
Modeling Uncertainties in Publish/Subscribe Systems

Haifeng Liu and Hans-Arno Jacobsen
Department of Electrical Computer Engineering

Department of Computer Science
University of Toronto

hfliu@cs.toronto.edu, jacobsen@eecg.toronto.edu

Abstract

In the publish/subscribe paradigm, information
providers disseminate publications to all consumers who
have expressed interest by registering subscriptions. This
paradigm has found wide-spread applications, ranging
from selective information dissemination to network man-
agement. However, all existing publish/subscribe systems
cannot capture uncertainty inherent to the information in
either subscriptions or publications. In many situations,
exact knowledge of either specific subscriptions or publi-
cations is not available. Moreover, especially in selective
information dissemination applications, it is often more
appropriate for a user to formulate her search requests
or information offers in less precise terms, rather than
defining a sharp limit. To address this problem, this paper
proposes a new publish/subscribe model based on possi-
bility theory and fuzzy set theory to process uncertainties
for both subscriptions and publications. Furthermore, an
approximate publish/subscribe matching problem is defined
and algorithms for solving it are developed and evaluated.

1 Introduction

A new data processing paradigm – publish/subscribe – is
becoming increasingly popular for information dissemina-
tion applications. Publish/subscribe systems anonymously
interconnect information providers with information con-
sumers in a distributed environment. Information providers
publish information in the form of publications and infor-
mation consumers subscribe their interests in the form of
subscriptions. The publish/subscribe system performs the
matching task and ensures the timely delivery of published
events to all interested subscribers. Example applications
range from selective information dissemination [18], on-
line shopping, online auctioning [17] to location-based ser-
vices [6] and sensor networks [21], to just name a few.

Publish/subscribe has been well studied and many
systems have been developed supporting this paradigm.
Existing research prototypes, include, among others,
Gryphon [3], LeSubscribe [10], and ToPSS [2, 16]; in-
dustrial strength systems include various implementations
of JMS, the CORBA Notification Service, and TIBCO’s
Tib/Rendezvoud product.

All existing publish/subscribe systems are based on a
crisp data model, which means that neither subscribers nor
publishers can express uncertain, imprecise, or vague in-
formation in subscriptions and publications, respectively, –
often naturally inherent to the application domain. In this
traditional crisp model, subscriptions, are evaluated to be
either true, or false, for a given publication. Here, we refer
to publications and subscriptions from this model as crisp.

However, in many situations exact knowledge to either
specify subscriptions or publications is not available. In
these cases, the uncertainty about the true state of the world
has to be cast into a crisp value that defines absolute lim-
its. That means, the uncertain state is “approximated” with
a definite crisp value. Moreover, for a user of an application
based on the publish/subscribe paradigm it may be much
simpler to describe the state of the world with uncertain, im-
precise, and vague concepts, rather than to guess or assess
an absolute, but possibly incorrect, value. Often, it may not
even be possible to determine an absolute value, since the
property described is of a gradual nature. We next illustrate
this dilemma with a number of concrete application scenar-
ios and use cases.

Selective information dissemination: In an online auc-
tion or online shopping context, information consumers
may want to submit subscriptions about music CDs with
a constraint on price expressed as “cheap”, a constraint on
style expressed as “seventies”, and a constraint on melody
expressed as “happy”. Similarly, subscriptions referring to
characteristics or moods, may refer to the “blueness” and
“lightness” of objects, or ask for a “bearish” or a ”bullish”
mood. Also, a “fast-paced” auction may trigger an alert set
by a user. On the other hand, information providers may not

have exact information for all items published. In an online
real-estate market, for instance, an agent may not know the
exact age of an apartment, so she simply describes it as an
“old” object, “close” to downtown, with a “sunny” appear-
ance, but can not describe it with definite values.

All these constraints designate situations that cannot be
crisply evaluated – that is based on sharp boundaries and
true and false assessments. A given object may satisfy each
constraint to a certain degree, since boundaries are impre-
cisely defined and not absolutely set. This results in further
possibilities to trade-off a deficiency of match of one con-
straint against a closer match of another constraint. More-
over, it is clear that these constraints are highly context sen-
sitive and depend on the users’ subjective perception, which
needs to be expressible by a publish/subscribe model sup-
porting the modelling of uncertainty.

Further examples can be drawn from the areas of
location-based services and sensor networks, where mea-
surement precision is traded-off against accuracy and cost.
Location positioning of mobile users is only possible with a
certain degree of accuracy and sensors only return measure-
ments distributed within an error-interval around the true
value. Both application areas lend themselves well to data
processing based on the publish/subscribe paradigm [6, 21].

For these reasons, we think, it is of great advantage to
extend the publish/subscribe paradigm and develop an ap-
proximate matching scheme that allows the expression and
processing of uncertainty for both subscriptions and publi-
cations. We refer to subscriptions and publications in this
extended model as approximate.

We identify five interesting cases according to the dif-
ferent combinations of subscriptions and publications ex-
pressing uncertainty. These cases are: 1. crisp subscrip-
tions and crisp publications (traditional publish/subscribe),
2. approximate subscriptions and crisp publications, 3.
crisp subscriptions and approximate publications, 4. ap-
proximate subscriptions and approximate publications, and
5. the combination of crisp and approximate constraints
in subscriptions and publications. Cases 2 to 5 constitute
new publish/subscribe system models not previously inves-
tigated.

