
A S P E C T - O R I E N T E D
P R O G R A M M I N G

G R E G O R K I C Z A L E S , J O H N I RW I N , J O H N L A M P I N G , J E A N -
M A R C L O I N G T I E R , C R I S T I N A V I D E I R A L O P E S , C H R I S

M A E D A , A N U R A G M E N D H E K A R

X E R O X P A L O A LTO R E S E A R C H C E N T E R

1 . I N T R O D U C T I O N

In this paper, we present an overview of our recent research on programming language ex-
pressivity. The goal of this work is to make it possible for programs to clearly capture all of the
important aspects of a systemÕs behavior, including not only its functionality, but also issues
such as its failure handling strategy, its communication strategy, its coordination strategy, its
memory reference locality, etc.

Our current work is based on the belief that programming languages based on any SINGLE
abstraction frameworkÑprocedures, constraints, whateverÑare ultimately inadequate for many
complex systems. The reason is that the different aspects of a systemÕs behavior that must be
programmed, each tend to have their own Ònatural formÓ, so while one abstraction framework
might do a good job of capturing one aspect, it will do a less good job capturing others.

This conclusion has led us to develop a concept we call Aspect-Oriented Programming
(AOP). In AOP, the different aspects of a systemÕs behavior are each programmed in their most
natural form, and then these separate programs are woven together to produce executable code.
Our work on AOP is being carried out in the context of both general-purpose and domain-
specific languages, we believe that it has contributions to make to both areas.

1 . 1 C RO SS -C UT TI NG

The basic limitation of single abstraction framework languages is that one abstraction will
not necessarily serve well for all the different issues that must be programmed in a specific sys-
tem. A classic example is the notion of invariant relations among objects. While many standard
object-oriented languages do a good job of clearly capturing the behavior of objects, they do a
less good job of capturing structural and behavioral invariants, such as Òwhen this object gets a
pop message, send this other object a refresh message.Ó Many linguistic mechanisms have
been developed to deal with special cases of this problem (i.e. before/after methods), but a great
deal of the complexity in real world code still appears to come from cases where the language
fails to provide adequate support for a secondary, but still important, aspect of a systemÕs be-
havior.

Some cases of this problem can be dealt with by isolating one issue in one part of the code,
and another issue in another part of the code. This is often done using some form of procedure
abstraction. For example, the details of memory allocation can be hidden behind the mal-
loc/free interface, the client code only attends to what to do with the objects.

But there are some cases where two aspects of a systemÕs behavior seem to invariably get
tangled together in the code. In such cases we say the two aspects Òcross-cutÓ each other with
respect to the program. One good example happens in object-based distributed computing.
There have been several efforts to isolate the work of deciding how much of an object to send
along in remote message sends (marshalling). But analysis of real programs shows that it
nonetheless tends to get mixed in throughout the code. The reason is that deciding the optimal
marshaling strategy requires knowing a lot about each particular send, and so a lot of the code
tends to gravitate towards the actual sends and out of the sub-module.

We believe this TANGLING-OF-ASPECTS phenomenon is at the heart of much of the complexity
in existing software systems. Further, we believe that increasing the level of programming lan-
guages wonÕt help without addressing this root cause of the tangling. Instead what is needed is
to be able to work with abstractions that correspond more directly to all the different aspects of
concern in a system.

The goal of Aspect-Oriented Programming (AOP) is to make it possible to deal with cross-
cutting aspects of a systemÕs behavior as separately as possible. We want to allow programmers
to first express each of a system's aspects of concern in a separate and natural form, and then
automatically combine those separate descriptions into a final executable form using a tool
called an Aspect Weaver. The name weaving is chosen to reflect an important difference from
traditional compilationÑin weaving, the output is a much tighter integration of the input pro-
grams than in traditional compilation. This follows directly from AOPÕs goal of separating tra-
ditionally cross-cutting issues.

Examples of the kinds of aspects we believe AOP should allow programmers to think and
program in terms of are shown in Table 1. Note that programming in terms of aspectual de-
composition requires much more than just identifying the different aspects of concern. It re-
quires being able to express those aspects of concern in a way that is precise and that makes the
RELATIONS among the aspects of concern precise. This is what enables the Aspect Weaver to
work, and is also what enables reasoning about the code, debugging the code, and all other parts
of the program lifecycle.

