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Abstract

Private data caches have not been as effective in reducing the average memory delay in
multiprocessors as in uniprocessors due to data spreading among the processors, and due to the cache
coherence problem. A wide variety of mechanisms have been proposed for maintaining cache
coherence in large-scale shared memory multiprocessors making it difficult to compare their
performance and implementation implications. To help the computer architect understand some of
the trade-offs involved, this paper surveys current cache coherence mechanisms, and identifies
several issues critical to their design. These design issues include: 1) the coherence detection
strategy, through which possibly incoherent memory accesses are detected either statically at
compile-time, or dynamically at run-time; 2) the coherence enforcement strategy, such as updating
or invalidating, that is used to ensure that stale cache entries are never referenced by a processor; 3)
how the precision of block sharing information can be changed to trade-off the implementation cost
and the performance of the coherence mechanism; and 4) how the cache block size affects the
performance of the memory system. Trace-driven simulations are used to compare the performance
and implementation impacts of these different issues. In addition, hybrid strategies are presented that
can enhance the performance of the multiprocessor memory system by combining several different
coherence mechanisms into a single system.

Categories:
B.3.2 Cache Memories
C.1.2 Multiprocessors — MIMD
C.5.1 Large Computers

Keywords: cache coherence; shared memory; comparison; consistency; memory disambiguation;
block size; directory; tagged directory; version control; adaptive.



1. Introduction

The sequence of memory addresses generated by a program typically exhibit the properties of
temporal and spatial locality [Smith1982]. Temporal locality, or locality in time, means that memory
addresses recently referenced by a program are likely to be referenced again in the near future.
Spatial locality means that the addresses referenced by a program in a short period of time are likely
to span a relatively small portion of the entire address space. For example, programs frequently
operate on large data structures in which the consecutive elements of the structure are located in
sequential memory locations. Thus, the memory addresses generated by a program to access such
structures are likely to be clustered into a small range of the address space. Private data caches,
which are small, fast memories physically located near a processor, exploit these memory referencing
properties to reduce the average time required to access the larger main memory. By temporarily
storing in the cache a copy of a value from the main memory that is being actively referenced by a
program, caches amortize the time required to copy the memory location from the slower main
memory into the faster cache over several references to the same (temporal locality) and nearby
(spatial locality) memory locations.

In a shared memory multiprocessor such as that shown in Figure 1, private data caches have
been shown to be quite effective in reducing the average delay to access the shared memory
[Gottlieb1982, Pfister1985]. Caches have not provided the same level of memory performance
improvement in multiprocessors as in uniprocessors, however, since the data referenced by a program
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Figure 1: Shared memory multiprocessor architecture.
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in a multiprocessor is distributed among the processors. This data spreading reduces the processors’
locality of reference, and thus reduces the effectiveness of the caches. In addition, since multiple
copies of a shared memory location can be resident in several different caches simultaneously, the
private data caches introduce a coherence problem in which it is possible for the different cached
copies to have different values at the same time. It is the responsibility of the cache coherence
mechanism to ensure that whenever a processor reads a memory location, it receives the correct
value.

This paper examines mechanisms for maintaining cache coherence in large-scale shared
memory multiprocessors, such as the New York University Ultracomputer [Gottlieb1982], the
University of Illinois Cedar [Kuck1986], the IBM RP3 [Pfister1985], the Alliant FX-series
[Perron1986], and the Stanford DASH [Lenoski1992]. The remainder of this section defines the
cache coherence problem, and presents an overview of three different types of mechanisms proposed
to solve this problem. In addition, a new framework is presented that identifies the primary factors
affecting the implementation cost and the performance of the cache coherence mechanisms. Section
2 describes a trace-driven simulation methodology that is used to illustrate the performance effects of
these different factors. Since large-scale parallel machines frequently are used for executing
numerical application programs, the simulation comparisons presented in Section 3 use memory
traces produced by a multiprocessor emulator executing several different numerical programs. While
the use of these applications may bias the simulation results, the issues presented are important to any
shared memory multiprocessor system, regardless of the application programs executed by the
system.

1.1. Problem Definition

There are two important, related aspects to the cache coherence problem. The first, which is
briefly discussed in the next subsection, is the model of the memory system presented to the
programmer. The second important aspect, and the primary focus of the remainder of this paper, is
the mechanism used by the system to maintain coherence among the caches and the main memory.

1.1.1. Consistency Models

One definition of a system with coherent caches is a system that guarantees that ‘‘ ... the value
returned on a Load instruction is always the value given by the latest Store instruction with the same
address.’’[Censier1978] The difficulty with this definition is that the meaning of ‘‘latest’’ is not
precisely defined when the loads and stores occur on different processors that are running
asynchronously with respect to each other. Due to delays and buffering in different portions of the
processor-memory interconnection network, and within the processors and memories themselves,
each processor and each memory module can observe a different ordering of events. The consistency
model of a multiprocessor defines the programmer’s view of the time-ordering of events that occur on
different processors. These events include memory read and write operations, and synchronization
operations. As fewer assurances are made by the system to the programmer regarding the order of
events, there is a greater potential to overlap operations from different processors with each other, and
with other operations within the same processor, and thereby increase the system performance.
However, the cost of this greater performance is the added burden on the programmer (or on the
compiler) to ensure that any dependences between operations are not violated.

From the programmer’s view of the memory system, the sequential consistency model defines a
strict ordering of the sequence of execution of memory operations allowed within a processor and
between processors. Specifically, a multiprocessor system is said to be sequentially consistent if "...
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the result of any execution [of the program] is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor appear in this
sequence in the order specified by its program." [Lamport1979] With this consistency model, each
access to the shared memory must complete before the next shared memory access can begin. In
addition, all memory operations are executed in the order defined by the program. This strong
ordering of memory accesses imposes a severe performance penalty by greatly limiting the allowable
overlap between memory operations issued by an individual processor, and by other processors.

The weak-ordering consistency model [Dubois1988] relaxes the guaranteed ordering of events
of the sequential consistency model to allow for greater overlap of memory reads and writes. With
the weak model, only memory accesses to programmer-defined synchronization variables are
guaranteed to occur in a ‘‘sequentially consistent’’ order. All memory references by different
processors to shared data variables between accesses to synchronization variables (i.e. between
synchronization points) can occur in any arbitrary order. Thus, in a system with a weak-ordering
model, the programmer can make no assumptions about the ordering of events between
synchronization points. To prevent nondeterministic operation, each processor must guarantee that
all of its outstanding shared memory accesses are completed before issuing a synchronization
operation. Similarly, the synchronization operation must be completed before any subsequent shared
memory operations can be issued.

In addition to relaxing the ordering constraints on data references, the release consistency
model [Gharachorloo1990] weakens the ordering constraints on synchronization variables by splitting
the synchronization operation into separate acquire and release operations. The acquire operation is
issued by a processor when it wishes to obtain exclusive access to some shared memory object. To
prevent interference with another processor that may currently have exclusive access to the shared
object, the processor must wait for the acquire operation to complete before initiating any references
to the shared memory. The release operation, on the other hand, is used to give up exclusive access
to a shared memory object. To ensure that any changes made by the processor to the shared object
are actually performed in the shared memory before exclusive access is surrendered, the processor
must wait for all of its shared memory accesses to complete before issuing the release operation. This
splitting of the synchronization operation into two separate phases allows this consistency model to
achieve a greater overlap of the memory operations issued by all of the processors than either the
weak or sequentially consistent models. To quantify the effect of this additional overlap, several
studies have examined the performance improvement that can be obtained by using these relaxed
consistency models [Torrellas1990, Gharachorloo1991, Gupta1991, Zucker1992].

1.1.2. Cache Coherence

A related problem to the memory consistency model, and the primary focus of this paper, is the
mechanism used by the system to ensure that processors do not access stale data. In a shared memory
multiprocessor, each of the processors can directly access any location in the common memory
address space using a single read (load) or write (store) instruction. Since each processor has a
private data cache, a copy of the same shared memory location may be present in one or more of the
caches at the same time. When a shared memory location is written by any processor, the fact that
the value in that location has been changed must be propagated to all of the processors with a cached
copy of the location to ensure that none of them use a stale version.

For example, consider a system with three processors, each with a private data cache, in which
the sequence of reads and writes shown in Figure 2(a) are performed. After the first two reads have
been completed at time t2, the caches of both processors P0 and P1 will contain the value ‘‘12’’ for the
variable stored at memory location X , as shown in Figure 2(b). At time t3, processor P0 writes to this
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Time P0 P1 P2

t1 read X
t2 read X
t3 write 16,X
t4 read X read X read X

(a) Sequence of reads and writes.

X: 12

X: 12X: 12

Memory

P2P1P0

(b) Cache contents after the read at time t2.

X: 12X: 16

X: 12

X: 12

Memory

P2P1P0

(c) Cache contents after the reads at time t4.

Figure 2: An example of the cache coherence problem.

memory location changing its value to ‘‘16’’. In a system without a cache coherence mechanism, this
value will be updated only in P0’s cache so that when P1 rereads X at time t4, it will read the old value
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of ‘‘12’’ from its cache, as shown in Figure 2(c). Similarly, processor P2 also will read the old value
since the main memory has not been updated with the latest value written by P0. The cache
coherence mechanism is necessary to ensure that the stale values of X in the other processors’ caches
and in the main memory (i.e. the value ‘‘12’’) will not be propagated to future read operations.

1.1.3. Relationship Between Consistency Models and Coherence

A useful way of viewing the relationship between the memory consistency model and the cache
coherence mechanism is that the coherence mechanism ensures that all of the caches see all of the
writes to a specific block in the same logical order. The consistency model, on the other hand,
defines for the programmer the order of writes to different blocks as perceived by each of the
processors. That is, if the programmer follows the rules of the consistency model for the system
being used, the coherence mechanism forces the value returned by any load operation to be the value
guaranteed by the consistency model.