All existing publish/subscribe systems are based on a
crisp data model that cannot capture notions of uncertainty
in either publications or subscriptions. The only exception
is the A-ToPSS software demonstration – the Approximate
Matching-based Toronto Publish/Subscribe System [16] –
that has introduced a subscription language model that can
express notions, such as “cheap”, “large”, and “close to”
as predicate constraints in subscriptions. In this paper we
describe the theoretical basis of A-ToPSS, develop a model
that embraces all five cases above, and present a detailed ex-
perimental evaluation. The contributions of this paper are:

1. An original and highly flexible publish/subscribe sys-

tem model supporting the expression of uncertainties
in the subscription language model and the publica-
tion data model. This model supports all five cases
described above and is fully implemented. The model
allows for fine-grained adjustment to express different
users’ subjective perception of the concepts modelled
and tune the matching relations. A subscription can be
any arbitrary boolean function; most publish/subscribe
systems developed to date allow for conjunctive sub-
scriptions only.

2. The capturing of uncertainty in subscriptions
and publications raises questions regarding the
matching of crisp/approximate subscriptions with
crisp/approximate publications. This paper articulates
the approximate publish/subscribe matching problem
and develops algorithms for solving it.

3. A thorough experimental evaluation of the proposed
approximate matching algorithms is presented that
compares traditional, crisp publish/subscribe with ap-
proximate publish/subscribe. The comparison is based
on matching performance, memory use, the number of
matches, matching precision and recall.

4. A brief experimental analysis of a reduced encoding
of data structures in the approximate matching al-
gorithms. Approximate publish/subscribe trades off
uncertainty of input against computational precision.
The reduced representation admissible for approxi-
mate matching exploits this trade off to save storage.

The paper is organized as following. In Section 2, we
will briefly introduce the necessary background material
our approach is based on, namely possibility theory and
fuzzy set theory. The various publish/ subscribe models
supporting uncertainty are developed in Section 3. Sec-
tion 4 describes our algorithms and data structures. Sec-
tion 5 presents the experimental evaluation and Section 6
summarizes related work.

2 Background

A key question in our work is how to express and process
uncertainty in publish/subscribe systems. A simple method
to express uncertainty about an imprecisely known value is
to define it as an interval. For example, the interval [50,
150] would be reasonable to represent the age of a piece
of “post-modern” painting in an online auction. In a crisp
system, it needs two predicates to represent this interval:
(age ≥ 50) and (age ≤ 150). Moreover, this method im-
poses a sharp boundary to differentiate members belonging
to the set of post-modern paintings from non-members. A
painting which was created 49 years ago may satisfy the

subscriber, but it won’t be delivered to the subscriber since
it is out of the domain of the interval [50,150]. To overcome
this limitation, fuzzy set theory [14] and possibility the-
ory [9] have been developed. The publish/subscribe model
we are introducing is based on these theories to model un-
certainty in publications and subscriptions. In this chapter
we give a brief overview of the key concepts used in our
work, a more detailed discussion can be found in [14, 9].

2.1 Fuzzy set theory

Sharp boundaries that differentiate between objects be-
longing to a set versus objects not belonging to a set can be
eliminated by introducing degrees of membership. This is
the approach taken by fuzzy set theory.
Definition: A fuzzy set M̃ on a universal set U is a set that
specifies for each element x of U a degree of membership
to the fuzzy set M̃ . It is defined by a membership function
(a.k.a. characteristic function),

µM̃ : U → [0, 1]

that specifies for each x ∈ U its degree of membership
µM (x) to the fuzzy set M̃ .2

The membership function is a generalization of the char-
acteristic function in classic set theory. It allows to express
gradual set membership. For example, we can define a
possible membership function for the fuzzy set of “post-
modern paintings”as shown in Figure 1, where the domain
ranges over the possible ages in the given application con-
text. We use membership functions to represent predicates
in subscriptions that constraint uncertain and vague con-
cepts, such as “price is cheap” “age is old”, and “location is
close to”.

µ

1

0.67

200 age

post-mordern
(x)

45 10030

Figure 1. The membership function repre-
senting “old art piece”.

There are many possible function representations to ex-
press gradual set membership. Here, we use a parametric
representation as suggested by many authors [9, 14]. The
membership function of a fuzzy set M̃ can be described
with a pair of functions, defined on <+ → [0, 1], denoted
by L and R, such that L (and also R) is monotonically in-
creasing (and monotonically decreasing) and is upper semi-
continuous (u.s.c). This function pair and four parameters

(m,m,α, β) ∈ <2 ∪ {+∞,−∞} define the membership
function of a fuzzy set M̃ as follows:

µM (u) =

L(u) ∀u ∈ [m− α,m]
1 ∀u ∈ [m,m]
R(u) ∀u ∈ [m,m+ β]

A fuzzy set is characterized by its membership func-
tion, so without ambiguity we can say M̃ is defined by
µM (u) = (m,m,α, β)LR(u). This representation can be
used to model a wide range of different gradual set mem-
bership relations (e.g., bell-shaped, trapezoidal, triangular
etc.)
Definition: [m,m] is the core of fuzzy set M̃ , denoted by
µ̇M . m and m are referred to the lower and upper model
values of M̃ , respectively. The support of a fuzzy set M̃ ,
denoted by S(µM), is the domain of values where µM (u) >
0. If M̃ is of bounded support, then S(µM)=[m−α,m+β].
α and β are called the left-hand spread and the right-hand
spread (cf. Figure 1).2

