
Distrib. Syst. Engng6 (1999) 3–12. Printed in the UK PII: S0967-1846(99)04179-0

Jonathan: an open distributed
processing environment in Java

Bruno Dumant, François Horn, Fr édéric Dang Tran and
Jean-Bernard Stefani

CNET/DTL/ASR, France-Telecom/CNET, 30–40 Rue du General Leclerc, 92794 Issy
Moulineaux, Cedex 9, France

E-mail: Bruno.Dumant@cnet.francetelecom.fr

Received 11 February 1999

Abstract. This paper describes a minimal and modular Object Request Broker (ORB)
framework from which it is possible to build highly flexible ORBs supporting the introduction
of arbitrary binding mechanisms between interacting objects. We show that such a framework
consists essentially of extending the Java notion of object reference to make it distributed.
Jonathan is a Java implementation of such a framework, featuring a CORBA 2.0 ‘personality’
and several different binding factories. It could be easily extended with new binding factories
and personalities (e.g. a RMI personality) or scaled down to fit particular needs.

1. Introduction

The success of Object Request Brokers (ORBs)† in
telecommunications essentially depends on the possibility to
adapt them to the specifics of telecommunication systems,
and in particular to the support of interactive multimedia
services.

This implies that ORBs should be uniformly available
across traditionally separate systems, ranging from low-
end network equipment such as routers and cross-connects
to high-end information processing intensive nodes such
as those supporting network operation and management
functions and operators’ information systems.

Another strong requirement for telecommunication
ORBs is their support of various binding and interaction
models.

The term binding should be understood as both the
process of associating or interconnecting different objects of
a computing system according to a specific communication
semantics, and as the end result of this process. Binding
implies setting up an access path between objects, which in
turn typically comprises locating objects, checking access
rights and setting up appropriate data structures to enable
communication between objects. Even in the standard
client–server case, there is a wide variety of communication
semantics that reflect different application requirements.
For instance, servers may be persistent, replicated, or may
use caches with various consistency policies to improve
performance, availability, etc. Other forms of bindings
include, for example:

• Multimedia stream bindings with various communica-
tions topologies: one-to-many, many-to-many, etc.

† The term ‘ORB’ should be understood in a loose way throughout this
article as a distributed object-oriented system, not necessarily a CORBA
compliant platform.

• Group bindings, with various communication semantics
and dependability properties.
• QoS-constrained bindings whose life cycle and resource

multiplexing policy are controlled by the application
of e.g. a client–server binding over a dedicated ATM
connection with guaranteed bandwidth.

Lastly, telecommunication systems are typically open,
real-time systems, and it is crucial that ORBs achieve real-
time behaviour and performance.

In this paper, by real-time systems we understand
systems whose users are allowed to specify timeliness and
throughput quality of service (QoS) requirements and to
obtain guarantees about the fulfillment of these requirements.
The nature of guarantees provided may vary from best-effort
(where the system provides no quantitative guarantee of how
well or how often it will meet application QoS requirements)
to deterministic (where the system guarantees that application
requirements will be strictly met throughout the lifetime of
the application).

An open real-time system is a system whose set of
supported applications is not known beforehand and which
may vary over time. The main consequence of this is
that strong (i.e. stronger than best-effort) guarantees can be
provided only via some form of run-time admission control.
Providing timeliness and throughput guarantees in an open
distributed real-time system is a formidable task; to the best
of our knowledge, there is currently no comprehensive and
systematic approach to the problems at hand. Even in the
case of relatively simple communication facilities, such as a
channel supporting communication between a pair of objects,
deriving e.g. admission control tests for guaranteed end-to-
end delay bounds involves recent advances in scheduling
theory. Also, it seems unlikely that a single scheduling policy
or even task model will be applicable in all cases and all

0967-1846/99/010003+10$30.00 © 1999 The British Computer Society, The Institution of Electrical Engineers & IOP Publishing Ltd3

B Dumantet al

application domains. For these reasons, a real-time ORB
should, as a general principle of separation between policy
and mechanism, refrain from embodying any particular
resource management policy. Instead, a real-time ORB ought
to be flexible enough to accommodate such different policies
and should provide direct control of system resources such
as processors, memory and communication to applications.

Architectures like CORBA or JAVA-RMI do not seem
to be particularly adapted to telecommunication systems.
A large part of these architectures remains monolithic and
disallows adapting or extending the internal machinery short
of resorting to proprietary extensions. In terms of computing
and network resources, they offer very little control of how
resources are allocated and multiplexed. As a result, it is
not clear how to provide the adaptations required to support
multimedia and real-time applications or to scale down
these architectures to fit resource-constrained devices such
as portable phones or interactive TV set-top boxes.

The work pursued in the context of the ACTS ReTINA
project [13] is to specify and implement a flexible ORB
architecture whose machinery is exposed to the systems or
application programmer.

The prime characteristic of this architecture is the
ability to plug arbitrary forms of binding policies between
objects beyond the implicit binding model for client–server
interactions assumed by standard architectures like CORBA
or RMI. This goal has been achieved by designing a minimal
ORB kernel whose role is to provide a generic environment
that arbitrarybinding factoriescan use to create and manage
specific bindings.