Domain: image processing distributed comput-
ing

operating systems

Aspects: operations on pixel maps what the objects do algorithm

 control structure their location data structure

 intermediate value shar-
ing

 communication reference locality

 synchronization

 T able 1- Some exa mple dom ains and key asp ects of conc erns in each .

We believe that a number of projects, new and old, include intuitions similar to those under-
lying Aspect-Oriented Programming. The contribution of this short position paper are to: (i)
Provide an initial sketch of the EXPLICIT notion of AOP; (ii) Present the first systems to be con-
structed with AOP an as an explicit guiding principle; (iii) Discuss some of the problems that

arise when attempting to provide separate control over cross-cutting aspects of a systemÕs be-
havior.

2 . A N E X A M P L E O F A S P E C T - O R I E N T E D P R O G R A M M I N G

As a first example of AOP, we present a small part of one of the projects we have been
working onÑusing AOP to handle a representative class of distributed applications. The aspec-
tual decomposition we are working with in this domain breaks systems down into several key
aspects, including: the basic functionality of objects, the communication strategy when mes-
sages are sent across address space boundaries, and coordination of the threads of activity

We have developed a basic functionality language (BFL) and appropriate aspect description
languages (ADLs) to capture each of these different aspects of the systemÕs behavior. The BFL
is a simplified C++/Java style language. Programs in this language specify what the objects do,
in the familiar style of imperative object-oriented languages. Programs in the communication
ADL can specify what parameters should be copied, and to what extent, when there are method
invocations between objects in different address spaces. Programs in the coordination ADL de-
fine sets of methods that are mutually exclusive and/or auto-exclusive; and define pre-conditions
on the execution of methods. The code below is the three programs that define a bounded stack
in our system. (Note that all the figures in this paper were originally produced in color, which
helps to capture the aspect weaving more clearly. A color version of the paper is available at
http://www.parc.xerox.com/aop.)

 Basic Functionality
class BStack {
 Integer head;
 Element elts[MAX];
 É

 void! insert (Element e) {
 if (head == MAX) !;
 else elts[head++] = e;
 }
 Element! remove () {
 if (head == 0) !;
 else elts[--head];
 }
 Element! top () {
 if (head == 0) !;
 else elts[head];
 }
 void newClient (Client c){
 É
 }
};

 Communication Aspect
interface BStack {
 void! insert (gref Element);
 gref Element! remove ();
 gref Element! top ();
 void newClient (copy Client:id);
};

 Coordination Aspect
relax BStack {
 autoex{insert, remove, new-
Client};
 mutex {insert, remove};
 mutex {remove, top};
}

Aspect
Weaver

aspect
description
languages

aspect
description
programs

woven
output code

basic
functionality

program

Fi gure 1ÑT he b asic ele ment s of an aspe ct-o rien ted prog ramm ing sys-
te m. The basi c fu ncti onal ity (or prim ary aspe ct) is c aptu red usin g a

la ngua ge t hat best sui ts i t. Each of the cros s-cu ttin g as pect s ar e ca p-
tu red usin g ot her appr opri atel y sp ecia lize d la ngua ges. Th e we aver
ta kes all the prog rams as inpu t an d pr oduc es w oven out put code ,

wh ich may itse lf b e so urce cod e in a l angu age like C.

Before these programs can be run, they must be woven together to produce executable code.
This is done using a tool we call an Aspect Weaver, as shown in Figure 1. In all of our current
implementations the Aspect Weaver actually outputs a medium-level language like C, C++ or
Java. That code is then compiled using a traditional compiler. (The woven code for this exam-
ple is listed in the appendix.)

This example shows the power of the aspectual decomposition and AOP. The aspectually
decomposed program is easy to write, maintain and reason about. Design and implementation
of the weaver is moderately straightforward. The output of the weaver, that is the automatically
tangled code, is quite efficient.

