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SUMMARY

A mobile agent is an object that which can autonomously migrate in a distributed sys-
tem to perform tasks on behalf of its creator. Security issues in regard to the protection
of host resources, as well the agent themselves, raise significant obstacles in practical
applications of the agent paradigm. This paper describes the security architecture of
Ajanta*, a Java-based system for mobile agent programming. This architecture provides
mechanisms to protect server resources from malicious agents, agent data from tamper-
ing by malicious servers or communication channels during its travel, and protection of
name service data and the global namespace. We present here a proxy based mecha-
nism for secure access to server resources by agents. Using Java’s class loader model and
thread group mechanism, isolated execution domains are created for agents at a server.
An agent can contain three kinds of protected objects: read-only objects whose tamper-
ing can be detected, encrypted objects for specific servers, and a secure append-only
list of objects. A generic authentication protocol is used for all client-server interactions
when protection is required. Using this mechanism, the security model of A janta enforces
protection of namespaces, and secure execution of control primitives such as agent recall
or abort. Ajanta also supports communication between remote agents using RMI, which
can be controlled if required by the servers’ security policies.

Keywords: Distributed systems, Security, Internet programming, Mobile objects, Mobile agents, Java
security model

INTRODUCTION

Mobile-agent based programming is a new paradigm for distributed processing, especially in
large-scale heterogeneous networks such as the Internet. A mobile agent is a program that
represents a user and can autonomously migrate from node to node. It is typically used as a
component of an agent-based application, which sends such agent programs to different net-
work nodes in order to perform tasks on behalf of its user. The mobile agent can either follow
a pre-assigned path on the network, or determine its path dynamically based on informa-
tion gathered from the network. The agent has autonomy in determining when and where to
migrate, and whether to migrate at all. It is an active entity, having its own thread of execu-
tion, and thus acts independently of its parent application. This provides programmers with
a high-level abstraction for composing network-centric applications. In addition, the mobile
agent paradigm also optimizes the network usage of several types of applications, especially
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those that download and process large amounts of data from servers. Other advantages of the
paradigm have been identified as well 10 4,

The mobile agent concept evolved in the form of a communications paradigm, by extending
earlier schemes like raw message-passing and remote procedure call (RPC). In 1990, Stamos
and Gifford ?* proposed the Remote Evaluation paradigm (REV) for client-server interaction.
In REV, unlike traditional RPC, the client supplies the procedure code to be evaluated in
addition to the parameter data. The code is transferred over the network and executed by the
server, and the results are returned to the client. Mobile agents can be thought of as a gener-
alization of this scheme, in which the code and data sent by the client constitute a complete
program rather than a single procedure call. Further, the agent program need not immediately
return its results to the client. It may migrate further to other servers and continue execution
there.

Telescript??, developed by General Magic in the early 1990s, was the first system expressly
designed for programming mobile agents. Although it was commercially unsuccessful and is
no longer available, it retains its historical importance. This was followed by systems like
Tacoma'? and Agent Tcl® which used script languages like Tcl to represent agent programs.
The emergence of the Java environment® 15, with its support for mobile code, spurred research
activity in this area, helping amalgamate mobile object systems with mobile agent concepts.

Aglets!! Voyager?® and Concordia!” are examples of Java-based mobile agent systems.

The use of mobile agents requires that each cooperating host in the distributed system
provides a facility for executing them. These hosts are exposed to the risk of system penetration
by malicious agents, similar to viruses and Trojan horses. Unless countermeasures are taken,
agents can potentially leak or destroy sensitive data and disrupt the normal functioning of
the host. They can cause inordinate consumption of resources such as CPU time and disk
space, thereby denying their use to other legitimate users of the host. Conversely, agents
may carry sensitive information about their users (such as credit card numbers, electronic
cash or personal information). They too need to be protected against tampering by the hosts
they visit. Security is therefore a major concern in deploying mobile agent systems. Most
current mobile-agent systems, however, do not address security as a fundamental requirement
in their designs. In many cases, security features are either completely absent, or grafted on
to the basic architecture, resulting in poor integration and the possibility of loopholes. We
have developed a Java-based mobile-agent system called Ajanta'® 26 in order to address these
shortcomings. We start by giving an overview of Ajanta in the next section, and then discuss the
security requirements of mobile agent systems in the section titled “Security Requirements”.
The sections titled “Agent Server Protection” and “Agent Protection” describe several security
features of Ajanta, dealing with the protection of hosts and agents respectively. The last section
presents conclusions and directions for our future work.

AN OVERVIEW OF AJANTA

Every network node that supports mobile agents must provide an agent server — a daemon
process which hosts agents. Ajanta’s generic agent server executes agents in confined environ-
ments and makes host resources available to them in a controlled manner. It also provides some
basic primitives to agents, allowing them to communicate, request resources, migrate to other
agent servers, etc. An agent server can be specialized to provide application-specific resources
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— these are interfaces to information or services available at the host, such as databases or
electronic store-fronts. Agent servers communicate amongst themselves to cooperatively im-
plement the runtime agent environment. Applications can then create and dispatch agents to
such servers, in order to access their resources.

Agents in Ajanta are Java objects that are active (each agent has a thread executing its
code) and mobile. Object mobility is implemented using Java’s serialization facility, which al-
lows us to capture the object’s state, transmit it to some agent server, and recreate the object
on that server. The agent thread’s execution state is not captured, however, since that would
necessitate modifying the Java virtual machine '® and make the system incompatible with
standard Java. Instead, agent programmers can control the agent’s execution flow explicitly
by chaining together method calls. When an agent migrates, it specifies a method in its class,
that is to be invoked upon reaching its destination server. This method, in turn, can later
invoke the migration primitive and specify another method for execution on a different server.
Thus, the agent’s control flow is specified as a chain of method calls.

An agent executes on behalf of some human user, who is referred to as the agent’s owner.
An agent is usually created by some application program, which can be either an agent sever,
some client program, or another agent. This is referred to as the the creator of the agent.
Typically an application creates a stationary object called guardian to handle any exception
conditions that its agents may encounter during their execution but may not be able to handle
those conditions themselves. Ajanta model transports such an agent to its guardian’s site. The
agent then invokes the report method of its guardian.

Ajanta uses location-independent names based on the Uniform Resource Name model'®. A
name service is provided for mapping such URNs to the physical locations of the various enti-
ties, such as users, agents, agent servers, resources, and client programs launching agents. For
example, when an agent invokes the migration primitive, it specifies the URN of the desired
destination server. Its current server uses the name service to find the actual location, and can
then contact the destination server to complete the agent transfer The various entities listed
above act as principals in Ajanta’s security mode. Ajanta name service is also used as a secure
repository of the public keys of these entities.

Implementing an agent-based application in Ajanta involves the following tasks:

¢ Defining agent servers: The base AgentServer class provided by Ajanta can be extended
to add application-specific functionality.

e Creating resources: Any service or information to be made available to agents in this
application can be abstracted into a Resource.

e Defining agents: Subclasses of the base Agent class can be written, containing programmer-
defined methods which are then chained together to implement specific user-level tasks.

Ajanta provides a set of primitives for agent-based programming. Agent creation is merely a
matter of instantiating a programmer-defined agent class. Every agent carries a tamperproof
certificate, called credentials, assigned to it by its creator. This contains the agent’s name, and
the names of its owner, creator, and guardian. It is signed using the agent owner’s DSA key.
It also carries the agent’s code base, which is the URL for the server that provides the code for
the classes required by the agent while executing at a remote server. Typically the application
server launching an agent acts as its code base server. An agent’s credentials can also contain



4

any restrictions placed on the agent’s privileges by its creator. The new agent can then be
dispatched to an agent server for execution, using the start method of the base Agent class.
The go operation allows an agent to either request migration to a specific server, or co-location
with a named resource/agent. Agents are given controlled access to resources when they invoke
the getResource primitive. They can make themselves remotely callable using create R MIProzy.
Other available primitives include requests for encryption or digital signature by the current
host server, access to the name service, etc.