Using this approach, a CORBA compliant ORB can
be built as a particular ‘personality’ (i.e. a set of APIs
and language mappings), thus decoupling the specifics of
the CORBA API from the personality-independent kernel
interface. This is also true for a non-CORBA personality
like Java-RMI.

The aim of this paper is to provide a clear description of
the ORB kernel architecture, and to show how a CORBA
ORB can be built on top of it. To illustrate this, we
shall use the Jonathan Distributed Processing Environment
(DPE), developed in Java at CNET, that implements the
specifications of the ORB kernel and a CORBA personality.

The ReTINA architecture also features a communication
framework allowing the modular construction of protocols
(suited for RPC or stream styles of interactions) and the reuse
of protocol components between binding implementations.
This framework, implemented in Jonathan, is very similar to
thex-kernel [11] framework, and the reader is referred to [2]
for a more detailed description.

Lastly, the ReTINA architecture proposes a resource
framework, featuring a number of abstractions to manage
real-time resources, that provide direct control of system
resources to applications. The resource framework has not
been implemented in Jonathan since it requires accessing the
underlying system-level resources, and this is not provided
by the current implementations of the Java virtual machine.

This paper is structured as follows: section 2 describes
the ORB kernel architecture, and how it is implemented in
Jonathan; section 3 describes in more detail how a CORBA
ORB may be built on top of the Jonathan kernel, and in

Figure 1. A point-to-point binding.

particular how a binding factory able to create RTP multicast
channels can be built in this context; section 4 compares the
performance of Jonathan with that of commercial Java and
C++ ORBs. Finally, section 5 concludes by providing more
information about the current status of the Jonathan DPE,
comparing with related works, and sketching future research.

2. A flexible ORB framework

2.1. Architectural model

At least three problems must be addressed in an object method
invocation: referencing the target, checking its type and,
finally, accessing it and interacting with it. The role of an
ORB is to provide solutions to these problems in a distributed
setting. Since ORBs may operate over heterogeneous
platforms and programming languages, there is a need for
an abstract object model that can be mapped on specific
platforms and languages; Jonathan (like CORBA) is based on
the Reference Model of Open Distributed Processing (RM-
ODP [6–9]):

• An object is an entity containing (encapsulated)
information and offering services; RM-ODP objects may
be of arbitrary granularity (from one byte to a telephone
network, etc).
• RM-ODP objects can only interact atinterfaces:

informally, the interfaces of an object are its access
points, which means that all the interactions of an object
with its environment must occur at one (and only one)
of its interfaces.

2.1.1. Binding objects and binding factories. To address
the interaction problem, RM-ODP introduces the notion of
binding object. Two objects—sayO1 andO2—may interact
in two different ways: either objectO1 directly invokes an
operation onO2, or it invokes the same operation on abinding
objectwhose role is to transmit the invocation toO2 and to
return a result if necessary (cf figure 1). In the first case,
both objects must belong to the same addressing space (also
namedcapsules); in the second case, the interacting objects
may belong to distinct addressing spaces.

Binding objects are usually composite objects, dis-
tributed over several capsules. Binding objects encapsulate
the full end-to-end computational binding between interact-
ing objects, including communication resources, protocols,
stubs, etc. In our model, bindings have a type, the type of

4

Jonathan: an open distributed processing environment in Java

a binding representing the protocols used, possible quality
of service constraints, or any other kind of binding property.
Note that binding objects can represent not only client–server
bindings, but any kind of binding including e.g. those de-
scribed in the introduction.

Bindings are constructed by special entities named
binding factories. Binding factories have two main roles:

• Create and manage interfaceidentifiers; identifiers are
introduced in the next section, and this role of binding
factories is further discussed in section 2.2.3.
• Establish and manage bindings of a specific type†; this

role is further explained in section 2.4.

In its current version, the Jonathan DPE provides three
binding factories of different types, two of which create
client–server bindings (one uses the IIOP protocol, the second
a simpler remote invocation protocol), and the third RTP
multicast bindings.

2.1.2. Types and references. To address the typing and
referencing problem, RM-ODP introduces the notion of
interface reference. An interface reference may be seen as
a generalized Java object reference. Interface references are
characterized by two elements:

• A type:
Like Java references, interface references have a type,
whose role is to allow the creation of safe bindings.
There is no universal type system, and different type
systems (and type conformance rules) may be used for
different bindings. In our model, type systems are
related topersonalities: a personality defines the type
and binding type systems used by binding factories
belonging to it‡. For instance, CORBA is a personality:
it defines types by the means of IDL declarations, and
binding types by the means ofprofile ids. It is then
possible to build various CORBA binding factories,
using different protocols, that will use this type system:
for instance, all the binding factories provided with
Jonathan use the CORBA type system.
However, an interface reference may have to be
manipulated in different personality contexts. We
can imagine a capsule featuring two binding factories,
the first building CORBA IIOP bindings, the second
building RMI bindings, each of them having to
manipulate the same interface reference. To make
this possible, the interface reference associated type
must be defined in a reference, personality-independent,
type system. Each personality present in the capsule
must provide ways to translate types from its own type
system to the reference type system, and conversely (cf
section 2.3). In our model, the reference type system is
defined by theORB kernel. The same holds for binding
types: the ORB kernel defines a reference binding
type system, and each personality has to define its
own binding type system with the necessary translation
functions.