In this example, the aspect weaving is tightly connected to object invocations. This makes
the weaver relatively straightforward to design and implement. Our second example involves
more complex weaving, and so provides the basis for discussing some of the technical issues we
see in developing AOP into a working programming paradigm.

3 . A S E C O N D E X A M P L E O F A S P E C T- O R I E N T E D P R O G R A M M I N G

Our second example of aspect-oriented programming is from the domain of scientific com-
puting, where we have been exploring the use of AOP in solving differential equations, cast as
solving sparse matrix equations.

The decomposition we have chosen for this problem has three main aspects: (i) the basic al-
gorithm to be used to solve the system (often a custom algorithm tuned to the physics of prob-
lem at hand); (ii) maintaining numerical accuracy (which can require monitoring the computa-

tion and permuting the original matrix on the fly without losing track of the original relation-
ships); (iii) choosing data structures that have the appropriate space/time tradeoffs and allow
sharing of information across iterations of the algorithm.

As in the previous example, to work with this decomposition, we use three languages that to-
gether make it possible to express the three aspects of the desired computation in a natural and
coordinated way. The figure below illustrates how these languages work, by showing how LU
factorization is coded. Again, this figure shows what the programmer writes. The code in
blueÑthe algorithm aspectÑis just the simple, elegant, algorithm that appears in textbooks. The
language for this aspect is a simple variation of Matlab. The other aspects are equally clear to
an engineer versed in this domain. The gray lines in the figure are a kind of hypertext mecha-
nism that connects the descriptions of the aspects. The bottom of the figure shows the tangled
code that results from weaving the aspects together. The color in the bottom shows the actual
weaving of the three separate aspects.

Numerical Stability

P = [1:n];

View A, L, U Through (P, :);
View t Through P;

[v,piv] = findMax(A[:,j]);
piv = piv+j+1;
P([j,piv]) = P([piv,j]);

L = L(P, :);
U = U(P, :);

Base Algorithm

function [L, U, P] = lu(A);

 for j = 1:n
 t = A(:, j);
 for nzs k in order in t(:j-1)
 t = t-t(k)*L(:,k);
 end

 [L(:,j), U(:,j)] = [t(1:j-1),t(j:n)];
 L(:,j) = L(:,j)/v;
 end

end

Data Structures

Sparse L,U,P;
SPA t;

Aspect Weaver

Void lu(Sparse Matrix &A, Sparse Matrix &L, Sparse Matrix &U, Permutation &P) {
 int n = A.size(); L.set.size(n,n); U.set_size(n,n);
 P.initialize(n);
 SPA t;
 for (j=1; j<=n; j++) {
 Sparse Vector c = A.column(j, P);
 load(t, NoRange, NoHeap, c, NoRange);
 Enumerator e(t, P , Range(1, j-1));
 for (k=e.get_top(); k!=0; k=e.get_top())
 dpaxpy(t ,P,NoRange,Heap,A.column(k,P),-t.get_value(k ,P,NoRange));
 int piv; Value v;
 findMax(t,P,Range(j,n),piv,v);
 P.swap(j,piv);
 split(t,P,NoRange,L.column(j,P),NoRange ,U.column(j,P),NoRange ,j);
 L.column(j,P).divide(P,NoRange ,v);
 }
 L.permute(P);
 U.permute(P);
}

Fi gure 2ÑT hree dif fere nt a spec t de scri ptio n pr ogra ms a nd t heir res ulta nt w eavi ng i n AM L.

All of this would only be a nice story if it wasnÕt for the quality of the output code. It is just
as fast as the corresponding tangled code from the standard Fortran library, and is 100 times
faster than running the code for the basic algorithm on the newest commercially-available com-
piled MatLab system.

This example, again shows the power of the aspectual decomposition idea. This system is
easy to program in, maintain, reason about, and is remarkably efficient. The numerical analyst
we developed it for says it is Òas easy to think about as Matlab code, and as fast as well-tuned
Fortran code.Ó As a specific example, he says Ò[when working in the tangled way] I always
used to make mistakes about where to put in the pivot permutations, but now I donÕt.Ó

This power stems from the fact that each of the important aspects of concern to the pro-
grammer is being addressed separately, and in a first class way. This contrasts with both the tra-
ditional tangled approach, where all aspects of concern are addressed by the programmer, but in
a tangled and confused way, and with the traditional high-level approach (i.e. Matlab), where
only the algorithm aspect gets addressed by the programmer, and the compiler is left to divine
the other aspects.