In a system that guarantees sequential consistency, for instance, the coherence mechanism
ensures that the effects of each write operation to a shared memory location are propagated to all of
the caches before the next write to that same location by any processor can proceed. These accesses
are said to be strongly ordered [Dubois1988]. In a system with a weakly-ordered consistency model,
on the other hand, only accesses to predefined synchronization variables are strongly ordered. The
ordering of accesses to shared data memory locations by different processors can occur in any order.
The processors themselves must then ensure that they do not proceed across a synchronization point
until all of the memory accesses they have issued have been acknowledged by the coherence
mechanism. Thus, this weak-ordering consistency model ensures that the data values in the caches
are coherent only at synchronization points. Examples of the relationship between different
consistency models and different coherence mechanisms are presented in the next subsection.

1.2. Overview of Cache Coherence Mechanisms

A variety of mechanisms have been proposed for solving the cache coherence problem. The
optimal solution for a given multiprocessor system depends on several factors, such as the size of the
system (i.e. the number of processors), the anticipated usage of the system, and the desired system
cost. The following subsections present an overview of the operation of the three main types of
coherence mechanisms.

1.2.1. Snooping Coherence

Snooping coherence mechanisms rely on a low-latency, shared interconnection between the
processors and the memory modules, such as a common bus, that allows each processor to monitor all
of the transactions to the shared memory. As a processor ‘‘snoops’’ on the other processors’ memory
references, it can detect when a block that it has cached has been changed by another processor. It
then invalidates [Goodman1983, Katz1985, Papamarcos1984] its cached copy so that its next
reference to the block will force a cache miss, and the current value will be obtained from memory, or
from another cache. Alternatively, it can directly update [McCreight1984, Thacker1988] its cached
copy with the new value available on the bus. Since the shared bus typically broadcasts the effects of
each write operation to a shared memory location to all of the caches in the same cycle as the write
itself, these snooping coherence mechanisms typically implement a strongly-ordered consistency
model.
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While these snooping mechanisms are relatively simple to implement, the shared bus can
become a severe performance bottleneck. To reduce the contention on a single bus, the Wisconsin
Multicube [Goodman1988] proposed an n-dimensional grid of buses with the processors located at
the crosspoints of the buses and the memory modules at the ends. The additional buses provide
greater memory bandwidth at the expense of a more complicated coherence protocol. Another
approach [Archibald1988, Wilson1987] clusters the processors on smaller, separate buses, and
maintains coherence among processors within each cluster. An additional hierarchy of buses is
introduced to maintain intercluster coherence. Yet another approach adds a special coherence bus
[Bhuyan1989, Marquardt1989] to remove the coherence updating traffic from the normal data read
operations on the primary memory bus.

Since all of these schemes use additional buses to increase the bandwidth between the
processors and the shared memory, their performance ultimately will be limited by the bus contention
when there are too many processors, and by the difficulty of physically constructing these long,
high-speed buses. Consequently, it appears that the snooping coherence schemes are limited to use in
relatively small-scale multiprocessor systems. Since the focus of this paper is primarily on large-
scale multiprocessors, the snooping coherence schemes are not considered further.

Another method of avoiding the bus saturation problem is to replace the bus with an
interconnection network, such as a multistage Omega network, a mesh, a fat tree, or a hypercube.
These networks provide higher bandwidth between the processors and the memory modules than a
shared bus, but they also increase the delay to access memory. This longer delay intensifies the need
for the private caches, but, by eliminating the mechanism through which processors monitor the
shared memory transactions, the networks compound the coherence problem. Both hardware
directory mechanisms and compiler-directed approaches have been suggested for maintaining
coherence in these systems.

1.2.2. Directory Coherence

With a directory-based coherence scheme [Tang1976, Yen1985], a processor must
communicate with a common directory whenever the processor’s action may cause an inconsistency
between its cache and the other caches and memory. The directory maintains information about
which processors have a copy of which blocks since several processors may have a copy of the same
block cached at the same time. Before a processor can write to a block, it must request exclusive
access to the block from the directory. Before the directory grants this exclusive access, it sends a
message to all processors with a cached copy of the block forcing each processor to invalidate its
copy. After receiving acknowledgements from all of these processors, the directory grants exclusive
access to the writing processor. When a processor tries to read a block that is exclusive in a different
processor, it will send a miss service request to the directory. The directory then will send a message
to the processor with the exclusive copy telling it to write the new value back to memory. After
receiving this new value, the directory sends a copy of the block to the requesting processor.
Directory schemes differ in how much information they maintain about shared blocks, where that
information is stored, and whether invalidating or updating is used to ensure coherence, resulting in
differences in memory requirements and performance. These trade-offs are discussed further in
Section 3.

By waiting for the invalidation and write-back acknowledgements for all writes to a shared
memory location before letting a processor proceed with a write, the directory implements a
strongly-ordered consistency model. A weakly-ordered consistency model can be implemented with
a directory by having the directory delay the writing processor only when it is accessing a
synchronization variable. This approach then puts the burden on the processor to ensure that before it
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proceeds across a synchronization point it has received acknowledgements from the directory for all
of the writes is has issued to shared data memory locations. Since this weakened consistency model
delays processor writes only to synchronization variables, it will produce higher performance than the
strongly-ordered model.

1.2.3. Compiler-Directed Coherence

Compiler-directed coherence mechanisms determine at compile-time which cache blocks may
become stale. Special instructions then are inserted into the generated code to be executed by each of
the processors to prevent them from using this possibly stale data. One of the simplest of these
compiler-directed coherence mechanisms [Veidenbaum1986] uses indiscriminate invalidation of the
data caches to enforce coherence with a weakly-ordered consistency model. This coherence
mechanism assumes a doall parallel loop model of execution [Polychronopoulos1988] in which there
are no dependences between the iterations of the loop. Thus, all of the iterations can be executed
simultaneously on multiple independent processors. The parallel loop terminates when all of the
iterations have completed executing. Processors may be reassigned to iterations at the entry and exit
points of the parallel loop. These points are called the loop boundaries.

At the start of each parallel loop, each processor first executes a cache-invalidate instruction to
begin the execution of the loop with an empty cache. Each processor also executes a cache-on
instruction to allow all references to shared-writable variables to be cached during the execution of
the loop. The caches are write-through so that all writes to shared memory locations are propagated
directly to the global shared memory. At the end of the parallel loop, each processor again
invalidates its entire cache to prevent stale entries from propagating into the next section of the
program. Incoherent accesses are thereby prevented since the weakly-ordered consistency model
used with this coherence mechanism guarantees coherent caches only at loop boundaries. Since the
caches are invalidated at the loop boundaries, and since the current value is only in the main memory,
coherence is assured. Similar schemes have been suggested for the RP3 machine [Brantley1985] and
the Ultracomputer [Edler1985]. These simple approaches tend to invalidate more cache entries than
are necessary to maintain coherence, and thus may reduce the memory system performance when
compared to a directory mechanism. More sophisticated compiler-directed mechanisms with better
performance than this simple mechanism are described in Section 3.1.2.

1.3. Factors Affecting Coherence Mechanisms

The most important consideration in choosing a cache coherence mechanism for a
multiprocessor usually is its performance, or how effective it allows the caches to be in reducing the
average delay when fetching data from memory. Another important consideration is the
implementation cost, typically measured by how much memory is required to store the cache block
sharing information, and by the complexity of the control logic. The different coherence schemes
have significantly different trade-offs in cost and performance, making it difficult to evaluate the
alternatives. The primary issues affecting the cache coherence mechanisms can be summarized as:

1) the coherence detection strategy, that is, the strategy by which the coherence mechanism detects a
possibly incoherent memory access, which can be done either dynamically at run-time, or statically at
compile-time;
2) the coherence enforcement strategy, such as updating or invalidating, that is used to ensure that
stale cache entries are never referenced by a processor;
3) how the precision of block sharing information can be changed to trade-off the implementation
cost and the performance of the coherence mechanism; and
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4) how the cache block size affects the performance of the memory system.

This paper surveys the state-of-the-art in cache coherence mechanisms in the context of the
above issues. Trace-driven simulations are used to compare how these different issues affect the
performance and implementation costs of the different coherence mechanisms. In addition, hybrid
strategies are discussed that combine several different coherence mechanisms into a single system to
improve the memory referencing performance. These comparisons should help the computer
architect understand some of the trade-offs involved in the various coherence alternatives.

2. Cost and Performance Modeling

The most accurate method of determining the performance of a specific computer design, or for
proving the validity of a new architectural approach, is to build it. Unfortunately, actually building a
complete computer system is very time-consuming and expensive. It also requires the designer to
select specific values for architectural parameters, such as the data cache size and the cache block
size, without knowing what reasonable values of the parameters may be for the new system.
Therefore, before actually committing an idea to hardware, it is desirable to explore the limits of the
design space using mathematical analysis or simulation. A large number of potential design options
can be quickly examined by analytically modeling the system and varying the desired parameters.
Analytic models are of limited usefulness when comparing cache coherence mechanisms, however,
due to the assumptions that must be made concerning memory referencing patterns and data sharing.
To provide more realistic results while still maintaining flexibility in choosing system parameters, the
performance evaluations presented in this paper use trace-driven simulations.

2.1. Trace-Driven Simulation

An address trace for a multiprocessor is a record of the sequence of memory addresses
generated by the processors as they execute a program. There are several different methods of
generating these traces [Stunkel1991]. For example, it is possible to instrument an actual computer
system to record the memory references as they are generated by the program. This approach has the
advantages of being very accurate, very fast, and able to monitor operating system execution as well
as a user program. Its main disadvantages are the cost and difficulty of building the hardware
monitor, and the complexity of instrumenting all of the processors in a multiprocessor system. It also
limits the simulation to using traces from a specific implementation of a computer system, which may
be substantially different from the system to be studied.

Another method of generating traces that has many of the advantages of hardware monitoring is
to alter the microcode of a processor to generate traces as it executes the instructions. This approach
also can trace operating system activity, and it is relatively fast, but it requires a substantial effort to
rewrite the microcode. In addition, it is not applicable to processors without microcode, or to those
that have their microcode in read-only memory. As more parallel computer systems use hard-wired
processors, this technique will become less useful.

Software-based techniques have been suggested to avoid some of the difficulties of the
hardware monitoring and microcode-based approaches. In some processors, it is possible to generate
an interrupt after the execution of every instruction. The interrupt routine then produces the trace
information for the current instruction. Another approach is to modify a program’s source code or
executable object code to produce a trace as the program executes. Both of these methods can
generate traces without significantly slowing down the traced system, but they can introduce
significant timing distortions into the trace due to the interrupts and due to the additional trace
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generation instructions. They also are limited to the instruction set of the specific processor used to
execute the program.

