HeCSE Workshop on Emerging Technologies in Distributed Systems
Lammi, January 12-13, 1998

Architectures for Distributed Systems:
Open Distributed Processing Reference Model

Lea Kutvonen

Department of Computer Science, University of Helsinki

Abstract

In this paper, we study the contents and role of a standardised framework for
open distributed processing (RM-ODP). The reference model introduces some
communication related concepts that are fundamental for the development of
modern, global information services. Open platforms usually miss some of these
concepts and thus induce difficulties for service development.

Keywords: open system frameworks, ODP reference model, object models

1 Introduction

Open systems are commonly understood as “a comprehensive and consistent set of
international information technology standards and functional standards that specity
interfaces, services and supporting formats to accomplish interoperability and portab-
ility of applications, data and people” [4]. In respect to a hierarchical machine model
of computer systems, this requirement is normally considered to apply to the topmost
abstraction layer. The solutions supporting such open interfaces are usually hidden,
in order to support application software portability and distribution transparency of
communication. Depending on the system purpose, the abstraction level of the open
interface varies. Examples of open interfaces include

e parallel programming environment interfaces that tolerate different processor ar-
chitectures or memory organisations,

e remote procedure call interfaces that hide transformations of data representation
formats locally used in communicating computers,

e middleware system interfaces that hide differences of operating system services,
and

o federated database management system interfaces that hide the differences of
different information models in the member databases.



Currently, openness is usually expected from the middleware layer services. Systems
like DCE [23], CORBA [22], and TINA DPE of TINA [3] are considered to fulfil this
requirement. Middleware supports a consistent platform interface on which distrib-
uted applications can be easily implemented. However, interoperation between various
platform implementations create problems, because of the variance in their behaviour.

When we try to create world-wide application services, we need to create interop-
eration facilities between sovereign systems. A sovereign system is an independently
administered computing system, that includes autonomously selected services, inter-
faces, and uses autonomously selected languages, protocols, and information repres-
entation techniques. Interoperation between such sovereign systems can be established
only via negotiations about commonly available facilities, because inherited similarity
of technology or behaviour can not be expected.

Therefore, open systems must in addition of using published interfaces, also be able
to exchange information about interfaces and the service behaviour available through
those interfaces. Such facilities are defined in the family of standard for open distributed
processing, the ODP reference model.

The ODP reference model (RM-ODP) [9, 16, 19, 24, 1] is a joint standardisation
effort of ISO and ITU. Tt was started with a basic reference model standardisation
officially already in 1989, and developed in interaction with other distributed system
models. Thus, ODP reference model has had impact on industry trends already during
its development.

The ODP standardisation aims for development of standards that allow distributed
information processing systems to be exploited in a heterogeneous environment and
under multiple organisational domains [10]. This goal is an enhancement to the open-
ness requirement above. In addition to the use of public and standardised middleware
services, the systems must be able to support interoperation in spite the independ-
ent evolution and independent technology decisions made by the sovereign member
systems.

The ODP standards support systems to be built so that they

e provide software portability and interoperability;

e support integration of various systems with different architectures and resources
without costly ad-hoc solutions;

e accommodate system evolution and run-time changes;

o federate across autonomously administered or technically differing domains;
e incorporate quality of service aspects to failure concepts;

¢ include security service; and

e offer selectable distribution transparency services for communication [10].

These goals are acquired by the ODP reference model through three already stand-
ardised aspects of the basic reference model (which that was completed in 1996 [12, 11]):



e a division of an ODP system specification into viewpoints, in order to simplify
the description of complex systems [11];

e a set of general concepts for expressing the viewpoint specifications [12]; and

e a model for an infrastructure supporting, through the provision of distribution
transparencies, the general concepts that it offers for specification purposes [11].

