|IEEE MULTIMEDIA MAGAZINE

QoS Specification Languages for Distributed

Multimedia Applications:

Jingwen Jin

A Survey and Taxonomy

Klara Nahrstedt

Dept. of Computer Science
University of Illinois at Urbana-Champaign
{jjin1, klara} @cs.uiuc.edu

Abstract—Quiality of Service (QoS) is becoming an integral part
of currently ubiquitous distributed multimedia applications. How-
ever, before any QoS-related mechanisms and policies, such as ad-
mission control, resource reservation, enforcement, and adapta-
tion, can be invoked, applications need to express their QoS re-
quirements. A considerable amount of research has been done in
QoS-aware Application Programming Interface (API) design and
QoS specification language development for multimedia systems.
In this paper, we present an extensive survey of existing QoS spec-
ification languages, and a taxonomy to classify and compare them.
The paper provides readers with a global and insightful knowl-
edge of this important area; knowing how to evaluate QoS lan-
guages, and what aspects are most relevant when designing new
languages.

I. INTRODUCTION

As the overall computer and communication technology
evolves, distributed multimedia applications are becoming
ubiquitous, and Quality of Service (QoS) is becoming an in-
tegral part of them. Being highly resource (e.g., CPU, memory,
and bandwidth) consuming, multimedia applications need re-
source management at different layers of the communications
protocol stack to ensure end-to-end service quality, and to reg-
ulate resource contention for fair sharing of resources. How-
ever, before any mechanisms and policies of a QoS-aware re-
source management can be invoked, applications need to spec-
ify their QoS requirements and the corresponding resource al-
locations. Furthermore, they need to describe how quality of
service should be scaled and adapted in cases of resource con-
tention or resource scarcity during runtime.

QoS involves a multitude of properties beyond the
application-specific aspects, including performance character-
istics, availability, responsiveness, dependability, security and
adaptivity. In general, QoS specifications (1) should allow for
descriptions of quantitative QoS parameters (e.g., jitter, delay,
bandwidth) and qualitative QoS parameters (e.g., CPU schedul-
ing policy, error recovery mechanism), as well as adaptation
rules; (2) must be declarative in nature, that is, to specify only
what is required, but not how the requirement should be carried
out; (3) need to be accompanied by a compilation process that
maps the QoS specification to underlying system mechanisms
and policies.

The main purpose of this paper is to systematically classify
and compare the existing QoS specification languages that span
across several QoS layers with diverse properties. The provided
taxonomy and the extensive analysis will allow us to obtain

an insightful view of the existing QoS specification languages
along with their properties and relations.

The remainder of this paper is organized as follows. We first
describe the taxonomy we use to classify and evaluate existing
languages in Section Il. We proceed in Sections IlI, IV, and
V by presenting QoS specifications in three layers with repre-
sentative languages. Evaluation of the languages is presented
throughout the text. Mapping between the QoS specifications
and underlying system resources becomes a natural topic of dis-
cussion when we deal with layered QoS. However, due to space
limitations, this subject will only be presented briefly in Section
VI. Section VII provides some general comments and conclud-
ing remarks.

II. TAXONOMY AND EVALUATION CRITERIA

Given the heterogeneities of the applications, user prefer-
ences, underlying operating systems, networks, and devices,
and given the dynamics of their resource usages, it is a complex
task, but of great importance, to properly specify QoS require-
ments and adaptation policies for multimedia processing and
delivery. With a large number of QoS specification languages
emerging from practical needs, there is a strong need to develop
a taxonomy to classify them.

A. Taxonomy

Traditionally, QoS has been a topic discussed mainly in the
network communications area. However, for multimedia sys-
tems, QoS must be assured not only at the network layer, but
at the end systems (e.g., OS and devices) as well [1]. Based
on this, we will partition QoS specification languages first into
layers according to where in the end-to-end architecture they
belong to, and then into classes based on their properties.

1) Layer Partitioning: Layer partitioning is necessary as
QoS specifications at different layers present very different
features of services. We consider three layers: user-layer,
application-layer, and resource-layer (OS and networks), be-
cause QoS-rich distributed multimedia systems deploy QoS
specifications in these three layers.

1) user-layer: At the beginning, a genuine user may need
to specify the quality he/she expects to receive from an
active application at very abstract level, hence we need
user-layer QoS specification.

2) application-layer: Later on, the human-perceptive qual-
ity will be translated into more concrete QoS parameters,

|IEEE MULTIMEDIA MAGAZINE

which we call application-layer QoS specification. This
first mapping between user and application QoS specifi-
cations should assume no knowledge of the underlying
operating system and network conditions.

3) resource-layer: Finally, in order for the application to
be executed in a real OS platform and physical net-
work, those application-specific QoS parameters need to
be further interpreted into more concrete resource re-
quirements, such as bandwidth/memory allocation and
CPU scheduling policies. The resource management re-
quires resource-layer QoS specifications to provide the
QoS awareness.

Note that an application-layer QoS specification is
application-specific, but hardware and platform-independent,
while a resource-layer QoS specification depends heavily
on the physical world, and is thus hardware and platform-
dependent. Application- and resource-layer QoS are specified
both quantitatively and qualitatively; the former is used in a
specific service as threshold parameters to classify in which
quality range the service should operate, while the latter is
used to coordinate the involved service as well as to indicate
transitions from one operational mode of the service to another.

As a simple example to illustrate the three-layer specifica-
tion model, we consider a Video-on-Demand (VOD) applica-
tion where a user wants to see a video located at a remote server.
The user may specify, usually through a Graphical User Inter-
face (GUI), the desired overall media quality (at an affordable
price) for the VOD service among a set of choices, e.g., high,
average and low quality, based on human perception. This
specification is then passed to the application layer to derive
more application-specific media quality specifications such as
video frame rate, image/audio resolution (quantitative parame-
ters), and inter/intra-stream synchronization schemes (qualita-
tive parameter). Translation of these descriptions into physical
or logical resource specifications for OS and communication
services will take place at next mapping, and the resulting quan-
titative descriptions at the resource layer may include through-
put, delay, delay-jitter, buffer size, and synchronization skew,
and qualitative descriptions may include CPU scheduling poli-
cies and transmission error recovery mechanisms. A summary
of QoS layers and their corresponding QoS issues is given in
Table I.