† In the following, we shall identify the type of bindings created by a binding
factory and the type of the binding factory itself.
‡ Plus a set of APIs and language mappings.

• A set of identifiers:
An identifier is created by a binding factory before the
interface reference is sent out of its originating capsule§,
and may be used by another binding factory of the same
type in a different capsule to unambiguously designate
the referred interface.
An identifier is thus always associated to a given binding
type. An interface reference may have identifiers
of different types, corresponding to different ways to
designate the target interface.
An identifier is the distributed counterpart of the memory
address contained in a Java object reference. Interface
references generalize this notion in the sense that
severalidentifiers may be associated with one interface
reference, and the process of resolving an identifier into
an interface residing in a given address space may be
much more complex than dereferencing a pointer.

Thus, the three problems stated above (distributed
referencing, typing and access) are represented by different
abstractions: interface references for the referencing
problem, personalities for the typing problem, and binding
factories for the access problem. The next sections illustrate
these points in the case of Jonathan.

2.2. Distributed references

The first thing an RM-ODP compliant ORB has to define
is its own way to map the notion of interface, in a specific
implementation language.

When an object oriented language is used, an RM-
ODP object is usuallyimplementedby a collection of
language level objects. Some of these language level objects
correspond to access points to the corresponding (abstract)
RM-ODP object and as such constitute implementations of
its interfaces. One way to concrete the RM-ODP notions
of object and interface is thus to see an RM-ODP object as
a collection of language level objects, and an interface of
this RM-ODP object as a given accessible element of the
collection.

In CORBA+Java, or RMI, the objects implementing
RM-ODP interfaces have a special type (org.omg.CORBA.
Object for CORBA, java.rmi.RemoteInterface in
RMI). Likewise, in Jonathan, an interface is represented by
a Java object of typeInterface:

package jonathan.kernel;
public interface Interface {}

A reference (in the Java sense) to an object of type
Interface represents an interface reference.

2.2.1. Surrogates. According to the ODP and CORBA
computational models [8, 10], interfaces are passed by
reference in invocations. As long as the interface reference
remains in its original capsule, there is no need for extra
information; its type is defined by the actual Java type of
the interface, and there is no need for specific identifiers.
But as soon as an interface reference is sent out of its

§ This is the first invariant that must be maintained by any ReTINA
environment in order to maintain the integrity of the associations between
identifiers and interfaces, cf section 2.2.3.

5

B Dumantet al

capsule, we need a way to associate type information
and identifiers with it more explicitly. Since an interface
reference may be associated with identifiers created by
various binding factories, this method must be normalized
to allow interoperability. To achieve this, we introduce the
Surrogate type:

package jonathan.kernel;
public interface Surrogate
extends Interface {

Type _type();
IfRef _ifRef();

}

A surrogate is an interface reference, containing
the information needed to manage distribution. It is
characterized by two elements:

• a type;
• an IfRef.

The type information corresponds to the local type of the
surrogate†.

The IfRef is the container for the identifiers of the
designated interface and its type. IfRefs in Jonathan are
structured as follows:

package jonathan.kernel;
public class IfRef {

Type type()...
Key key()...
BindingDataSet bindingDataSet()...

}

An IfRef contains type information about the designated
interface, akey, and a set ofbinding data. Identifiers are not
represented directly in an IfRef, but by all the possible〈key,
binding data〉 combinations:

• The key identifies an interface in the context of its
originating capsule; a key is thus a context-dependent
name that need not be directly interpretable in the context
of the capsule where the caller of operationkey()
resides: it is an identifier whose domain of validity
is restricted to the interface’s originating capsule; the
key can typically be used by any binding factory in
conjunction with a hash table to access interfaces in a
capsule.
• Binding data are added to an IfRef by binding factories,

and contain binding factory specific information.
Typically, for remote invocation protocols based on
TCP/IP (like Java RMI or CORBA IIOP), binding data
consist of a host name and a port number, in which case
the binding data directly designate a specific address
space; however, it is possible to imagine very different
kinds of binding data.

Structuring identifiers as〈key, binding data〉 pairs allows
a factorization across different binding factories of the same
key for identifying a given interface. In the Jonathan DPE, the
kernel maintains a hashtable, associating keys and interfaces,

† In Java (or C++), the type of an object reference is not necessarily the
most refined type of the designated object, but must be a supertype of that
object. Likewise, the type of a surrogate is not necessarily the most refined
type of the interface it represents, but must be one of its supertypes.

Figure 2. Exporting an interface.

that any binding factory can use. Note that this does not
prevent different binding factories from using their own
(equivalent of) keys (which should then be hidden in the
binding data).