There are many advantages of this representation. First,
it eliminates the sharp boundaries inherent to a crisp or
interval-based representation. Second, it is a very gen-
eral representation and it is straight forward to implement.
Third, this formalization is very expressive. Finally, it is
easily extended to represent crisp sets defined through crisp
constraints. In this case the membership function degener-
ates to the characteristic function as follows:

µp≥v(x) =

{

1 if x ∈ [v,∞)
0 if x 6∈ [v,∞)

Operations involving two or more fuzzy sets are gener-
ally defined by a mapping T that aggregates the member-
ship functions as follows:

µop(A1,...,An)(x) = T (µA1(x), ..., µAn
(x))

Intersection, union, and other set operations are defined in
this manner. The operator T is referred to as a triangular
norm (T-norm). T-norms that model set intersection must
satisfy the following axioms (a generalization from clas-
sical set theory): T (0, 0) = 0, T (a, 1) = T (1, a) = a
(boundary condition), T (a, b) ≤ T (c, d) if a ≤ c and b ≤ d
(monotonicity), T (a, b) = T (b, a) (commutativity), and
T (a, T (b, c)) = T (T (a, b), c) (associativity).1 Set union
is defined and motivated in a similar manner. Operators that
define set union are denoted as S-norms. Different S-norms
and T-norms are used in the literature to represent set union
and set intersection. A popular choice is to use maximum
as union and minimum as intersection.

1The first axiom imposes the correct generalization to crisp sets. The
second axiom implies that a decrease in the membership values in A or B
cannot produce an increase in the membership value in A intersection B.
The third axiom indicates that the operator is indifferent to the order of the
fuzzy sets to be combined. Finally, the fourth axiom allows us to take the
intersection of any number of sets in any order of pairwise groupings.

2.2 Possibility Theory

Possibility theory formally defines measures, which re-
flect users’ subjective uncertainty of a given state of the
world [9]. The measures express the confidence in the pos-
sibility that x is A. Possibility measures are based on pos-
sibility distributions, πA(x), that quantify these conditions.

A possibility measure that has values for each element in
the universe of discourse can be interpreted by the member-
ship function of a fuzzy set. For example, the antique shop
has an art piece, where the age is described as post-modern:

πage−of−art−piece(x) = µpost−modern(x).

We use two measures, referred to as possibility measure(Π)
and necessity measure(N) to express the plausibility and
necessity associated with each attribute in a publication. A
possibility measure quantifies information about the plau-
sibility of occurrence of the state represented by the at-
tribute. If it is completely possible to be true then possi-
bility is Π(A) = 1, if it is impossible then the possibility
is Π(A) = 0; intermediate numbers between [0,1] are also
admissible. A necessity measure is introduced to comple-
ment the information available about the state described by
the attribute. It is associated with the degree with which the
occurrence of A is certain. If an event A is sure to happen
without any doubt, then necessity N(A) = 1.

The relationship between possibility and necessity satis-
fies2:

N(A) = 1−Π(A)

∀A,Π(A) ≥ N(A).

3 Publish/Subscribe System Model

Our objective is to model uncertainties in subscriptions
and publications, and to define an approximate matching
semantic for different cases of matching crisp with approx-
imate subscriptions and publications.

3.1 Language and Data Model

Subscription language model: A subscription defines
user’s interests through a Boolean function over a number
of crisp and approximate predicates. In the following we
just refer to predicates, unless their approximate character is
especially underlined. Each predicate expresses a constraint

2A possibility distribution is similar to a probability distribution. How-
ever, the difference between both is that there is no restriction that the sum
of all possibilities on the whole universe must be equal to 1. Another dif-
ference is that probability distributions must be defined on disjoint subsets,
but possibility distribution can be defined on distinct (as long as not equal)
subsets. Thus, a possibility is a more general notion than a probability. [9]

over a domain of values and is defined through an attribute,
an operator, and a value triple. In the predicate, “x is Ã”, x
is the attribute name, ’is’ is the operator, and Ã is a fuzzy
set. The fuzzy set represent a fuzzy constraint over all pos-
sible values the attribute can take on. The predicate is eval-
uated by applying the membership function of the fuzzy set
to the attribute’s value in publication. The resulting value
constitutes the degree of match of the predicate. Note, this
may be any value in the interval [0, 1]. Thus, the truth value
(i.e., the degree of match) of each predicate, “x is Ã,” is
uniquely defined by µA(x). Crisp predicates can be defined
in the same manner. In the crisp case, however, the mem-
bership function degenerates to the characteristic function
over the set of values defined by the predicate (i.e., it yields
1 for all set members and 0 otherwise.)

Predicate matching degrees are aggregated in a subscrip-
tion relation to yield a final degree of match for each sub-
scription. We use R to represent the relation of the Boolean
function over predicates defining a subscription. R repre-
sents conjunction, disjunction or any other Boolean opera-
tion connecting individual predicates. Thus, a subscription,
s, is formalized as follows:

s(x1, · · · , xm) = R(µA1(x1), · · · , µAm
(xm)).