4 . S E PA R AT I O N W I T H C O O R D I N AT I O N

These examples serve to clarify an earlier point about AOPÑAspect Weavers donÕt sepa-
rately compile the different ADPs and then have them call each other across procedure call in-
terfaces. Remember that the goal of AOP is to make it possible to separately express different
cross-cutting aspects of a systemÕs behavior. This is why the relation between the input ADPs
and the output of the weaving looks the way it does in Figure 2.

This means that the ADLs must be designed so that the different ADPs are not completely
separate, but are instead separate but coordinated perspectives on the total computation. This
section discusses issues that flow from this requirment, which we see as the most fundamental
technical issues in developing the AOP paradigm.

Looking carefully at the sparse matrix example, we see that the basic algorithm aspect sees
the computation much as an ordinary program doesÑan operation, like t=A[:,j], in this as-
pect will be done once each time control passes through it. The declarations of the data struc-
ture view, on the other hand, are associated with a data objectÑa declaration, like Sparse A,
specifies that the matrix named A should be represented with a sparse data structure, wherever it
might go, even if it is passed to other procedures. A single declaration in the data structure view
can thus have an effect on multiple executions specified throughout the basic algorithm aspect.

This is similar to the way in which the communication aspect of the distributed queue appli-
cation, says ÒdonÕt copy or move objects that queues see.Ó This applies to all the operations
that operate on queues and objects, for all queues.

In each case, the different aspects coordinate with each other and with the overall computa-
tion differently. A key focus of our work is to master this range of ways that aspects can inter-
relate, both in designing ADLs and in building Aspect Weavers. To approach this problem, we
are working with two main themes: exploiting the concept of base/meta separation, which pro-
vides an initial intuitive approach for designing these coordinations; and developing a solid con-

ceptual analysis of the correspondence relations to provide a more long-term and formalizable
foundation.

4 . 1 E XT EN DI NG B AS E/ ME TA S EP AR AT IO N

A simple approach to achieving separation and coordination comes from extending the
ideas of base/meta separation found in metaobject protocols and reflection. The original idea
behind base/meta separation is that a system can have two interfaces: one which provides the ba-
sic functionality, and one which can be used to ask about, monitor or adjust the functionality
available through the first interface.

Base/meta separation can be extended into AOP by designing a base aspect to capture Òwhat
to doÓ and other aspects to capture various aspects of Òhow to do it.Ó By having all the auxil-
iary aspects relate to the base one, their coordination is simplified, and it becomes easier to de-
sign an Aspect Weaver that can put them all together.

In the distributed computing example, we used C++ as the base aspect description language.
The other aspects address how the base aspect is implemented. In the sparse matrix example, we
used a simple variant of the Matlab language as the base aspect description language. The nu-
merical stability aspect (red) controlled the iteration order through arrays, while the data struc-
tures aspect (green) controlled the representation of the arrays and of iterations over them.

4 . 2 A NA LY SI S OF C OR RE SP ON DE NC E

While the base/meta separation principle has proven to be quite powerful, it has three weak-
nesses that may make it insufficient as a complete foundation for AOP: (i) it is informal, (ii) it
makes one aspect primary over the others, and (iii) it relates the aspects to each other, rather than
relating them to the complete computation.

Our goal is to develop an explicit analysis of the correspondence relations in AOP, that gives
us a a clear and formalizable understanding of the ways in which different aspects coordinate
with each other and with the final computation. We believe that it will be possible to formalize
this analysis into a Òcorrespondence calculusÓ that could play a role similar to that which the
lambda calculus has played in analyzing and building systems based on procedure abstractions.

