
Applying UML to Design an Inter-Domain Service
Management Application

Mohamed Mancona Kandé, GMD FOKUS (e-mail: Kande@fokus.gmd.de)
Shahrzade Mazaher, Norwegian Computing Center (e-mail: Shahrzade.Mazaher@nr.no)

Ognjen Prnjat, University College of London (e-mail: oprnjat@eleceng.ucl.ac.uk)
Lionel Sacks, University College of London (e-mail: lsacks@eleceng.ucl.ac.uk)

Marcus Wittig, GMD FOKUS (e-mail: Wittig@fokus.gmd.de)

Abstract
We present a component-oriented approach to demonstrate the use of the Unified
Modeling Language (UML) and Open Distributed Processing (ODP) concepts to
design service components of a telecommunications management system. This paper is
based on the work done in the design phase of the ACTS project “TRUMPET“ (Inter-
Domain Management with Integrity). In our approach, we use the conceptual
framework of ODP and discuss some methodological issues related to ODP-viewpoint
modelling of distributed systems using UML notations.
Keywords: UML, ODP, ODP Viewpoints, object-oriented design, distributed systems,
service provisioning, TMN, Java, CORBA.

1 Introduction
Designing and implementing complicated distributed control systems in large
international groups or consortia is problematic. Techniques are required to ensure
that all the participants understand where their work applies, the work of their
collaborators, and the relationship between these. Further, when building systems
which are expected to have some longevity it is important that people looking at the
background documentation can understand what is involved. These considerations
constitute important background to the use of architectural design methodologies and
semi-formal methods in system modelling. A second important consideration is that
the methodologies used facilitate close analysis of the design to ensure, at early
stages, that the system is complete in meeting its requirements and consistent in its
operation. This should yield robust, highly engineered products. Finally, when
presenting the product to users, its functionality and roles within their business
practices must be clearly documented and defined (following the motivations behind
the NMForum OMINPoint Ensembles [NMF].
This paper illustrates how two popular methodologies can be combined to achieve
these goals, and how this was done in the context of the TRUMPET
telecommunications service architecture. The TRUMPET project undertook to
produce a network service management architecture suitable for emerging liberalised
telecommunications markets. The criteria where that the system should be highly
distributed both technologically and administratively - i.e. across many kinds of
organisations. Specifically, these organisations include: Public Network Operators
(PNOs), Customer Premises Network centers (CPNs) and third party Value Added
Service Providers (VASPs) or bandwidth retailers. Moreover, the TRUMPET
consortium consisted of a number of engineers, from several companies across
Europe who had to collaborate to design, build and run the system. Thus the

TRUMPET project presents a good model environment to develop not only the
service architecture itself, but the methodologies for producing such designs.
The two methodologies used where the ITU-T Open Distributed Processing (ODP)
architecture and Unified Modeling Language (UML). ODP is an architectural system
which provides the designer of any distributed processing system a means of defining
all the required elements. At the top level, ODP requires the designer to divide the
design into a number of ‘View Points’ defined within the ODP Reference Model (RM-
ODP) [ISO95]. In the design stage, the principal of these are the Enterprise,
Information, Computational and the Engineering viewpoints. UML is a semi-formal
software systems modelling language which provides a consistent diagrammatic
semantics for systems design using mature object oriented philosophies. UML has
derived from a number of other semi-formal modelling systems, most notably OMT,
Booch, and OOSE. As with OMT, it has diagrammatic for defining objects, object
relationships and object dynamics (internally with states & externally with
collaborations). It augments OMT by providing very clear linkages between the
occurrences of objects and methods in each of its diagrammatic structures. By using
the appropriate UML diagrams for the appropriate viewpoints of ODP, it is possible
to design a system with clear tractability between each of these models. UML &
ODP, being well documented and highly accepted systems within industry, can be
understood by engineers from many countries and companies. Thus using these
methodologies together it is possible to present the designs in an - almost - universal
languages between collaborators and to customers.