2) Class Partitioning: QoS specification languages can be
further classified into classes according to their properties.
User-layer QoS specification will only be briefly presented in
this paper because, compared to QoS specifications at other
layers, it has not been extensively investigated in the multime-
dia system area. We categorize application-layer QoS speci-
fication languages, according to their paradigms, into script-
based, parameter-based, process-oriented, logic, markup-based,
aspect-oriented, and object-oriented paradigms, and catego-
rize resource-layer QoS specification languages, based on their
granularity, into fine and coarse granularity classes.

B. Evaluation Criteria

Since QoS specifications at different layers present very dif-
ferent features of services, we evaluate each layer with different
sets of criteria.

User Layer: A genuine multimedia application user is not
expected to be a computer expert, thus it is desirable to pro-
vide the user with a user-friendly GUI that is simple yet expres-
sive enough as to allow him/her to choose the most appropri-
ate quality within a desired price range. By expressiveness, we
expect a GUI to provide choices for both quality and pricing.
Although there is active research on graphical interface devel-
opment/evaluation in the Human Computer Interaction (HCI)
area largely focusing on aesthetic- or facility-based issues, this
paper concentrates on system-related QoS issues only.

Application Layer: Among the three end-system layers,
application-layer QoS specifications have been investigated the
most, thus will be accordingly devoted a larger space in this
paper. We evaluate languages at this layer according to the fol-
lowing five criteria which we deal appropriate:

« Expressiveness: A good QoS specification needs to be ca-
pable of specifying a wide variety of services, their re-
quired resources and corresponding adaptation rules.

« Declarativity: A QoS specification should be declarative
in nature, so that applications are relieved of the burden of
coping with complex resource management mechanisms
needed for ensuring QoS guarantees.

« Independability: Specifications should be developed inde-
pendently from the functional code for readability and ease
of development/maintenance purposes. Independability
also allows a single application to be associated with dif-
ferent QoS specifications at users’ request.

« Extensibility: This criterion evaluates how easily a lan-
guage can be extended for specifying new QoS dimen-
sions.

« Reusability: Reusability becomes important when QoS
specifications get large, as sometimes a new specifica-
tion may just be an existing one with some minor refine-
ments. A language with reusable features would be favor-
able in practice. One necessary, but not sufficient, con-
dition for achieving reusability is independability, as the
separation would make both functional and non-functional
code clean, easy to develop, and easy to maintain.

Resource Layer: At the resource layer, descriptions about
the exact physical resource requirement (amount of resource
as well as timing of allocation) and adaptation policies are ex-
pected. We evaluate resource-layer QoS languages using the
expressiveness criterion.

I11. USER-LAYER QOS SPECIFICATION
A. Characteristics

Multimedia users need to have access and capability to con-
trol and customize the quality of their applications. One com-
mon way is to provide users with a GUI that is simple, because
users are not expected to give sophisticated descriptions about
QoS requirements. Therefore, having a user-friendly GUI with
a limited number of options that concentrate on subjective user-
relevant quality criteria is desirable. There are two main fea-
tures that user-layer QoS specifications should satisfy: (1) pro-
vision of perceptive media quality descriptions (e.g., excellent,
good, fair or bad quality) and other related specifications, such

|IEEE MULTIMEDIA MAGAZINE

QoS Layers

QoS Issues/Parameters

User Layer
(subjective criteria)

e perceptive media quality (e.g., excellent, good, fair, bad)
e window size (e.g., big, medium, small)

e pricing model (e.g., flat rate, per transmitted byte charge)
e range of price (e.g., high, medium, low)

Application Layer
(hardware- and platform independent)

e quantitative issues (e.g., video frame rate, image/audio resolution)
e qualitative issues (e.g., inter/intra-stream synchronization schemes)
e adaptation rules (e.g., if video quality is good, then drop all B frames)

Resource Layer
(hardware- and platform-dependent)

e quantitative issues (e.g., throughput, delay, delay jitter,

memory size, timing of resource requirements)

e qualitative issues (e.g., OS scheduling, reservation style,

loss detection/recovery mechanisms)

e adaptation rules (e.g., if 80ms < skew < 160ms then drop x video frames)

TABLE
SUMMARY OF QOS ISSUES FOR THE THREE LAYERS: USER LAYER, APPLICATION LAYER, AND RESOURCE LAYER.

as window size (e.g., big, small), response time (e.g., interac-
tive, batch), and security (e.g., high, low); (2) provision of ser-
vice pricing choices, i.e., users should be able to specify the
range of price they are willing to pay for the desired service.
Cost of service is an important factor, because if there is no no-
tion of cost involved in QoS specification, there is no reason
for the user to select anything other than the highest level and
quality of service [5].

B. Case Studies

The INDEX QoS architecture [2] captures, via an intelligent
agent (embedded into the general QoS architecture [3]), user’s
preferences in terms of service quality and price, and maps
them into corresponding QoS of Internet network services so
that the user’s cost-performance relation is optimized. INDEX
provides pricing and media quality descriptions via four GUI
panels, which reflect billing information, usage information,
user preference (price selection and user feedback), and user
complaints. The specified QoS information is then used by the
underlying agent communication module to select an appropri-
ate Internet service provider to carry out the data communica-
tion.

In the QoStalk framework [4], the visual tool allows appli-
cation programmers to specify, using a hierarchical approach,
application service components, where each component is la-
beled with corresponding application-layer QoS descriptions.
Furthermore, application developers provide user-application
templates, which include user-application QoS descriptions and
their mapping to the corresponding application-layer QoS. A
template allows to express media-quality descriptions and non-
media-quality descriptions in a simple way, and allows for spec-
ifications of different application domains.

The two visual tools have different emphases: the IN-
DEX project concentrates on pricing issues, while the QoStalk
project concentrates on descriptions of general QoS issues for
multimedia applications. The combination of the two would
result in a more expressive user-layer GUI.