The most flexible method of generating traces, and the one used in this paper, is to simulate the
execution of the entire multiprocessor system. The primary disadvantage of this approach is that it is
quite slow since the simulator must model all of the operations of all of the hardware elements of the
processors. This explicit modeling of all operations, however, produces accurate traces and it allows
the simulation of any architectural feature, especially those that may not exist in a real machine.

Starting with application programs written in Fortran (described in Section 2.3), the Alliant
compiler [Perron1986] is used to automatically find the parallel loops and to generate parallel
assembly code. This assembly code then is executed by a multiprocessor emulator to produce a trace
of the memory addresses generated by each of the p processors. This multiprocessor system uses an
execution model in which each parallel loop is followed by a sequential section of the program so
that execution alternates between p processors executing a parallel section of the program, and a
single processor executing a sequential section. The memory traces from the p processors are
completely interleaved into a single trace such that during the execution of a parallel section of the
program, an address generated by processor i is followed by an address generated by processor i+1,
and so on, modulo p . During the execution of sequential sections of the program, processor 0
generates all of the memory references. In an actual system, timing differences between the
processors due to cache misses, network and memory contention, and synchronization delays may
produce a different ordering of the references, but this interleaving, which represents a valid ordering,
highlights the effects of data sharing in the cache coherence mechanisms used in these simulations.
Thus, this ordering provides a rigorous test of the different coherence mechanisms.

Since the simulation is very time-consuming, it is limited to executing relatively short programs
compared to those that could be executed on actual hardware. In addition, these simulations are for
one program running at a time, thus ignoring the effects of multiple programs sharing the system and
the effects of the operating system. The simulations also prohibit task migration. In spite of these
limitations, this trace-driven methodology provides an adequate means of comparing the performance
of the different coherence mechanisms.

2.2. Machine Model

The interleaved memory trace drives a multicache simulator to determine the miss ratio and the
cache-memory network traffic. A fully associative data cache with a random replacement policy is
used in each processor to eliminate the confounding effects of set associativity conflicts. The long
execution time required to perform the simulations limited the size of the application programs’ data
sets. To maintain a realistic relationship between the size of the data set and the size of the data
cache, a data cache of 8 kbytes is used in each of the thirty-two processors, unless otherwise noted.

Since this system assumes that all instructions are only read, they can never cause coherence
problems. Consequently, all instruction references are ignored. This multiprocessor architecture uses
a separate synchronization bus for distributing the next available iteration values when scheduling
loop iterations, and for performing the barrier synchronization at the end of the parallel loops. With
this architecture, synchronization variables are never cached with the data and, since this study is
concerned primarily with the the effect of the cache coherence mechanism on data references,
accesses to synchronization variables are not considered in these simulations. It should be noted,
however, that synchronization variables stored in memory can be heavily shared. Heavy sharing of a
single memory location by many different processors can cause memory hot spots [Pfister1985]
which may make it undesirable to cache synchronization variables [Dubois1988]. Special hardware



10

or software can be added to the system to improve access to synchronization variables
[Anderson1990, Goodman1989, Kruskal1986], but the analysis of these techniques is beyond the
scope of this study.

The p=32 processors are connected to the shared memory via a packet-switched multistage
interconnection network. Network traffic from a processor to the memory, such as a miss service
request or write-back data, uses the forward network, while traffic from the memory to a processor,
such as an invalidation command or fetched data, uses the separate reverse network. Both the
forward and reverse networks use 32-bit data paths. Each packet between the memory modules and
the processors requires a minimum of of two words (eight bytes). The first word contains the source
and destination module numbers plus a code for the operation type, and the second word contains the
actual memory address. Additional words are needed for the actual data values fetched and written.
Table 1 details the actions required for each type of memory reference, along with the generated
network traffic, when using the p+1-bit full directory [Censier1978]. This directory structure is
described more fully in Section 3.3.1.

Table 1: Memory operations and resulting network traffic.
b= number of words per block; word size = 4 bytes.

Memory Forward traffic Reverse traffic
Operation (bytes) (bytes)

Read hit.
(none) - -
Read miss, block shared in one or more caches, or only in memory.
miss service 8 8+4b
Read miss, block exclusive in another cache.
miss service 8 8+4b
write-back 8+4b 8
Write hit, block shared in one or more caches.
processor requests exclusive access from directory 8 -
directory sends invalidation messages - 8 * #cached
processors acknowledge invalidations 8 * #cached -
directory acknowledges writing processor - 8
Write hit, block exclusive in this cache.
(none) - -
Write miss, block only in memory.
miss service 8 8+4b
Write miss, block shared in one or more caches.
processor requests exclusive access from directory 8 -
directory sends invalidation messages - 8 * #cached
processors acknowledge invalidations 8 * #cached -
directory acknowledges writing processor - 8
Write miss, block exclusive in another cache.
miss service 8 8+4b
write-back 8+4b 8
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2.3. Test Programs

Six numerical application programs written in Fortran were used to generate the parallel
memory traces for these simulations. Arc3d and flo52 both analyze fluid flows. The trfd program
uses a series of matrix multiplications to simulate a quantum mechanical two-electron integral
transformation. Simple24 is a hydrodynamics and heat flow problem using a 24-by-24 element grid.
The pic program uses a particle-in-cell technique to model the movement of charged particles in an
electrodynamics application. The lin125 program is the Linpack benchmark using a 125-by-125
element matrix. The problem sizes and outer loop counts were reduced in these programs so that the
entire program could be simulated in a reasonable period of time.

The memory referencing characteristics of the test programs are summarized in Table 2 for
p=32 processors, and a cache block size of b=1 word. The blocks were classified by examining the
traces and determining how many processors accessed each block. The private blocks are those that
are referenced by the same processor throughout the program’s execution with no references by any
other processor. The shared-writable blocks are referenced by two or more different processors, at
least one of which writes the block. Finally, the shared read-only blocks are blocks that are
referenced by more than one processor, but are never written. The percentages do not sum to 100
since the table does not show the statistics for the shared read-only blocks.

As shown in this table, fewer than 40 percent of the unique blocks referenced by arc3d, flo52,
and pic are shared-writable, and fewer than half of their total references are made to these blocks.
Most of their references are to private and read-only blocks, and thus do not cause any coherence
actions. In contrast, more than 78 percent of the blocks referenced by simple24, lin125, and trfd are
shared-writable, although only trfd and lin125 have more than half of their references to these blocks.
These different sharing characteristics provide for a broad range of memory performance in the
simulations to highlight the strengths and weaknesses of the different coherence mechanisms.

2.4. Performance Metrics

The two most important measures of performance for a memory system are the latency and the
bandwidth. The average memory latency is the time from when a processor issues a memory read
operation until the data requested is available to the processor, averaged over all memory references.
If the requested data is resident in the cache, the latency is simply the cache access time, which

Table 2: Memory referencing characteristics of the test programs.
blocks = number of unique single-word data blocks referenced by the program

refs = number of memory references made to the blocks

Prog Total Private Shared-
writable

blocks refs %blks %refs %blks %refs
arc3d 53733 6603772 55.6 48.9 38.1 48.9
pic 100087 8765261 77.0 57.0 22.9 34.8
simple24 10759 4251420 10.7 56.5 88.8 43.1
trfd 1478 5877557 11.2 14.9 88.8 70.5
flo52 115331 10000000 82.3 77.1 17.7 22.5
lin125 21041 10000000 21.7 1.2 78.3 94.4
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typically is one cycle. If the data is not in the cache, however, a miss service request is generated and
sent to the memory system. The average memory delay can be approximated as
Tave=(1−m)Tcache+mTmiss where m is the cache miss ratio (0<m≤1), Tcache is the time required to access
the cache on a hit, and Tmiss is the time required by the memory system to service the miss. The value
of this miss service time is a function of the intrinsic delay in the memory modules, the time required
to propagate the request through the network, and the additional time required to perform any
necessary coherence operations. The network delay is a function of the total traffic in the network.
High network traffic increases the probability that there will be collisions in the network, which then
can increase the miss service time. Because of the dependence of the miss service time on specific
parameters of the system, such as the memory access delay, this paper uses the miss ratio as a first-
order indication of the expected memory performance.

The bandwidth of the interconnection network determines how many data bytes per unit time
can be transferred between the memories and the processors. To prevent the network from becoming
a performance bottleneck, it is important to provide sufficient bandwidth, but it can be expensive to
provide the wide data paths and the fast components needed for a high-bandwidth network.
Maintaining coherence in this type of system can require many messages for each memory request,
which can put a significant load on the network. As a result, the cache coherence protocol should try
to minimize the network traffic by maintaining a low miss rate, and by reducing the number of
messages required to maintain coherence. The simulations presented in this paper use the average
number of bytes transferred per memory request as an indication of the network bandwidth
requirements for the different coherence mechanisms.

The total execution time of a program takes into account the tradeoffs between the miss ratio
and the network traffic, and it is the performance measure that is most interesting to the user of a
multiprocessor system. To understand the impact of architectural decisions on the performance of the
different coherence mechanisms, however, it is useful to separate the overall performance into the
individual factors that contribute to this performance. As a result, the miss ratio and the average
network traffic are the metrics used in this study to compare the different design factors that comprise
a cache coherence mechanism. It is felt that examining these two metrics directly provides greater
insight into the tradeoffs in the coherence mechanisms than simply comparing total execution times.

3. Performance Impacts

This section uses the trace-driven simulation model described in the previous section to
examine the impact on performance and on implementation cost of the primary design factors
affecting cache coherence mechanisms. Descriptions of the different coherence mechanisms also are
provided.