1.1 The TRUMPET Scenario
The ACTS project TRUMPET (Inter-Domain Management with Integrity) focuses
on the secure operation of inter-domain management systems within the Open
Network Provisioning (ONP) framework. The TRUMPET scenario in Fig. 1 involves
the following players: two (or more) Public Network Operators (PNOs), a Value
Added Service Provider (VASP), and a number of customers at various sites -
Customer Premises Networks (CPNs) [D6] [TSMA].
The customers see an end-to-end connection and are not necessarily aware of which
PNOs are contributing to establish the connection. The VASP sees the connection as
a set of segments, each supported by a different PNO, but does not know how each
segment has been set up within the corresponding PNO (i.e., what ATM switches are
used).
The management systems of the players mentioned above form a service provisioning
system for management and provision of broadband (ATM) network connections
between two customers/end users. CPN is a dedicated service in the customer
organisation, which already has a contract with the VASP. The VASP management
system provides network connectivity to customers by utilising the resources of one
or more PNOs. VASP allows customers to create, modify and delete connections,
thus effectively providing the Virtual Private Network (VPN) service to the
customers. PNOs provide the physical infrastructure, i.e. the network, and the
adequate management interface to interact with it.

CPN
OS

PNO A PNO B

VASP

Customer Premises Network 1

Customer Premises Network 2

CPN
OS

Xuser’’

Xuser’ Xuser’

XcoopPNO
OS

VASP
OS

PNO
OS

Xuser’’
Customer1 / end-user

Customer2 / end-user

Fig. 1: TRUMPET Scenario
The TRUMPET management system thus represents a typical component-based
application for distributed service management. Entering the design phase, a need
for suitable methodology and supporting notation for modelling such a distributed
system emerged. Having critically reflected on existing methodologies and notation
schemes, the consortium decided to adapt the UML concepts to the ODP framework
and design the system in such a fashion.

1.2 UML and ODP
The approach to mapping the different ODP-viewpoints to UML diagram types as
depicted in Fig. 2 [KTW97] has been adopted in the TRUMPET project. The major
benefit of such a mapping consists in supporting both an object-oriented modelling
and design process, and the design of reusable components and distributed services
[JAC97] in the sense of distributed systems as described in the Reference Model for
Open Distributed Processing (RM-ODP) [ISO95]. ODP defines clearly the concept
of viewpoints, and it provides several different viewpoint languages, which may be
unified using UML notations and concepts for specifying all these viewpoints. Thus,
an integration of ODP and UML allows for the efficient modelling of the ODP
viewpoints, supporting the provision of a new framework for the design of distributed
management systems and the specification of the internal and external behaviour of
components. Such integration also helps to map and to implement some ODP
functions in different technologies like CORBA and TINA-DPE [TINA].
Fig. 2 depicts the links between ODP viewpoints [BB96], and shows the relationships
between these viewpoints and the UML diagrams, as well as between UML diagrams
themselves (which are mapped to the same viewpoint specifying different aspects of
same objects). The design of a distributed management application may start with
capturing requirements of the system in terms of Use Case Diagrams. The results
obtained from a use case model may be used to present high level Static Structure
Diagrams as indicated in the Enterprise Viewpoint, and these diagrams can be
specified in more detail in the Information Viewpoint. The step from the Static
Structure Diagram to the Statechart Diagram allows to specify the dynamic
behaviour of significant information objects.