IV. APPLICATION-LAYER QOS SPECIFICATION

Two types of application-layer features can be defined: one
is performance-specific, expressed via quantitative parameters
(e.g., frame rate, frame resolution, synchronization skew, level
of security), and the other is behavior-specific, expressed via
qualitative parameters (e.g., what to act if network bandwidth
is scarce). A specification language should provide certain ab-
stractions so that programmers do not have to engage them-
selves into every low-level detail about how/what specific re-
sources and actions need to be invoked. There are two ways
to provide programming abstractions: one is through APIs, the
other is through language constructs, by either extending exist-
ing languages or creating completely new ones. We classify
application-layer QoS specification languages based on their
paradigms.

A. Script-Based Paradigm

Script languages are more abstract than imperative lan-
guages, thus are appropriate for specifying things in high level.
Roscoe and Bowen [5] present a technique that adds QoS sup-
port into Windows NT applications without modifying the ap-
plications themselves or underlying operating systems. Their
solution is to add a protocol agent into the Winsock protocol
stack, which intercepts calls made by the application to the net-
working facilities provided by the underlying operating system,
and then contacts the policy daemon containing QoS scripts ex-
pressed in SafeTcl [6] (an extension of Tcl with added security
issues), to learn how to mark the network packets. Two sam-
ple policies, written in SafeTcl, are shown in Figure 1. The first
example assigns a higher importance, thus a higher Type of Ser-
vice (TOS), to network connections initiated by an instance of
NetMeeting, and the second example assigns a higher TOS to a
particular machine, whose IP address is 199.2.53.102.

The approach was mainly to allow existing applications to
take advantage of QoS facilities described by the DiffServ
framework®. Hence, SafeTcl scripts were only used to instruct

1DiffServ is a proposed IETF model for offering differentiated services in
the Internet, by marking IP packets with a byte value known as the DS field
specifying how the packet should be treated on a per-hop basis by routers. More
details will be given in Section V-B.2.

|IEEE MULTIMEDIA MAGAZINE

Sample 1: Give NetMeeting better network service

proc Socket {pid uid cmd family type protocol fd} {
if{[string compare $cmd $NetMeetingStr] == 0} {
if{$family == SAF(INET) && S$type == $SockType(DGRAM)}
{return "TOS 48"}

}
else {return "TOS 16"}
}
}

Sample 2: Give different service to a particular destination
proc Connect {pid uid cmd fd address sqos gqos} {

if {$inaddr == "199.2.53.102"} {return "TOS 48"}
}

Fig. 1. Two examples of QoS scripts written in SafeTcl.

the protocol agent in marking packets (although the language
itself is far more expressive). It remains to be seen how well
the language can be extended to specify other QoS dimensions.
This approach allows specifications to be written syntactically
separate from the applications, thus has good independability.

B. Parameter-Based Paradigm

In this approach, which is widely adopted, application devel-
opers define data structures to express qualitative and quantita-
tive parameters, without creating a new QoS language; it relies
on the underlying QoS management architecture to evaluate and
act on the parameters.

An example of the parameter-based paradigm is QoS-A, de-
veloped by Campbell [7], which uses a Quality of Service Ar-
chitecture (QoS-A) to deal with QoS enforcement both at end
systems and in the networks in a uniform way. A QoS param-
eter specification between two communicating parties defines
a service contract that includes several aspects: flow specifi-
cation, QoS commitment, QoS adaptation, QoS maintenance,
reservation style, and cost. The service contract is implemented
as a C structure, and each clause again is represented as another
structure.

The flow specification structure specifies performance-
related quantitative metrics, such as frame size, frame rate,
burst size, peak rate, delay, jitter, and loss rate?. The QoS com-
mitment clause describes the requirements in a qualitative way,
e.g., whether the services are guaranteed, statistical, or best-
effort. The QoS adaptation structure is used to specify which
remedial actions to take in the presence of QoS violation, where
adaptation actions can be triggered upon the degradation of, for
example, loss, jitter, throughput, and delay. An action can be
like “if the maximum end-to-end delay is exceeded then the
QoS-A will inform the user of the QoS event via an upcall”.
The QoS maintenance structure provides choices for an appli-
cation to specify how frequent or how well it wants to be no-
tified of performance changes. The reservation styles structure
allows to specify resource reservation styles, e.g., fast, negoti-
ated, and forward. Lastly, the cost structure allows applications

2Note that a flow specification actually spans across application and resource
layers.

to specify the range of price or payment mode that the user is
willing to follow.

The set of QoS constructs is rather rich, making the API
good in terms of expressiveness, and we believe new QoS con-
structs can be added without too much difficulty. QoS-A also
allows contracts to be developed independently of the applica-
tions. Since QoS parameters and actions are specified as struc-
tures, QoS-A does not provide special facilities for specification
reuse.

C. Process-Oriented Paradigm

In the process-oriented paradigm, processes, as units of exe-
cution, communicate and synchronize with one another through
message passing, or communication ports. Process-oriented
QoS specification allows to associate QoS with communicating
end ports, as well as to express negotiation of QoS constraints
and monitoring of QoS between two ports.

An example of process-based QoS specification language is
QUAL (Quality-of-service Assurance Language), developed by
Florissi [8]. QUAL is extended from Concert/C, and its lan-
guage constructs provide means for specification and negoti-
ation of QoS constraints, specification of QoS violation han-
dlers, and customization of QoS monitoring. QUAL supports
handling of two types of QoS metrics: application-specific
QoS metrics and resource-specific QoS metrics. This section
concentrates on the former. Resource-specific QoS metrics of
QUAL will be presented in Section V-B.2.

At application layer, metrics such as frame rate and synchro-
nization are of interest. QUAL monitors these metrics through
function calls. For example, the command qual_monitor can be
invoked if an application wants to monitor the inter-arrival de-
lay of the incoming video frame at a certain port. QUAL allows
specification of filters, which are inspectors placed in ports to
check the data flow to guarantee that only complying messages
are injected into the communication stream. This feature may
be useful if receivers are heterogeneous, because the sender
may specify several filters such as low_quality, med_quality,
and high_quality, and let receivers tune into one of them ac-
cording to their own capacity. Some other important features
of QUAL include automatic QoS violation monitoring by hav-
ing the application inform the QUAL runtime which conditions
identify a QoS violation, so that when a violation is detected,
the runtime notifies the application of the occurrence.