Here, the subscription, s, consists of m predicates of the
form, “xi is Ãi”, where R defines the Boolean function re-
lating all predicates in s. For example, s may be in conjunc-
tive form:

s(x1, · · · , xm) = x1 is Ã1 ∧ · · · ∧ xm is Ãm

or disjunctive form, or any other form. R employs standard
fuzzy set operators (cf. Section 2) to define the subscription
relation. No limitation is imposed by the form of s. That is
s may be any Boolean function, not necessarily in normal
form. Mathematically, R constitutes a function in the hy-
perspace defined over the Cartesian product of the domains
of xis. For a given input vector (x1, · · · , xm) in this hyper-
space, R yields the truth value of s for this input.

As a concrete example, let us define a subscription for a
student who is looking for an apartment with constraints on
price, size, and age. The subscription that specifies these
constraints looks as follows:

S : size is medium AND

price is no more than $450 AND

age is not very old

The second predicate constrain the attribute price. It is de-
fined in a crisp manner. It can be represented by:

µ≤450(x) =

{

1 if x ≤ 450;
0 if x > 450;

The first and third predicates constitute approximate predi-
cates. We use the following membership functions to repre-
sent the concept of “medium” and “old”, respectively.

µmedium(x) =

0 if x ≤ 40;
x−40
10 if 40 < x < 50;
1 if 50 ≤ x ≤ 70;

1− x−70
10 if 70 < x < 80;

0 if x ≥ 80;

µold(x) =

0 if x ≤ 40;
x−40
40 if 40 < x < 80;
1 if x ≥ 80;

Formally the subscription is represented by:

s(x1, x2, x3) = min(µmedium(x1), µ≤$450(x2), 1− µ
2
old(x3)),

where min is used to model a conjunct. To demonstrate
some features of fuzzy set theory, we use the negation of
the membership function to define the qualifier “not” and
the qualifier “very” through the squaring (i.e., damping) the
fuzzy set’s membership function.

Publication data model: Publications describe real
world artifacts or describe states of interest through a set of
attribute value pairs. In our model we account for the fact
that for certain attributes precisely defined values may not
be available or cannot be defined. In these cases we use a
possibility distribution, as defined in Section 2, to represent
the attributes’ approximate values. These latter attributes
are also referred to as approximate attributes, whereas at-
tributes with exactly defined values are referred to as crisp
attributes. However, our model integrates both kinds of at-
tributes and does not distinguish between them. In the at-
tribute value pair, “(A, π(x))”, A is the attribute and π is
the “value” – crisp or approximate. The possibility distribu-
tion, π, expresses that it is possible that the attribute, A, has
the value, x, and quantifies this with a possibility degree,
π(x). The possibility distribution is defined by a fuzzy set
that yields the possibility degree for the value x, as defined
by the underlying fuzzy set’s membership function. Crisp
attributes, “(A, x0),” are formalized analogously; π degen-
erates to a function that yields 1 for input x0 and 0, other-
wise. For short, we describe the attribute value pair, “(A,
π(x))”, simply as πA(x). A publication is thus defined as a
vector of attribute value pairs:

p = (πA1(x), πA2(x), · · · , πAn
(x))

For example, in an apartment that is advertised for rent as:

p = ((size, 60m2), (rent, cheap)),

the first attribute is crisp; it defines a value for attribute size.
The second attribute is approximate; it is qualified as cheap,
which is a fuzzy set that defines the degree of possibility for

each value of the domain of discourse (i.e., all admissible
rent values) as being “cheap”. More formally, this publi-
cation can be represented by a vector of attribute values as
follows:

P = ((size, π60), (rent, πcheap))

where

π60(x) =

{

1 if x = 60;
0 if x > 60 or x < 60

πcheap(x) =

1 if x ≤ 1200;
1− x−1200

300 if 1200 ≤ x ≤ 1500;
0 if x > 1500

3.2 Approximate Matching

In the crisp publish/subscribe model a subscription, ei-
ther matches a publication, or does not match it. However,
in the approximate model, either the subscription, the pub-
lication, or both may refer to concepts of uncertainty and an
evaluation to, either true, or false no longer captures the true
state, which, given the uncertainty involved, is somewhere
in between true and false. In the approximate model each
subscription is therefore assigned a degree of match for each
publication processed by the system. Individual subscrip-
tion can match a given publication more or less, depending
on this degree of match.

With this matching semantic a much larger number of
subscriptions will match than before, as all matches with
degrees greater than 0 are perspective matching candidates.
Users’ perception of what constitutes a “good” match ver-
sus a “bad” match will certainly differ. Furthermore, a large
number of slightly matching subscriptions may not be a
useful idea, since the publish/subscribe system will have
to process a large amount of notifications and users may
be overwhelmed with notifications about publications that
only marginally meet their actual interests. For these rea-
sons, the approximate matching model introduces a number
of parameters to control the tolerance of a match on a very
fine-granular basis. These parameters offer great flexibility
and control over the matching process, and allow to fine-
tune the approximate publish/subscribe model on a single-
user basis (i.e., predicate and subscription basis.) While this
may seem as an overwhelming amount of parameters to set,
it offers great flexibility. All parameters are initialized with
default values that do not affect the matching process, such
that, in the default case, all possible matches are signaled.

These parameters are the predicate thresholds θΠ and θN
and the subscription thresholds ωΠ and ωN . We provide fur-
ther motivation for these thresholds below. With these pa-
rameters a publication matches a subscription, if its degrees
of match evaluates to values larger than these thresholds.