3.1. Coherence Detection Strategy

There are several interrelated factors that determine the performance of a cache coherence
mechanism. One of the most important factors is when the mechanism performs coherence detection
— either dynamically at run-time, or statically at compile-time. The dynamic coherence detection
strategies solve the coherence problem by examining the actual memory addresses generated by a
program at run-time and dynamically keeping track of which processors have a copy of which blocks.
In contrast, the static coherence schemes try to predict which memory addresses may become stale by
analyzing the program’s referencing behavior when it is compiled.
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It is important to distinguish the implementation of a coherence mechanism from its method of
determining when a shared memory location is stale. While the statically detected coherence
mechanisms necessarily are software-based since they rely on a compiler, they also need some
hardware support to maintain the current state information about the memory locations. Thus, it is
not precisely correct to refer to these mechanisms as ‘‘software-only’’ coherence mechanisms.
Similarly, mechanisms that dynamically detect the need for coherence actions use hardware to
monitor the actual memory addresses, but they also can be augmented with compilers and other
software to produce hybrid schemes, as described in Section 4. This paper distinguishes the two
major classes of coherence mechanisms as dynamically detected and statically detected instead of as
hardware and software mechanisms.

3.1.1. Memory Disambiguation

The ability to disambiguate memory references, that is, the ability to determine if two different
memory accesses actually refer to the same physical location in memory, is critical to providing a
high-performance cache coherence scheme. The primary advantage of the dynamic detection
schemes is that by examining the actual memory addresses being referenced, they are able to
perfectly disambiguate these accesses. Statically detected coherence schemes, however, must rely on
the imprecise disambiguation performed by the compiler. For example, consider the following
sequence of references to the array A():

S1. P1 read: ... = A(f(.))
...

S2. P2 write: A(g(.)) = ...
...

S3. P1 read: ... = A(h(.))

In this sequence of memory references, the read in statement S1 loads an element of array A()
into processor P1’s cache. The particular element read is determined by the value of function f(.),
which may be anything that produces a valid index into the array. Typically it is some function of the
loop count. If functions f(.) and g(.) map into the same memory location, the write in statement S2

causes the corresponding element in P1’s cache to become stale since it no longer contains a copy of
the current value. If function h(.) in statement S3 also maps to the same memory location, P1 will
attempt to read this stale value, unless it is first invalidated or updated. Determining whether or not
some action is required in this case is the crux of the cache coherence problem [Cheong1988].

For static coherence detection, a data dependence test [Banerjee1988, Lichnewsky1988,
Li1990] can be used to determine if the three functions never refer to the same element, in which case
no coherence action is necessary, or to determine if the same element is always referenced by the
three statements so that some coherence action must be taken. Unfortunately, the data dependence
tests often are too imprecise to determine whether the elements are always the same or always
different. In this case, static coherence mechanisms must err on the conservative side by assuming
that they are the same element, and then inserting the appropriate coherence actions into the
generated code.

A related memory disambiguation problem for static coherence detection mechanisms occurs
with procedure calls, functions, and subroutines. The name of a variable inside of a procedure most
likely will be different than the name of the variable passed to the procedure. To provide precise
dependence analysis, the compiler must perform interprocedural analysis to track variable names
across procedure boundaries and thereby determine if a particular memory reference may cause a



14

coherence problem. In many programming languages, this interprocedural analysis can be very
difficult to perform, in which case the coherence mechanism may have to take an extremely
pessimistic approach and invalidate the entire data cache at the entry and exit points of each
procedure [Cheong1988a, Cheong1989]. Procedure calls provide no problem for the dynamic
coherence detection schemes since they examine the actual memory addresses at run-time and have
no indication that a procedure call has even occurred.

3.1.2. Static (Compile-Time) Coherence Detection Mechanisms

The indiscriminate invalidation schemes discussed in Section 1.2.3 [Veidenbaum1986,
Brantley1985, Edler1985] are more conservative than is necessary to ensure coherence in that they
invalidate cache entries that are not actually stale. This over-invalidation then produces unnecessarily
high miss ratios. More complex schemes determine at compile-time which particular cache blocks
may become stale, and when they may be stale, and then invalidate these specific entries before they
are accessed. Subject to the memory disambiguation limitations of the compiler, these schemes are
able to preserve at least some temporal locality between parallel loops.

For example, the fast, selective invalidation scheme [Cheong1988a] associates a change bit
with each cache block. This bit is set true by the cache-invalidate instruction inserted by the
compiler at each parallel loop boundary to indicate that the block may have been changed during the
current loop. The memory-read instruction forces a cache miss when it references a block with its
change bit set to true. This miss ensures that the current copy of the block is fetched from the main
memory. The change bit then is reset to false when the data block is loaded into the cache.
Subsequent memory-read references to the same block will see this reset change bit and will generate
a cache hit since the cached copy is now assured of being up-to-date.

Another memory referencing instruction, called the cache-read instruction, ignores the change
bit when it accesses a memory location. It is used to reference a shared-writable location that is
guaranteed by the compiler to be up-to-date in the cache in the current parallel loop, and therefore can
be treated as a cache hit. In addition to the change bit, this coherence mechanism requires a valid bit
for each cache block, but no dirty bit is required since it uses a write-through strategy. Because each
processor is responsible for maintaining coherence in its own cache, no state information is required
in the main memory.

Improvements to this fast, selective invalidation scheme use version numbers [Cheong1989] or
time stamps [Min1989] to determine whether or not a cache entry is up-to-date when it is referenced.
In the version control mechanism [Cheong1989], for instance, each processor maintains a current
version number (CVN) in a separate local memory within the processor for each variable used in a
program. For each parallel loop, the compiler predetermines which variables may have been written
by any processor during the loop. It then generates instructions that are executed by each processor at
the end of a parallel loop to increment the CVN values for these variables. This change in the CVN
value indicates to subsequent memory references that a new version of this variable may have been
created.

In addition to maintaining one CVN entry per program variable, each cache entry has an
associated birth version number (BVN). The BVN value is set equal to the corresponding CVN value
when the referenced variable is first loaded into the cache from the shared memory. When a variable
is written, its BVN is set to the new version number, CVN+1. Because of this defined relationship
between the BVN and CVN values, a read reference to a memory location will be a cache hit if-and-
only-if BVN≥CVN. If BVN<CVN, however, the cached copy may be stale and the current value must
be loaded from the main memory.
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3.1.3. Dynamic (Run-Time) Coherence Detection Mechanisms

With dynamic coherence detection, the memory addresses actually generated by the program
are examined at run-time to provide perfect memory disambiguation. An example of a coherence
mechanism with dynamic detection is the p+1-bit full directory [Censier1978]. (Other directory
configurations are discussed in Section 3.3.) With this directory, two bits per cache block encode one
of three states for each of the blocks in the caches. The invalid state means that the block is empty
and will cause a cache miss when it is referenced. When a block is shared by several processors, it
must be in the shared read-only state in each processor to prevent any processor from modifying the
block without first requesting exclusive access from the directory. A processor is free to update a
block in the exclusive state since it is assured of having the only copy of the block. The directory in
each memory module maintains p valid bits and a single exclusive bit for each block in the module.
If the exclusive bit is reset, up to p valid bits may be set to indicate which processors have a copy of
the block in the shared read-only state. If the exclusive bit is set for a block, a single valid bit will be
set to point to the processor that has the only copy of the block, which must be in the exclusive state.

3.1.4. Performance Comparisons

The trace-driven simulation methodology described in Section 2 is used to quantify the effect of
the coherence detection strategy on the memory system performance. Specifically, the performance
of the p+1-bit full directory [Censier1978] is compared to the compiler-directed version control
coherence mechanism [Cheong1989]. The range of performance of the version control scheme is
estimated using three different levels of compiler technology, as summarized in Table 3. The simple
compiler has imprecise memory disambiguation in that it maintains one version number (i.e. one CVN
entry) for an entire array. With this compiler, a write to any element of an array creates a new version
of the entire array. Furthermore, this compiler cannot track variable names across subroutine
boundaries so that the entire data cache is invalidated at the entry and exit points of each subroutine.

The other extreme of compiler performance for the version control mechanism assumes an ideal
compiler with perfect memory disambiguation and perfect interprocedural analysis. This compiler
maintains a unique CVN entry for each element of every array, and it never invalidates the caches at
subroutine boundaries. It models the best possible performance of the version control scheme, but it
is probably impossible to implement this perfect memory disambiguation in an actual compiler. The
realistic compiler compromises between these two extremes with imprecise memory disambiguation,
but perfect interprocedural analysis. It should be pointed out that at the end of every parallel loop, the
CVN values of every variable that may have had a new version created in that loop must be
incremented. The ideal compiler may perform significantly more CVN updates at the end of each
parallel loop than the other two compilers since it has to update a CVN value for every array element
that was written, instead of a single CVN update per array. The time required to perform this updating
adds directly to the average memory delay, which may be significant for large arrays.

Table 3: Compilers used for the version control simulations.

Compiler Action at subroutine boundaries Number of CVN entries
simple clear caches one per array
realistic ignore subroutine boundaries one per array
ideal ignore subroutine boundaries one per array element
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Because of the imprecise nature of compile-time data dependence tests, and because of the
information hiding in procedures, coherence mechanisms that rely exclusively on the compiler to
disambiguate memory references tend to invalidate more cache entries than are actually necessary to
maintain coherence. By tracking the actual memory addresses, dynamic directory mechanisms can
invalidate only those blocks that are actually stale, which, as shown in Table 4, can cause the
directory mechanism to have a lower overall miss ratio than the ideal compiler-directed version
control mechanism for the arc3d, simple24, trfd, and flo52 programs. The directory has slightly
higher miss ratios than the ideal implementation of version control for pic and lin125 primarily due to
the high number of write misses produced with the directory.

These extra write misses occur because in these two programs, a large, shared array is
repeatedly written by different processors during different portions of the programs’ execution.
When the array is written for the first time, it is marked as exclusive in the writing processor’s cache.
When another processor tries to overwrite this same location, it misses and must request exclusive
access from the directory. These misses can be prevented by allocating a new array so as not to
overwrite the same array multiple times, but this approach will require additional memory space.
With the version control mechanism, the compiler detects that these write references will not cause
coherence violations, and thereby reduces the number of write misses. The performance of the simple
compiler tends to be poor compared to the other compilers and compared to the directory since it
invalidates all of the caches at every subroutine boundary. The realistic compiler has slightly better
performance than the simple compiler because it can look beyond subroutine boundaries, but its miss
ratio generally still is higher than that of the ideal compiler due to its imprecise memory
disambiguation.