We have developed some initial ideas for this analysis, based on the observation that the
structure of connections between the aspects and the executable code is largely one of fan-outs
and fan-ins, and that it is the interaction between these that leads to the way in which different
aspects cross-cut each other. As an illustration of these ideas, consider the variable A in the out-
put code of the fluid dynamics example, and the matrix that it indicates.

First consider the situa-
tion from the point of view
of the basic algorithm aspect,
as shown to the right. There
are several occurrences of A,
fanning out in the spatial
dimension. Each of these
will be encountered several
times during execution, fan-
ning out in the temporal di-
mension. But, seen from this
aspect, A refers to the same
matrix throughout a par-
ticular invocation of lu.
The gray bars at the bottom,
reflect this, they show the
fan-in onto individual matri-
ces.

Now consider the situa-
tion from the point of view
of the numerical stability
aspect. The first two levels
of fan-out are the same.
But seen from this aspect,
the first occurrence of A, in
the procedure argument,
refers to a non-permuted
view of the matrix, while all
the other occurrences refer
to a permuted view. This is
reflected by the wide gray
bar, indicating a single re-
gion of fan in.

What these pictures help capture is the way in which the language for a particular aspect fans
out from what is syntactically local to that aspect (i.e. a data structure declaration) to a multitude
of execution activities (i.e. every activity involving that data structure), which fan back in to co-
herent concepts of the aspect (i.e. the data structure, itself).

These pictures also give us a clear view of the way in which the two ADPs provide a precise
handle on cross cutting issues. The execution activities form a common ground plane across
which the aspectual decompositions cross cut, where all the pictures can be superimposed. In the
illustration, one view identifies ``lines along spaceÕÕ and the other Òlines along time.Ó

5 . N O S M A RT C O M P I L E R S

A long-standing obstacle to making high-level programming languages work in perform-
ance critical domains is the difficulty of developing sufficiently efficient compilers. This prob-
lem has been an obstacle to both general-purpose and domain specific high-level languages.

A

A.column(...)

Matrix &A

Time

Space 3 0
0 1

A.column(...)

0 2
2 11 0

1 1

A

A.column(...)

Matrix &A

not
permuted

Time

Space

permuted

A.column(...)

Our approach to this problem is similar in spirit to the very idea of domain-specific lan-
guages. Whenever we are confronted with a hard implementation strategy problem for a BFL
we put that problem under the control of a special ADL. This solution is similar in spirit to the
idea of domain-specific languages itself.

Consider for example, the distributed computing example above. The traditional approach
to simplifying application programs is to design a distributed object language that hides distri-
bution issues (aka makes them transparent). But this is extremely difficult to do, since deciding
how much of the objects to copy for remote message sends requires knowing a lot about the
applicationÕs behavior. The traditional approach to making application programs efficient is
for the programmer to circumvent the object model, and tangle the communication strategy in
with the basic functionality.

 We do neither of these. We donÕt try to virtualize hard implementation strategy problems,
but we also donÕt let them get tangled in with the applicationÕs basic functionality. By separat-
ing the control over problems like communication strategy, we let the programmer use their
knowledge of the application to control them, while ensuring that the code that does so will be
clear and easy to maintain.

Asking the programmer to explicitly address implementation aspects may sounds like a step
backwards, but our experience with open implementation suggests that it is in fact an important
step forwards [2, 3, 4, 5, 6]. Programmers can detail with implementation strategy quite well.
What they canÕt deal with as well are implementation details. So the key point is to ensure that
the ADLs are well enough designed that programmers are focusing on implementation strategy,
not implementation details. The control over implementation strategy must be at an appropri-
ately abstract level, through an appropriate aspectual view, with appropriate locality.

6 . R E L AT E D W O R K

A great deal of work, new and old, appears to be based on intuitions similar to those under-
lying Aspect-Oriented Programming. That is, the work decomposes systems along lines that feel
more aspect-based than module-based. These examples, facilitate the study the issues of corre-
spondence among aspects which are so important to developing the general paradigm.

The literature associated with some of these examples makes an explicit point of using a dif-
ferent kind of decomposition; for others it does not. But all of them have important similarities
to AOP in that they are based on similar intuitions. They differ from AOP in the degree to
which they (i) focus on the GENERAL paradigm, and (ii) support AUTOMATIC weaving.