The general form of subscriptions and publications is as
follows:

sωΠ,ωN (x1, · · · , xm) = R(µ
θΠA1

,θNA1

A1
(x1), · · · , µ

θΠAm
,θNAm

A1
(xm)).

p = (πA1 (x1), πA2 (x2), · · · , πAn
(xn))

The approximate matching problem can now be stated as
follows. Given a set of subscriptions S and a publication p
identify all s ∈ S such that s and p match with a degree of
match greater than the thresholds defined on s.

We define a match between a subscription and a publi-
cations as a measure of the possibility and necessity with
which the publication satisfies the constraints expressed by
a subscription. We use the pair (ΠAi

, NAi
) to denote the

evaluation of this measure. Technically speaking, the prob-
lem comes down to measuring the match between the pred-
icate, µAi

(xi), and the value, πAi
(xi) for all i and for all x

and aggregating the resulting values in the subscription rela-
tion R. This measure is taken by computing the intersection
between µAi

and πAi
. Next, we define this measurement

process more formally.
Definition:: The possibility and necessity of a match be-
tween µ and π is computed as

Π = sup
x

min(µ(x), π(x))

N = inf
x

max(µ(x), 1− π(x)),

respectively.2
inf is the “infimum” and sup is the supremum. For finite

domains both can be replaced by the “minimum” and the
“maximum” operator, respectively. However, for infinite
domains the more general inf/sup operators are required,
which is the reason for using them in the above equations.
Definition:: Formally, a publication, p, matches a subscrip-
tion, s, if and only if:

∀i Πi ≥ θπAi
∧Ni ≥ θNAi

∧

R(µ
θΠA1

,θNA1

A1
(x1), · · · , µ

θΠAm
,θNAm

A1
(xm)) ≥ ωΠ∧

R(µ
θΠA1

,θNA1

A1
(x1), · · · , µ

θΠAm
,θNAm

A1
(xm)) ≥ ωN . 2

From the possibility and necessity computation equations,
the following properties can be easily deduced.
Properties:

∀x, Π(x) ≥ N(x). (1)

Π = 0 ⇔ S(µ) ∩ S(π) = ∅ (2)

Π = 1 ⇔ ∃x ∈ µ̇ ∩ π̇. (3)

N = 0 ⇔ ∃x ∈ S(µ) ∩ π̇ (4)

N = 1 ⇔ S(π) ⊆ µ̇ (5)

These properties are exploited in the algorithm to optimize
its performance (cf. Section 4). The properties relate char-
acteristics about the support and the core of the possibility

distribution and fuzzy set to infer the degree of match with
less computation. These properties are graphically illus-
trated in Figure 2(1–4). Figure 2(1) & (4) illustrate property
(4) and (5). Figure 2(3) illustrates property (3). Figure 2(2)
illustrates the most general case, where 0 ≤ Π ≤ 1 and
0 ≤ N ≤ 1.

The possibility measure, Π, represents the degree of
match and, its dual measure, N , represents the degree of no-
match (cf. discussion Section 2). From Property 1, above, it
follows that the possibility, Π, is always greater or equal to
the necessity, N . The subjective interpretation of this is that
an optimistic subscriber would count on the leaner possibil-
ity measure, while, a pessimistic subscriber would count on
the stricter necessity measure.

Finally note, that for crisp attributes, “(A, x0)”, the pos-
sibility distribution function π yields 1 for x0 and 0, other-
wise. So the intersection of π and µ can only occur at the
point x0, which is the value µ(x0).

π(x)

(x)µ

1

(1) N=1

(x)π(x)

N

(2) 0<N<1 0<Π <1

1

Πµ
π(x)π(x)1- (x)µ

(x)µπ(x)1-)(

Π=1(3)

Π=1
1

µ (x) π(x)

(4) Ν=0

1

1- (x)π

µ (x)(x)π

Figure 2. Cases of possibility and necessity
measure

3.3 Discussion of Alternative Matching Semantic

Intuitively speaking, the ratio of the area of overlap be-
tween π and µ over the whole area of π may seem like an
alternative measure to evaluate the degree of match between
predicates and values. An interpretation of this ratio could
be the assessment of how the domain of π can satisfy µ.
However, this method is not sufficient, as there exist situ-
ation in which subscriptions match only to a small degree,
but the degree of match computed by this method is 1. Con-
sider the example in Figure 3. The domain of the fuzzy
set defining the approximate attribute in publication, π, is
totally contained inside µ and it is completely covered by
µ. It seems that all the values of the domain of discourse
would satisfy the predicate defined by µ over this domain,
thus yielding a degree of match of 1. However, consider the
price $60, its membership in π is 0.1, its membership in µ is
0.5. It is still possible that the price, the publisher observes

price

π

60

µ µ1−

0.5

0.1

1

N

0.3

Figure 3. Degree of match defined as ratio of
overlap

is $60, though this possibility is rated as only 0.1. The sub-
scription matches with this price with a degree of match
of 0.5 (as resulting from the application of the membership
function at the point 60), but not with degree 1. Therefore,
it is not appropriate to define the matching degree as 1 in
this situation. On the other hand, possibility and necessity
measures solve this problem. It is possible that the value
provided by the publication satisfies the subscription, the
possibility degree is 1. But it is not necessarily the case; so
according to the formula above, the necessity degree is only
0.3.