QUAL has a good expressiveness, and one should be able
to easily develop new QoS constructs when needed. However,
specifications written in QUAL are spread across the functional
code, making both parts hard to develop and maintain. In addi-
tion, the language is more instructive than declarative. Like all
previous languages, QUAL does not present features for reuse.

D. Control-Based Logic Approach

Control-based approaches are adopted in adaptive systems
for QoS specifications of adaptive policies and flow con-
trol. Some systems use adaptive control techniques such as
PID (Proportional-Integral-Derivative) controller to specify and
control fine granularity when scheduling flows or tasks. Other

|IEEE MULTIMEDIA MAGAZINE

systems use fuzzy-control techniques to specify and assist in
adaptation of QoS [9].

The fuzzy-control QoS specification [9] is fully supported by
an underlying middleware control architecture. This architec-
ture enforces the adaptive application to behave according to the
fuzzy-control specification, and it comprises two components:
the adaptor and the configurator. The adaptor makes control de-
cisions with global awareness of application QoS requirements
and resource availability of the entire system. The configurator
uses the fuzzy control QoS specification and translates the nor-
malized control decisions, generated by the adaptor, into actual
parameter-tuning actions to be used during the execution of the
application.

The fuzzy control approach allows applications to express
QoS-aware adaptation policies and preferences in forms of
rules and member functions. Rules are specified in an if-then
format: “if X; is A; and ...and X,, is 4,, then Y is B”, where
X4, ..., X, and Y are parameters corresponding to certain
QoS-relevant system conditions such as bandwidth and CPU,
and Ay, ..., A, and B represent actual values of parameters
in the fuzzy form high, low, moderate or below_average for
the linguistic variable cpu_demand. An example of QoS-aware
adaptation rule is “if cpu_availability is very_high and avail-
able_bandwidth is very_low then rate_demand is compress”,
which tells the system to compress the data because available
bandwidth is very low but there is large amount of cpu avail-
able.

One limitation of the fuzzy-control approach is that it is in-
tended to specify only actions, but not other QoS properties.
Thus this approach is poor in terms of expressiveness and is not
sufficient for multimedia applications in general.

E. Markup-Based Paradigm

Extensible Markup Language (XML) [10] is a markup lan-
guage for documents containing structured information. Struc-
tured information contains both content (words, pictures, etc.)
and some indication of what role that content plays. A markup
language is a mechanism to identify structures in a docu-
ment, and the XML specification defines a standard way to add
markups to documents. Different from HTML, where both the
tag semantics and the tag set are fixed, XML specifies neither
semantics nor a tag set. In fact XML is really a meta-language
for describing markup languages; i.e., it provides a facility to
define tags and the structural relationships between them. Since
there is no predefined tag set, there cannot be any preconceived
semantics. All of the semantics of an XML document will
be defined either by the applications that process them or by
stylesheets[10].

HQML in [4] is a QoS language based on the XML stan-
dards, which basically defines a set of tags relevant to QoS
of multimedia applications, to allow application developers
to define QoS parameters and policies. A sample HQML
specification, whose id is 1, is depicted in Figure 2. Tags
such as <ServerCluster>, <ClientCluster>, and <LinkList>
are used to define the QoS requirements of the server, gate-
way, client machines, and the properties of the links (e.g.,
fixed link or mobile link). HQML allows to specify adapta-
tion rules between the pair of tags <ReconfigRuleList> and

<AppConfig id ="1">
<ServerCluster>

</ServerCluster>
<ClientCluster>
<Client type = "required">
<Hardware> Pentium PC 500 </Hardware>
<Software> Windows 2000 </Software>

</Client>
</ClientCluster>
..<LinkList>
<Link type = "FixedLink">
<Start> Server </Start>
<End> Client </End>

</LinkList>
<ReconfigRuleList>
<ReconfigRule>
<Condition type = "Bandwidth"> very low </Condition>
<ReconfigAction type = "switch to"> 2 </ReconfigAction>
</ReconfigRule>
</ReconfigRuleList>
</AppConfig>

Fig. 2. Sample HQML specification.

</ReconfigRuleList>. For example, in Figure 2, the adapta-
tion rule indicates that “when Bandwidth is very low, then the
application execution should switch to specification whose id is
2”. A good feature of HQML is that it can, due to XML’s meta-
language property, be easily extended to include new QoS pa-
rameters. The language is also good in expressiveness, declar-
ativity, and independability. However, it does not have any spe-
cial constructs that facilitates the extension and reuse of existing
specifications.

F. Aspect-Oriented Approach

Many distributed systems are built on top of CORBA - a
middleware that provides a flexible communication and acti-
vation substrate for distributed heterogeneous object-oriented
computing. CORBA hides system- and network-specific char-
acteristics of objects behind the standardized Interface Descrip-
tion Language (IDL) specifications, so that the objects exhibit
only their functional interfaces. The fact that IDL abstracts
away low-level details simplifies development and maintenance
of distributed objects, but at the same time, it also makes the in-
clusion of non-functional features (such as QoS) into the system
difficult because much of the information required to support
the QoS also becomes hidden.

The Object Management Group (OMG) has put some ef-
fort on extending CORBA to support QoS-enabled applica-
tions[11]. However, so far there does not seem to be any con-
crete specification language developed at OMG. CORBA IDL
has been extended by Becker and Gheis [12] with constructs
for QoS characterizations. However, this approach statically
binds QoS characterizations to interface definitions®, therefore
does not allow different properties to be associated with dif-
ferent implementations of the same functional interface. In the

3This is an approach similar to that adopted by TINA ODL[13], which also
syntactically includes QoS requirements within interface definitions. This way,
each functional interface can be only associated with fixed QoS properties.

|IEEE MULTIMEDIA MAGAZINE

research community, two different language approaches for dis-
tributed object-base applications have been developed: aspect-
oriented approach and object-oriented approach. This section
concentrates on the Aspect-Oriented approach, Section V-G
will present Object-Oriented approach.