The next step in ODP standardisation work is to specify essential middleware ser-
vices as component standards. These services include the already completed trading
service [13, 17| and naming framework [5]. Components that are currently under work
include type repository function [14], and interface binding framework [6] together with
the supporting protocols [7]. At the same time, an open system management architec-
ture (ODMA) [8] is being developed (although the current concepts are still more OSI
related than ODP related). Further development is planned on the viewpoint languages
specified by the basic reference model. First of the languages, enterprise language, is
already being drafted.

The ODP reference model is a general standard that supports more specific frame-
works at several application domains. For instance, TINA architecture can be seen as
a telecommunication specific refinement. Consortia like OMG (founded in 1989) and
TINA-C (founded in 1992) have formed liaisons with the ISO and ITU groups working
on the standards, and have already adopted the trading functionality, and some of the
vocabulary. The abstract infrastructure model serves as a long-term prediction of the
joint software market in future.

The rest of the paper is organised as follows. Chapters 2, 3, and 4 study the
basic concepts of the ODP framework. The concepts of transparency are introduced
in Chapter 5, and the viewpoint languages in Chapter 6. Some of the open platform
functions are sketched in Chapter 7. As a conclusion, we summarise the contributions
of the ODP reference model for distributed systems.

2 ODP object model

The ODP object model differs from object models represented for object-oriented
programming languages, object-oriented design methodologies, and distributed object
management systems. The major differences include

o the flexible use of the object concepts for a variety of abstractions, ranging from
implementation details to abstract business model considerations,
e the use of multiple interfaces,

e separation of client and server sides of the interface through which the objects
comimunicate,

e variety of mechanisms for introducing objects to a system,

e concepts related to the type safety of communication through an interfaces, and



e interactions between objects are not constrained — they can be asynchronous,
synchronous or isochronous, and atomic or non-atomic.

ODP objects encapsulate details of their implementation and provide an abstract
view of their behaviour. The granularity of objects is not fixed by the reference model.
The object concept can as well be used for modelling a whole information system
in enterprise viewpoint specification, as for modelling a small protocol object in an
implementation specification.

The object behaviour is specified as a set of interfaces. An interface represents
objects role as a provider or exploiter of a service. As an object can support multiple
interfaces, it can also participate in the provision of multiple services. A typical object
supports at least a mission specific interface and a management interface.

An interface at which two or more objects meet for communication is not specified
as an indivisible, global abstraction. Instead, both a client requesting a service and
a server providing such a service, can have slightly different technical views of the
interface. The ODP communication model concepts declare how these views can be
mapped together in the binding process that creates a communication channel between
the client and server interfaces.

The ODP model allows objects to appear in the system in two ways, by instantiation
or by introduction. Instantiation is the often used model, where a template exists
with sufficient information for the creation of an object instance. Introduction allows
manipulation of objects without knowledge of their instantiation methods — only the
object type is interesting. The ODP model defines type as a predicate that classifies
objects based on their properties. A template is defined as a type detailed enough
for instantiation. The instantiation process is naturally dependent on the platform
facilities, and therefore, whether a type is also a template depends on the platform.

Object interfaces are bound based on their type, the object template is not con-
sidered. Because of the separation of client and server interfaces, also the sub-typing
and substitutability concepts for ODP objects differs from other object models. The
type system of objects focus on the shared features required from interfaces that need
to be bound together, instead of focusing on implementation inheritance hierarchies.
The essence of sub-typing rules for ODP objects is contravariance [11, 2]: the offered
information flows must include at least the information expected by the receiver. In
most object models, sub-typing is based on covariance: the replacing object can both
expect to receive and offer more information that the replaced object expects and offers.

3 ODP structuring concepts

The ODP reference model introduces the structuring concepts of community, domain,
and federation. These concepts can be used for organising objects for producing and
exploiting services. The structuring concepts can be considered to be either static,
design time concepts, or dynamic, operation time concepts.



A community is a configuration of objects with a common objective. For example,
a pair of protocol objects form a community where the shared objective is to transport
information from a computer to another.