6 . 1 M ET HO DO LO GI ES

Many design disciplines are based on well-established aspectual decompositions. For exam-
ple, mechanical engineers use static, dynamic and thermal models of a system as part of design-
ing it. Electrical engineers use various diagrams to reason about their circuits: circuit diagrams,
waveform diagrams (timing diagrams), phase diagrams. Each of these models help isolate cer-
tain aspects of the circuit. [7]. All of these are aspect-based decompositions, but in these cases
the weaving together aspects is mostly done manually, although certain CAD tools do some of it
automatically.

Software engineers also do this, although often only informally. It is common to hear pro-
grammers say something like: ÒThe real issues in this system are X, Y and Z. This line of code
is written this way because I need to be sure that BOTH X and Y are satisfied.Ó Some software
development tools explicitly support certain aspectual decompositions. For example tools for

OMT methods let programmers draw different pictures of how objects should work. The notion
of traceability in some design methodologies is in large part intended to help with the complex-
ity that arises when manually weaving cross-cutting aspects of a systemÕs behavior into tangled
executable code.

6 . 2 A NA LY TI C TO OL S

Work on Program Slicing is similar to AOP in that it recognizes the way that a given seg-
ment of program text may actually be a cross-cutting tangle of different issues. Program slicing
makes it possible to tease out some of these different aspects of a programÕs functionality.
Work on program slicing differs from AOP in two important ways: (i) it works with programs
written entirely in the same language, and (ii) it is analytic rather than constructive in nature.
One result of this is that the slices program slicing tools make available tend to be defined in
terms of the common language, i.e. accesses to a given variable, callers of a specific function,
dependents of a given module etc. We are interested in using program slicing techniques as a
basis for Aspect-Oriented analysis and re-engineering tools.

6 . 3 C ON ST RU CT IV E TO OL S

There are other systems, however, that are more like our concept of AOP in that the aspec-
tual decomposition is constructive rather than analytical. Much of the work in the area of re-
flection can be viewed in this way. In this work, there is partial aspectual decomposition between
ÒbaseÓ code, which looks like a program written in a traditional high-level language and
ÒmetaÓ code, which affects how the base code is implemented. Whereas the subject matter of
the base code has to do with the specific domain of the program (i.e. paychecks, scanned docu-
ment images), the subject matter of the meta-code has to do with the semantics and implementa-
tion of the language the base code is written in. The effect of the meta-code inherently cross-
cuts the base-code¾the two kinds of code deal with a different cut on the overall systemÕs be-
havior. This is what give reflective techniques their appeal. For example, meta-code can have
easy access to every message send, or every message send across machine boundaries. The base
code on the other hand only has easy access to particular message sends (actually only to the
initiation and receipt of the message, not its actual transmission). Different researchers have ex-
plored a wide variety of different metaobject protocol architectures to provide different relation-
ships between the base- and meta-levels [8,9,10].

Some object-oriented analysis and design methodologies have automated support tools that
can be seen as a specific cases of aspect weaving (see [11], for example). They deal with aspects
of object-oriented program structure, such as: class hierarchy, object interaction, timing of mes-
sage interaction and program modularization. The tools automatically generate programs from
aspectually decomposed specifications. They donÕt however, support a general notion of as-
pectual decomposition.

Adaptive Programming (AP) is another example of a specific instance of AOP [12, 13]. AP
is focused on separation between algorithm and data structure, but it allows greater separation
than traditional ADT techniques. The operations are written in a highly data-structure neutral
way, by having them access the object structure (class graph) using a kind of relational query
language. This allows the same operation to be reused with different concrete data-structures.
There is an explicit weavin step, in which the operations are tailored to a specific set of data
structures, making sure there is no remaining runtime overhead from the strong separation.

Composition Filters (CF) [17] can also be seen as a specific case of AOP. In CF, the filters
provide separate control over typical cross-cutting aspects such as communication, synchroniza-
tion etc. Work on composition filters (like work on adaptive programming) has focused on the

OO domain. The filters work by intercepting messages that an object receives and Òfil terÓ
these messages to allow for compositionally.