A major advantage of the static coherence detection mechanisms is that by making each
processor responsible for maintaining coherence in its own cache using self-invalidation,
interprocessor communication is limited to that required to service the cache misses. The dynamic
mechanism, on the other hand, sends many messages between the directory and the processors which
increases the congestion in the interconnection network compared to the static mechanism and
thereby may increase the memory latency. As shown in Table 5, the total network traffic for the ideal
compiler in the version control mechanism is approximately the same as the network traffic required
to service only the misses with the directory. These similar traffic requirements are expected since
these two approaches have similar miss ratios. However, this table also shows that the network traffic
required by the directory for the invalidation messages approximately doubles the total network
traffic over that required for servicing only the misses. The simple and realistic compilers in the
version control approach produce higher network traffic than the ideal compiler since they have
significantly higher miss ratios. Even with these higher miss ratios, though, the network traffic they

Table 4: Miss ratio (percent) for static and dynamic detection strategies.

Program Directory Version Control
simple realistic ideal

read write overall overall overall read write overall
arc3d 15.0 8.0 23.0 41.6 30.2 19.3 8.3 27.6
pic 8.8 8.9 17.7 32.9 25.9 8.0 8.1 16.1
simple24 9.4 3.1 12.5 63.5 56.0 12.6 3.2 15.8
trfd 10.9 1.5 12.4 42.0 18.0 13.9 4.1 18.0
flo52 1.1 0.8 1.9 44.2 44.1 2.7 1.1 3.8
lin125 5.7 4.2 9.9 9.5 9.4 5.9 0.2 6.1
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Table 5: Network traffic for static and dynamic detection strategies.
(bytes per reference)

Program Directory Version Control
miss invalidate total simple realistic ideal

arc3d 4.59 5.40 9.98 8.32 6.04 5.52
pic 3.53 4.47 8.00 6.58 5.18 3.23
simple24 2.43 2.44 4.87 12.7 11.2 3.17
trfd 2.48 2.27 4.75 8.40 3.61 3.61
flo52 0.39 0.40 0.79 8.83 8.81 0.76
lin125 1.99 1.99 3.98 1.90 1.87 1.22

produce can be less than the total network traffic produced by the directory since they generate no
invalidation messages.

In summary, the primary advantage of dynamic coherence detection is its perfect memory
disambiguation. By knowing precisely those addresses being referenced, the dynamic mechanism
invalidates only those cache blocks that are actually stale. This exact invalidation generally produces
lower miss ratios than a mechanism that statically detects coherence violations. In addition, the
dynamic detection mechanism is completely transparent to procedure boundaries, while the static
coherence detection mechanism requires good interprocedural analysis to match the performance of
the dynamic mechanism. The primary advantage of static detection mechanisms is that they produce
lower network traffic than the dynamic mechanisms since they do not require any invalidation
messages. Similar results to the simulations presented here have been reported in other studies
comparing compiler-directed and directory-based coherence mechanisms [Adve1991, Lilja1991,
Min1990].

3.2. Coherence Enforcement Strategy

Another factor affecting the performance of a multiprocessor memory system is the actual
method used by the coherence scheme to ensure that no processor accesses a stale memory location.
The simplest approach is to make all shared-writable memory locations non-cacheable so that there
can never be multiple copies [Lilja1989]. However, since references to shared-writable variables can
constitute a large fraction of the references made by a program (see Table 2), bypassing the cache for
all references to these memory locations can significantly reduce performance. Two other coherence
enforcement strategies always allow shared-writable memory locations to be cached, but either
update or invalidate stale cache entries before they are referenced again. With an update approach,
the new value of the shared location is distributed to all processors with a copy of the block whenever
it is written by any processor. The advantage of this approach is that it prevents an additional miss if
the cache block is reused by a processor with a cached copy after it has been written by another
processor. A significant disadvantage is the additional network traffic produced by the potentially
large number of update messages.

Instead of updating cached copies when they are changed, the invalidation strategy marks all
cached copies as invalid within the cache to force the processor to miss the next time it references
that block. This approach reduces the network traffic compared to the update strategy, but it does
introduce the extra delay of another miss if the block is reused. Invalidation schemes can be
classified as either self-invalidation or directed-invalidation. With self-invalidation, the compiler
inserts extra instructions into the generated code to force the processor to invalidate some or all of its
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data cache before it accesses a stale entry. With directed-invalidation, some outside agent, such as a
directory, forces a processor to invalidate a specific block in its cache at a specified time.

3.2.1. Performance Comparisons

In a system in which all of the processors are connected with a shared bus, an update protocol is
implemented by having each write to a shared memory location write-through to the bus to broadcast
the new value to all of the processors [McCreight1984, Thacker1988]. In the system used in this
study, however, the bus is replaced by a multistage interconnection network. Since this type of
network does not support broadcasting, coherence updates are implemented using individual
messages. For example, when a processor writes to a shared memory location, a message containing
the new value is sent to the directory. The directory then sends a message containing the new value
to each processor with a cached copy of the block instructing the processors to update their copies.
The processors respond with an acknowledgement to the directory, which then acknowledges the
processor that performed the initial write. With this approach, updates of written blocks are sent only
to processors that actually have a cached copy instead of being broadcast to all of the processors. The
invalidation-based directory coherence simulator described in Section 2.2 is modified to use this
update-based protocol.

Table 6 compares the miss ratios produced by a directory coherence scheme using either
updating or invalidating for three different cache sizes. In the infinite cache, blocks are never
replaced due to lack of cache space. Consequently, with an update strategy in an infinite cache, once
a block is moved into the cache, it is never removed. The number of misses in this configuration then
is simply the number of misses required to bring each block into the cache the first time. That is, the
number of misses is the same as the number of unique blocks referenced, and it is the minimum
number of misses that can be produced for the given programs. Comparing the invalidation strategy
in the infinite cache with the update strategy shows how the invalidations required to maintain
coherence increase the miss ratio due to the sharing of cache blocks by different processors. In
particular, it demonstrates the performance effect of requiring exclusive access to a block in order to
write to the block. Since updating allows writes to blocks that are shared, updating typically
produces a lower miss ratio than invalidating. As the cache size is reduced, the miss ratio increases
for both updating and invalidating since there is no longer enough space in the caches to store all of
the referenced blocks.

The network traffic statistics in Table 7 show that the cost of the lower miss ratio with updating
is the considerably higher network traffic it produces compared to the traffic produced by

Table 6: Miss ratio (percent) for updating and invalidating coherence
enforcement strategies.

Program Cache size (bytes)
4K 16K ∞

inv up inv up inv up
arc3d 26.8 16.0 19.9 6.73 18.0 1.7
pic 28.6 26.9 8.4 6.8 7.8 1.4
simple24 13.5 6.4 11.2 3.6 9.3 0.73
trfd 12.4 0.39 12.4 0.38 12.4 0.38
flo52 2.1 1.7 1.9 1.4 1.8 1.4
lin125 10.0 1.7 10.0 1.6 10.0 1.6
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Table 7: Network traffic (bytes per reference) due to cache misses and
due to coherence enforcement for updating and invalidating.

Program Strategy Cache size (bytes)
4K 16K ∞

miss coh miss coh miss coh
arc3d invalidate 5.36 5.56 3.97 5.17 3.61 5.13

update 3.21 12.6 1.34 15.0 0.34 16.2
pic invalidate 5.72 3.35 1.68 2.26 1.56 2.78

update 5.39 7.69 1.36 8.87 0.29 10.1
simple24 invalidate 2.69 2.39 2.23 2.49 1.86 2.68

update 1.27 7.37 0.71 7.54 0.15 7.96
trfd invalidate 2.49 2.27 2.49 2.27 2.49 2.27

update 0.08 52.3 0.08 52.3 0.08 52.3
flo52 invalidate 0.43 0.45 0.37 0.42 0.36 0.31

update 0.35 5.23 0.29 5.40 0.27 6.39
lin125 invalidate 1.99 1.88 1.99 1.88 1.99 1.89

update 0.34 27.1 0.32 27.3 0.32 27.4

invalidating. This table separates the network traffic into that required to move the data into a cache
on a miss, and that required to maintain coherence, which is either the update traffic, or the invalidate
traffic. The miss traffic for updating is always less than that generated by invalidating since its miss
ratio is lower than the miss ratio with invalidating. However, the component of the network traffic
due to coherence actions is roughly two to twenty-five times greater for updating than invalidating
since updating produces some network traffic on every write to a shared memory location. The
invalidation strategy, on the other hand, produces coherence traffic only when a processor first
requests exclusive access to a block, or when a write-back is required. Subsequent writes to the same
block by the same processor generate no additional traffic.

How the differences in network traffic and miss ratios translate to overall memory delay depend
on the implementation details of each individual system. For instance, given a high-bandwidth
network, an updating strategy probably will produce lower average memory delays than invalidating
since updating has the lowest miss ratio. The high traffic produced by updating may be easily
handled by the network without increasing the memory delay. However, if the interconnection
network is the system bottleneck, as it is likely to be in many systems, then invalidating may produce
the best overall performance in spite of its relatively higher miss ratio since it produces the lowest
network traffic.

3.2.2. Adaptive Coherence Enforcement

In addition to the effect these implementation details have on performance, the sharing
characteristics of a program also can affect the relative performance of updating and invalidating. In
some programs, an invalidation strategy may produce the best performance, while in other programs,
an updating strategy may be best [Eggers1989, Karline1986]. For instance, if a shared block tends to
be written by only a single processor, but read by many processors, distributing the new values of the
block produced by each write using an updating strategy will reduce the miss ratio when compared to
an invalidating strategy. If a block is written many times by a single processor between reads by
other processors, however, an invalidating strategy will tend to reduce the unnecessary network
traffic that would be produced by an updating strategy. Furthermore, the sharing characteristics of a
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single block may change over the course of a program’s execution making updating the best choice
for some references to the block, while other references to the same block may produce better
performance using invalidating. To adjust the coherence enforcement strategy to the potentially
changing sharing patterns of each block, several adaptive coherence schemes have been proposed.