Ajanta programming primitives allow an agent to create other agents to perform some
subtasks on its behalf. These are referred to as its children agents. When an agent creates a
child agent while located at some remote server, the child agent’s creator is the remote server
whereas its owner is the same as its parent agent’s owner. However, the child’s credentials
are signed by its creator, i.e. the remote server. The credentials object of an agent indicates
whether it was signed by its owner or the creator. An agent whose credentials object is signed
by its creator instead of the owner is untrusted.

SECURITY REQUIREMENTS

The introduction of mobile agents in a network raises several security issues, especially in open
networks such as the Internet.

e Servers are exposed to the risk of system penetration by malicious agents, which may
leak sensitive information.

e Sensitive data contained within an agent (such as its user’s credit card number, personal
preferences, etc.) may be compromised, due to eavesdropping on insecure networks, or if
the agent executes on a malicious server.

e The agent’s code, control flow and results could be altered by servers for malicious
purposes.

e Agents may mount “denial of service” attacks on servers, whereby they hog server re-
sources and prevent other agents from progressing.

e Name service should protect entries in its database from malicious tampering. For exam-
ple, the public keys of various entities should be properly protected from tampering. Also,
a malicious user should be prevented from creating names in other user’s namespaces in
the Ajanta namer registry.

The mobile agent system must provide several types of security mechanisms for detecting
and foiling such attacks. These include confidentiality mechanisms (to protect secret data and
code), authentication mechanisms (to establish the identities of communicating parties) and
authorization mechanisms (to provide agents with controlled access to server resources).

Secure communication and agent transfer

As a mobile agent traverses the network, its code and data are vulnerable to various types of
security threats. These include passive attacks such as eavesdropping and traffic analysis ® and
active attacks such as message modification, deletion or forging. Passive attacks are difficult to
detect, but can usually be protected against using cryptographic mechanisms ®. In contrast,
active attacks are relatively easy to detect cryptographically, but they are difficult to prevent
altogether. In an agent system, the server-server protocol messages often contain sensitive
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data, such as agent code (which may be proprietary and therefore needs to be kept secret)
and data (which, as illustrated above, needs to be protected as well). Therefore, agent servers
need mechanisms for detecting tampering and impersonation. In other words, confidentiality,
integrity and authentication mechanisms must be an integral part of the secure agent transfer
protocol.

Protection of host resources

A network host running an agent server is exposed to various attacks by mobile agents.

pilfering of sensitive information
damage to host resources

denial of service to other agents
nuisance attacks

A malicious agent may visit a server and proceed to open files containing, say, company
secrets or financial data. It can transmit this information back to its owner, who can use it to
gain a competitive advantage. An anti-social agent could damage its host’s resources by simply
deleting files or erasing the hard disk. It might also attempt to mount a denial of service attack
— by using up the server’s resources (such as disk space, network ports or file handles), it can
effectively prevent the server from doing business with other agents. Other types of resources
are also vulnerable — e.g., the agent can open up hundreds of windows on the server’s console,
rendering it unusable. It can make the computer beep repeatedly. While these nuisance attacks
may not cause tangible damage to the host, they nevertheless have to be prevented.

Therefore, various resources of the host system need to be protected from malicious agents.
At the same time, legitimate agents must be given access to these resources. The system must
therefore provide authorization mechanisms to agent servers, for specifying restricted access
rights for agents. The rights assigned usually depend on the agent’s identity (implying that a
secure authentication facility is necessary), and are determined by consulting a user-defined
security policy. In addition, we need mechanisms for enforcing the specified rights — this is
the problem of access control. The underlying system-level problem is that of providing a safe
binding between the visiting agent code and the local environment — enabling the agent to
access the resources it needs (in the ways it is authorized to), but ensuring at the same time
that it cannot breach system security by accessing resources it is not authorized to use.

Protection of agents

When an agent executes on a host’s agent server, it is in effect completely exposed to that
host. If the server happens to be malicious, it can affect the agent in many different ways:

e It can simply destroy the agent and thus impede the functioning of its creator application.

e It can steal useful information stored in the agent, such as intermediate results gathered
by the agent during its travels.

e It can modify the data carried by the agent, for example changing the price quoted by a
competitor in a shopping mall, to fool the creator application into favoring the malicious
server.

e It can attempt to alter the agent’s code and have it perform malicious actions when it
returns to its home site. This is especially dangerous, since the home site could treat its



own agents as trusted entities, and possibly allow them to bypass access controls to its
own resources.

An agent server must of necessity have access to the agent’s code and state in order to
execute it. Parts of state in fact must usually change, in order to store the results of computa-
tions or queries. Thus it is not possible to provide a general guarantee that the agent will not
be maliciously modified 4. However, the creator application must have some mechanism for
detecting such modifications. If it determines that the agent has been “attacked”, it can take
appropriate measures, such as executing it in a restricted environment (with stricter access
controls than it would use otherwise), or even discarding it altogether.

When an agent is dispatched, it has an initial itinerary of hosts to visit. Different parts of
the agent may be intended for different hosts, and some parts may need to be kept secret
until the agent arrives at the intended host. Since these hosts are usually not trusted equally,
agent applications need a mechanism for selectively hiding and exposing parts of the agent’s
state and code to the different agent servers it visits. Also, a secure, verifiable audit trail which
records the actual path followed by the agent can be a useful mechanism. This allows the
application to ensure that the agent followed the intended itinerary.

Secure control of remote agents

A mobile-agent application may dispatch large numbers of agents to remote sites. It may
be necessary to periodically monitor their progress and issue control commands to them.
The agent infrastructure must therefore provide some means for the application to query the
status of its agents. The application may decide to recall its agents back to their home site,
or terminate them midway through their tasks if appropriate. Agent servers must provide
remotely invocable primitive operations for this purpose. However, these operations are liable
to be misused by malicious users. Therefore, only certain authorized entities must be allowed
to invoke them. Thus, authentication of the caller is imperative, and the server must establish
and enforce some rules about which entities can, for example, terminate an agent.

Protection of name service

There are number of ways in which an attacker can cause damage or disrupt an agent’s
execution by tampering with the name service database. If the entries are not protected from
unauthorized modifications, an attacker can delete a name, or change the contents of a registry
entry, such as an entity’s location or its public keys. It also important to protect the namespaces
assigned to various principals in the system. A user should not be allowed to create names in
the namespaces of other users, unless properly authorized. Otherwise, a potential attacker can
possibly create a large number of names in some another user’s namespace and cause a denial
of service attack.

Java security model — applets vs. agent security

Java is currently widely used for programming applets, which are mini-applications down-
loaded from web servers to client machines for execution. The Java environment has a security-
aware design ¢ 6. Tts security model has three major components:
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1. A byte-code verifier tests programs to ensure that they do not violate type-safety or cause
run-time errors that result in security vulnerabilities (e.g. stack overflows).

2. A class loader defines a namespace for Java classes thus preventing accidental or deliber-
ate name-clashes that can cause security breaches. Remote classes (such as applets and
agents) can be loaded by different class loaders based on their origin, thus preventing
them from interfering with each other.

3. A security manager class can encode a security policy and perform some basic access con-
trol functions. Security-sensitive classes in the Java library make upcalls to the security
manager to decide whether to allow potentially dangerous operations. An application
can install its own customized security manager, allowing it to enforce its own security
policy.