Information
Viewpoint

Static Structure Diagram

Statechart Diagram

Technology
Viewpoint

Enterprise
Viewpoint

Static Structure Diagram

Use Case Diagram

Computational
Viewpoint

Sequence Diagram

Component Diagram

Activity Diagram

Collaboration Diagram

Static Structure Diagram

Engineering
Viewpoint

Deployment Diagram

Component Diagram

Relationship between specifications of different viewpoints

Relationship between specifications in development lifecycle

Relationship between models of same objects

Fig. 2: Relationships between UML Diagrams and ODP Viewpoints
The Computational Viewpoint maps to the UML Collaboration, Sequence, Activity
and Component Diagram types. While the UML Collaboration Diagram shows the
interactions among instances and their links to each other, the Sequence Diagram
describes object interactions arranged in a time sequence. The Activity Diagram
allows to specify in which order activities (such as operations provided by a
computational object interface) have to be executed. The Component Diagram shows
the organisations and dependencies among components.
In addition to the Component Diagram, the Deployment Diagram is also mapped to
the Engineering Viewpoint. This diagram type shows how components and objects
are routed and moved around the distributed system [FOW97]. There is no mapping
between UML and the Technology Viewpoint offered by this approach.

2 Case Study
This section describes how, within the ODP framework, different UML concepts and
notations were used to design the TRUMPET management system. A separate
section is dedicated to each of the five ODP viewpoints by projecting the VPN service
in the corresponding viewpoint using the appropriate UML notation schemes.
Each viewpoint first gives an overall view of the TRUMPET management system,
and then focuses on a more detailed description of the VPN service within the VASP
domain.

2.1 Enterprise Viewpoint
The ODP Enterprise Viewpoint represents an overview of the system’s aims,
constraints and functionality as seen by the enterprise. This Viewpoint models the
basic system decomposition into components, identifies actors, policies and domains,
and describes the general scenarios of the system’s use.
The TRUMPET system incorporates three domains (or enterprise objects in ODP
terminology) namely the CPN, the VASP and the PNO. The PNO domain is further
sub-divided into PNO Service Layer (SL) and PNO Network Layer (NL). These four

entities were modelled as UML Packages with interdependencies, using UML Static
Structure Diagram notation as shown on Fig. 3.

<<community>>
TrumpetManagementSystem

<<domain>>
PNO

CPN
<<domain>>

VASP
<<domain>> PNONetwork

Management
PNOService
Management

Fig. 3: The TRUMPET Static Structure Enterprise Packages
Next, the desired functionality of the system were described. In the ODP context, this
is done by specifying the scenarios, or Use-Cases, which describe how actors/entities
interact in the context of using the system.
The TRUMPET scenarios were specified using the UML Use-Case diagram,
depicting the actors (human users), sets of Use Cases (ellipses) within a system, and
associations between actors and Use Cases - illustrated in Fig. 4. The solid lines
between the User and the Use Cases represent the “communicates“ relationship,
denoting the participation of the user in the Use Case. The lines with arrows between
Use Cases represent the “extends“ relationship - indicating that the terminating Use
Case may include the behaviour specified by the originating Use Case.
Note that the UML stereotype <<community>> has been used to classify the high-
level enterprise object „TrumpetManagementSystem“ as community in the sense of
ODP.

<<Community>>
TrumpetManagementSystem

Reserve
Connection

Status
Request

Modify

Release
Connection

Notify
Activation

Connection
Release

Notification

<<user>>

<<pno>>

Fig. 4: The Use-Case Diagram
Fig. 4 depicts the functionality (or Management Functions) identified in the VASP
management service as Use-Cases, and the interaction of the different users with the
Use-Case package. As shown, there are six Use Cases. Customers/end users are
capable of reserving end-to-end connections (of a given duration and desired Quality
of Service (QoS)), modifying them (changing duration, QoS, or both), and releasing,
i.e. deleting these connections. PNOs are capable of notifying the users via the VASP
of connection activation, or notifying the users of the connection release due to a
segment/link failure.

2.2 Information Viewpoint
In the ODP Information Viewpoint, the information objects of the system are
identified and their structures and relationships described. UML Static Structure
Diagrams were used to describe the static structure of the information objects.