A <X> federation is community of <X> domains. A <X> domain is a set of
objects, each of which is related by a characterising relationship <X> to a controlling
object. For example, a technology domain is the set of objects conforming to a technical
standard, and a trading domain is the set of objects known to a trader object. An
example of a federation is a trading federation, where two trader objects work together
to serve the trading domains controlled by either trader.

4 ODP approach to conformance

The ODP reference model aims for specifications that allow software portability and
interoperability. In order to guarantee portability, the implemented systems should
conform to a strict standard specification. On other hand, the interoperability require-
ments force the specifications to allow heterogeneity of the system even at very high
abstraction level. In order to accommodate both of these requirements, the ODP ref-
erence model defines four classes of reference points — points where the conformance
to the standard specification need and is allowed to be tested. Other behaviour than
that visible at these reference points is not considered.
The four classes of reference points are:

e A programmatic reference point specifies the limits for an object behaviour. Ob-
ject implementations that pass the conformance test at this reference point can
be replaced by each other.

e At a perceptual reference point there is some interaction between the system and
the physical world.

e At an interworking reference point sets conformance requirements for communic-
ation between two or more systems in terms of the exchange of information.

o Aninterchange reference point defines conformance requirements for the manipu-
lation of information at a physical medium. The manipulation rules are described
in terms of access methods and formats. The goal 1s to ensure that physical stor-
ages can be transferred, directly or indirectly, to another system.

These structuring concepts are applied for the specification of a functionality of a
system, not a whole system. Specifications of several interrelated functionalities can be
allocated to same implementation objects. The development of ODP component stand-
ards give a good example of this structuring rule: trading function and type repository
function are specified in different standards, although the same implementation objects
can well support interfaces for both functions.



5 ODP transparent interaction model

The object can offer services through several interfaces that describe the actions in
which the object can be involved. An interface is either an operation interface or a
stream interface. An operational interface involves a set of operations, interrogations
and announcements. A stream interface describes a set of continuous data flows, like
audio or video flows. The activity associated to the stream interface is supported
by a continuous data transfer protocol. Interrogations are allowed to have multiple
terminations. This allows legal terminations and exceptions to be handled in a similar
way. A termination may be exceptional but still the results of the operation are usable.
Moreover, in a heterogeneous environment, the interfaces may be constructed to accept
multiple correct terminations with equal status.

The binding and communication models aim for high-level communication prim-
itives for programmers. For the management of heterogeneity and distribution some
new concepts need to be available for the programmer, together with automatic tools
for concept manipulation. A central concept is that of distribution transparency: pro-
grammers should be able to select a set of distribution transparency services for each
communication primitive. The transparency services are implemented by the platform.

Distribution transparency is defined by RM-ODP [12] as follows: “The property of
hiding from a particular user the potential behaviour of some parts of a distributed
system.”

Distribution transparency is selective in ODP systems [11]. The RM-ODP describes
the following distribution transparencies:

e access transparency — masks differences in data representation and invocation
mechanisms to enable interworking between objects;

e failure transparency — masks, from an object, the failure and possible recovery of
other objects or itself, to enable fault tolerance;

e location transparency — masks the use of information about location in space
when identifying and binding to interfaces;

e migration transparency — masks, from an object, the ability of a system to change
the location of that object;

e persistence transparency — masks, from an object, the deactivation and reactiv-
ation of other objects (or itself);

e relocation transparency — masks relocation of an interface from other interfaces
bound to it;

e replication transparency — masks the use of a group mutually behaviourally com-
patible objects to support an interface;

e transaction transparency — masks coordination of activities among a configuration
of objects, to achieve consistency.



homogenized
transactions service

homogenized

service

transaction oriented migrative service persistent service
service

2%%/

basic ——
service [M [pers'slency t. ] [replication t. ]

- relocation t.