The Aspect-Oriented approach follows the Aspect-Oriented
Programming (AOP) paradigm developed by Kiczales et al
[14], because QoS-related tasks are examples of the so-called
aspects in this paradigm. Aspects are not units of the system’s
functional decomposition; rather, they are properties that af-
fect the performance or semantics of the components in sys-
tematic ways. Using traditional programming languages, im-
plementations of such aspects would result in tangled code
with aspect-related code spreading over the program and cross-
cutting the basic functional components of the system. The
Aspect-Oriented Programming technology has been developed
to support clean abstraction and composition of both aspects
and functional components. Using AOP, an application can
be decomposed into functional components and aspects, where
different aspects can be programmed in different languages
suitable to the tasks, and at the end a special language proces-
sor, called aspect weaver, would coordinate the co-composition
by weaving all the code together to produce a single executable
application.

The Aspect-Oriented approach can be found in the Qual-
ity Object (QuO) framework [15], [16] developed at BBN.
QuO supports QoS at the CORBA object layer by opening
up distributed object implementations to give access to the
system properties of the CORBA ORB and objects, and ex-
tends the CORBA functional IDL with a QoS Description Lan-
guage (QDL) consisting of three sub-languages, the Contract
Description Language (CDL), the Structure Description Lan-
guage (SDL), and the Resource Description Language (RDL).

CDL is used for specifying a QoS contract, which consists of
four major components: a set of nested regions, each represent-
ing a possible state of QoS; transitions for each level of regions
specifying behavior to trigger when the active region changes;
references to system condition objects that gather runtime in-
formation for measuring and controlling QoS; and callbacks
for notifying the client or object. The last two components are
specified as contract parameters, and are usually shared among
several contract instances. The nested regions, describing the
relevant possible states of QoS in the system, are defined by
predicates on the values of system condition objects. The re-
gions are evaluated by the contract to determine whether they
are active. If the currently active regions have suffered changes
since the last contract evaluation, transition behaviors are trig-
gered. A QoS contract written in CDL is given in Figure 3. The
example shows a client contract that can operate in two possi-
ble operating modes: Low_Cost and Available. ClientExpecte-
dReplicas and MeasuredNumberReplicas are system condition
objects indicating the client’s expected number of replicas and
the actual number of replicas available, respectively. The real-
ity region transitions are used to notify the client about changes
in the number of replicas. For example, in the Low_Cost mode,
if MeasuredNumberReplicas drops from High to Low, then a
callback availability_degraded() will be triggered. The negoti-
ated region transitions are used to specify actions to take when

contract repl_contract(

negotiated regions are
region Low_Cost : when ClientExpectedReplicas == 1 =>
reality regions are
region Low : when MeasuredNumberReplicas < 1 =>
region High : when MeasuredNumberReplicas >= 1 =>
transitions are
transition High->Low : ClientCallback.availability degraded();
end transitions;
end reality regions;
region Available : when ClientExpectedReplicas >=2 =>
reality regions are

transitions are

end transitions;
end reality regions;
transitions are
transition Low_Cost->Available :
ReplMgr.adjust_degree of replication(ClientExpectedReplicas);
transition Available->Low_Cost :
ReplMgr.adjust_degree of replication(ClientExpectedReplicas);
end transitions;
end negotiated regions;
end repl_contract;

Fig. 3. Sample CDL contract.

the client changes its desired replication.

While CDL is used for describing the QoS contract between
a client and an object, SDL allows programmers to specify the
structural aspects of the QoS application. This includes adap-
tation alternatives and strategies based on the QoS measured
in the system. The current version of SDL enables us to ex-
press behaviors to invoke for method calls/returns based on the
current regions of contracts when the calls/returns occur. Such
behaviors can have descriptions like: “when the client desires
higher availability than what is measured, i.e., the contract is in
the Available negotiated region and the Low reality region, then
an exception will be thrown”. The QuO code generator takes
the normal CORBA IDL code, as well as specifications written
in SDL and CDL?, as the input, and weaves them into a single
application.

As we can see, QDL is good in most of our evaluation cri-
teria; it is expressive, declarative, independent, and extensible.
However, like the previous languages, there is no special facil-
ity for specification reuse.

G. Object-Oriented Approach

Until this point, the languages described in this paper did
not take reusability into their designs. We borrow the termi-
nology “Object-Oriented” from the traditional languages area
to concentrate on the specification refinement issue that, much
like the class inheritance concept in Object-Oriented languages,
helps to enhance specification reusability. Many language de-
velopers may have thought that specifications, unlike the tradi-
tional functional code, should be small and relatively unrelated.
However, as the QoS-awareness in multimedia applications in-
creases, we may expect specifications of larger sizes that are
closely related to each other based on their properties.

4 Although QDL was planned to be a suite of three different languages, the
third sub-language, RDL, which was supposed to abstract the physical re-
sources used by the object, never really came out.

|IEEE MULTIMEDIA MAGAZINE

type Reliability = contract {
NumberOfFailure: decreasing numeric no/year;
TTR: decreasing numeric sec;
Availability: increasing numeric;
|4
type Performance = contract {

delay: decreasing numeric msec;
throughput: inceasing numeric mb/sec;

1

systemReliability = Reliability contract {
numberOfFailures < 10 no/year;
TTR {
Percentile 100 < 2000;
Mean < 500;
Variance < 0.3

availability > 0.8;
1.
S

ServerProfile for Servicelnterface = profile {

require systemReliability;

from operation] require Performance contract {

delay {
percentile 50 < 10 msec;
percentile 80 < 20 msec;
1
g
from operation2 require Performance contract {
delay <4000 msec

I8

}

Fig. 4. Example of contracts and profile written in QML.

A very good example that provides specification refinement
features is QML (QoS Modeling Language) [17], developed at
the HP Laboratories. QML is for Corba-based distributed ob-
ject systems, and offers three main abstraction mechanisms for
QoS specification: contract type, contract, and profile; where
contract type defines the dimensions that can be used to char-
acterize a particular QoS aspect, contracts are instances of con-
tract types, and profiles associate contracts with interfaces and
operations. These concepts are illustrated in Figure 4. Reliabil-
ity and Performance are two contract types each with its own
dimensions, e.g., number of failures per year, time to repair
a failed service, availability of the system. The contract sys-
temReliability is an instance of contract type Reliability with
constraints associating with the dimensions defined in the con-
tract type. Lastly, the profile ServerProfile is defined for an IDL
service interface (named Servicelnterface, with two operations:
operationl and operation2). The profile requires the two previ-
ously defined contracts either for the service in general (system-
Reliability - which should hold for all operations) or for certain
specific operations.