The Java security model however is designed specifically for applets. Applets resemble mobile
agents in that they are transported to remote hosts before execution. However, applets are
neither autonomous nor mobile, and therefore far less general than mobile agents. The security
problems raised by applets ' also apply to mobile agents; however, there are other problems
that only arise in the context of mobile agents. We list a few ways in which mobile agent
security requirements are not met by Java’s model.

e The granularity of access control is very coarse in the applet model. Applets signed
by a trusted entity are allowed arbitrary access to system resources. All other applets
are considered untrusted and are denied access to all resources such as the file system,
network ports (with the exception of network connections back to their site of origin),
etc. We need greater flexibility of access control with mobile agents, and therefore a finer
granularity is necessary.

e Mobile agents can provide or access application-level value-added resources, such as
database services. Access control needs to be provided for such resources, in addition to
the system-level ones. The security policies of such resources may have to be dynamically
modified by their owners, and often cannot be centralized in a security manager.

e Agent owners may impose restrictions on the rights that are delegated to the agent.
These restrictions must be enforced in addition to the access controls applied by the
agent servers themselves.

e Applets do not usually communicate with each other, whereas agents are often required
to do so, even when remotely located. Moreover, communication among agents needs to
be established securely, eliminating the possibility of one agent tampering with another.

Thus the Java security model by itself is not adequate to provide security for agents.

AGENT SERVER PROTECTION

Ajanta system provides the base AgentServer class which implements all of the essential func-
tionality and security for hosting mobile agents, facilitate their execution, give them controlled
access to the server resources, and support their transfer to/from other servers. This generic
agent can be suitably extended to support additional functionalities and services as needed by
a specific application.

An agent server has several components. The ATP (Agent Transfer Protocol) handler is
responsible for securely transferring agents. In this section we present the details of the security
related aspects of the transfer protocol. The domain registry is used by the server for keeping
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information about the currently hosted agents, their credentials, and the thread group assigned
to each agent. Using this information the server can identify the threads executing on behalf
of an agent. The server also has an access control list, which specifies the access policies to
be enforced in regard to host operating system resources, such as files and network ports. A
server’s resource registry stores names and object references for the resources that are made
available by the server to the visiting agents. We present here a proxy-based mechanism for
protected access of server resources by an agent, and the resource access protocol executed
by an agent to acquire access to a resource. Additionally, the agent server provides an RMI
interface through which remote entities can query the status of a particular agent, or cause its
agent’s termination or recall. These operations are protected by the agent server.

Mechanism for Authenticated Communication

To facilitate the implementation of authenticated communication, Ajanta provides a challenge-
response based authentication protocol that can be used for any generic client-server interac-
tion. Each entity in Ajanta can register its keys (an El-Gamal public key for encryption and
a DSA public key for digital signatures) with Ajanta’s name service. The DSA key and algo-
rithm is used to securely authenticate a client to a server, and vice versa. The protocol for this
authentication was developed using a challenge-response mechanism, with randomly generated
nonces to prevent replay attacks '. In many respects our protocol is similar to the design of a
system for authenticated RPC?, which uses private key based encryption instead of signatures.

The authentication protocol of Ajanta operates at the application level, i.e., it is not a
network-level protocol for creating authenticated network connections wherein the endpoints
know each other’s host names securely. The identities being authenticated here are the URNs
of the entities, such as agents, their owners, agent servers, name resolvers, etc. The protocol is
sufficiently generic as to allow any client-server interaction to use it for mutual authentication.
We describe below the protocol and its implementation for RMI based servers, i.e. servers that
present a remote method invocation interface to clients.

In order to protect its security-sensitive interface methods, a server can require that each
such method invocation include a ticket identifying the caller. As an example, an agent server
has an interface method called terminate, which allows the caller to kill a specified agent that
is currently executing on that server. Naturally, only the agent’s owner or guardian should be
allowed to invoke this method. Thus, the caller’s identity has to be authenticated before the
terminate operation is allowed to proceed. The caller must first obtain a ticket by remotely

1.{Alice, Na}
Alice | 2.{Bob, SigB(Na), Nb} Bob
3.{Alice, SigA(Nb), servicerequest}

Client Server

Figure 1. Challenge-response based authentication

invoking the authenticate method of the server. It supplies its own identity (URN) as a
parameter to the call. This is the identity it claims to be, but is yet to be proved to the server.
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In addition, if it requires the converse authentication of the server as well, it provides a nonce
as another parameter. A nonce is a randomly generated integer value, used only once (i.e., for
one invocation of authenticate) and then discarded. It may be thought of as a challenge to
the server to prove its identity. This nonce is optional in the protocol, since a caller may trust
the server, and not require it to authenticate itself. In the example shown in Figure 1, the first
message in the protocol is: {Alice, N, }, where Alice is the identity of the caller, and N, is the
nonce generated by her.

In response, server Bob creates a ticket which serves two purposes: to authenticate itself to
the caller (if requested), and to challenge the caller to prove her identity. The ticket contains
three items:

1. the server’s own URN (Bob, in this case)

2. its digital signature on the client’s challenge (shown as Sigg(N,) in the figure) — we
refer to this as the server’s response to the caller’s challenge.

3. a nonce of its own (IVy), generated randomly using a cryptographically secure pseudo-
random number generator.

Thus, the second message in the protocol is: { Bob, Sigp(N,), Np}. The client’s purported iden-
tity Alice, and the newly generated challenge N are then stored together in a local table, and
the ticket is returned to the client.

The client receives this ticket, and if necessary, verifies the server’s signature on its nonce.
To do this, it may need to query the name service for obtaining the server’s DSA public key.
Once it is satisfied that the server’s identity is indeed the one it intended to contact, it can
proceed with creating a ticket of its own. This time, the ticket has two components — the
client’s identity (Alice), and its signature on the server’s challenge. The third component, i.e.,
the nonce, may be left unused if the client doesn’t require further authentication of the server’s
reply. The client can now invoke the security-sensitive method of the server that requires this
ticket among its parameters. The third message in our example is therefore: { Alice, Siga(Ns)}.
The authentication information in the ticket is piggy-backed onto the service request itself.

The server’s interface method must verify the ticket before allowing the operation to pro-
ceed. To do this, it extracts the client’s identity from the ticket, and looks up its table to find
the challenge that was sent to that client earlier. It then verifies that the signature included
in the ticket matches the expected signature on that challenge. Again, it may need to use the
name service to find that client’s DSA public key. If the signature does not match, or if no
record of a nonce is found for that client identity, a security exception is thrown. Otherwise,
the operation is allowed to execute.

To facilitate the implementation of this authentication protocol in any RMI client-server
interaction, Ajanta system provides two classes. A Ticket class encapsulates the information
contained in the ticket, i.e., the three items listed above. A Ticketing class provides methods
for creating (getTicket) and verifying (verifyTicket) tickets. Every server has to implement
an authenticate method, which simply invokes the getTicket method and returns the ticket
generated by it. Fach server interface method that requires authentication must have an addi-
tional Ticket parameter. The method code can invoke verifyTicket before proceeding with
its usual operation.
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In the form described above, the client is forced to call the authenticate method once
before every invocation of a server interface method. This adds a considerable overhead, es-
pecially since it is a remote invocation. We implemented an optimization of the protocol, as
follows.

As before, when a client calls authenticate for the first time, a new nonce N is gener-
ated and sent in a ticket. The client’s first invocation of an interface method must contain its
signature on this nonce. If the authentication succeeds, both the client and the server then
increment the nonce in preparation for the next invocation. Thus, the next ticket sent by the
client contains its signature on IV + 1*. Since the signature function includes a one-way hash
(using the Secure Hash Algorithm in our implementation), there is no discernible relationship
between the client’s signatures on N and N + 1. This is referred to as maintaining authenti-
cation in a session.