Figure 1: Hierarchy model of transparency concepts.

fault tolerant service

The ODP reference model does not yet define how these transparencies should
be implemented. However, the reference model describes a hierarchy of transparency
concepts so that a group of transparencies can be implemented together. The users can
not select transparent services individually, but groups of transparencies. The hierarchy
is illustrated in Figure 1. The implementation techniques of the transparency concepts
include channel stubs, indirectness of references, and binding based of types instead of
interface identifiers.

The distribution transparency aspects listed above are all selective for program-
mers. For instance, an interrogation can be defined to require migration transparent
communication service from the platform. Therefore, the wide repertuary of selective
transparencies separate ODP operations from the RPC style communication primitives.

In addition to the selective transparencies, the ODP reference model induces an
additional transparency service, federation transparency, that must be embedded to
the platform services. Federation transparency hides the problems caused by sover-
eign administration of the systems that support the communicating partners. Such
problems include independent evolution of services, interface types, and information
representation formats and languages. This capability differentiates ODP systems from
the rest of open platforms [18].

6 Viewpoints

The ODP viewpoints allow object systems to be specified in an organised, guided man-
ner. However, the viewpoint rules do not instruct on the level of detail or completeness
of the specifications. Those aspects must arise from the software engineering process
in which the viewpoint specifications are involved in. The relationship between the
viewpoints and the software engineering process phases have been widely discussed
and various interpretations have arisen. Officially, the ODP reference model does not
bind the viewpoints to any specific software engineering process.

The ODP reference model defines five viewpoints — enterprise, information, compu-



tational, engineering and technology viewpoints [10, 11]. The viewpoint specifications
of a system can be regarded as separate projections of a full system description. A
systemn must be specified from each of the viewpoints. Each viewpoint specification is
a consistent and complete specification on its own, but it only considers those aspects
of the system that are valid on its point of view. So the viewpoint specifications do not
overlap totally, but they may show different level of detail in the areas where they need
to discuss same or related features. The engineering viewpoint specifications are tightly
related with the ODP infrastructure model that is specified as part of the engineering
viewpoint specification rules.

The enterprise viewpoint description of a system specifies the activities and the
responsibilities of the system. Activity means any information exchange sequence and
it 1s a high-level abstraction of the operations within the system. The system itself
can have any granularity that is interesting. The system can be as wide as a global
information network with all applications or as small as a memory cache in a processor.
The enterprise specification identifies the system, its environment, and the required
communication of the system and its environment. The specification answers to the
questions “What is the purpose of the system?” and “What services the system is
responsible to provide?” and “Who needs the services?”.

The information viewpoint description of a system identifies logical information en-
tities, their logical contents, their repositories and the objects that are responsible of
the information flow in the systems. Questions for information viewpoint specification
are “What information is needed to support the system’s services?”, “Where does the
information come from and go to?”, and “Is it necessary to store the information some-
where?”. The information viewpoint specifications should not describe data structures,
but only the semantics of the information. Also, the technique of storing information
is irrelevant in this viewpoint (as the logical infrastructure supports storage services).

The computational viewpoint specification captures the behaviour of the system.
Behaviour is an abstraction of how things are done, in contrast to the notion of what
things are characteristic in enterprise viewpoint activities. An activity identified in
enterprise viewpoint may involve several objects to perform a sequence of operations
in computational viewpoint. The computational viewpoint shows the system as a com-
position of logical objects. For each object its interfaces are described. If the interface
involves operations, each operation gets logical parameter descriptions (information
structures, not data structures) — if the interface involves streams, each data flow com-
ponent of a stream gets logical protocol descriptions instead. This is the viewpoint that
usually explicitly shows potential for distribution. Neither the enterprise viewpoint nor
the information viewpoint specifications need to express any distribution concerns. The
computational viewpoint answers to questions like “Which operations are available?”,
and “Who (which logical entity) performs the operation?”.