The QoS refinement features in QML are actually conse-
quences of the facts that class inheritance allows an interface
to be defined as a refinement of another interface and that QoS
specifications are associated with interfaces (via profiles). Two
kinds of refinement, contract refinement and profile refinement,
are supported in QML. A contract B refined from a contract A
is specified as B = A refined by {...} where A is the base con-
tract, and the contract enclosed in the curly brackets is a delta
that describes the differences between the contracts A and B
by specifying either those QoS properties omitted in A or re-
placing specifications in A with stronger ones. Profiles can be
refined in a similar way, with the delta specifying new contract
association to be added or strengthened in the new profile.

Among all application-layer languages presented so far,
QML supports specification reusability the best through con-
tract and profile refinement. It is also good in terms of inde-
pendability and extensibility. However, one limitation of QML
is that for each contract type (e.g., reliability) that a profile in-
volves, at most one contract can be used as a default contract
within the profile. For example, the profile ServerProfile de-
clares that it requires systemReliability, which is an instance
of the contract type Reliability, it cannot require a second in-
stance of the same contract type. It would be good if future
work could allow a profile to require several contracts of the
same type to be the default type and take the final result as, for
example, the set of strongest constraints defined in all contracts.
QML is a general-purpose QoS specification language capable
of dealing with any QoS aspects (e.g., reliability, availability,
performance, security, and timing) and any application domain.
However, one limitation is that it largely specifies QoS proper-
ties at design time, but does not address the problem of what
actions to take at runtime if the QoS requirements cannot be
satisfied in the current execution environment. In this respect,
QDL is more expressive than QML.

H. Comparisons of Application-Layer QoS Specification Lan-
guages

To better view a high-level picture of the application-layer
QoS specification languages’ performances according to our
evaluation criteria, we provide a simple table in this section (Ta-
ble I1), where each evaluation criteria is attributed three values:
good, fair, and poor, based on our own view.

V. RESOURCE-LAYER QOS SPECIFICATION

Application-layer specifications only state requirements in a
rather high-level, abstract way. Later, these requirements are
further translated into more concrete resource demands. That
is, descriptions such as which physical resources will be needed
for the application, when they need to be allocated, which
mechanisms should be adopted, and which transport protocol
is to be used, need to be provided. We classify specifications at
this layer according to their granularity into: coarse granularity
and fine granularity categories. By coarse granularity, we only
expect a meta-level specification, while by fine granularity, we
expect concrete descriptions of required resources.

A. Coarse-Granularity Resource-Layer QoS Specification

1) Characteristics: Some resource-layer QoS specifications
only specify resource requirements in a rather abstract way. For
example, they may specify what (amount of) resource is re-
quired, but do not care about when the resources need to be
allocated, or what action to take if the resource requirement can
not be met, or if several resource instances (e.g., processors) are
available, which specific one to use. We call languages that do
not allow descriptions of fine-granularity resource requirements
coarse-granularity languages.

|IEEE MULTIMEDIA MAGAZINE

QoS Language | expressiveness | declarativity | independability | extensibility | reusability
SafeTcl poor fair good poor poor
QoS-A good good good good poor
QuAL good poor poor good poor
Fuzzy Control fair good good fair poor
HQML good good good good poor
QDL good good good good poor
QML fair good good good good
TABLEII

COMPARISON OF APPLICATION-LAYER QOS LANGUAGES.

2) Case Studies: The Resource Specification Language
(RSL) is developed by the Globus project [18] and is used to
communicate requests for resources between components in
metacomputing systems. The authors developed a hierarchi-
cal resource management architecture comprising several com-
ponents, namely, resource broker, resource co-allocator, local
resource manager, and an extensible resource specification lan-
guage - RSL.

Initially, an application specifies its QoS requirement in RSL.
This specification is of high-level in that the required items
may be physically distributed in several locations and systems.
This high-level specification is passed through resource bro-
kers that can translate it into more concrete resource require-
ments and locate required resources. This translation gener-
ates a specification, called a ground request, in which the lo-
cations of the required resources are completely specified. A
co-allocator is then responsible for coordinating the allocation
and management of resources at multiple sites, by breaking the
multi-request (involving resources at multiple sites) into sev-
eral requests and passing them to the appropriate local resource
managers. The syntax of RSL is very simple. An RSL spec-
ification is constructed by combining simple parameter speci-
fications and conditions with logic operators &, |, and +. As
an example, the multi-request below shows that the executable
program, myprog, requests 5 nodes with at least 64 MB mem-
ory, or 10 nodes with at least 32 MB memory.

&(execut abl e=nypr og)

granularity resource-layer QoS specification descriptions of (1)
quantitative and qualitative QoS requirements; (2) timing of the
resource requirements, i.e., for when and for how long the re-
source needs to be allocated; and (3) adaptation rules.

2) Case Studies : Three examples will be presented in this
section: DSRT, QUAL, and IntServ/DiffServ.

DSRT: The purpose of DSRT (Dynamic Soft Real Time Sys-
tem), developed by Chu [19], is to support soft real-time appli-
cations in traditional time sharing systems by developing a mid-
dleware between applications and the operating system. This
new layer consists of some APIs developed in C++ that allow
applications to reserve and free cpu resources. The APIs also
define some structures that allow users to specify the amount of
cpu resources required during the application execution (e.g.,
period, peak processing time, burst tolerance), and some adap-
tation strategies (e.g., upper and lower bounds on the guaran-
teed parameter that can be adjusted by the DSRT system). Once
these values are set, a function call cpu.reserve(reservation)
and cpu.setAdaptStrategy(strategy) will, respectively, make cpu
reservation and set some adaptation strategies according to the
values specified in the reservation and strategy structures. The
author also extended the same mechanism from cpu to other
resources such as memory and communication.