Of course, for this to work, the client and server must remain in agreement regarding the
next challenge value expected to be signed. If they happen to fall out of synchronization, the
client’s ticket will be rejected by the server by throwing a security exception. The client can
then simply re-authenticate itself using the authenticate method and obtain a fresh nonce
value N. Also, the server may decide to limit the risk of exposure by timing out the nonce.
For example, it may allow only k uses of a nonce, so that when the nonce reaches N + k, it is
discarded, resulting in the failure of the next attempt by the client to authenticate itself using
that nonce. Similarly, it may discard a nonce after a certain period of time elapses, such as a
few minutes or hours.

In some situations, a similar mutual authentication protocol is needed for interactions which
do not use RMI as the transport mechanism. For example, when an agent requests migration
from one server to another, the two agent servers communicate via messages on a TCP con-
nection, in order to implement the migration. They need mutual authentication during the
interaction, to ensure that the agent’s request is properly satisfied, and to protect against the
interception of the agent by a malicious server. The same authentication protocol as described
above is used in a more generic form to any messages exchanged by two entities in the system.

Agent Transfer Protocol

Ajanta’s agent transfer protocol is executed between two agent servers, when an agent is to be
transferred from one server to another. We would refer to them as the current server and the
destination server. The transfer can be encrypted as well as authenticated between the servers,
if required by the agent’s owner by indicating it in the agent’s credentials.

This protocol has three steps. In the first step, the current server sends an ATP request
to the destination containing the agent’s credentials and the owner/creator’s signature on the
credential object. The request message also contains specifications for the agent’s method to be
executed after transfer. If the destination is willing to accept this agent, it verifies the signature
on the credential by obtaining from the namer service the public key of the signer. Based on
this verification, the destination sends a positive or negative status to the current server to,

* In general, any simple function of N could be used here without affecting the security of the scheme.
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respectively, either continue or abort the transfer. If the destination decides to accept the
transfer, it creates an entry for the agent in its domain registry and stores there the verified
credential. It keeps a flag with the domain registry entry indicating that the signature on
the credential object needs to be verified again after the agent itself has been received. On
receiving a positive response to its request, in the second step, the current server serializes the
agent object and sends it to the destination. At the destination, a new thread group and an
Ajanta-defined class loader are created for this new agent’s execution. The destination server
now verifies the signature on the credential object contained in the agent. If the verification is
successful, it marks the domain registry entry as verified; otherwise, the transfer is aborted. In
the final step of this transfer protocol, on receiving a positive acknowledgment for the transfer,
the server that initiated the transfer updates the name registry entry of the agent to contain
its new host server. The updates to name registry entries are protected; an agent’s entry can
be updated only by its current host or its creator.

Creation of protection domains for agents

When an agent server receives an incoming agent, it must activate the agent, i.e., give it
a thread of execution, and allow it to execute the method specified in the migration request.
This must, however, be done in a controlled fashion, so that the agent cannot exceed its privi-
leges on the server, and cannot be tampered with by any other agents executing on the server.
Thus, it is necessary to isolate the agent in a protection domain of its own. We use two Java
mechanisms for creating protection domains: thread grouping and class loading.

A thread group in Java is a simple collection of threads. When an agent arrives, a new
thread group is created for it, with an identifier that is unique on that server. A single thread
is created in this group, and is assigned the task of executing the method specified by the agent
as part of its migration request. During its execution, the agent may create other threads, but
it is constrained (by Ajanta’s Security Manager) to create them within its own thread group.
Java allows any executing code to determine its current thread’s thread group. Since there is
a unique agent corresponding to a given thread group, Ajanta system code can identify the
agent which has invoked it. Thus, we use thread groups to identify protection domains, and
thereby to distinguish between agents executing in those domains.

Secondly, we use Java’s class loader mechanism to isolate agents from each other. Each
executing agent is assigned a separate class loader object that is responsible for locating and
loading any classes that are needed during the agent’s execution. Whenever the agent code
encounters an object reference for which the class is not currently loaded, the Java virtual
machine requests the agent’s class loader to load it. Our implementation of the class loader
first searches the server’s classpath — the set of directories on the local file system which
contain classes trusted by the server. If the requisite bytecode is found on the classpath, it is
loaded into the virtual machine. Otherwise, the agent’s code base is contacted to download
the bytecode for the desired class. Thus, if a trusted version of the required class is available
locally, it is always used in preference to the code available from the agent’s code base.

The Java virtual machine associates with each class, the class loader instance that loaded
it. Classes loaded by different instances are considered different types, even if they are in
fact identical. This implies that objects of the two classes are not type-compatible. One of
the prime mechanisms for a malicious agent to tamper with another agent is to replace its
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Figure 2. Resource classes and interfaces

code (classes) with malicious code that does the attacker’s bidding. However, since we create
a unique class loader instance for each agent, a malicious agent cannot replace any other
agent’s classes or objects with its own impostor versions — the type incompatibility would be
immediately detected by the Java virtual machine. In effect, each class loader defines its own
class namespace, protecting the agent from such tampering.

Ajanta Security Manager

Ajanta Security Manager is implemented by extending RMI Security Manager. An agent’s
access to system level resources is protected through the security manager. This security man-
ager uses an access control list to grant an agent access to its local files and network resources.
This access control list is defined based on user URNs; thus access is granted based on the
identity of the agent’s owner. This security manager grant’s access permissions to an agent
only if its credential were verified successfully and if its credential was signed by its owner (as
opposed to its creator). Such an agent located at any server executing under the ownership of
the agent’s owner is granted complete access to system resources at that host. Ajanta security
manager does not allow an agent to create threads in a group other than the one assigned to
the agent. The security manager also ensures that an agent cannot create and install a class
loader.

A proxy-based mechanism for protected resource access

For all application-defined resources, Ajanta uses a proxy-based mechanism that allows each
resource to implement its own policies for protection. In Ajanta, agents are not provided with
direct references to resources — we interpose a prozy 22 between a resource and its clients (i.e.,
agents). When an agent makes a request to access a resource, the server returns a proxy object
in its stead, which contains a private reference to the actual resource. For each application-
defined resource class, a corresponding proxy class must therefore be defined as well. The
proxy class implements the same interface as the resource it represents; however during proxy
construction, some of the interface methods may be disabled, based on its security policy and
the client agent’s credential. For permitted methods, the proxy simply passes the invocation
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public interface Resource {
// generic methods, common to all resources
// e.g. queries for name/id, ownership, etc.

public class ResourceImpl implements Resource {
// implementations of the above methods

Figure 8. A generic resource

through to the embedded resource. If the agent is not permitted to invoke the method, a
security exception is thrown. Since the agent only has a reference to the proxy, this restricted
interface ensures that the agent can only access the resource via the methods that the policy
permits. A separate proxy is created for each agent, although the embedded resource may be
shared if appropriate.

n application-defined bounded buffer resource
// An application-defined bounded buff
public interface Buffer extends Resource

{
public synchronized BufItem get();
public synchronized void put (Bufltem);
// etc.