The engineering viewpoint specification identifies the infrastructure services needed
for the system to operate. The ODP-RM engineering viewpoint defines the set of avail-
able infrastructure services, and all other engineering viewpoint specifications should



show how the specified system utilise these services. The engineering specification
therefore answers the question “By which services are the computational objects sup-
ported?”. The ODP infrastructure model identifies a set of global, distributed basic
services that should be available at each node in the global system. These include
invocation of operations, transfer of continuous data as streams, trading, type repos-
itory functions, etc. These services facilitate selective transparency of communication
between objects.

The technology viewpoint specification shows in a concrete hardware and software
configuration how the system services and other required components are realized. The
specification answers the question “How are the infrastructure services realized?”.

The system specification includes five complete specifications, that all can be ana-
lysed as separate. Each viewpoint reveals a different aspect of the system, and therefore
the full functionality can only be seen by looking at all specifications together. As the
viewpoint specifications are all complete alone, the abstraction levels of objects in
the specifications can differ. Still, the specifier must show how the specifications are
mapped together. The usage of viewpoints helps the specification of large systems by
separating concerns to separate specifications.

The ODP reference model introduces a vocabulary and a set of languages to discuss
(distributed) systems, but it does not prescribe any special techniques to do this. Any
specification language or technique that supports the same concepts can be utilised for
ODP-style specifications. The problem with current formalisms that are close to the
ODP concepts 1s that they do not support the level of dynamicity required in ODP
specifications. However, development of tools and languages supporting the reference
model would be very important and beneficial. When suitable tools are available, an
ODP development technique could be formulated.

7 Engineering platform

The ODP reference model defines an abstract computing platform that comprises of a
set of coordination, management, and repository functions. Each open system should
independently support these functions, and in some restricted cases also allow other
systems make controlled queries on the supported interfaces. The functions are de-
scribed using a set of supporting concepts (nodes, capsules and clusters), that give an
internal engineering view of the middleware software. However, these concepts are only
used for descriptive purposes, to ease discussion, not as technology guidelines. In the
following, we briefly view those functions that are most important for ODP conformant
systems to participate.

Trading

Trading presents a global information repository. The global repository can be updated
by independent information producers throughout the world-wide network, and the



information users can create effective and large information searches. Trading is not a
mapping mechanism like name services. Instead, it resembles more directory services
that allow attribute values to be used as a search criteria.

Trading activities are described through a trading community that represent the
roles of ‘importer’; ‘exporter’ and ‘trader’ [13]. The object in trader role supports
a repository of ‘offers’. Each offer describes properties of an entity. The offers are
produced by objects in exporter roles. When an exporter sends an offer for a trader to
be stored, it is said to ‘export’. When an exporter requests an offer to be deleted, it
is said to ‘withdraw’ an offer. The objects in importer roles make queries to the offer
repository, they ‘import’. The import requests have a basic form that is similar to
database queries: the request specifies criteria for selecting the offers to be included to
the response. The objects that use the traded information need not necessarily be the
importers or exporters themselves. The ‘clients’ and ‘servers’ that use the information
are therefore considered as separate roles. The communication between importers and
clients, or between servers and exporters is not prescribed (but trading mechanism is
recommended).

The ODP trading function is designed to mediate server interface offers. An in-
terface offer contains an abstract service type name, an interface signature, and a set
of attributes. The attributes can describe quality of service aspects or they can de-
scribe the supporting platform features of interest. The trading function specifies only
the mediation mechanism and information structuring rules, not the interpretation of
offers.

Type repository

The type repository services [14] mediate type information that is available at run-
time. Traders use type repositories for checking conformance between object interfaces.
Traders could include the type management facilities themselves, but separation of
these tasks to an independent module provides flexibility of configuration and supports
independent evolution of the type systems.

The type repository supports operations for

e publishing type descriptions,

o checking conformance of two type descriptions,

e retrieving subtypes and super-types,

o translating types, and

e name management operations for types.