Both IfRefs and surrogates represent interface refer-
ences, and it would have been possible (though not neces-
sarily convenient) to have only one type for both. In fact,
they are not used at the same level:

• Surrogates are used at the application level to support
distribution transparency. In particular, a user expects
a surrogate to be of the same type as the interface it
represents: if an interface is of typeA, the surrogate
type of interest should be described as the generic type
Surrogate<A>, and be a subtype ofA. The surrogate
interface is in particular implemented by stubs.
• IfRefs are lower level constructs. Each interface

reference appearing in an invocation must be marshalled
in some concrete on-the-wire representation; IfRefs
constitute abstractions of such representations, allowing
access to the different elements of an exportable interface
reference.

2.2.2. Creating surrogates. Each binding factory must be
able to create a surrogate—i.e. a distribution-ready interface
reference—for a given interface. The simplest form‡ of this
operation is the following (cf figure 2):

LocalSurrogate export(Interface itf);

The export operation takes an interface as parameter
and returns a surrogate for this interface. The IfRef of this
surrogate contains binding data added by the invoked binding
factory§.

The returned surrogate is of typeLocalSurrogate:
The specificity of local surrogates is to be equipped with
a continuationpointing to the designated interface. This
continuation signifies the relation between the IfRef held by
the local surrogate and the represented interface.

‡ More sophisticatedexport methods could manage e.g. offered QoS
descriptions or, more simply, type information (like in Jonathan 1.2). Java
RMI only provides the simplestexport form as theexportObjectmethod
of java.rmi.server.UnicastRemoteObject.
§ It may also contain other binding data, if the same interface has been
previously exported by other binding factories.

6

Jonathan: an open distributed processing environment in Java

package jonathan.kernel;
public interface LocalSurrogate
extends Surrogate {

Interface _continuation();
void _continuation(Interface itf);

}

2.2.3. Maintaining reference chains. One essential role
of binding factories is to make sure that when an interface
reference is sent as a parameter in a remote invocation,
the invoked object will receive an interface reference that
references the right interface.

The above condition may be decomposed into two
simpler invariants that binding objects must maintain:

(1) A binding object must marshall an interface referencei

into an appropriate IfRef† when that interface reference
is passed as an argument to an outgoing invocation.
This means that eitheri is a surrogate—and its IfRef is
used—or it is not (it is simply of typeInterface), and
it must be exported to a binding factory, so that an IfRef
representing it is created.

(2) A binding object must unmarshal an IfRef into an
appropriate interface reference on receiving an incoming
invocation bearing that IfRef.
This interface reference is either a surrogate bearing the
received IfRef‡, or the interface reference represented
by the IfRef (if it can be proved that it is local).

If these invariants are maintained, everynon-local
surrogates can be associated with a local surrogatel (possibly
located in another capsule) bearing the same IfRef, and the
interface represented bys is the continuation ofl, or the
interface designated by that continuation. Since nothing
prevents surrogates from being explicitly exported to binding
factories, the continuation of a local surrogate is indeed not
necessarily the effective implementation of the designated
interface, but may be one of its surrogates.

The above invariants ensure that every surrogate belongs
to areference chain(cf figure 3) uniquely identifying a given
interface.

A reference chain is constituted by a sequence of
interfaces

sn→ sn−1→ · · · → s1→ i = s0

such thati = s0 is an interface that is not a surrogate, and
(sj)j∈{1,...,n} are surrogates. Interfacei is the target of the
reference chain, i.e. it is the interface that is designated by
the chain.

Each surrogatesj in the chain is such that either:

(1) j > 1 and its continuation issj−1 or,
(2) j > 1 andsj holds the same IfRef as surrogatesj−1.

These two properties directly correspond to the two
invariants mentioned above.

† The exact format of encoded IfRefs is protocol dependent. For instance,
if IIOP is used, IfRefs are marshalled as Interoperable Object References
(IORs).
‡ If a surrogate bearing the same IfRef exists in the capsule, it can be used,
otherwise a new surrogate must be created.

2.3. Distributed typing

Several type systems may have to cohabit in the same capsule,
and the ORB kernel has to define a reference representation
of types (and binding types) that different personalities will
have to translate into their own type system.

Jonathan defines aType type:

package jonathan.kernel;
public class Type {

public Type(String str_type)...
public boolean is_a(Type type)...
public String to_string()...
...

}

As Jonathan is written in Java, it is natural that
the Type objects represent Java types. That is why
a Type object may be constructed from the string
representation of a Java type, i.e. a Java scoped name (like
"jonathan.kernel.Interface"). The main operation on
types is theis a operation that tests whether the target type
is a subtype of the argument.

Jonathan also defines aBindingType type.

package jonathan.kernel;
public class BindingType {

public BindingType(int id)...
public int encode()...
...

}

Binding types in Jonathan are simply represented by
integers.

2.4. Distributed access

Binding factories are responsible for the creation and
management of bindings of a given type. To create bindings
(i.e. instantiate binding objects), they use the identifiers of
the interfaces to bind, and in particular the binding data of
the appropriate type: binding factories implement binding
functions that can resolve such identifiers into effective access
chains to the remote interfaces, thus enabling interaction.