The Synthetix[18] project, led by Pu and others, can also be seen as an example of AOP.
Synthetix improves operating system performance by specializing OS code based on application
invariants that only become known at run-time. The effect of individual invariants very much
cross-cut the specialized code. Knowing, for example, that a file is being opened read-only cuts
through the entire file system structure. The weaving in Synthetix makes extensive use of partial
evaluation technology, much like some of our weavers do.

In hardware design, various projects are attempting to simplify the design process using
some form of aspectual decomposition. The Rapid Prototyping of Application Specific Signal
Processors (RASSP) program includes many such projects [14]. One of the approaches that the
program aims to promote is the separation of communication, computation and control [15] in
digital signal processing systems. The Ptolemy project[16], has tried a similar aspectual decom-
position for VHDL, where they separate the specification of functional and behavioral is-
sues[16]. Another such project, Graphical Rapid Prototyping Environment (GRAPE II) for
rapid prototyping of signal processing and communications systems, uses an aspectual decom-
position where the aspects are functionality, partitioning, scheduling and network topology.
GRAPE provides an environment in which to combine these aspects into a running DSP pro-
gram.

7 . S U M M A RY A N D F U T U R E D I R E C T I O N S

We believe that the concept of Aspect-Oriented Programming can be of significant value to
programming language research and development projects. Coming to understand the reasons
why some aspects of a systemÕs behavior must cross-cut each other and the executable code has
been a significant help to our efforts to develop general-purpose and domain-specific pro-
gramming systems. Using the concept of AOP, our systems end up having several different
domain-specific languages, one for each of the different aspects of concern that must be pro-
grammed.

We expect a number of exciting developments in AOP over the next few years. Some of the
ones we are most interested in discussing with the POPL community include:

n Commercial application of AOP technology. What are the commercial advan-
tages of using AOP technology? Can these advantages be quantified?

n Conceptual foundations for understanding cross-cutting and weaving. What can
be said in general about how and why different aspects of a systemÕs behavior
cross-cut each other with respect to the executable code. What can be said in
general about how weavers work? Can we develop a clear understanding of the
different Ònatural shapesÓ that different issues have?

n Development of AOP toolkit technology. Can we develop reusable components
to support building ADLs and weavers.

8 . R E F E R E N C E S

1. Berlin, A., et al., Distributed Information Systems for MEMS, ISAT Study, . 1995, ISAT.

2. Kiczales, G. Towards a New Model of Abstraction in Software Engineering. in Proceedings
of the International Workshop on New Models for Software Architecture '92; Reflection and
Meta-Level Architecture. 1992. Tokyo, Japan.

3. Kiczales, G., Lamping, J., Lopes, C., Mendhekar, A, Murphy, G, Open Implementation De-
sign Guidelines in Proceedings of the Internal Conference on Software Engineering 1997.
Boston, Massachusetts. (To appear.)

4. Kiczales, G., Why are Black Boxes so Hard to Reuse? 1994: Invited Talk, OOPSLA'94.

5. Kiczales, G., Why Black Boxes are so Hard to Reuse, 1995.

6. Kiczales, G., Beyond the Black Box: Open Implementation. IEEE Software, 1996. 13(1): p.
8--11.

7. Fisler, K., Exploiting the Potential of Diagrams in Guiding Hardware Reasoning, in Logical
Reasoning with Diagrams, G. Allwein and J. Barwise, Editors. 1996, Oxford University
Press.

8. Yokote, Y. The Apertos Reflective Operating System: The Concept and its Implementation. in
Proceedings of the Conference on Object-Oriented Programming: Systems, Languages, and
Applications. 1992.

9. Okamura, H., Y. Ishikawa, and M. Tokoro, AL-1/D: A Distributed Programming System with
Multi-Model Reflection Framework, in Proceedings of the International Workshop on New
Models for Software Architecture '92; Reflection and Meta-Level Architecture. 1992. p. 36-
47.