VPNContract

Vasp
<<information entity>>

EndUser
VPNConnection

Pno
<<information entity>>

1..*

1

Cpn
<<information entity>>

Segment

establishes/maintains

uses

connects to

maps/retrieves

<<domain>>
CPN

<<domain>>
VASP

<<domain>>
PNO

Fig. 5: The Static Structure of the VPN Service
Fig. 5 illustrates, by means of a UML Static Structure Diagram, the overall structure
of the VPN service. That is, what entities are involved, what their relationships are,
and how they interact.
In the following, the emphasis is put on the VASP entity of the above diagram, and a
more detailed description of this entity is given. In the static structure diagram of
Fig. 6, the VASP is decomposed into its three main components. The
CustomerServer handles the communication with the customer domain (CPN). The
ControlServer which, after negotiations with the involved PNOs, establishes,
modifies, or releases the VPN connections; and the MIB (Management Information
Base) which contains all the Managed Objects (MO). These objects contain
information about the different entities that the VASP either interacts with or
manages. For example, objects containing information about the VASP customers or
objects representing the connections that the VASP manages, are all contained in the
MIB. Both the CustomerServer and the ControlServer have the access to the MIB
either by retrieving information from it or updating it.

CustomerMib

ControlServer

ConnetionMib

Mib
CustomerServer

Vasp
<<information entity>>

<<information view>>
VASP

. . .

Fig. 6: The Overall Static Structure of the VASP
Among the different components of the VASP the MIB represents the pure
informational objects. The two other entities are rather information processing units
(manipulating the MIB) although each of them contains information about the
current state of the VASP. In the rest of this section, UML static structure diagrams
are used to give a more detailed description of the MIB.
The customer MIB contains information pertaining to the VASP customers, their
respective service profiles, and the terms of their subscriptions. A corresponding

MIB exists for the PNOs the VASP is dealing with. These MIBs are rather static, in
the sense that the information they contain is seldom updated. The Connection MIB
contains information about all the connections that the VASP is currently supporting.
Furthermore, its structure reflects the view that the VASP has of a connection, i.e. a
connection consisting of segments individually supported by a PNO. This MIB is
being constantly updated (therefore dynamic) as requests for new VPNs and
change/release of the existing ones are received from the customers.

2.3 Computational Viewpoint
The Computational Viewpoint describes how the management functions, identified
by means of enterprise Use Cases, are performed by the management system. Each
management function is described in terms of computational objects (COs) and
computational activities, the latter representing sequences of operations invoked on
COs, e.g. components.
As a starting point for the computational design, the components identified in the
Enterprise Viewpoint can be mapped to COs which provide an abstract, course grain
computational view of the management system. Each component can then be broken
further down into a set of COs which represent the detailed computational object
model. At this level, the UML static structure diagrams have been used to describe
the structure of COs, their multiple interfaces, and the relationships between them.
At the abstract level, UML component diagrams have been used to describe the
system components and their external interfaces.
Fig. 7 depicts the design of the VaspVpnManager component (referred to in the
Information Viewpoint as the Control Server). We distinguish the
VaspVpnManagerFacade package containing the external structure (client view of
the component) from the VaspVpnManagerIml package which contains the
implementation details of the internal class structure.

VPNServ i ve
<< in ter face>>

ServiceInter fFactory

Serv iceInter face

Cus tomer -CPN

RouteFinder

PnoConnec t ionManager

VPConnServEven tHand le r
<< in ter face>>

V A S P - V P N -Mngr
<<abst rac t>>

Customer-Server
<<c l ien t>> VPConnServEHFac to ry

createscal ls

Customer-Server
<<c l ien t>>

cal ls

VPNServ iceInt fFactory

creates

V A S P - V P - S e g m e n t

VASP-VP-Conn
Cus tomerEndPo in t

V A S P - V P N -Mngr

VaspVpnManager Imp l

VaspVpnManagerFacade

Fig. 7: Internal Structure of the VASP-VPN-Manager Computational Object Type

CustomerServer

...