2.4.1. Implicit binding. When an IfRef is received in a
capsule, and if it cannot be proved that the IfRef corresponds
to an interface residing in the capsule, a surrogate must be
created. This surrogate may be directly invocable, like in the
classicalimplicit binding case in ORBs or distributed object
systems; in this case, a communication channel is set up either
at the creation of the surrogate, or at the first invocation.

This surrogate must know which binding factory to
invoke to set up the communication channel, but there is no
reason to impose that the binding factory used to create the
current binding (used to perform the invocation) should also
be able to bind the new surrogate: the received IfRef may not
contain an appropriate identifier.

The task of finding the appropriate binding factory is
devoted to the ORB kernel. The kernel maintains a table
of the binding factories in the capsule that can be used to
implicitly bind surrogates. As each of these binding factories
is associated with a binding type, the kernel simply needs to

7

B Dumantet al

Figure 3. Reference chains.

Figure 4. Implicit binding.

know the types of the binding data present in an IfRef to
find—if possible—a binding factory able to implicitly bind
the corresponding surrogate.

In Jonathan, this is implemented by a method
getInvocable that takes an IfRef and a type (represented as
a string) as parameters, and returns a surrogate (cf figure 4):

Surrogate getInvocable(IfRef ir,String type);

This method is implemented both by the kernel and
by the binding factories. When an IfRef is unmarshalled
in a binding object, the binding object invokes the
getInvocable method on the kernel, that will forward it
to an appropriate binding factory, if any:

• If a suitable binding factory can be found, it instantiates a
surrogate (usually a stub) that is returned to the invoking
binding object.
• Otherwise, the kernel returnsnull. In this case, the

binding object that invoked thegetInvocable method
must create a surrogate that is not a stub, but simply
an holder for the IfRef: this surrogate cannot be used
directly in interactions, but still refers to the right
interface, and may be used toexplicitly establish a
binding involving it.

This discussion shows that our framework makes a clear
distinction between stubs and surrogates:

• The only role of surrogates is toreference remote
interfaces, not to give access to them.
• Stubs belong to binding objects, and their principal

role is to allow anaccessto a remote interface. Since
accessing an interface implies that it is designated, stubs
aresurrogates, but the converse is not true.

2.5. Explicit binding

If the kernel cannot find any suitable binding factory to
implicitly bind the surrogate, explicit binding must be used.
Binding factories may define abind operation that is used
to explicitly create bindings. The form of this operation may
be very different from one binding factory to another. In its
general form, it takes as parameters a set of interfaces to bind
and QoS constraints that need to be guaranteed, and returns a
control interface on the created binding object. Note that our
framework does not constrain the possible binding scenarios,
and that any one can thus be implemented (including third-
party binding, cf [3]).

Explicit binding is used by theStream binding factory
provided with the Jonathan DPE, to create multicast RTP
channels (cf section 3.3).

3. Building a CORBA ORB on top of the Jonathan
kernel

Building a CORBA 2.0 ORB on top of the Jonathan kernel
means providing:

• A CORBA personality, namely the standard set of
CORBA APIs (ORB, Object, etc) and an IDL to Java
mapping (defining in particular the mapping between
the CORBA type system and the Jonathan reference type
system).
• CORBA binding factories, and in particular an IIOP

binding factory.

3.1. The CORBA personality

The CORBA† personality is implemented as a set of four
packages containing the standard CORBA definitions. The
only extensions of the CORBA standard can be found
in the implementations oforg.omg.CORBA.Object and
org.omg.CORBA.ORB.

• org.omg.CORBA.Object extends the jonathan.
kernel.Surrogate interface. It is natural in Jonathan,
since the CORBA ORB class must be able to implement
theobject to string method that turns an object into

† Jonathan only implements a subset of CORBA 2.0. It is not complete
since CORBA features like theAny type or the Interface Repository are not
implemented. However, the implemented subset is rich enough to implement
non-trivial applications.

8

Jonathan: an open distributed processing environment in Java

Figure 5. Interface types hierarchy.

a stringified IOR. We have seen above (cf footnote ‘†’
on p 7) that IORs are a mere encoding of IfRefs, and
consequently, the existence of theobject to string
method implies that it must be possible to associate an
IfRef to any org.omg.CORBA.Object, which means
that CORBA objects are surrogates.

• As stated above, the role of a personality is also to
provide a bridge between the personality type system
and the reference type system to binding factories.
This is expressed in Jonathan by some additions to the
org.omg.CORBA.ORB class:

• method corba2java turns a CORBA type,
described by its interface repository representation,
to the corresponding Java type string representation;

• methodjava2corba performs the inverse transfor-
mation.

The CORBA personality needs not provide translation
methods for binding types since binding types are
represented by integer constants both in CORBA
(‘profile ids’) and Jonathan.

The Jonathan implementation provides astub factory. In
the ReTINA architecture, a stub factory is simply an object
whose role is to instantiate stubs and skeletons. As it is a
CORBAstub factory, it comes with an IDL compiler that
generates code for stubs. An interesting property of the
current Jonathan stub factory is that it is independent of the
underlying protocols, and of the binding factories that may
use it. This is how all three binding factories provided with
Jonathan (see section 3.2) can use the same stubs, even though
they are based on different protocols. A simple smart stub
mechanism is also provided.