QUAL : QUAL [8] provides a range of QoS attributes for the
specification of network and OS resource-layer QoS metrics.
As an example, imagine a situation where an application A pe-
riodically sends images to a remote site B. The applications at

(| (& count =5) (nenor y>=64)) (&ount =10) (menor y>=32) joth sides may specify QoS constraints on the transmission of

A ground request that results from the interpretation of bro-
kers would further specify information about which resource
manager will be handling particular requirements in the multi-
request, so that a co-allocator can determine to which resource
manager each component of the multi-request should be sub-
mitted.

As we can see, RSL does not deal with timing of resource
allocation or resource scaling/adaptation. Since multimedia ap-
plications are very sensitive to timing, and are adaptive in a
sense that resource requirements are usually flexible (instead
of rigid), a coarse-granularity language does not suit well for
multimedia applications.

B. Fine-Granularity Resource-Layer QoS specification

1) Characteristics: For multimedia services, specifications
of finer granularity are required. We expect from a fine-

images as in Figure 5. Having both sites specified their require-
ments, QUAL abstracts QoS negotiation between peer applica-
tions by type checking connecting ports and guarantees that two
ports are connected only if they have compatible QoS attributes;
i.e., if the compiler and runtime are able to coerce all the QoS
requirements of the sender into the QoS requirements of the re-
ceiver, or vice versa. In most cases, coercion is possible when
the QUAL compiler or runtime can upgrade a less restrictive
constant until it matches a more restrictive one. QUAL also al-
lows specification of actions to perform when QoS violations
occur. The runtime automatically monitors QoS delivery and
invokes application-customized exception handlers when viola-
tions are detected. The runtime scrutinizes interactions among
applications, communication protocol stacks, and OS, and col-
lects statistics on the delivered QoS into a QoS Management In-
formation Base (QoS MIB), which is then used by applications
to dynamically adjust their execution. QUAL does not deal with

|IEEE MULTIMEDIA MAGAZINE

realtm {loss 6;
rate sec 10 - sec 30;
delay ms 40;
jitter ms 33;
recovery sec 4;}
receiveport {image t} *image output;

realtm {loss NULL;
rate sec 10 - sec 25;
jiter ms 33, nocoercion;
recovery sec 3;}

receiveport {image_t} image_input;

Fig. 5. Specification of QUAL QoS constraints on the image transmission at
site A & B.

timing of resource requirements, thus in this respect, it is less
expressive that DSRT.

IntServ/DiffServ: The vigorous interest in QoS issues
within the Internet community has led the rapid development
of two IP standards by IETF: the Integrated Service (IntServ)
based on the Resource ReSerVation Protocol (RSVP) and the
Differentiated Services (DiffServ). With the growing interest in
Internet audio and video, IntServ became a standard focusing
on per-flow QoS, where admission control is invoked at each
node to make a local accept/reject decision by the signaling pro-
tocol RSVP. The poor scalability of IntServ (due to the complex
signaling protocol and state maintenance overhead incurred at
routers) has, later, led to the development of DiffServ which,
rather than providing QoS on a per-flow base, considers flow
aggregates at the edge of the network to keep the core of the
network simple. By marking packets’ type field (Type of Ser-
vice field in IPv4 and Traffic Class in IPv6) at the edges of
network, the core of the network only needs to check this type
field, which represents a small and well-defined forwarding be-
haviors, to make forwarding decisions. As can be seen, QoS for
IP networks is largely to quantify and enforce the treatment a
particular packet can expect as it transits a network.

V1. DISCUSSIONS

QoS mapping refers to the process of translating higher-level
representations of QoS into lower-level representations of QoS.
The translation between user QoS and application QoS is non-
trivial and is still an open research issue, because the perceptual
issues are not completely understood [1], and because human
perceptions for quality may change as the technology evolves.

Automated QoS mapping between application- and resource-
layer can shield applications from the complexity of underly-
ing QoS specifications and QoS management functions. QoS
mapping development between these two layers is still in its in-
fancy. Most of the research to date has focused primarily on
deriving appropriate QoS parameters for memory, CPU pro-
cessing and network connections in a rather static, architecture-
specific manner [7]. Individual work such as [20], [21] largely
deal only with partial mapping rules. They either provide only
quantitative translations of certain parameter value into another
(e.g., mapping from picture resolution to bandwidth or memory
requirement), or concentrate only on mapping for specific ap-
plication based on a specific architecture. Although QUAL[8]

was intended for specifying both application and resource-layer
QoS requirements, it did not deal with issues of mapping be-
tween the two layers. The newest and most significant develop-
ment in QoS mapping can be found in [22].

The difficulty or discouragement related to QoS mapping de-
velopment may be caused by the fact that the underlying operat-
ing systems and networks are not fully prepared to support QoS
appropriately yet. For example, it makes no sense to specify ad-
vanced resource reservation at a higher level if the lower levels
do not enforce such a feature physically. It is probable that gen-
eral rules for mapping may be impossible to derive, given that
there are varieties of operating systems, networks, and applica-
tions. Therefore, mapping rules are very likely to be system-
and application dependent.

VII. CONCLUSIONS

In this paper, we reviewed QoS languages currently existent
in the literature, and classified and compared them according
to our taxonomy and criteria. As we can see, there are al-
ready quite a lot of specification languages for depicting QoS
requirements in different situations. There are certainly many
other languages left out from this paper due to space limitation.
For example, in [23], Staehli et al defined QoS for multimedia
database systems by making strong distinctions between con-
tract, view, and quality specification. They used the mathemati-
cal notation - Z, to denote the specifications. Since Z specifica-
tions are purely declarative and inherently non-executable, and
since most of the Z constructs are too abstract to be refined
to real implementations automatically by existing translation
tools, such specifications are only suitable for helping derive
implementations.

There is, as yet, no consensus on the precise set of dimen-
sions that quality of service should encompass. Much of the
current effort centers on providing assurances for attributes
such as cost, timeliness (e.g. response time, jitter), volume
(throughput), precision, accuracy, synchronization, availability,
reliability, and security.