The competitive snoopy cache [Karline1986] initially updates all shared copies of a block by
broadcasting writes to these blocks over the shared bus. If a processor has not referenced its copy of
the block after a specified number of writes, it invalidates its cached copy so that it no longer requires
the block updates. Similarly, the EDWP coherence scheme [Archibald1988] dynamically switches
from an updating strategy to an invalidating strategy by keeping track of the number of writes made
to each block. After three writes are made to a block by the same processor with no intervening reads
by other processors, the block is assumed to be no longer actively shared, and all of the cached copies
are invalidated. These two approaches thus attempt to dynamically adjust the coherence enforcement
strategy based on the program’s run-time behavior.

The Munin system [Bennett1990] implements a coherence mechanism that uses the compiler to
categorize each object referenced by the program into a coherence type, and then adjusts the
coherence enforcement strategy to each particular type. For example, a data object that is determined
to be mostly read is copied to each processor’s cache as it is referenced, but an object that is
alternately read and written may have a single copy moved among the processors instead of being
copied. Another adaptive coherence strategy [Mounes-Toussi1993] examines the program at
compile-time to estimate the cost of using updating or invalidating for each write reference to a
shared memory block. Each reference then is tagged with the lowest-cost coherence enforcement
strategy to be used at run-time. Simulation studies of this approach indicate that by switching
enforcement strategies for each shared block it can obtain the low miss ratios of an updating
coherence strategy while generating the low network traffic of an invalidating strategy, thereby
achieving the best of both enforcement strategies. In addition, since the compiler can look-ahead in a
program to predict future memory sharing patterns, this compiler-assisted adaptive scheme tends to
produce lower miss ratios and lower network traffic than the adaptive schemes that switch
enforcement strategies using only run-time information.

3.3. Precision of Block Sharing Information

Coherence schemes that dynamically determine which memory references need coherence
actions have access to the memory addresses only as the program generates them. Since it is
impossible for the hardware to predict how the blocks will be shared, the coherence mechanism must
track the state and sharing characteristics of every memory block referenced by the program. The
number of memory bits needed to store this information can be enormous. Exact mechanisms, such
as the p+1-bit full directory [Censier1978], maintain enough state information about the sharing of
blocks to know exactly which processors have a copy of which blocks. When a block needs to be
invalidated, these exact mechanisms send invalidation messages only to those processors that actually
have a cached copy of the block. Imprecise mechanisms, such as the n-pointer plus broadcast
directory [Agarwal1988], reduce the amount of stored information, but occasionally must resort to
broadcasting invalidation messages to all processors, even those without a cached copy of the
affected block. These broadcasts can significantly increase the memory traffic in the interconnection
network. Some recently proposed tagged directories further reduce the directory memory
requirements by maintaining sharing information only for blocks that are actually cached. The
following subsections describe the various directories and present models [Lilja1991] for comparing
the number of memory bits needed by each directory to maintain the cache block sharing information.
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3.3.1. Traditional Directories

In the traditional directories, memory bits are associated with each block in the memory
modules to maintain the current state of the block, and to store information about which processors
have a cached copy of each block. The p+1-bit full directory [Censier1978], for example, encodes
three states for each cached block using two state bits per cache block. In the invalid state, the block
is empty or not up-to-date. In the shared, read-only state, the block is shared and can only be read by
all processors. A processor with a block in the exclusive state is assured of having the only copy.
Thus, it can both read and write the block. The directory maintains an additional p valid bits and a
single exclusive bit for each block in the memory, where p is the number of processors. The total
number of bits dedicated to storing coherence information in this scheme is p[m(p+1)+2c], where m is
the total number of blocks in the memory modules, and c is the total number of blocks in the caches.

The broadcast directory [Archibald1984] maintains only the valid and exclusive state bits for
each block in the memories and the caches, for a total of 2p(m+c) bits. Because it maintains only this
limited information, this directory must broadcast all of its invalidation messages to all of the
processors. These broadcasts can be very time-consuming in a system with a complex
interconnection network, such as a multistage network, since these networks typically do not support
broadcasting. In addition, these broadcasts increase the average memory delay compared to the full
directory due to the increased network congestion. The primary advantage of this directory structure
is its low memory requirements for storing the block sharing information.

The n-pointers plus broadcast scheme [Agarwal1988] reduces the need for broadcasting by
maintaining n pointers with each memory block to point to the first n processors that request a copy
of the block. When a block needs to be invalidated, invalidation messages can be sent only to the
processors with a cached copy of the block. If more than n processors attempt to simultaneously
share the same block, the directory sets a broadcast bit to indicate that invalidations must be
broadcast to all of the processors. This approach thereby trades-off memory requirements with the
need to broadcast. Each of the n pointers in each of the entries in this directory requires log2p bits to
point to any processor, plus a bit for each pointer to indicate if it contains a valid processor number.
In addition, each entry requires the single broadcast bit plus an exclusive bit. Finally, each block in
the data caches requires two state bits, making a total of p[2c+m(2+n+n log2p)] bits dedicated to
maintaining coherence for this directory structure.

The linked-list directory [James1990] reduces the size of the directory compared to the full
directory structure without requiring broadcasts by maintaining a linked list from the directory to
each of the processors having a cached copy of a block. A doubly-linked list typically is used so that
normal cache block replacements may be performed within a processor without communicating with
other processors. When a block is invalidated due to a coherence operation, the invalidation
command is propagated from one end of the list to every processor that has a copy of the block. This
single-ended propagation eliminates the potential race condition that exists if invalidations were
propagated simultaneously from both ends. The total number of coherence bits required in this linked
list directory is p[3c+2m+2(c+m)log2p] since each pointer in each memory block and in each cache
block require log2p bits to point to a processor, plus an extra bit to point back to memory. In addition,
two state bits are used in each cache block, and an exclusive bit is needed for each memory block.
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3.3.2. Tagged Directories

In the traditional directories described in the previous section, memory bits for pointing to a
processor with a cached copy of a block are statically associated with each block in the main
memory. Thus, the total number of coherence bits is proportional to the size of the memory. The
tagged directories take advantage of the observation that only blocks that are actually cached in one
or more processors need to be allocated pointers. In these directories, pointers are dynamically
associated with memory blocks using an address tag field only as the blocks are moved from the
memory to a cache. With this approach, the number of coherence pointers is proportional to the size
of the data caches, which are significantly smaller than the main memory. A variety of different
configurations can be used to maintain the coherence pointers themselves, such as those used in the
full p+1-bit directory, the n-pointers directory, or the linked-list directory discussed in the previous
section. In addition, several other possible tagged directory structures are described below.

The pointer cache tagged directory [Lilja1991] maintains one pointer of log2p bits with each
address tag of log2m bits. This structure allows multiple entries in the directory to have the same
address tag. When n processors share the same block, n distinct pointer entries will be allocated in
the directory with the same address tag, but pointing to different processors. The maximum number
of processors that can share a block with this scheme is limited by the associativity, a , of the pointer
cache itself. When more than a processors try to share a block, or when the entire pointer cache
overflows, a free pointer is created by randomly choosing an active pointer and invalidating the
selected block in the indicated processor.

The total number of bits needed to store sharing information with this pointer cache is
[r(log2m+log2p+2)+2c]p , where r is the number of entries in each pointer cache. Typical values of r

required for good performance are discussed in the next section. This bit count includes the log2m

address tag bits, the log2p processor pointer bits, the pointer valid bit, and the exclusive state bit
needed for each pointer, plus the two state bits needed for each block in the data cache. No additional
coherence bits are needed in the shared memory since the tagged directories store this sharing
information only when a block is actually cached.

The tag cache directory [O’Krafka1990] is a variation of the pointer cache idea that uses two
levels of caches in the directory. The first level of the tag cache associates n pointers with each
address tag. When a block is shared by more than n processors, the corresponding entry in the tag
cache is overflowed to the second-level tag cache. This second-level cache uses the p+1-bit structure
of the full directory for each address tag. Overflows of this second-level tag cache are handled by
invalidating a randomly selected entry to be reused by another block. The number of bits dedicated
to maintaining coherence with this directory structure is p[r1(log2m+n log2p+2)+r2(log2m+p+2)+2c]

where r1 and r2 are the number of entries in the two levels of the tag cache.

The coarse vector tagged directory [Gupta1990] incorporates a mode bit into each pointer entry
to force the directory controller to interpret the pointer in one of two different ways. If the mode bit
is reset, then the v pointer bits are interpreted as n direct pointers to processors. Since log2p bits are
required to uniquely identify a processor, each entry can point to n=

�
v/log2p� unique processors. If

more than n processors attempt to simultaneously share the same block, the mode bit is set to indicate
that the pointer bits should be interpreted as pointing to one of p/g clusters, where there are g
processors per cluster. That is, when the mode bit is set, the i th bit of the v pointer bits will be turned
on to indicate that at least one of the processors in the i th cluster has a copy of the shared block.
Invalidation messages then will be sent to all of the processors in each cluster that has its
corresponding bit set in the tag cache entry. The total number of bits needed for coherence with this
directory structure is rcvp[log2m+max(p/g ,log2p)+3]+2cp , where rcv is the number of entries in the tag
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cache. The max function is needed to ensure that at least one complete processor number of log2p bits
can be stored in the v bits.

The LimitLESS directory, which was proposed as part of the Alewife project [Chaiken1991],
uses hardware and software to implement a combination of the n-pointers per address tag structure of
the previously discussed tag cache, plus the p+1-bit full directory. Specifically, when more than n
processors attempt to share a block, an interrupt service routine is invoked to emulate the complete
sharing information of the full directory. Since it is assumed that more than n processors will attempt
to share the same block infrequently, the performance of this combined hardware-software approach
should be comparable to that of the other tagged directories.

3.3.3. Cost and Performance Comparisons

There are two primary components of the hardware implementation cost of a cache coherence
mechanism: 1) the control logic required to implement the mechanism, and 2) the number of
memory bits needed to store the cache block sharing information. It is difficult to quantify the
control logic cost of the different coherence mechanisms without detailed circuit designs since the
complexity of this logic can vary considerably. With detailed designs, the implementation cost can
be measured as the VLSI chip area needed to implement the control logic, for instance, but this
comparison is beyond the scope of this study. Instead, the amount of memory used to store coherence
information is used for an approximate comparison of the implementation cost since it can be a
significant portion of the total cost of implementing the mechanism.