Bindings

The engineering model of ODP also defines the obligations of channels between ob-
ject interfaces. Most important contribution is that ODP model supports multi-party

10



communication, in contrast to, for example, OST or OMA models. In addition, the
federation transparency and the selective transparencies must be supported (to the
degree claimed — each system can claim a given conformance level that requires a col-
lection of transparency services). A valuable addition to the communication model is
management of quality of service contracts [6, 15]. This aspects is essential for the
development of modern multi-media applications.

8 Conclusions

The family of ODP standards first defines a consistent and a rigorous set of concepts and
the related terminology for analysing, designing and standardising open and distributed
systems. In addition, a set of viewpoints is specified for isolating features of a system
for analysis in a consistent manner. Second, a modern architecture guideline is specified
for designing computing platforms. This guideline, i.e. framework, identifies a set of
common functions necessary for managing system evolution and cooperation across
autonomous administrative domains. In the family of standards, these functions are
further standardised.

The ODP object model differs considerably from other object models. Instead
of defining a object-based methodology, it only offers a set of concepts. The object
related concepts are more rigorous than for example the object model of OMA or
TINA, or some programming languages. First of all, it introduces concepts for stream
interfaces. Stream facilities are missing for example from OMA model. Moreover, the
ODP object model elaborates the interface concepts: In many object models, interfaces
are characterised as message exchange taking place when an operation is invoked at a
server object. The data formats of the exchanged messages are fixed. In ODP model,
interfaces are defined via communication of information and each participant of the
communication explicates the assumed structure of the interface.

Most object-oriented programming languages interfaces are defined only as a set
of operation signatures, not considering behaviour. Semantical conformance, that is
required for ODP type binding of objects, can be assured only though inheritance
of interfaces. However, in a federated environment, the sovereign systems can not
facilitate such a shared inheritance hierarchy.

The ODP reference model specifies an open platform with middleware services like
trading and type repositories. The OMG/CORBA platform, that has gained a de-
facto standard position as the ODP platform implementation, does not yet include all
required services.OMG has already adopted the ODP trading function for the OMG
object trader service [20]. There is also an existing project on Meta-Object Facility [21],
that is closely related to ODP type repository function. However, as the ODP type
repository is focused on services required by the open platform at run-time, the MOF
service is focused on services for programming tool production and design.

ODP viewpoints are not layers, but projections of the specified system. Viewpoint
languages are meta-languages that indicate the concepts of concern, without an en-

11



forced notation. The selection of an object-based notation often creates confusion in

the specification reader, because the notation is always designed for a contradictory

object model. Therefore, an ODP specific set of languages would be welcome.

Viewpoints are neither considered as part of a specific software engineering process,

although such mapping is often assumed. Specialisations of the ODP framework, like

TINA, use their private conventions for mapping viewpoints to software engineering

processes. None of the mappings should be expected to suite all application areas
equally.

References

1]
2]
[3]

[4]
[5]
[6]

[7]

8]
[9]

[10]

[11]

BLAIR, G., AND STEFANI, J.-B. Open Distributed Processing and Multimedia. Addison-
Wesley Publishing Company, 1997.

CASTAGNA, G. Covariance and contravariance: conflict without cause. ACM Transac-
tions on Programming Languages and Systems 17, 3 (1995), 431 — 447.

CHAPMAN, M., AND MONTESI, S. Querall concepts and principles of TINA. Telecommu-
nications Information Networking Architecture Consoritum (TINA-C), Feb. 1995. Also
http://www.tinac.com/95/overall/public/Overall/overall.ps.

Group, I. O. E. NATO Open system environment: glossary of terms, June 1996.
Version 3. Available at http://www.nacisa.nato.int/NOSE/GLOSS1.HTM.

ISO/IEC. Information Technology — Open Systems Interconnection, Data Management
and Open Distributed Processing — ODP Naming framework, Jan. 1997. DIS14771.

ISO/IEC. Information Technology — Open Systems Interconnection, Data Management
and Open Distributed Processing — ODP Interface References and Binding, July 1997.
FCD14753.