}

public class BufferImpl extends ResourcelImpl
implements Buffer, AccessProtocol
{ // implementation of the Buffer and AccessProtocol methods

}

Figure 4. A bounded buffer resource

We illustrate the details of the mechanism using an example in which we develop a bounded
buffer resource using the generic resource skeleton (Figure 2) provided by the Ajanta system.
We first discuss the generic Resource interface and show how it is used to develop a Buffer
interface, its implementation, and its proxy class. Next, we outline the resource request protocol
that agents can use to access, and potentially share, instances of the Buffer resource.
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public class BufferProxy implements Buffer {
// a reference to the underlying resource
private transient Buffer ref;
// an array of methods in this instance that can be invoked
private Method[] enabledMethods;

BufferProxy (Buffer b, Method[] e) { // Constructor
ref = b;
enabledMethods = e;
}
private boolean isEnabled(Method m) {
// check if the method m is in the enabledMethods array
}
public void enable(Method m) {
// ensure that the caller is in the agent server’s domain;
// then add m to the list of enabled methods.
}
public void disable(Method m) {
// ensure that the caller is in the agent server’s domain;
// then remove m from the list of enabled methods.
}
public synchronized BufItem get() {
// use reflection to find the "get" Method object
me = myClass.getMethod ("get", ...);
// now check whether this method is enabled
if (isEnabled(me))
return ref.get(); // pass the call through to ref
else // throw a security exception

}
// etc.

Figure 5. Prozy class for the bounded buffer

Resource and prozy classes

Ajanta defines a Resource interface, and provides a ResourceImpl class which implements it
(shown in pseudo-code in Figure 3). The methods of this class provide generic functionality
for all resources, such as resource naming, ownership, charging protocols, etc. The resource
binding protocol is defined in terms of generic Resource objects so as to keep it independent
of application-defined types. Application-defined resources must implement the Resource in-
terface. This is usually done by simply inheriting from the ResourceImpl class. For example,
Figure 2 shows the class hierarchy for a Buffer resource, while Figures 4 and 5 show the
corresponding pseudo-code outline of the corresponding classes and interfaces. The buffer’s
implementation (i.e., the BufferImpl class) extends the ResourceImpl class and thus indi-
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rectly implements the Resource interface.

When an agent requests a buffer resource, an instance of the Buf ferProxy class is returned.
As shown in Figure 5, the proxy contains a reference (ref) to the actual buffer resource, which
should not be visible outside the proxy. The Java encapsulation mechanism is used to enforce
this requirement, by declaring the reference private. Further, it contains a private list of
the methods which are currently enabled in the proxy instance. These are initialized by the
constructor. Any interface method of the Buffer resource, such as get, simply calls upon
the isEnabled method to ensure that it is currently enabled, before passing the invocation
through to the buffer ref. Given a resource interface such as Buffer, its proxy class can be
automatically generated by a simple lexical processing tool*.

public interface AccessProtocol {
// Defines the generic resource access interface. The getProxy
// method returns a proxy object (typecasted to Resource).
public Resource getProxy();

Figure 6. The AccessProtocol interface

Authorization is done by the resource class, which must implement the AccessProtocol
interface shown in Figure 6, i.e., a getProxy method. This method is responsible for creating
the proxy and selectively enabling some of its methods, based on the calling agent’s creden-
tials. The proxy mechanism also allows for dynamic control over the agent’s access rights. The
enable and disable methods can be used to update the list of enabled methods at runtime,
thus dynamically controlling which methods the agent can invoke. To ensure that this capa-
bility is not misused by the agent to amplify its own access rights, both enable and disable
first check the protection domain of their caller. Using the thread group ids, they ensure that
only a thread belonging to the agent server’s thread group (which is a privileged entity) can
perform these operations.

The resource request protocol

Figure 7 depicts the components of an agent server’s resource binding protocol. This figure
shows two protection domains for two agents. A resource is made available to agents by invok-
ing the agent’s environment’s registerResource primitive, which stores the resource name
(a URN) and a reference to the resource object in the resource registry (step 1 in the figure).
Each entry also contains ownership information, which is used to prevent any unauthorized
modifications to the registry entries. The resource name may also be registered with the name
service. This would allow agents at any server to co-locate themselves with the resource and
access it. An agent can make itself available to other agents for communication in similar
fashion, by registering itself as a resource.

* Not currently implemented in Ajanta.
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Figure 7. Dynamic resource binding

In order to obtain access to a resource, an agent must invoke the getResource primitive
(step 2) and provide the name of the desired resource. In response, the agent environment
searches the resource registry to locate the corresponding resource object (step 3), and makes
an “upcall” to its getProxy method (step 4). Note that it is the requesting agent’s thread which
is executing these methods. The getProxy method obtains the requesting agent’s credentials
if necessary, by querying the server’s domain registry. If permitted by its embedded security
policy, the resource object creates a proxy, enables and disables its methods selectively, and
passes it back to the agent via the agent environment (step 5). The agent can now invoke
any of the enabled methods of the resource interface, via this proxy object (step 6). The
embedded resource itself may be shared across proxies (as is appropriate for a bounded buffer),
or duplicated in each proxy (for example, if it is a non-sharable resource).

Accounting and revocation

The proxy-based approach presented here offers some other capabilities too. The following
features can be added by a resource provider by suitably implementing the getProxy method,
and extending the proxy class.

One can embed usage-metering and accounting mechanisms in a proxy '°. This can be done
either by counting the invocations of each method, possibly assigning different costs to differ-
ent methods, or by metering the elapsed time for method execution and then calculating the
charges based on it.

Even though the reference to a proxy is like a capability, we can limit its propagation from
one agent to another by checking whether the invoker of the proxy belongs to the protection
domain to which it was originally granted. Thus, a proxy acts as an identity-based capability”.
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This requires extending the proxy by including in its state, the identifier of the protection do-
main to which it was assigned. Further, each method must first ensure that this same domain
has attempted to invoke it.

It is also possible to add an expiration time to each proxy object. After its expiration, a
proxy would simply raise an exception for any invocation of its methods. Also, a resource
manager can invalidate any of its currently active proxies at any time it wishes, or it can
selectively revoke or add permissions for specific methods of a given proxy using the enable
and disable methods.

Security of the scheme

The scheme presented above is now examined against potential threats of various kinds of
attacks. We introduce some additional rules, based on Java’s security model, to guard against
these threats and ensure the integrity of the scheme.

A proxy contains an embedded reference to the resource object. The agent may attempt
to directly (or via reflection) invoke the methods of this object, bypassing the proxy’s access
control checks. To prevent this, we rely on Java’s encapsulation mechanism, by declaring the
embedded resource reference as private. Since in this situation the agent server is attempting
to protect its own resources, it is reasonable to assume that the Java virtual machine executing
the agent code will respect the private declaration, and refuse to allow the agent to access
the embedded reference directly.

If the proxy object could be typecast to another type which redeclared the private refer-
ence as public, or bypassed the access control checks for each method, the agent could gain
unauthorized access to the resource. In our scheme however, we enforce the rule that a proxy
class has no ancestors apart from Java’s base Object class. Thus, the Java virtual machine
will not allow the agent to typecast the proxy instance to any other class.

When the agent arrives across the network, it typically also provides its own code base. In
doing so, it may attempt to install its own version of the proxy class, which bypasses access
control checks or makes the embedded resource publicly available. To avoid this, Ajanta’s class
loader makes sure that the proxy class is only loaded from the server’s classpath, i.e., from
amongst the trusted classes installed on the local file system.

A malicious agent could serialize a proxy, transmit the byte stream to a cooperating agent
server and deserialize it using a fake proxy class, thus exposing the underlying resource. We
prevent this by enforcing the rule that the resource reference within a proxy class must be
declared as transient. Java does not include transient references in the byte stream generated
by object serialization. Therefore, the resource object will not be copied to the attacker’s site.