VASP-VPN-Manager

<<VPNServiceInterface >>
reserveConnetion()
modify()
getStatus()
releaseConnection()
<<VPConnSEHInterface>>
activateConnectionNotify()
releaseConnectionNotify()
connectionNotify()

VPNService

VPConnServEventHandler

reserveConnetion()
modify()
getStatus()
releaseConnection()

<<interface>>
VPNService

activateConnectionNotify()
releaseConnectionNotify()
connectionConnectionNotify()

<<interface>>
VPConnServEventHandler

Fig. 8: The VASP-VPN-Manager Computational Object Type Diagram with Interfaces
The VaspVpnManagerIml package realises the interfaces contained in the „façade“
package as well as other internal objects helping to realise the management functions
supported by the computational component interfaces. The structure of classes as
shown in the VaspVpnManagerFacade package depicted above may be used to
provide the information necessary to define an OMG-IDL file. Thus, such a file may
be more easily written using computational object and interface type diagrams as a
basis (Fig. 8). In IDL these interfaces might be defined in a file „VpnManager.idl“
which has the following form:

#include "XuserTypes.idl"
module VpnManager {

interface VPConnectionServiceEventHandler {
oneway void activateConnectionNotify(

in XuserTypes::NameType pnoId,
in XuserTypes::NameType vpConnectionId,
in XuserTypes::ActivationNotifInfoType status);

oneway void releaseConnectionNotify(
in XuserTypes::NameType pnoId,
in XuserTypes::NameType vpConnectionId,
in XuserTypes::ReleaseReasonType reason);

oneway void connectionNotify(in XuserTypes::NameType pnoId,
in XuserTypes::ReasonType reason,
in ASN1_PrintableString eventInformation);

};
interface VPConnectionService {

exception ConnectionRequestFailure {
XuserTypes::ReasonType reason;

};
XuserTypes::ReserveConnectionResultType reserveConnection(

in XuserTypes::ReserveConnectionInfoType connectionInformation)
raises(ConnectionRequestFailure);

...
};

}; // End of Module

In the above case, the file "XuserTypes.idl" contains all common definitions used for
data types.
Next, the computational activities are described. Computational activities depict the
interactions between the COs in order to perform the management functions defined
through Use-Cases in the Enterprise Viewpoint. Interaction between COs is
described in terms of an operation invocation initiated by a client object requesting
an operation to be performed by a server object. Precedence rules are used to define
the sequence of operations performed when an interaction takes place. To describe
the COs’ internal and external interactions (between different COs), UML
collaboration diagrams and sequence diagrams have been used.

:Customer
Server

:VASP-VP-Seg
ment

:Customer-CP
N

:PnoConnetion
Manager

:RouteFinder:VASP-VPN-
Manager

:VASP-VP-Conn :Customer
EndPoint

1: reserveConnection()

2: findRoute(CustId, CustId)

3: create(VaspId, CustId, CustId, Duration, Bw)

4: reserveConnection(VaspId, AccessP, AccessP, Duration, Bw)

5: create(ConnId, AcessP, AccessP, Bw)

6: allocateConnection(VaspId, AccessP, AccessP, Duration, Bw

7: create(CustId, CPNConnId, AcessP, AccessP, Bw)

Fig. 9: The Reserve Connection Sequence Diagram
The UML Sequence and Collaboration Diagrams as depicted in Fig. 9 and Fig. 10
describe the Reserve Connection Use Case defined in the Enterprise Viewpoint.
These diagrams depict the interactions, sequences of messages, and relationships
among computational components (such as PnoConnectionManager, VASP-VPN-
Manager) as well as programming level objects (e.g. instances of UML object within
the VaspVpnMamager package) [KSW97].