10. Okamura, H. and Y. Ishikawa, Object Location Control Using Meta-level Programming, in
Proceedings of European Conference on Object-Oriented Programming (ECOOP), T.A.
Pareschi, Editor. 1994, Springer-Verlag. p. 299-319.

11. Booch, G., Object Oriented Design with Applications. 1994: Benjamin/Cummings.

12. Lopes, C.V. AP/S++: A Case Study of a MOP for Purposes of Software Evolution. in Pro-
ceedings of Reflection 96. 1996. San Francisco.

13. Lieberherr, K.J., I. Silva-Lepe, and C. Xaio, Adaptive Object-Oriented Programming Using
Graph-Based Customization. Communications of the ACM, 1994. 37(5): p. 94-101.

14. Agency, A.R.P., Rapid Prototyping of Application, Specific Signal Processing (RASSP). .

15. Harr, R.E., Rapid Prototyping of Application, Specific Signal Processing (RASSP) Overview
Presentation, http://esto.sysplan.com/ESTO/RASSP/Presentation/index.html.

16. Buck, J.T., et al., Ptolemy: A Framework for Simulating and Prototyping Heterogeneous
Systems. Int. Journal of Computer Simulation, 1994: p. 155-182.

17. Aksit, M., et al. Abstracting Object Interactions Using Composition Filters. in European
Conference on Object-Oriented Programming, Workshop on Object-Based Distributed Pro-
gramming. 1993: Springer Verlag.

18. Pu, C., et al. Optimistic Incremental Specialization: Streamlining a Commercial Operating
System. in The 15th ACM Symposium on Operating Systems Principles. 1995. Copper
Mountain Resort, Colorado: ACM Press.

A P P E N D I X : W O V E N C O D E F O R D I S T R I B U T E D S Y S T E M S E X A M P L E

class QueueImpl {
 const int max = 100;
 int head;
public:
 void _ insert_impl(Element*);
 Element* _ remove_impl();
 void _ insert_pack_in(pack_buf*,
Element*);
 void _ remove_pack_out(pack_buf*,
Element*);
 virtual void insert (Element *) { };
 virtual Element *remove() { };
};

class Queue : QueueImpl {
 QueueDup * mydup;
public:
 Queue();
 void insert(Element *);
 Element *remove();
};

class QueueDup : QueueImpl {
public:
 QueueDup ();
 void insert(Element*);
 Element* remove();
 };

Queue::Queue() {
 head = 0;
 mydup = remote_fork (Ò backuphostÓ,
ÒQueueProgÓ);
};

void Queue::insert(Element *e) {
 pthread_mutex_lock(&x);
 while (head == max)
 pthread_cond_wait(&_ insert_wait,
&x);
 this->_insert_impl(e);
 mydup->insert(e);
 pthread_cond_signal(&_ remove_wait);
 pthread_mutex_unlock(&x);
}

Element * Queue::remove () {
 Element* retval;
 pthread_mutex_lock (&x);
 while (head == 0)
 pthread_cond_wait(& remove_wait,
&x);
 retval = this->_remove_impl();
 mydup->remove ();
 pthread_cond_signal(&_ insert_wait);
 pthread_mutex_unlock(&x);
 return retval;
}

void QueueImpl::_insert_impl(Element*
e) {
 if (head < max) elts[head++] = e;
}
Element* Queue::_remove_impl() {
 if (head > 0) return elts[headÑ];
 return nil;
}
void
QueueImpl::_insert_pack_in(pack_buf
*buf,

Element *e) {
marshall(buf, e, Ò refÓ);
}

void QueueImpl::_remove_pack_out
(pack_buf * buf,

Element *e) {
marshall(buf, e, Ò refÓ);
}

void QueueDup::insert(Element *e) {
 this->_insert_impl(e);
}

Element * QueueDup::remove() {
 return this->_remove_impl();
}

// Client code
Queue * aQueue = AnEmptyQ();
void f() {
 Element e;
 for (;;) {
 aQueue->insert (e);
 aQueue->remove ();
 }
}
void g() {
 for (;;) {
 Element *e = aQueue->remove();
 aQueue->insert (e);
 }
}
int main () {
 new_activity (f);
 new_activity (g);
}