The agent, having followed the proper protocol to obtain a proxy, may attempt to clone it.
Since cloning in Java is equivalent to a shallow copy* operation, this does not result in the
cloning of the underlying resource. However, it can still affect the accounting and revocation
mechanisms built into the proxy, since the server only has a reference to the original. The

* Each object reference in the original object is assigned to the corresponding reference in the clone. The
objects themselves are not cloned.
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agent could continue to use a cloned resource with impunity without being charged for it, even
after the server revokes the resource. To avoid this problem, we enforce the rule that the proxy
class is not allowed to implement the Cloneable interface. Java does not allow the cloning of
any object which does not implement this interface.

RMI interface for agents

In many applications, agents residing on different servers may need to communicate or syn-
chronize with each other. Thus a remotely invocable communication mechanism is necessary.
Ajanta provides mechanisms using which an agent is allowed to present an RMI interface to
the outside world. This, however, opens up a security loophole. From the viewpoint of an
agent’s security, the RMI interface provides a conduit through which unauthorized principals
on remote sites may try to interfere with the agent. We need to authenticate incoming con-
nections, so as to control the set of principals which can have RMI based access to an agent.
The proxy interposition concept is used here too, to control incoming connections. Also, from
the server’s security viewpoint, it is necessary to appropriately control an agent’s access to
the server’s communication resources. Outgoing connections are monitored and allowed by the
Ajanta Security Manager, using its access control list.

An agent can make itself available for remote invocation must use the createRMIProxy
primitive. It specifies the interface that it intends to support, and requests the server to create
and install an RMI proxy. If the server can find a proxy class appropriate for that interface,
it creates the proxy instance (containing an embedded reference to the agent object) and reg-
isters it with the local RMI registry under the agent’s name. If the appropriate proxy is not
available locally, the createRMIProxy fails — the agent’s code base is not relied upon to provide
a safe proxy class. Thus the proxy code is trusted to be safe, and will not leak information to
unauthorized callers.

When a remote object wishes to communicate with such an agent, it queries for the agent’s
name in the RMI registry at the agent’s current host. The RMI stub returned by the RMI
registry however points to the agent’s RMI proxy. All incoming RMI invocations are thus
intercepted by the proxy, which passes the RMI call through to the agent object and relays
the results back to the caller. However, if authentication of the caller is necessary, the proxy
raises an RMI exception. The caller is then expected to make another RMI call, supplying
its identity. Authentication then proceeds using a challenge-response mechanism using the
mechanism described earlier in this section. Once the authorization is confirmed, the proxy
relays the call to the agent as usual.

AGENT PROTECTION

An agent’s state is vulnerable to attack in several different ways. While it is in transit between
two servers, it can be intercepted and tampered with by malicious hosts on the network. This
type of attack is relatively easy to detect and protect against. For this purpose, we incorporate
standard cryptographic mechanisms into our agent transfer protocol. For example, one-way
hashing and digital signatures can be used to detect tampering, and to establish the identity
of the servers participating in the ATP. Encryption can be used to prevent passive attacks
such as eavesdropping on the agent’s state while it is being transmitted.
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Another category of attacks on the agent involves tampering by its current server. For an
agent to be executed at a host, it must in effect be exposed to the server on that host. As
such, if that server is corrupted or malicious, the agent’s state is vulnerable to modification.
As Farmer et al.* have argued, this type of attack is impossible to prevent. However in Ajanta,
we attempt to provide mechanisms by which such tampering can at least be detected by
the agent’s owner. Three such mechanisms are detailed in this section. The first allows the
programmer to declare parts of the agent state as read-only, i.e., constant during the agent’s
travels. Any tampering with the read-only objects can be detected. The second mechanism
lets the agent create an append-only container — a container into which the agent can check
in data as it executes. Data stored in the container cannot be deleted or modified without
detection by the agent’s owner. The third mechanism implements selective revealing of agent
state, i.e., the agent programmer can specify that certain objects carried by the agent should
only be made visible to specific agent servers. In addition, we address the problem of preventing
impersonation of the agent.

Read-only state

Often, agent objects contain some read-only items as part of their state. For example, an
agent’s credentials should not be modifiable by anyone other than its owner, and thus are
read-only during its travels. Similarly, a user’s mail delivery agent may carry an email message
intended for delivery to some group of recipients. This message should be unmodifiable, so
that a malicious server on the agent’s path cannot misrepresent the user’s message to others.
Declaring the associated Java objects as constants, using the final keyword, is not sufficient
— a malicious server could easily tamper with its Java virtual machine so that it allowed
modifications to final objects. Therefore, we devised a cryptographic mechanism to protect
such constants.

class ReadOnlyContainer {
Vector objs; // the read-only objects being carried along
byte[] sign; // owner’s signature on the above vector

// Comstructor
ReadOnlyContainer (Vector o, PrivateKey k) {
objs = o;
sign = DSA_Signature ( hash(objs), k );
}

public boolean verify(PublicKey k) {
// Verify the agent owner’s signature on the objects
// using the owner’s public key

Figure 8. The ReadOnlyContainer
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The ReadOnlyContainer mechanism

The generic Agent class provided by Ajanta contains a ReadOnlyContainer object, the
pseudo-code for which is shown in Figure 8. This ReadOnlyContainer object contains a vector
of objects of arbitrary type, along with the agent owner’s digital signature on these objects.
As a part of the agent object’s construction, this vector of objects can be initialized with the
appropriate read-only values. The digital signature is computed by first using a one-way hash
function* to digest the vector of objects down to a single 128-bit value, and then encrypting
it using the private key supplied to the constructor. The Digital Signature Algorithm (DSA)
was used for this purpose. Thus:

sign = K, (hash(objs))

Clearly, this computation of the signature must be done at the agent’s home site when it is
created, since this is the only location where the private key K is available. Note that the
private key is discarded by the constructor after the signature is computed, since it cannot be
safely carried along with the agent.

The verify method of the ReadOnlyContainer object allows any server on the agent’s path
to check whether the read-only state has been tampered with. To do this, it needs access to
the agent’s public key K}; it can query the name service for this purpose. It uses the public
key to decrypt the signature, and compares the result with a recomputed one-way hash of the
vector of objects. If these values match, the server can assume that none of the objects has
been modified since the signature was computed. Thus, the condition it checks for is:

hash(objs) == K} (sign)

Security of the mechanism

There are only two ways in which a malicious server could attempt to break this scheme:

1. The server modifies some read-only objects in such a way that the owner’s signature still
remains valid.

2. The server modifies some read-only objects as well as the signature so that the tampered
ReadOnlyContainer appears valid to other servers.

The first option can be ruled out, because the one-way hash function we used (SHA) is collision-
resistant — i.e., given a pre-image and its image under the function, it is infeasible to compute
another pre-image that produces the same image. In our context, it is therefore infeasible for
a malicious server to tamper with any of the read-only objects while still retaining the same
valid signature. Secondly, a fundamental assumption underlying any cryptographic system is
that the private key* is only known to the key owner. Therefore, no other entity can produce
the owner’s signature on a modified hash value. Thus, the second attack is also ruled out.

Append-only logs
The read-only container mechanism is limited in utility to those parts of the state that

* We used SHA — the Secure Hash Algorithm.
* or secret key, in the case of symmetric cryptosystems.
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remain constant throughout the agent’s travels. In some situations, the agent needs to collect
data from the sites it visits, but also needs to prevent any subsequent modification of the
data. This could be termed as write-once data, although more generally, it could be modified
any number of times until the agent decides that it should not be modifiable any further. As
an example, a travel agent may migrate to various airlines’ servers, collecting quotations for
air tickets to a specified destination. The quotation collected from one airline must not be
modifiable (and possibly, not readable either) by a subsequent airline visited by the agent.
Thus, it must be a write-once object.