:CustomerServer

:VASP-VP-Segment

:Customer-CPN

:PnoConnetionManager :RouteFinder

:VASP-VPN-Manager :VASP-VP-Conn

:CustomerEndPoint

1: reserveConnection()

2: findRoute(CustId, CustId)

3: create(VaspId, CustId, CustId, Duration, Bw)

5: create(ConnId, AccessP, AccessP, Bw)

4: reserveConnection(VaspId, VaspId, AccessP, AccessP, Duration, Bw)

6: allocateConnection(VaspId, VaspId, AccessP, AccessP, Duration, Bw)

7: create(CustId, CPNConnId, AccessP, Bw)

Fig. 10: The Reserve Connection Collaboration Diagram

2.4 Engineering Viewpoint
This viewpoint focuses on the actual realisation of interactions between distributed
objects and on the resources needed to accomplish this interaction. It comprises of
concepts, rules and structures for the specification of the system viewed from the
engineering perspective.
Within this viewpoint, the engineering specification uses the UML Deployment and
Component Diagrams to define mechanisms and functions required to support
distributed interactions between objects in the service management system.
As depicted in Fig. 11, the concept of UML-nodes was applied to design PNO-Host,
VASP-Host, and CPN-Host. Each of the UML-components contained in the nodes
(such as VpnManagerServer and PNOConnMngrServer) represent a configuration of
engineering objects forming a single unit for the purpose of encapsulation of
processing and storage. Such a configuration is called a Capsule. The Capsule
(Customer Server) contains a composite object mentioned by the stereotype

<<cluster>> that may migrate from the VASP-Host to the CPN-Host as indicated
below by <<becomes>> stereotype.

P N O - H o s t

P N O C o n n M n g r
Server <<ca l l s>>

< < b e c o m e s > >
V A S P - H o s t

V p n M a n a g e r -
Server

Cus tomer -
Server

<<C lus te r>>
G U I a G U I b

C P N - H o s t

<<C lus te r>>
 G U I a G U I b

UserAppl ica t ion

Fig. 11: Deployment Diagram

2.5 Technology Viewpoint
The ODP Technology Viewpoint describes the choice of implementation
technologies used to bring the design accomplished through the four previous
viewpoints to life. This viewpoint depicts the configuration of the hardware and
software on which the distributed system relies. Although there are no dedicated
UML diagrams to describe this viewpoint, the Object Oriented concepts of
encapsulation and abstraction provided by UML in previous design steps allow the
system to be implemented on a mixture of computer architectures, programming
languages and operating systems. This is one of the big advantages of the OO
approach adopted by UML. Thus, the Technology Viewpoint was described using
plain English.
The CPN is realised as a group of Java objects providing an interface to the VASP
VPN functionality. A HTML based user interface is also provided as the end-user
interface to CPN Java objects. The CPN-VASP communications are implemented in
Voyager, the Java-based communications mechanism. VASP is fully implemented in
Java, apart from the MIB, which is based on the Lightweight Directory Access
Protocol (LDAP) which effectively supports functionality required by the TMN-like
MIB. PNO management system is a TMN-OSI platform, the HP-OV, which
communicates via CMIP protocol. Thus, VASP implementation requires a JAVA-to-
CMIP gateway, which is realised as a platform-independent CORBA gateway. These
technologies were chosen so as to fulfil the trial requirements and project aims.

3 Conclusion
The RM-ODP defines, as mentioned before, five different viewpoints and the core
concepts of each one, used for the description of distributed systems. However, it
leaves the issue of how to express each viewpoint, i.e. the notation to be used, open.
In this paper we discussed the use of UML notations in the context of the ODP
framework for the design of telecommunications management services.