Like in standard CORBA implementations, the
generated stubs are CORBA objects, and thus surrogates.
The generated skeletons are also CORBA objects, and
implement theLocalSurrogate interface. This way, the
local surrogate abstraction may be introduced, at no cost,
to the system: when an invocation is received from a
remote capsule, there is no unnecessary indirection due to
the existence of a local surrogate.

The resulting interface types hierarchy is depicted in
figure 5.

3.2. Binding factories

CORBA Object Adapters can be understood as server-side
interfaces to binding factories. In particular, thecreate
operation on theBOA is a specific form ofexport.

Jonathan does not provide a standardBOA interface,
but three binding factories. As we have seen, binding
factories are responsible for the creation and management
of bindings, and rest on specific libraries (protocols, stub
factories, personalities) to achieve this.

Jonathan provides fiveindependentprotocol packages,
built following the binding and communication framework
sketched in the introduction: theprotocols.tcpip
package represents the TCP/IP protocol (it is built on top
of thejava.net package), theprotocols.multicastip
package lets the user open multicast channels, the
protocols.rtp package is a limited implementation
of the Real Time Protocol,protocols.giop provides
an implementation of CORBA’s GIOP protocol, and
protocols.miop provides an implementation of a simpler
invocation protocol.

In Jonathan 1.2, all three binding factories use the same
personality and stub factory, but use different protocols.

• The IIOP binding factory implements the IIOP protocol,
by stacking the GIOP protocol on top of TCP/IP. It allows
implicit binding.
The binding data used by the IIOP binding factory
implement theBindingData interface, and extend
theorg.omg.IIOP.ProfileBody class; consequently,
they contain a host name, a port number, and a key
(represented as an array of bytes encoding the IfRef key).
• The JIOP binding factory stacks the MIOP protocol on

top of TCP/IP. It is more experimental, and could be
modified so that, for instance, two-way operations use
TCP connections while one-way operations on the same
interface use UDP connections.
• The Stream binding factory stacks the RTP protocol

on top of Multicast IP. It is further explained with an
example in the next section.

3.3. A CORBA stream binding factory

In this section, we shall describe, using an example, how the
stream binding factory provided in Jonathan works, and how
it can be used.

The stream binding factory creates objects representing
multicast RTP channels. These objects are manifested to the
users by surrogates containing a specific multicast address (cf
figure 6), and may be dynamically extended to bind different
interfaces.

The type of the channel is defined by the user thanks to
an IDL declaration. For instance, the following declaration
can be used:

// IDL
typedef sequence<octet> frame;
interface DataChannel {

oneway void send(in frame data);
}

9

B Dumantet al

Figure 6. A stream channel.

This declaration defines aDataChannel type. Only one-
way operations are considered, and trying to use two-way
operations results in a runtime exception.

The binding factory can create multicast channels of a
given type, simply by providing the type, a class D IP address,
and a standard UDP port number; the following invocation
onStreamBF (the stream binding factory) returns a surrogate
of the multicast channel specified in the invocation:

// Java
DataChannel channel = (DataChannel)

StreamBF.getInvocable("DataChannel",
"224.10.0.0",9000);

The IP address and the port number are stored as binding
data in the returned surrogate’s IfRef. This surrogate is
implicitly bound: a producer can immediately emit data in
the channel by invoking a method on the returned object:

channel.send(new byte[1024]);

At the first invocation on the surrogate, the stream
channel is extended. The extension is represented in figure 6
by an object in the capsule of the producer. The role of this
object is to compose RTP packets with the data sent, and
write them to the multicast channel.

Since the object representing the stream channel is a
surrogate, it can be used as a parameter in any CORBA
invocation (even if another binding factory is used). For
instance, it can be registered in a trader under the name
"data channel".

A consumer must be an implementation of the
DataChannel interface. To receive data, a consumer must
first retrieve a reference on a channel (e.g. by invoking the
trader where the channel is registered), and then explicitly get
bound to the channel. This is achieved by thebindConsumer
method ofStreamBF:

DataChannel consumer = new DataConsumer();
DataChannel channel =

Trader.get("data_channel");
StreamBindingCtl ctl =

StreamBF.bindConsumer(consumer,channel);

The get invocation on the trader returns a surrogate
of the multicast channel. At this point, the situation is
that of consumer B in figure 6: there is a surrogate of
the stream channel in the capsule. ThebindConsumer

invocation extends the stream channel with an object (see
the situation of consumer A) that reads RTP packets from
the multicast socket, and recomposes the original message
before forwarding it to the consumer.

ctl is a control interface of the binding between the
channel and the consumer. It comprises arelease()method
that can be used to stop forwarding data from the channel to
the consumer: therelease method destroys the extension
created bybindConsumer.

4. Performances

Jonathan has not been developed with performance in mind.
However, the performance tests we have conducted show
that this implementation compares well with commercial
CORBA implementations. This in particular means that
the modular and flexible architecture we propose can be
implemented at no significant cost in terms of performance.