More generally, agents may need append-only logs as part of their state. An append-only
log, as the name implies, can only be appended to, i.e., entries in the log cannot be deleted or
modified. When a data object needs to be “frozen”, i.e., made unmodifiable for the remainder
of the agent’s journey, it can be inserted into such an append-only log. If secrecy is also needed
(as in the air ticket quotation example), the item can be encrypted with the agent’s public key
before it is stored in the log.

The AppendOnlyContainer mechanism

We provide such a facility using an AppendOnlyContainer object, which is a part of each
agent in Ajanta. A pseudo-code outline for the object is shown in Figure 9.

An AppendOnlyContainer object contains a vector of objects to be protected, along with a
vector of their corresponding digital signatures and the identities of the signers. It also con-
tains an array of bytes (called checkSum in the figure) which is used to detect tampering, as
explained below. When an agent object is created, its AppendOnlyContainer is empty, i.e.
it does not contain any protected objects. The checksum is initialized by encrypting a nonce
with the agent’s public key:

checkSum = K1 (N,)

This nonce N, is not known to any server other than the agent’s home site, and must be
kept secret. Therefore, it is not carried by the agent. The encryption above is performed using
the ElGamal cryptosystem.

At any stage during its travels, the agent program can use the checkIn method to insert an
object X (of any type) into an AppendOnlyContainer. For example, after collecting a bid or
quotation from a server, it can check the value in, in order to protect it from any further mod-
ification. The check-in procedure requests the current server C' (which made the quotation)
to sign the object using its own private key K. The object, its signature and the identity
of the signer are inserted into the corresponding vectors in the AppendOnlyContainer. Then,
the checksum is updated as follows:

checkSum = K} (checkSum + Sigc(X) + C)

First, the signature and the signer’s identity are concatenated to the current value of the
checksum. This byte array is then encrypted further using the agent’s ElGamal public key,
rendering it unreadable by anyone other than the agent’s owner. The checked-in object itself
remains readable by subsequent servers. If this is undesirable for the application at hand, the



22

class AppendOnlyContainer {

Vector objs; // the objects to be protected
Vector signs; // corresponding signatures
Vector signers; // corresponding signers’ URNs
byte[] checkSum; // a checksum to detect tampering

// Constructor
AppendOnlyContainer (PublicKey k, int nonce) {

objs = new Vector(); // initially empty
signs = new Vector(); // initially empty
signers = new Vector(); // initially empty

checkSum = encrypt (nonce); // with ElGamal key k
}
public void checkIn (Object X) {
// Ask the current server to sign this object
sig = host.sign (X);
// Next, update the vectors
objs.addElement (X);
signs.addElement (sig);
signers.addElement (current server);
// Finally, update the checksum as follows
checkSum = encrypt (checkSum + sig + current server);
}
public boolean verify (PrivateKey k, int nonce) {
loop {
checkSum = decrypt (checkSum); // using private key k
// Now chop off the "sig" and server’s URN at its end.
// These should match the last elements of the signs and
// signers vectors. Verify this signature.
} until what’s left is the initial nonce;

Figure 9. The AppendOnlyContainer

agent programmer can simply encrypt the object using the agent’s public key, before invoking
the checkIn method. Then, the encrypted version of the object (i.e., K1 (X)) would be carried
along and protected from tampering.

When the agent returns home, the owner can use the verify method to ensure that the
AppendOnlyContainer has not been tampered with. As shown in Figure 9, the verify process
works backwards, unrolling the nested encryptions of the checksum, and verifying the signature
corresponding to each item in the protected state. In each iteration of this loop, the following
decryption is performed:
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K (checkSum) = checkSum + Sigs(X) + S

where S is the server in the current position of the signers vector, and X is the corre-
sponding object in the objs vector. The verify procedure then ensures that:

K{(Sigs(X)) == hash(X)

If any mismatches are found, the agent owner knows that the corresponding object has been
tampered with, and can raise an exception and discard the value. The objects extracted up to
this point can still be relied upon to be valid, but other objects whose signatures are nested
deeper within the checksum cannot be used. When the unrolling is complete, we’re left with the
random nonce that was used in the initialization of the checksum. This number is compared
with the original random number N, (which must therefore, be stored by the agent’s creator
for later verification). If it does not match, a security exception can be thrown. One limitation
of this scheme is that the verification process requires the agent’s private key, and can thus
only be done by the agent’s home site (or some other site trusted by its owner).

Security of the mechanism

A malicious server could attempt to tamper with the agent state by modifying an entry in
the objs vector. If this entry has been made by an earlier server, this renders the corresponding
signature invalid. The malicious server could recompute the signature on the tampered object
using its own private key, but this renders the checksum invalid, because the earlier, valid sig-
nature was incorporated into the checksum when the object was first checked in. Further, the
server would have to insert its own identity into the signers vector to allow its recomputed
signature to be verifiable, thus revealing itself during the verification process.

The malicious server cannot tamper with the checksum meaningfully, since the checksum is
always encrypted using the agent’s public key and is thus a meaningless bytestream from its
perspective. It cannot recompute the checksum from scratch either, because its initial value is
based on a randomly generated number known only to the agent’s owner.

If an entry into the append-only log is being made on a malicious server, it is possible for that
server to modify the object before it is inserted. The modified value would then be signed by
the server, and this mechanism would not be able to detect the tampering*. The append-only
log is only meant to detect tampering by other servers, later in the agent’s itinerary. Since the
server usually has a stake in protecting its own data (bid, quotation, etc.) from tampering, it
seems reasonable to assume that it won’t tamper with its own data.

Selective revealing of agent state

In some applications, an agent programmer needs to protect items in the agent’s state such
that they are only accessible to certain servers. For example, an agent may be responsible
for delivering personalized newspapers to a list of subscribers. For privacy reasons, each such
newspaper should be made available only to the corresponding user, and should not be readable
* It is debatable in fact, whether any “tampering” has occurred here, since the server has merely modified

some data which it generated itself. It could just as easily supply incorrect replies to the agent’s requests for
data.
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by other users. The same requirement would hold in another application which delivers updated
quotes for personal stock portfolios. In these cases, we say that parts of the agent’s state are
targeted towards particular servers, and need to be selectively revealed to those servers alone.
To facilitate this, we provide a TargetedState object in Ajanta’s generic agent.

class TargetedState {

Vector objs; // objects encrypted with servers’ public keys
Vector servers; // server URNs corresponding to each object
byte[] sign; // agent’s signature on the above two vectors

// Constructor
TargetedState(Vector o, Vector s, PrivateKey k) {
objs = o; servers = s;
sign = DSA_Signature( hash(objs + servers), k);
}
public boolean verify(PublicKey k) {
// verify the digital signature using the agent’s key k

}

Figure 10. The TargetedState class

The TargetedState mechanism

Figure 10 is a pseudo-code outline of the TargetedState class. The TargetedState contains
a vector of objects, each of which is encrypted using the public key of the server for which it
is targeted. The corresponding server identities are also included in a separate vector. These
two vectors are then hashed together and signed by the agent’s owner. This entire object is
constructed at the agent’s home site, before the agent departs on its itinerary.