ISO/IEC. Information Technology — Open Systems Interconnection, Data Management
and Open Distributed Processing — Protocol Support for Computational Interactions, July
1997. ISO/IEC/JTC 1/SC 21 TN1313.

ISO/IEC JTCI1. Information Technology — Open Systems Interconnection — Systems
management — Open Distributed Management Architecture, 1996. DIS13244.
ISO/IEC JTCI1. Information Technology — Open Systems Interconnection, Data Man-

agement and Open Distributed Processing. Reference Model of Open Distributed Pro-
cessing., 1996. 1510746.

ISO/TEC JTC1. Information Technology — Open Systems Interconnection, Data Man-
agement and Open Distributed Processing. Reference Model of Open Distributed Pro-
cessing. Part 1: Querview, 1996. [510746-1.

ISO/IEC JTCL1. Information Technology — Open Systems Interconnection, Data Man-
agement and Open Distributed Processing. Reference Model of Open Distributed Pro-
cessing. Part 3: Architecture, 1996. 1510746-3.

12



[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

ISO/IEC JTCI1. Information Technology — Open Systems Interconnection, Data Man-
agement and Open Distributed Processing. Reference Model of Open Distributed Pro-
cessing. Part 2: Foundations, 1996. 1510746-2.

ISO/TEC JTC1. Information Technology — Open Systems Interconnection, Data Man-
agement and Open Distributed Processing. Reference Model of Open Distributed Pro-
cessing. ODP Trading function. Part 1: Specification, 1997. 1513235-1.

ISO/IEC JTCL1. Information Technology — Open Systems Interconnection, Data Man-
agement and Open Distributed Processing. Reference Model of Open Distributed Pro-
cessing. ODP Type repository function, 1997. CD14746.

ISO/IEC JTC1/SC21/WGT. Working document on QoS in ODP, Jan. 1997. N1192.

ITU-T. Information Technology — Open Systems Interconnection, Data Management
and Open Distributed Processing. Reference Model of Open Distributed Processing., 1996.
Recommendation X.902.

ITU-T. Information Technology — Open Systems Interconnection, Data Management
and Open Distributed Processing. Reference Model of Open Distributed Processing. ODP
Trading function. Part 1: Specification, 1996. Recommendation X.950.

KUTVONEN, L. Why CORBA systems cannot federate? In OMA/ODP Workshop
(Cambridge, UK, Nov. 1997).

LININGTON, P. RM-ODP: The architecture. In The 3rd International Conference on
Open Distributed Processing — Experiences with distributed environments (Brisbane, Aus-
tralia, 1995), K. Raymond and L. Armstrong, Eds., Chapmann & Hall, pp. 15-33.

OBJECT MANAGEMENT GROUP. OMG RF'P5 Submission: Trading Object Service, May
1996. Also http://www.omg.org/docs/orbos/96-05-06.ps.

OBIECT MANAGEMENT GROUP. Common Facilities RFP-5: Meta-Object Facility, 1997.
OMG TC Document cf/96-05-02.

OBJECT MANAGEMENT GROUP AND X/OPEN. The Common Object Request Broker:
Architecture and Specification, Nov. 1993. Also http://www.omg.org/docs/1991/91-12-
01.ps.

OPEN SOFTWARE FOUNDATION. OSF DCFE User’s Guide and Reference, 1994.
RAYMOND, K. Reference model of open distributed processing (RM-ODP): Introduction.
In The 3rd International Conference on Open Distributed Processing — Fxperiences with

distributed environments (Brisbane, Australia, 1995), K. Raymond and L. Armstrong,
Eds., Chapmann & Hall, pp. 3—-14.

Biography

The author is the Finnish National Body delegate in ISO/IEC JTC1/SC21 WGT that
progresses ODP standards. At the moment, SC21 is closing and the ODP work is
moved under SC33.

13