To compare the different ORBs, a test bed consisting of
two nodes connected by a dedicated network has been used.
The two nodes are similar (same hardware, operating system
and ORB). One of them runs a client, the other runs a server.
The tested ORBs are:

C + + : OrbixMT 2.3, Visibroker C + + 3.0,

Chorus ORB 5.0, M3 2.2

Java : OrbixWeb 3.0, Visibroker Java 3.0, Jonathan 1.2

It is beyond the scope of this paper to describe precisely
the different experimentations. We will simply give here
some figures extracted from the results of one experiment
dealing with invocation duration.

A first series of tests deals with two-way invocations
with no or few simple parameters (up to five arguments of
basic types, or a small string, or astruct containing simple
members). From these tests, we can infer the following orders
of magnitude for simple invocation times (in ms):

Visi C++ Chorus M3 Visi Java Jonathan
4.0 4.5 10.5 10.5 12.5

OrbixMT OrbixWeb
13 21.5
These figures have been obtained using 70 MHz

Sparc 5 workstations with 64 Mb RAM, i.e., slow machines,
connected by a 10 Mb s−1 Ethernet network, and using
IIOP as invocation protocol. Much better results may be
obtained by more efficient configurations. For instance, the
invocation time obtained for Visibroker Java on a 200 MHz
bi-pentium pro NT4 machine is only 0.6 ms, the client and
server using a different processor†. These results show that
a performance-oriented C++ implementation is really faster
than the best Java implementations. However, this may or
may not be significant for a given application, depending on
the importance of the communication time w.r.t. computation
time, the network configuration, etc. No Just-In-Time (JIT)
compiler was used for the Java tests. Using a JIT compiler
does not greatly affect these results: an important part of the
invocation time is spent in the network layers and the Java/C
interface. However, it significantly reduces the marshalling

† Note that the difference in the results is not only related to the speed
difference between the machines used, but also to the absence of network
latency in the second configuration.

10

Jonathan: an open distributed processing environment in Java

time, and using a JIT compiler becomes really important if
the network latency is small, or if there are many or big
parameters.

These figures should really be understood as orders of
magnitude: sending parameters takes of course more time
than sending no parameter. In our tests, we have not observed
variations of more than 25% w.r.t. these figures. A typical
variation is 5% for a C++ ORB, and 20% for a Java ORB. This
difference in the variations is essentially due to the fact that,
for instance, unmarshalling a simple type or a string from an
IIOP stream when the server and client machine architecture
are the same is a very simple operation in C++ (essentially a
cast); in Java it always requires byte-level manipulations; it is
even worse with strings in Java, since the underlying array of
chars must be accessed element by element (or copied), and
the characters unmarshalled one at a time. The same kind of
argument holds for marshalling.

The performance of Jonathan is quite good if we compare
it to the other Java ORBs: it is close to Visibroker Java, and
40% faster than OrbixWeb.

Another test dealt with sending sequences of octet
values, which may represent sending a data stream. The
results we obtained show that the time to send a sequence
grows more or less linearly with the size of the sequence: the
performance of an ORB may thus be expressed in bytes ms−1.

Visi C++ Chorus Jonathan Visi Java
1432 1333 1105 892

OrbixWeb OrbixMT
714 365
Jonathan appears here as the best Java ORB, which

shows that a modular architecture is not necessarily
synonymous with bad performance, and close enough to the
best C++ implementations.

We have also tested the scalability of ORBs, by trying
to run and interact with up to 100 000 servants in the same
process. Good C++ ORBs (Visibroker, Chorus) can manage
100 000 servants with no overhead due to the number of
servants.

Java ORBs require the maximum size of the memory
allocation pool to be changed. For instance, to let a Jonathan
server manage 100 000 servants, the virtual machine running
it must be allowed to allocate 55 Mb (the default value is
16 Mb), even if it actually only uses half this memory: the
virtual memory of Sun’s JDK allocates twice the necessary
memory for garbage collection purposes†.

Once this is done, the behaviour of the Java ORB is
similar to that of the C++ ORBs: the overhead on invocation
times when many servants co-exist in the same virtual
machine is only related to swap and garbage collection.

5. Conclusion

We have described in this paper a highly flexible and modular
DPE architecture organized around a very small binding-
independent core. This architecture essentially introduces
a distributed reference abstraction properly interfaced with
that of binding. This separation enables the encapsulation of
reference management and binding management in different

† This is true for the 1.1.x versions of the JDK.

objects: the ORB kernel for references, and various binding
factories for bindings. It is thus possible to introduce in
a modular fashion new bindings within an ORB based on
this framework, while retaining interoperability. In the
case of Java, the ORB kernel could in fact be completely
integrated in the virtual machine: surrogates are simply
an extension of the notion of object reference; they could
be implemented in a reflective Java virtual machine by
modifying the implementation of object references, thus
enabling a seamless integration of distribution in the
language.