Aspects of QoS management can be inserted into applica-
tions in a variety of ways. For example, they can be specified
at the application layer while the mechanisms and enforcement
are provided by the OS and communication systems; they can
also be embedded into the resource infrastructure (e.g. com-
munication network), effectively hiding from the application.
Since QoS at each layer has different purposes, it will most
likely become prevalent in all layers either for the purpose of
ease of specification at high layers or for the purpose of resource
enforcement at low layers. Actually, the boundary of QoS lay-
ers get somewhat blurred in some specification languages pre-
sented in this paper. For example, QoS-A and QUAL deal with
both hardware-independent and hardware-dependent QoS pa-
rameters and adaptations. Low-level, hardware-dependent QoS
specifications are usually too complex for application devel-
opers to derive. Ideally, this should be tasks of the mapping
process. Therefore, future work should give more importance
to the understanding and derivation of a comprehensive QoS
mapping system in order to alleviate high-level programmers
of the burden of learning characteristics of low-level physical
resources.

|IEEE MULTIMEDIA MAGAZINE

VIIl. ACKNOWLEDGMENTS

This material is based upon work supported by DARPA (un-
der Award No. F30602-97-2-0121), NSF (under Awards No.
CCR-9988199 and EIA 99-72884 EQ), NASA (under Award
No. NAG2-1406). The authors would like to thank the anony-
mous reviewers for their detailed and insightful comments.

REFERENCES

[1] Klara Nahrstedt and Jonathan M. Smith. The QoS Broker. |EEE Mullti-
media Magazine, 2(1):53-67, 1995.

[2] J. Altmann and P. Varaiya. INDEX Project: User Support for Buying
QoS with Regard to User’s Preferences. Napa, CA., May 1998. Sixth
International Workshop on Quality of Service (IWQo0S98).

[3] C. Aurrecoechea, A. T. Campbell, and L. Hauw. A Survey of QoS Ar-
chitectures. ACM/Springer \Veerlag Multimedia Systems Journal, Special
Issue on QoS Architecture, 6(3):138-151, May 1998.

[4] Xiaohui Gu, Klara Nahrstedt, Wanghong Yuan, Duangdao Wichadakul,
Dongyan Xu. An XML-based Quality of Service Enabling Language for
the Web. Journal of Visual Language and Computing, special issue on
Multimedia Languages for the Web (Academic Press), 13(1):61-95, Feb.
2002.

[5] T. Roscoe and G. Bowen. Script-driven Packet Marking for Quality of
Service Support in Legacy Applications. In Proceedings of SPIE Confer-
ence on Multimedia Computing and Networking 2000, San Jose, CA, Jan.
2000.

[6] J. K. Ousterhout, J. Y. Levy, and B. B. Welch. The Safe-Tcl Security
Model. Technical Report TR-97-60, Sun Microsystems Laboratories,
Mar. 1997.

[7] Andrew T. Campbell. A Quality of Service Architecture. PhD thesis,
Computing Department, Lancaster University, Jan. 1996.

[8] P. Florissi. QSME: QoS Management Environment. PhD thesis, Depart-
ment of Computer Science, Columbia University, 1996.

[9] Baochun Li, Klara Nahrstedt. Dynamic Reconfiguration for Complex
Multimedia Applications. In Proceedings of |EEE International Confer-
ence on Multimedia Computing and Systems, Florence, Italy, Jun. 1999.

[10] Norman Walsh. What is XML? O’Reilly XML.com, Oct. 1998.
http://www.xml.com/pub/a/98/10/guidel.htmI#AENS5S.

[11] Object Management Group. Quality of Service. OMG green Paper, draft
revision 0.4a edition, Jun. 1997.

[12] Christian R. Becker and Kurt Gheis. Mags - Management for Adaptive
QoS-enabled Services. In Proceedings of |EEE Workshop on Middleware
for Distributed Real-Time Systems and Services, Dec. 1997.

[13] Telecommunications Information Networking Consortium. TINA Object
Definition Language, Jun. 1995.

[14] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina V. Lopes, Jean-Marc Loingtier, John Irwin. Aspect-Oriented
Programming. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), Finland Springer-Verlag LNCS 1241,
Jun. 1997.

[15] John A. Zinky, David E. Bakken, and Richard D. Schantz. Architectural
Support for Quality of Service for CORBA Objects. Theory and Practice
of Object Systems, Apr. 1997.

[16] Joseph P. Loyall, David E. Bakken, Richard E. Schantz, John A. Zinky,
David A. Karr, Rodrigo Vanegas, and Kenneth R. Anderson. QoS Aspect
Languages and Their Runtime Integration. Lecture Notes in Computer
Science, Springer - Verlag, 1511, 1998.

[17] S. Frolund and J. Koistinen. QML: A Language for Quality of Service
Specification. Technical Report HPL-98-10, HP Laboratories, Feb. 1998.

[18] lan Foster, Carl Kesselman. The Globus Project: A Status Report. In Pro-
ceedings of IPPS/SPDP’ 98 Heterogeneous Computing Workshop, pages
4-18, 1998.

[19] Hao-hua Chu. CPU Service Classes. A Soft Real-Time Framework for
Multimedia Applications. PhD thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1999.

[20] Jean-Francois Huard and Aurel A. Lazar. On QoS Mapping in Multime-
dia Networks. In 21th IEEE Annual International Computer Software and
Application Conference (COMPSAC’ 97), Washington DC, Aug. 1997.

[21] Kentarou Fukuda, Naoki Wakamiya, Masayuki Murata, and Hideo Miya-
hara. QoS Mapping between User’s Preference and Bandwidth Control
for Video Transport. In Fifth International Workshop on Quality of Ser-
vice (IWQoS 97), New York, NY, May. 1997.

[22] Duangdao Wichadakul. Q-Compiler: Meta-Data QoS-Aware Program-
ming and Compilation Framework. PhD thesis, Computer Science De-
partment, University of lllinois at Urbana Champaign, Jan. 2003.

10

[23] Richard Staehli, Jonathan Walpole and David Maier. Quality of Service

Specification for Multimedia Presentations. Multimedia Systems, 3(5/6),
Nov. 1995.