4 Data Structure and Algorithm

The matching algorithm proceeds in two stages. First
predicates are matched and, second, matching subscriptions
are identified. This is a similar break-down as applied in
many crisp matching algorithms.

4.1 Data Structure

Predicate evaluation is based on two data structures: a
hash table to index predicates according to their names and
a predicate vector to store the degree of match for each pred-
icate. Subscription evaluation is based on the list linked to
each predicate to record the subscriptions that contain it (or
using an association bit matrix) and a subscription vector to
keep track of the degree of match of each subscription. The
overall data structure is depicted in Figure 4.

In Figure 4, ai is the attribute name. Each predicate is
represented by a pair (pid, µ). pid is the predicate ID and
µ is the membership function to describe user’s constraint
on the attribute ai. µ is represented by a list of parameters
(m,m,α, β, Lm, Rm). Lm and Rm are the indexes into
a function family indicating which functions are used for
left-hand spread and right-hand spread functions. The exact
choice of these parameters depends on the real application.
We use one predicate vector to store both thresholds (θΠ,
θN) and the matching degrees (Π, N) . A flag is used to
indicate whether the numbers are thresholds or matching
degrees. At first it stores the thresholds θΠ and θN .

. . .

Su
bs

cr
ip

tio
n

V
ec

to
r

0

1 0.2

0.6

NΠ

. . .

NΠ

. . .

0

. . .

0.20.61

Pr
ed

ic
at

e
V

ec
to

r

Indexes on attributes

=

mlµlP

R

α

L

β

m

m

ai

P

2S

2S

3S1S

NθΠθ

Pn

Figure 4. Data structures

Each publication is a set of pairs (attr, π) for different
attributes. π is a function showing the possibility distribu-
tion of uncertain value. Similar to µ, π is represented as
(n, n, γ, δ, Ln, Rn).

4.2 Matching Algorithms

Predicate evaluation: A publication is a set of pairs of
(attr, π) where π = (n, n, γ, δ, Ln, Rn). The attribute-
name, attr, is used as the hash key to locate the corre-
sponding predicate-table. Each predicate is stored only
once in the system. Each predicate is in the form
(pid, attr, µ, θΠ, θN), where µ = (m,m,α, β, Lm, Rm).
The predicate evaluation computes the possibility and ne-
cessity of match for the given input attribute, respectively.
After all attributes of the given publication have been pro-
cessed the matched degrees (i.e., each possibility and ne-
cessity) are used to derive matched subscriptions. Figure 5
depicts the predicate matching algorithm.

Input:
e = {(a1, π1)(a2, π2) · · · (an, πn)}
Global Variables:
I: set of index;
Vp : predicate vector storing (Π, N) for each predicate;
SatPreds: set of satisfied predicates;
Body:
1. Vp = 0, SatPreds = ∅
2. for each attribute ai in e

locate the corresponding index i in I
for each predicate p (ai, µi, θΠi

, θNi
) reached by i

Vp[p].Π=supmin(µi, πi)
Vp[p].N=inf max(µi, πi)

if Vp[p].Π > 0
then SatPreds = SatPreds ∪ {p}

3. return SatPreds

Figure 5. Predicate matching algorithm

The possibility of predicate Vp[p].Π=supmin(µi, πi) is
computed according to the cases discussed in Section 3.2.

Procedure supmin(µi, πi)
begin

if m̄+ β ≤ n− γ or n̄+ δ ≤ m− α then Π = 0;
else if m ≤ n

if m̄ ≥ n then Π = 1

else find c such that Rm(c−m̄
β

) = Ln(
n−c

γ
)

Π = Rm(c−m̄
β

)

else
if m ≤ n̄ then Π = 1

else find c such that Rm(c−n̄
δ

) = Ln(
m−c

α
)

Π = Rm(c−n̄
δ

)
end

Figure 6. Possibility Computation

Figure 6 depicts the detail of the possibility computation
process. Necessity computation is similar.

Subscription evaluation: Subscriptions may be con-
juncts of predicates, disjuncts of predicates, or normal
forms. We use the intersection and union operations de-
fined in Section 2 to model these operations. The algorithm
we present for subscription evaluation works for either con-
junctive or disjunctive subscriptions. To also process nor-
mal forms a further stage based on the truth values of sub-
scription terms is required, which we don’t present here (it
is analogous to the subscription evaluation stage.) We also
limit our presentation of the subscription evaluation algo-
rithm to the use of the minimum T-norm (other norms could
simply be plugged in.) The algorithm calculates the degree
of match, as expressed by a possibility measure and a neces-
sity measure for each subscription. At the end of evaluation,
we will compare the possibility and necessity of each sub-
scription with user’s thresholds ωΠ and ωN , only return user
the subscriptions whose degrees are larger. This is just a lit-
tle further comparison, we don’t include in the algorithm
depiction.

4.3 Optimizations

Improved predicate matching: The previous algorithm
evaluates all predicates related to one attribute that is refer-
enced by a given publication (i.e., iterated over each of its
attributes). More specifically, at least one comparison be-
tween the two functions µ and π was required for each pred-
icate to determine whether a match occurred. To minimize
the number of comparisons, we improve our algorithm by
sorting the predicates of the same attribute so that the predi-
cate matching algorithm can stop earlier rather than evaluate
all predicates.