The current Java implementation of this DPE
architecture—Jonathan—has confirmed that it is stable and
generic enough to accommodate arbitrary types of binding
and communications mechanisms, while remaining efficient:

• We have been able to build a CORBA personality on top
of the DPE kernel, featuring a stream binding factory that
shows that, for instance, non-client–server bindings can
be developed easily. We could in the same way develop
an RMI-like personality.
• The performance tests we made show that this imple-

mentation compares well with commercial CORBA im-
plementations like Visibroker or OrbixWeb. Compari-
son with RMI is harder to analyse: RMI is faster in very
simple cases, but may become much slower (up to ten
times) if serialization is used. Moreover, Jonathan is able
to detect if the client and server are in the same capsule,
and invocations are direct calls in this case. RMI does not
detect this case, and calls systematically go through all
the marshalling and unmarshalling process. This issue
may become very important if objects are mobile.
The modular organization of Jonathan makes it very easy
to add specific protocols for real-time, or change the stub
factory for a more specialized one, thus letting more
performance-oriented components be plugged in. Our
experience with Jonathan shows that the modular and
flexible architecture we propose can be implemented at
no cost in terms of performance.

Jonathan is available freely for non-commercial
use. Interested readers may retrieve it fromhttp://
www.infres.enst.fr/∼delpiano/Jonathan.htm or
contact the authors to obtain a copy of the software (Java
sources are included).

This work has been inspired in part by the Spring
distributed system [4] and the SOR system [14]. Spring
provides the notion of subcontract that allows application
programmers to define new client–server communication
mechanisms. SOR provides a flexible binding protocol which
can be used to establish arbitrary client–server bindings. The
framework proposed here generalizes these approaches to
arbitrary types of interactions and in particular to multi-party
multimedia communication schemes. It also generalizes
more language-dependent ORB designs such as Network
Objects [1] and Java-RMI [5]. Our architecture can also
be seen as a weak form of the SSP chains framework [12]:
in particular, the two reference chains invariants described
in section 2.2.3 are the first two invariants required for the
proper integration of the garbage collection algorithm of
[12]. SSP chains could be developed as a specific binding

11

B Dumantet al

factory maintaining the remaining necessary invariants, thus
enabling acyclic garbage collection.

Future work on Jonathan will focus on the areas of
resource management and admission control in order to
provide full support for end-to-end QoS. Reflexivity will
be used as the major architectural principle to achieve this
goal. Opening the virtual machine in a reflective way
would in particular allow the implementation of the ReTINA
resource framework in a very flexible and modular way: the
ReTINA resource control framework provides applications
with access to the system-level resources they require for their
execution, and this access is the first step towards quality of
service management.

Acknowledgments

Many thanks to Nicolas Rivierre and Fabien Guinet, who
carried out the performance tests. This work was partially
supported by ACTS project ReTINA AC048.

References

[1] Birrell A, Nelson G, Owicki S and Wobber E 1995 Network
objectsSRC Research Report 115Digital Systems
Research Center

[2] Dang Tran F, Dumant B, Horn F and Stefani J-B 1997
Towards an extensible and modular ORB framework
Workshop on CORBA Use and Evaluation (ECOOP’97)
(Jyv̈askyl̈a) submitted

[3] Dang Tran F, Perebaskine V, Stefani J-B, Crawford B,

Kramer A and Otway D 1996 Binding and streams:
theReTINA approachProc. TINA’96 Int. Conf.
(Heidelberg)(Berlin: VDE) pp 101–113

[4] Hamilton G, Powell M and Mitchell J 1993 Subcontract: a
flexible base for distributed programmingProc. 14th
Symp. Operating Systems Principles (Asheville, NC)(New
York: ACM) pp 69–79

[5] Sun Microsystems 1996 Java remote method invocation
specificationTechnical Report(Mount View, CA: Sun
Microsystems)

[6] ODP Reference Model: Overview 1995ITU-T | ISO/IEC
Recommendation X.901| International Standard 10746-1

[7] ODP Reference Model: Foundations 1995ITU-T | ISO/IEC
Recommendation X.902| International Standard 10746-2

[8] ODP Reference Model: Architecture 1995ITU-T | ISO/IEC
Recommendation X.903| International Standard 10746-3

[9] ODP Reference Model: Architectural Semantics 1995ITU-T
| ISO/IEC Recommendation X.904| International
Standard 10746-4

[10] Object Management Group 1995 The Common Object
request Broker: Architecture and SpecificationCORBA
V2.0

[11] Peterson L L, Hutchinson N, O’Malley S and Abbott M 1989
RPC in thex-kernel: evaluating new design techniques
Proc. 12th ACM Symp. Operating Systems Principles
(Litchfield Park, AZ)(New York: ACM) pp 91–101

[12] Plainfosse D 1994 Distributed garbage collection and
referencing management in the Soul object support
systemPhD ThesisUniversity of Paris VI, Paris

[13] Websitehttp://www.chorus.com/Documentation/
retina.html

[14] Shapiro M 1994 A binding protocol for distributed shared
objects14th Int. Conf. Distributed Computer Systems
(ICDCS) (Poznan)(Los Alamitos, CA: IEEE Computer
Society Press) pp 134–41

12