To compare the memory requirements of the different coherence mechanisms, the memory
overhead is defined to be the ratio of the total number of bits dedicated to coherence functions
divided by the total number of data bits in both the main memories and the data caches [Lilja1991].
The total number of data bits in the system is D=pbw(m+c), where p is the number of processors, b is
the number of words in each block, w is the number of bits per word, m is the number of blocks in
each of the p memory modules, and c is the number of blocks in each of the p caches. If Nx is the
number of bits dedicated to coherence functions for a particular coherence scheme, the corresponding
overhead is Ox=Nx /D .

Table 8 shows the memory overhead for several different directories that maintain different
amounts of block sharing information. In this table, the memory overhead is normalized to the
number of blocks in the data cache, c . The ratio of the number of pointer cache entries in each
memory module, r , to the number of blocks in each data cache is s=r/c , and k=m/c is the ratio of the
number of blocks in memory, m , to the number of blocks in the data caches.

A 4-way set associative pointer cache is used to provide a fair comparison of a realistic pointer
cache implementation. An invalidation on overflow policy is used to create free pointers when the
pointer cache overflows. A random replacement policy is used in both the pointer caches and in the
fully associative data caches. The word size is w=32 bits with p=32 processors, and the data cache
block size is b=1 word. Typical cache memory sizes are in the range of 64K (216) words to 256K (218)
words, and a typical memory module may contain from 2M (221) words to 16M (224) words. Thus,
typical values of k=m/c , which is the ratio of the number of blocks in each memory module to the
number of blocks in each data cache, are in the range of 8 to 256. The following simulations use
k=256. The data cache again is c=8 kbytes in each of the p=32 processors.

The network traffic generated by the different directories is shown in Figure 3(a-f) plotted
against their respective memory overheads. The number of pointer entries available in the pointer
cache tagged directory, r , relative to the number of blocks in the data cache, c , is varied from



24

Table 8: Normalized memory overhead for the directory mechanisms.

Scheme Overhead, Ox

1. (p+1)-bit full directory
bw(k+1)
k(p+1)+2

2. 2-bit broadcast directory
bw
2

3. n-pointer + broadcast directory
bw(k+1)

k(2+n+n log2p)+2

4. Linked list directory
bw(k+1)

2(k+1)log2p+2k+3

5. Pointer cache directory
bw(k+1)

s[log2(kc)+log2p+3]+2

s=r/c=1/32 to s=2/1, doubling with each data point. When s is small, there are not enough pointers
available to point to all of the processors that try to share cache blocks. As a result, pointers
frequently must be reused by randomly choosing an active pointer, and invalidating the block in the
processor to which it points. These frequent pointer invalidations produce a large number of
invalidation messages, which then generate a large amount of network traffic. In all of the programs
tested, a pointer is usually available when one is needed when the number of pointers available in the
pointer cache is the same as the number of blocks in the data caches (i.e. s=1). This one-to-one ratio
usually is adequate because the memory references tend to be uniformly distributed among all of the
memory modules. Thus, requests for pointers also tend to be uniformly distributed.

Even with this pointer cache size of s=1, the memory overhead of the pointer cache directory is
significantly smaller than the overhead of the other directories. The 2-bit broadcast directory has the
next lowest memory overhead since it stores only 2 bits for each block in the memory. However, it
does not maintain precise information about which processors have cached copies of blocks, forcing
it to broadcast all of its invalidation messages. These broadcasts produce extremely high network
traffic compared to the other directories. The overhead of the n-pointer directory increases in direct
proportion to n , the number of pointers it has available per block. It produces very high network
traffic when n=1 since it must resort to broadcasting whenever more than one processor attempts to
share the same block. Since fewer than four processors typically attempt to share the same block at
the same time in most of these traces (and in many other programs [Agarwal1988, Eggers1988,
Weber1989] ), n=4 pointers often is sufficient to reduce the network traffic of this mechanism to be
approximately the same as that of the full directory. The network traffic of the linked list directory is
the same as that for the full directory since both send invalidations only to those processors that
actually have a cached copy of the block. Its memory overhead is less than that of the full directory,
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however, since it maintains fewer total pointers.

The miss ratio of the pointer cache tagged directory follows a curve similar to its network
traffic. With a small pointer cache, many active blocks are invalidated to obtain free pointers. When
these active blocks are again referenced, they force the processor to miss. When the size of the
pointer cache increases to s=1, the data cache miss ratio improves to be the same as the full directory.
The other directories all produce identical data cache miss ratios since they all allow up to p
processors to simultaneously cache the same block. The precision of the block sharing information
each maintains (i.e. the memory overhead) affects only the number of invalidation messages they
need to generate, and thus affects only the total network traffic and not the miss ratio.

While the network traffic and the miss ratio produced by the linked list scheme is the same as
that produced by the full directory, the average memory latency of the linked list scheme is expected
to be higher than that of the directory. This longer delay occurs because the entire linked list for a
shared block must be traversed when the block is invalidated. This list traversal time adds directly to
the delay for the write that triggered the invalidation when a strongly-ordered consistency model is
used. With a weakly-ordered model, however, much of this delay may be hidden. With a full
directory scheme, on the other hand, the generation and sending of all of the invalidation messages
can be pipelined to further reduce the memory delay.

These simulations demonstrate that the memory overhead of the directory mechanisms is
directly related to the precision of the block sharing information they maintain, and inversely related
to the corresponding memory traffic. That is, more information must be stored in order to reduce the
network traffic. However, a tagged cache directory can provide the low network traffic of a full
directory while using very little memory since it maintains the sharing information only for blocks
that are actually cached. The additional cost of the tagged directory compared to a traditional
directory is the relatively more complex control logic it requires.

3.4. Cache Block Size

The cache block size, also called the line size, is the number of consecutive memory words
updated or invalidated as a single unit. The fetch size, on the other hand, is the number of words
moved from the main memory to the cache on a miss. While these two parameters do not have to be
the same, the following discussion assumes that a single block is fetched per miss. Increasing the
number of words in a cache block can reduce the miss ratio because of the high probability that
memory locations physically near recently referenced locations will be referenced in the near future
(i.e. spatial locality). When the block size becomes too large, the miss ratio increases since the
probability of using the additional fetched data becomes smaller than the probability of reusing the
data replaced. The block size that minimizes the average memory delay generally is smaller than the
block size that minimizes the miss ratio because the additional time required to transfer the larger
blocks can overwhelm the latency to receive the first word [Przybylski1988, Smith1987]

In addition to allowing a cache to exploit spatial locality, another advantage of blocks larger
than a single word is that they reduce the memory overhead of the directory coherence mechanisms.
Since pointer information is maintained only for blocks and not for individual words, Table 8 shows
that the cache coherence memory overhead is inversely related to the block size. For example,
doubling the block size will cut the overhead in half. This relationship is not true for the compiler-
directed coherence mechanisms, such as version control, however, since they still need a dirty bit per
word, independent of the block size.

Unfortunately, cache blocks larger than a single word can introduce false sharing in which two
nonshared words end up occupying the same block. For instance, when a loop scans through an
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array, the stride is the array subscript increment from one iteration to the next. If the stride is one,
consecutive elements of the array will be accessed by consecutive iterations of the loop. If the
iterations are distributed sequentially across the processors, consecutive array elements will be
referenced by different processors. When the cache block size is greater than one array element, and
the array elements are arranged linearly in memory, many processors will need a copy of the same
block, causing a large amount of sharing. This type of sharing is referred to as false sharing since the
processors are not actually sharing data, but are sharing memory blocks due to the placement of the
array elements in memory. As long as the processors only read the array this sharing is not harmful,
but when a processor attempts to write to an element when using an invalidation protocol, all the
copies of the written block will be invalidated, even though not all of the elements are changed. In
the worst case, every write to the shared block will cause an invalidation, and every read will be a
cache miss, so that blocks will ping-pong between caches. As a result, the processor miss ratios and
the memory network traffic increase compared to a system with a block size of one word, thereby
increasing the average memory delay.

To eliminate the false sharing problem, many dynamic coherence schemes use small blocks, in
which case they lose the potential benefits of exploiting spatial locality [Agarwal1988a, Eggers1989a,
Goodman1983, Lee1987]. The statically detected coherence schemes also tend to favor small block
sizes. With block sizes larger than one word, the compiler must know the block size and it must
control the placement of the data in the memory. If the compiler ignores the block size, false sharing
can introduce dependences between otherwise independent program statements. These hidden
dependences then can cause incorrect program execution since coherence will not be correctly
maintained. The solution to this problem is to use one word blocks, or to restrict data placement so
that each block contains only one unique variable name. For arrays, this restriction has little effect
beyond some fragmentation in the last block allocated to the array, but if large blocks are used, a
substantial amount of memory space may be wasted on scalar variables since only one variable can
be assigned to a block.

3.4.1. Performance Effects

Figure 4 demonstrates how the cache block size affects the network traffic and the miss ratio for
the p+1-bit full directory. The other directory schemes are not shown since they have similar
behavior, and the version control scheme is not simulated with block sizes larger than one word due
to compiler limitations. Each word is four bytes, and the block size is varied from 1 to 16 words (4 to
64 bytes). The fetch size is set to one block, so that one complete block is fetched on a miss. The
parallel loop iterations are scheduled with iteration 1 executing on processor 0, iteration 2 on
processor 1, and so on. (The effects of different scheduling strategies have been discussed elsewhere
[Lilja1992]. )

The lowest miss ratios for arc3d and simple24 occur with a block size of four words, indicating
that there is some spatial locality that can be exploited in these programs when using this scheduling
strategy. As the block size is increased, however, the larger blocks begin to evict blocks that are still
in use, which then increases the miss ratio. For the other programs tested, the lowest miss ratios are
produced with single-word blocks due to significant amounts of false sharing with blocks larger than
a single word.