For each attribute, the order of predicates depends on 4
parameters of their functions µ. In the representation of
function µ, let m1 = m−α, m2 = m, m3 = m̄, m4 = m̄+
β. These are four critical points because they differentiate
the boundaries where π has value 0 and where π has value 1
(refer to Figure 9). Obviously, we have m1 ≤ m2 ≤ m3 ≤

input:
SatPreds: output of the predicate matching stage
global variables:
Vp: predicate vector;
Vs: subscription vector;
List: array of lists that store predicate subscription association;
SatS: set of matching subscriptions for event e
Body
1. Vs = 0, SatS = ∅, Count = 0
2. for each p ∈ V p where Vp[p].Π ≥ p.θΠ and Vp[p].N ≥ p.θN

for each s in List[p]
if Count[s] = 0 then

Vs[s].Π = Vp[p].Π
Vs[s].N = Vp[p].N

else Vs[s].Π = min(Vs[s].Π, V p[p].Π)
Vs[s].N = min(Vs[s].N, Vp[p].N)

Count[s] + +
3. for each s

if Count[s] = preds per sub[s]
then SatS = SatS ∪ {s}

4. return SatS

Figure 7. Subscription evaluation

m4. Similarly, for function π, let n1 = n − γ, n2 = n,
n3 = n̄, n4 = n̄+ δ, and we have n1 ≤ n2 ≤ n3 ≤ n4.

The predicate won’t match the publication if its right-
hand spread is to the left of the attribute function π (e.g.,
in Figure 8, m14 ≤ n1). A match is established once the
predicate “touches” the publication, i.e., µ and π intersect
(e.g., µ2 and µ3 in Figure 8). If the predicate’s left-hand
spread is to the right of π (e.g., µ4 in Figure 8, m41 ≥ n4),
it will no longer match.

n4m14 m24 m31n1 m41

1 2 3 4

No match, ignore

match, evaluate

πµ µ µ µ

Figure 8. Examples of match and no-match
between µ and π

Based on this observation, predicates with the same at-
tribute name, are organized in the order of their µ functions
from smallest to largest starting from m1 to m4. For ex-
ample, there are two predicates, pi and pj , that are under
the same attribute index. We first compare mi1 and mj1 .
The predicate with the smaller m1 is placed ahead of the
other. If mi1 = mj1 then we compare mi2 with mj2 and
take the one with a lower value for m2 and place it ahead
of the other. If the m2 are equal then the same comparison
is done for m3, m4. If all the parameters are the same, then
the predicate who enters the system earlier is placed ahead
of the other.

For each attribute ai of a publication, we pass the pred-
icates whose membership functions are to the left of the
πi, only evaluate predicates that intersect with the attribute.

m1 m2 m3 m4

1p p2 p4p3

Figure 9. Examples of ordered predicates p1 <
p2 < p3 < p4

Predicate matching stops as soon as the above rules estab-
lish further none-matches.

In the possibility computation, the sequencing algorithm
first compares n1 (the first point of π) with the m4 (the last
point of function µ) of the predicates through the ordered
predicate list until it reaches the predicate whose µ4 is larger
then n1. Before that, all predicates are to the left of the π (as
the left case in Figure 8), hence impossible to match. After
m4 > n1 then we check m1. If m1 > n4, then we can stop
because from now on all predicates afterwards are to the
right of π, thus impossible to match either (as the right case
in Figure 8). We just need to evaluate the predicates whose
m4 < n1 and m1 > n4. Figure 10 shows the detailed
possibility computation.

procedure Improved-Possibility-Computation supmin(µ, π)
begin

1. j = 1
2. while m1j < n4 do
begin

while m4j ≤ n1 do j++
if m3j ≤ n2 then find c such that

Rm(c−m̄
β

) = Ln(
n−c

γ
)

Π = Rm(c−m̄
β

)

else if m2j ≤ n3 thenΠ = 1
else find c such that

Rm(c−n̄
δ

) = Ln(
m−c

α
)

Π = Rm(c−n̄
δ

)
j++,

end
end

Figure 10. Improved Possibility Computation

In the necessity evaluation, the algorithm first compares
n3 (the third point of function π) with m4 (the last point
of function µ) through the ordered predicate list until it
reaches the predicate whose µ4 is larger than n3. Before
that, the complements of predicate functions µ are always
intersected with the core of the π, so the necessity must be
0. After m4 > n3 we compute the necessity of each pred-
icate until m1 ≤ n2 because from now on all necessities
afterwards must be 0. The procedure is similar to possibil-
ity computation, we don’t elaborate here.

Precision-space trade off: The approximate matching
scheme trades off the processing of uncertain and vague in-
formation against precision. This suggest that a degree of
match that is computed for a subscription must not be highly

accurate, i.e., accurate to the n-th digit after the comma, as
it is based on uncertainty anyway. We use this as motiva-
tion to experiment with different encodings for the degrees
of match in our algorithm. The objective is to save space,
while not sacrificing computational accuracy in our approx-
imate matching model. We use three encodings: Float, one-
byte, representing ten values, and one-byte representing 256
possible values for the degree of match. This is a straight
forward encoding, with more refined schemes deferred to
future work. The effects of different encodings will be eval-
uated in the experiments chapter.

4.4 Time-Space Analysis

Space cost: The space cost includes mainly the follow-
ing parts: predicate hash table, predicate vector, subscrip-
tion vector, and the association list for each predicate.