Combining UML and ODP has several advantages. First, both UML and ODP are
based on the object paradigm. There is therefore no conflict of basic concepts
between the two.
The various diagram types of the UML notation, such as sequence diagram,
collaboration diagram, etc., make it possible to describe the same system from
different perspectives. This matches rather well with the RM-ODP different
viewpoints as shown by the example used throughout the paper - appropriate types of
UML diagrams are mapped to the different ODP viewpoints. Using the same
notation for all the viewpoints has also the advantage of making both the system
description more coherent and the process of shifting from one viewpoint to another
more natural and smooth - one only shifts context. Conversely, RM-ODP framework
proved to be an efficient way of structuring different UML notations and thus
managing the potential high complexity introduced by various UML diagram types.
Although the UML notation is an attractive choice for use in the design of a
distributed system, it also has some drawbacks. Some of the ODP concepts are not
directly supported by UML. For such reasons, UML introduces the concept of
stereotypes to provide for extensibility. In the example of the previous sections,
stereotypes have been extensively used to map RM-ODP concepts that did not have a
direct counterpart in the UML notations, such as enterprise objects, communities,
clusters, etc. Moreover, although the concept of an interface is part of UML, its
description uses the same notation as for a class. Again a stereotype, <<interface>>,
has been used to differentiate between the class and the interface descriptions. The
use of the same notation to express quite different concepts becomes at best
confusing. In a pictorial notation the core entities of a model (e.g. RM-ODP) should
have individual representations as to be readily distinguished from one another.
Also, UML did not prove to have enough power to fully describe the ODP concept of
the Computational Object. During the design, only the external interfaces provided
by a component were specified, and concepts like binding rules and lifetime aspects
were not included.
In conclusion, the use of the ODP-UML methodology in TRUMPET proved efficient
in collaborate work, resulting in coherent and detailed design of the distributed,
component based inter-domain service management system.
ACKNOWLEDGEMENTS
This paper is based on original work developed by the ACTS project TRUMPET.
The authors wish to thank all the partners of the TRUMPET consortium who
contributed to this work. More information on the TRUMPET project can be found at
http://ascom.eurecom.fr/ASRL/TRUMPET/Trumpet_public/.

4 References
[KSW97] M. M. Kandé, S. Tai, M. Wittig, On the Use of UML for ODP-

Viewpoint modeling. In OOPSLA 97 Workshop on Object Oriented
Technology for Service, System and Network Management, Atlanta,
Geogia, U.S.A., October 1997.

[FOW 97] Martin Fowler with Kendall Scott, UML Distilled: Applying the
Standard Object Modeling Language. Addison-Wesley, 1995.

[JAC97] Ivar Jacobson, Martin Griss, and Patrik Jonsson, Software Reuse:
Architecture, Process and Organization for Business Success.
Addison-Wesley,1997.

[OMG 97] Rational Software, Microsoft, Hewlett-Packard, Oracle, Texas
Instruments, MCI Systemhouse, Unisys, ICON Computing,
IntelliCorp. The Unified Modeling Language, Joint Submission, OMG
TC doc ad/97-01-01 ­ ad/97-01-14 .

[ISO95] ISO/IEC 10746-1/2/3. Reference Model for Open Distributed
Processing ­Part1:Overview/Part2: Foundations/Part3: Archictecture,
ISO/IEC, 1995.

[BB96] Kim Berquist, Andrew Berquist (eds.). Managing Information
Highways. The PRISM book: Principles, Methods and Case Studies for
Designing Telecommunications Management Systems, Springer LNCS
1164, 1996.

[HAL 96] J. Hall [Ed.] , Management of Telecommunication Systems and
Services: Modeling and Implementing TMN-based Multi-domain
Management. Berlin; New York; Tokyo: Springer Verlag, 1996.

[TINA] Graubmann, P. and N. Mercouroff, Engineering Modelling Concepts
(DPE Architecture), TINA Baseline document TB_NS0005_2.0_0.94,
December 1994.

[TM] T. Mowbray and R. Malveau, CORBA Design Patterns, John Wiley
and Sons Inc, New York, USA, 1997.

[D8] ACTS Project AC112 TRUMPET Deliverable 8, Detailed Component
and Scenario Designs, June 1997.

[D6] ACTS Project AC112 TRUMPET Deliverable 6, NIL-Security
Prototype Report, February 1997.

[NMF] The OMNIPoint Strategic Framework. A Service-Based Approach to
the Management of Network and systems, Network Management
Forum, NJ, 1993.

[TSMA] L. Sacks et. al., TRUMPET Service Management Architecture,
submitted for IS&N, 1998.

