”
which contains methods and attributes accessible from the
client.

Looking at the widely used CORBA (Common Ob-
ject Request Broker Architecture) [7], also defined by the
OMG, a special language for describing the client acces-
sible interface is defined: the IDL (Interface Definition
Language). In contrast to EJB, CORBA does not regulate
the internal structure of the component interface, thus the
problems that are based on the partitioning of the abstract
view in a home interface and a remote interface do not ex-
ist. Nevertheless a CORBA component has abstract view
defined with the help of the IDL (which is seen by the
clients) and a concrete view defined by its implementa-
tion. As in the case of EJBs, the concrete view is a real re-
finement of the abstract view. Also, in contrast to EJB, an
interface of a CORBA component can allow the access to
attributes directly. Hence, the compliance to the require-
ment of accessing attributes only via accessor–methods
has to be checked in an additional step.

Plain CORBA does not guarantees serializability of
transaction, therefore one has the whole problematic
(concurrency, call–backs) of distribution while specify-
ing and constraint checking. The J2EE architecture pro-
vides, in contrast to CORBA, some support for guarantee-
ing serializability and non–concurrency: By using only
non–reentrantEJBs and container managed persistence,
the EJB container guarantees the serializability of transac-
tions. For example, when a call–back occurs the transac-
tion is rolled back. This allows us to ignore, during speci-
fication, most of the problems that are normally caused by
distribution. Therefor, under these prerequisites (and sup-
posing a correct middleware implementation) the speci-
fication of large distributed systems is possible in a rela-
tively easy manner.
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Figure 3: The CompactBean Pattern



6.2 Future Work

We presented a pragmatic approach to use diagrammatic
specifications for dynamic testing of software compo-
nents based on state–of the art component technology; an
extended version of this paper is available as technical re-
port [1].

Of course, post–hoc checking of violations of precon-
ditions and postconditions and class invariants of software
components is rather an a posteriori debugging method
than a systematic a priori approach of analyzing a piece
of software. However, we intend to complement our
approach by a test–case generation technique similar to
[6, 2, 3]. Thus a specification is also used to generate sys-
tematically test–cases along predefined testing hypothe-
ses from the specification. Such a technique requires real
theorem proving and a declarative (instead of an opera-
tional) semantics of OCL; a suitable embedding of OCL
into Isabelle/HOL is in preparation. Such an embedding
would also allow for a formal proof of refinement of an
abstract view by the concrete one (allowing to omit the
checks of the abstract level) or the verification of an im-
plementation against the concrete level (allowing to omit
the checks of the concrete level).
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