When an agent arrives at a server, the server executes an application-defined entry protocol,
in the form of the arrive method. In this code, the agent can invoke a system-supplied method
in its class called decryptTargeted. This method searches the targeted state for any objects
intended for the current server. If any such objects are found, these are passed to the server,
which is requested to decrypt them using its own private key. The decrypted objects can then
be used by the agent during its computation at that server. Also, a verify method is provided
in the TargetedState object, to ensure that the encrypted objects and their intended targets
have not been tampered with. It functions by simply verifying the digital signature using the
agent’s public key:

K1 (sign) == hash(objs + servers)

Any server which is requested to decrypt its share of the targeted objects should first use
the verify method to ensure that the agent has not been tampered with.
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Security of the mechanism

The agent’s owner encrypts each targeted object with the intended server’s public key,
before the agent is launched. The only way to decrypt these objects is with the corresponding
private key, which only the appropriate server can do. If a malicious server modifies some of
the targeted objects, the agent’s signature contained in the TargetedState becomes invalid.
Similarly if it tries to modify the servers vector too, the signature will not verify correctly
and the tampering is detected. Items cannot be added to the objs vector either, for the same
reason. In effect, the entire TargetedState object is read-only once the agent departs its home
site.

Protection against impersonation

Another potential attack against an agent is the misuse of its credentials. An agent’s owner
assigns a set of credentials to the agent, which identify the agent and contain its ownership
information. This is used by servers for access control and accounting. If a malicious server
could extract a valid set of credentials from one agent and apply them to its own agent, it
could get unauthorized and unaccounted access to resources at other unsuspecting servers. In
other words, it would be able to send an agent that masquerades as another agent belong-
ing to an authorized user. We thus need some mechanism to securely bind an agent to its
credentials. While a generally applicable mechanism for this purpose is not currently known,
we can protect agent credentials using some of the state protection techniques described above.

Intuitively, the purpose (or intention) of an agent is described by its itinerary, i.e. the path
it follows on the network, and the code it executes at each host on that path. If we assume
that an agent’s itinerary is known in advance of its dispatch, we can insert a copy of the
itinerary into the agent’s ReadOnlyContainer. Thus, each host visited by the agent has access
to the original itinerary, as intended by the agent’s creator. The receiving server can check the
current itinerary to ensure that the agent is following the specified path, and that the method
to be executed is as specified originally. Since the code of the agent is downloaded from a
trusted code server, this ensures that the agent always executes only the intended method
code on a benign agent server. Also, the server may impose a further restriction on the data
that the agent can access while executing that method — the data must be stored either in
the ReadOnlyContainer or be part of the TargetedState for that server. This ensures that
any tampering with the method’s parameters by a previous host on the agent’s path can be
detected, before the agent is allowed to execute.

In addition, an audit trail of the agent’s migration path can be maintained using an instance
of the AppendOnlyContainer class. Every time the agent departs a host, its server inserts a
log entry into the AppendOnlyContainer. This entry includes the current server’s name, the
name of the server from which the agent arrived, and the name of its intended destination.
This travel log can be used by the agent’s owner when the agent returns, to verify that it
followed the itinerary prescribed when it was dispatched. It is possible for a series of malicious
servers to transfer the agent amongst themselves without an indication of this appearing in the
travel log. However, any benign server which follows the protocol will insert a valid log entry,
thus allowing us to treat any sequence of collaborating malicious hosts in the path as if it was
a single malicious site. Since the entry is made in an AppendOnlyContainer, any tampering
with it can be detected by the agent owner.
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Related work on agent protection

A different mechanism for protecting agent data, suggested by Farmer et al., is to define
a state-appraisal function, which is part of each agent. An agent server uses a state-appraisal
function to compute a limit on the privileges it grants to the agent, based on the agent’s
current state. In this scheme, the agent state is not protected from tampering; however, the
idea is to implement the state-appraisal function in such a way as to ensure that an agent
that is maliciously modified at one host will not be able to acquire sufficient privileges to do
any damage to its subsequent hosts. This scheme works under the assumption that such state-
appraisal functions can detect tampered state, which may not always be true as the authors
themselves suggest.

A fundamentally different approach has been suggested by Sander and Tschudin?! 22. They
attempt to prevent tampering altogether, using the concept of computing with encrypted
functions and data. The idea is that a function is initially encrypted in some manner, and this
transformed function is implemented as a program (to be executed by the mobile agent). A
remote server can see and execute the program (i.e., the encrypted function) without obtaining
any relevant information about the original function. Since the agent owner’s original inten-
tion remains unknown, a malicious server cannot systematically tamper with the agent code.
While this approach is promising, the challenge lies in devising the encryption transformation
for arbitrary functions that an agent may execute. Sander and Tschudin describe one such
transformation which only applies to certain classes of polynomials and rational functions.
They then use this to demonstrate the feasibility of digital signing by agents; i.e. we can al-
low agents to carry encrypted private keys and sign the output of a rational function using
another rational function as the signature algorithm. It is however debatable whether users
will be willing to run agent servers that permit themselves to be used for executing arbitrary
encrypted functions, for pragmatic reasons.

NAME SERVICE PROTECTION

Ajanta name service enforces protection with respect to two aspects: one is to prevent unau-
thorized modifications of name service data, and the second is the protection of namespaces
belonging to different principals. The name service is implemented as a group of autonomous
registries. A registry is responsible for managing the namespace of its domain. A name registry
provides authenticated RMI interfaces to its clients as well as other name registries.

A name registry entry contains the location information for the resource that it represents.
It is either a URL specifying the network address of the resource, or a URN of the server
currently hosting that resource. It also maintains the public keys of the various entities in
the system. Updates of all name registry entries are protected using an access control list for
each entry. For an agent, only its current host server or creator/owner can modify its current
location field. The public key of an entity can be changed only by its owner or creator. For an
agent server, the entry contains its ATP port address and RMI interface’s URL.

The global namespace is hierarchically structured. A name registry is run under the owner-
ship of some system administrator. The system administrator adds names of the users in its
domain. Each user represents and owns a namespace. A user can run an agent server, whose
name can be created only in the user’s own namespace. Similarly, an agent server can create
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agents with names that are in its own namespace. When an agent creates some child agents,
their names are created in the agent’s namespace. When an agent is located at some remote
server, that server is temporarily (during the agent’s execution there) is given the privilege of
creating names in the agent’s namespace.

CONCLUSIONS

In this paper we have described the security architecture of the Ajanta mobile agent system.
This architecture is built upon Java’s security model. We have addressed problems related
to protecting agent servers, agents, and the name service information. Ajanta security man-
ager provides secure access to system resources and supports isolated protection domains for
agents by using separate thread groups and class loaders. Ajanta system uses a proxy-based
mechanism for protecting server resources. Based on the Java security model, we establish
the integrity of this mechanism. The proxy concept is also extended to support secure com-
munication between remote agents using RMI. We have also presented here mechanisms for
protecting information carried by an agent. An agent’s data is divided into four kinds of con-
tainers with different security requirements. One is targeted data which is intended only for
some specific agent servers, the second is read-only data whose tampering can be detected, the
third is an append-only log, and the fourth is any unprotected data. Every agent carries its
credentials as a part of its read-only data. Client-server interactions can be authenticated using
a generic authentication protocol. Using this protocol the name service enforces its security
policies. Ajanta provides protected namespaces for different users. In regard to remote control
of agents, an agent server authenticates all commands to terminate, abort, or recall an agent.
Only an agent’s creator or owner is permitted to invoke these commands.

The Ajanta system has been used to implement several applications systems as well as mid-
dleware systems 2°. We have used Ajanta to implement a distributed calendar management
system, an Internet File Access system to share flies among different users over the Internet,
and a Web search system. The File Access system demonstrates the security capabilities of
Ajanta. This system allows a user to selectively grant access of its files to the agents of other
users.

Acknowledgments: The authors wish to thank Ram Dular Singh and Tanvir Ahmed for their help in the
refinements of some of the ideas presented here. Ram Dular Singh refined the implementation of the agent
transfer protocol and the Ajanta security manager. Tanvir Ahmed was responsible for implementing the Ajanta

name service and its namespace protection model.
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