Figure 4 also shows that the total network traffic increases as the block size increases. Figure 5
separates this network traffic into the component required to move the blocks into the caches on a
miss, and the component required to send the invalidation messages from the directory to the
individual processors. For the arc3d and simple24 programs, the network traffic due to misses is
relatively flat as the block size increases from 4 to 16 bytes. Since in these two programs the miss
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ratio decreases as the block size increases to 16 bytes, there are fewer blocks fetched, but each block
is larger. The result is that the miss traffic remains approximately constant until the miss ratio begins
to increase when the block size is greater than 16 bytes. The invalidation traffic produced by these
two programs decreases slightly as the block size increases from 4 to 16 bytes indicating that there is
little false sharing until the block size is larger than 16 bytes. This reduction in invalidation traffic
shows that the caches are exploiting the available spatial locality, which also is reflected in the
reduced miss ratios.

In the other programs, the miss traffic increases significantly as the block size is increased due
to the combination of higher miss ratios, and the fetching of larger blocks. The increases in the
invalidation traffic with the larger blocks for these programs shows that the increases in the miss
ratios are due, at least in part, to the false sharing effect. That is, as the block size is increased there is
more false sharing, which then requires more invalidations to maintain cache coherence. It is
interesting to note that the invalidation traffic generally contributes about half as much to the total
traffic as does the miss traffic. Thus, the larger blocks tend to cause more network traffic than the
traffic produced by the additional invalidation messages from the false sharing effect.

4. Hybrid Techniques

The use of the different cache coherence mechanisms are not mutually exclusive in that several
of the different mechanisms can be combined into a single system. This section presents several such
hybrid mechanisms.

4.1. Compiler Assistance for Reducing the Directory Size

By allocating pointers to blocks only as they are referenced, the tagged directories can
significantly reduce the memory requirements of a directory-based cache coherence scheme. They
still waste some directory resources, however, by allocating pointers to blocks that cannot cause
coherence problems, such as blocks that are never written or are never shared. To reduce the number
of pointers allocated, it is possible to use the compiler to mark all private and read-only blocks as not
needing coherence enforcement. Several studies [Agarwal1988a, Eggers1988, Lilja1989,
Weber1989] have shown that a substantial fraction of all blocks referenced by a program may be
private or read-only, and thus could be marked as not needing coherence enforcement.

When used with a tagged directory, this compiler marking can significantly reduce the number
of pointers needed in a given program, and can thereby substantially reduce the required directory
size [Lilja1991a]. More complex compile-time analysis techniques can mark each individual
memory reference as needing a pointer allocated or not [Nguyen1993]. This more precise marking
can reduce the time a pointer is needed for a specific memory shared location, thereby allowing
pointers to be reused more frequently than with no marking. This frequent reuse further reduces the
size of the directory needed to maintain a given level of memory performance.

4.2. Combining Multiple Coherence Mechanisms

The DASH distributed shared memory multiprocessor prototype developed at Stanford
University [Lenoski1992, Lenoski1990] incorporates two different dynamic coherence mechanisms, a
snooping bus and a directory, and two different coherence enforcement mechanisms, invalidating and
updating, into a single system. The processors in this system are divided into groups, or clusters,
with four high-performance MIPS R3000 processors in each cluster. Cache coherence within each
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cluster is maintained using a bus-based snooping protocol [Papamarcos1984]. Coherence among
clusters, in contrast, is maintained using a directory-based invalidation protocol where the directory
appears to be another processor on the snooping bus in each cluster.

An interesting feature of this directory is that it in addition to the standard invalidation protocol,
it also supports two different update mechanisms. The first is an update-write operation in which the
new data produced by the write is directly distributed to all processors with a cached copy of the
block being written. The sharing information stored in the directory is used to determine which
processors need to be updated. The second update mechanism is called the deliver operation. With
this operation, the processor writing to a block writes into the cache using the invalidate protocol.
When it has completed its sequence of writes, it issues a deliver instruction specifying which clusters
should receive a copy of the block. The directory then sends a copy to each of the specified clusters
and the directory is updated appropriately. This write mechanism is useful when the desired
destination clusters are unlikely to have a copy of the block already cached, thereby making the
update-write inadequate.

4.3. Compiler-Plus-Directory Coherence Mechanism

While the version control [Cheong1989] and time-stamp [Min1989] coherence mechanisms
keep extra state information in each cache to help preserve temporal locality between parallel tasks,
another mechanism that combines static and dynamic coherence detection [Chen1991] keeps this
extra state information in a directory in the memory modules. The directory monitors the memory
references generated by the program and dynamically updates its state to precisely determine which
caches contain which memory blocks, and whether the blocks have been modified. At the parallel
task boundary, each processor sequentially scans through its cache and invalidates the cache entries
that the stored directory information specifies should be invalidated. Of course, this sequential scan
could significantly increase the execution time of the program, but this coherence mechanism may be
able to reduce the network traffic compared to a conventional directory. Unlike a conventional
directory-based coherence mechanism, this approach uses the directory only to ensure that all cached
blocks are updated with the correct state at the parallel task boundary, and not to perform dynamic
invalidations. Consequently, it implicitly implements a weakly-ordered consistency model.

4.4. Extending the Memory Hierarchy into the Network

Instead of using the interconnection network for only moving data between the memory
modules and the caches, it is possible to extend the memory hierarchy into the network itself. It may
be possible to simplify the cache coherence mechanism, and to simultaneously improve performance,
by caching data within the switches of the network. For example, the Memory Hierarchy Network
[Mizrahi1989] adds a local memory to each switch in the network to cache the data being referenced
by the processors that are connected to the switch. In addition, the switches maintain a distributed
directory of where data is stored in the system. To simplify the coherence mechanism, only a single
copy of a block is allowed in the system. This single copy then migrates through the network as it is
referenced by the different processors.

One of the critical parameters in this type of system is the block migration policy. This policy
determines when a shared block should migrate, and how far up the network it should move.
Simulations of this network with different migration policies have indicated that distributing the
directory throughout the network can significantly improve the performance of the memory system,
while storing data at intermediate levels of the network has much less of an impact on performance.
Additional research is needed to fully evaluate this idea of extending the memory system into the
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interconnection network, but early results suggest that it is an approach that may be able to
significantly improve multiprocessor memory performance.

5. Conclusions

Using private data caches in a shared memory multiprocessor can significantly reduce the
average time required to access memory, but these private caches introduce the complexity of the
cache coherence problem. This paper has identified several important architectural issues that affect
the performance and implementation cost of a cache coherence mechanism. Trace-driven simulations
have been used to quantify the performance impact of these different issues. These architectural
issues affecting the cache coherence mechanism are:

5.1. Coherence detection strategy

The coherence detection strategy determines when and how memory references are
disambiguated to detect that a possible incoherence exists among the data caches and the main
memory. The dynamic coherence detection mechanisms examine the actual memory addresses
generated at run-time. The resulting perfect memory disambiguation produces low miss ratios, but
the dynamic mechanisms tend to have relatively high network traffic due to the messages required to
maintain coherence. The static coherence detection schemes, in contrast, examine memory references
at compile-time. Since these techniques rely on imprecise compiler-based data dependence tests to
disambiguate memory references, they tend to invalidate more cache entries than are necessary to
maintain coherence, and thus produce miss ratios that are higher than the dynamic mechanisms. The
self-invalidation used by the static mechanisms tends to compensate for their lower miss ratios by
reducing the network traffic compared to that produced by dynamic coherence detection strategies.

5.2. Coherence enforcement strategy

After detecting a possibly incoherent memory access, the cache coherence mechanism must
prevent the stale data value from being referenced by a processor. The invalidation coherence
enforcement strategy forces processors to invalidate blocks within their caches. If the block is
referenced again, a miss will be generated which will cause the processor to fetch the current value of
the block either from the main memory, or from another processor. With an update enforcement
strategy, the new value of a block created by a write operation is automatically distributed to all
processors with a cached copy of the block. When these processors reference the block again, they do
not generate another miss service request. As a result, the update strategy tends to produce lower
miss ratios than the invalidate strategy. The lower miss ratio of updating comes at the expense of its
significantly higher network traffic when compared to invalidating, however.

5.3. Precision of block sharing information

The amount of block sharing information that is maintained by the coherence mechanism has a
direct impact on the implementation cost of the mechanism, as measured by the number of memory
bits required to store the sharing information, and a direct impact on the performance of the memory
system. To reduce the memory requirements, the coherence mechanism, such as the n-pointer plus
broadcast directory, can store a relatively small amount of information about which processors have a
copy of a cached block. The mechanism then must resort to broadcasting of the invalidation
messages when the number of processors sharing a block overflows the available resources. This
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approach trades-off lower memory overhead with higher network traffic when compared to a
directory that stores complete sharing information. However, recently proposed tagged directory
schemes can achieve very low memory overhead by storing sharing information only for those blocks
that are actually cached. These directories still can maintain low network traffic since they are able to
store sufficient sharing information for each cached block.

5.4. Cache block size

An important factor affecting the performance of the memory system is the cache block size,
which is the number of words stored in the cache as a single unit. The use of cache blocks larger than
a single word may allow the processors to exploit the spatial locality typical of memory referencing
behavior. However, memory references in a multiprocessor system tend to be spread out among the
processors which reduces the available spatial locality compared to a uniprocessor system. In
addition, blocks larger than a single word introduce the false sharing problem which tends to make
multiprocessor systems favor small cache block sizes. In some application programs, it may be
possible to reduce the miss ratio by using multiword blocks, but simulation studies suggest that single
word blocks minimize the network traffic by reducing both the miss service traffic and the
invalidation traffic.

5.5. Summary

Finally, it is important to point out that it is possible to incorporate several different cache
coherence mechanisms into a single system. For instance, the DASH prototype has demonstrated a
coherence mechanism that incorporates both a bus-based snooping coherence mechanism and a
directory-based coherence mechanism, and it gives the programmer a choice of both updating and
invalidating coherence enforcement strategies. In addition, it is possible to use compile-time
information to augment the performance of a coherence mechanism; for instance, to reduce the size
of the directory by reducing the number of coherence pointers that need to be allocated, and by
reducing the time they need to be active. Since each of the factors affecting the cache coherence
mechanism produces different trade-offs in terms of miss ratios and network traffic, it is likely that
these hybrid approaches will provide the best opportunity for increasing the performance and
reducing the implementation cost of the cache coherence mechanism in large-scale shared memory
multiprocessors.
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Figure 4: Effect of cache block size on miss ratio
and network traffic (bytes/reference).
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Figure 5: Components of total network traffic due to cache misses
and due to invalidations from data sharing.