Space =
∑

(Spacep ∗Np) + 2Np + 2Ns +Np ∗Nsp

Where Spacep is the space for one approximate predicate
function µ = [m, m̄, α, β]LR, Np is the number of predi-
cates, Spacep ∗ Np is the space to store all distinct pred-
icates in the system, and Ns is the number of subscrip-
tions. Each predicate and subscription is associated with
two measures: possibility and necessity. Their types de-
pend on the encoding chosen (float or char). The space cost
for approximate matching is greater than crisp matching in
which just one bit is used to record whether a predicate is
matched or not matched. Using Nsp

as the average number
of subscriptions associated with each predicate, the space
of association lists takes Np ∗ Nsp

. Overall, the space cost
is linear with the number of predicates and subscriptions:
Space = O(Np +Ns).

Matching time: The algorithm consists of two steps.
First, predicate matching, consists of the time to retrieve
the attribute from the index, which is just one lookup (hash
table). Then all predicates under the same attribute are eval-
uated. In the original algorithm, all predicates membership
functions under the same attribute need to be computed to
get the possibility and necessity matching against the pub-
lication possibility distribution function. Assume that the
time spending to evaluate each predicate membership func-
tion associate with the attribute is t1, and all predicates are
distributed uniformly on each attribute. Then the matching
time for predicate matching is

Time(regular predicate matching) = t1 ∗
Np

Na

∗Nae

where Np is the total number of all predicates, Na is the
total number of all attributes, hence Np

Na
is the number of

predicates associated with one attribute. Nae
is the average

attributes number in the event.

In the improved algorithm, we don’t need to evaluate all
predicates associated with one attribute because of the good
organization of the predicates. Evaluation stops at the point
where all other predicates won’t match for sure. We de-
fine α(∈ [0, 1]) as the coefficient between the number of
predicates evaluated in the improved algorithm and in the
original one. This gives us a matching time of:

Time(improved predicate matching) = α ∗ t1 ∗
Np

Na

∗Nae

In the subscription evaluation, we suppose the time for
one lookup is t2. In our algorithm, for each matched predi-
cate, we need to look up at the predicate subscription asso-
ciation matrix to find out which subscription contains this
predicate, hence the time is t2 ∗ Nsp

∗ Npsat
where Npsat

is the average number of matched predicates. Since the
thresholds θΠ and θN are used to trim off the predicates
whose matching degrees are not big enough to satisfy users.
We denote β as the coefficient between the number of eval-
uated predicates and the number of the matched predicates
whose matching degrees are beyond the thresholds, then we
get Npsat

= β ∗ Np

Na
∗Nae

. The subscription evaluation time
is

Time(subscription evaluation) = β ∗ t2 ∗Ns ∗
Np

Na

∗Nae
.

In all, the matching time cost of the sequencing algorithm
is

Time = α ∗ t1 ∗
Np

Na

∗Nae
+ β ∗ t2 ∗Ns ∗

Np

Na

∗Nae
.

5 Experiment

In this section, we discuss the experimental performance
of the algorithms presented in Section 4. The performance
is evaluated from time and memory aspects to confirm the
efficiency of the algorithms and compare the differences
between crisp publish/subscribe model and approximate
model. We also examined the tradeoff between matching
precision against the space used for storage. At last, we
experimented the freedom of choices of aggregation func-
tion to get subscription matching degree. Experiments are
processed under various subscription and publication work-
loads.

5.1 Experiment Setup

We ran all experiments on a dual-CPU Pentium III work-
station with 900MHz i686 CPUs 1.5 GB RAM and 2G
swap operating under Linux (RedHat 7.2). We used a work-
load specification file to configure the workload to be sim-
ulated. In this file, we can specify the following param-
eters: nS , the total number of the subscriptions; nE , the

number of publications to be processed; nP , the number
of predicates per subscription; nA, the number of attributes
per publication; and types (crisp or approximate) of sub-
scriptions, predicates and publications. Our workload can
generate both crisp and approximate subscriptions and pub-
lications according to the types defined in the specification
file. To make the approximate and crisp cases comparable,
we generated crisp subscriptions and publications based on
approximate ones.

For subscriptions, we define three interval types of crisp
predicates derived from the approximate one: optimistic,
pessimistic and middle. They are three ways to deter-
mine the lower bound and upper bound of the interval. If
m1,m2,m3,m4 are the four parameters for the representa-
tion of the approximate predicate then those three interval
types are defined in Table 1.

Sub Type Value function
approx (m1,m2,m3,m4)
pessi [m1,m4]

middle [m1+m2
2

,
m3+m4

2
]

optim [m2,m3]

Pub Type Value function
appro (n1, n2, n3, n4)

interval [n2, n3]

point n2+n3
2

Table 1. Definitions for different subscription
and publication types

1m 4mm32m

pessimistic

middle
optimistic

approximate

n1 n2 3n 4n

approximate

point

interval

Figure 11. Examples of different subscription
and publication types

Publications are generated similarly. We have two
choices when generating crisp publications on the basis of
approximate publications: point and interval. They referr
to the types of the value for each attribute in the publica-
tion. Point type is defined to be consistent with the publica-
tion language data model in crisp publish/subscribe system
so that they are comparable. Interval type serves to com-
pare the difference between an interval representation and a
fuzzy set representation for an uncertain constraint. Since
we define three choices to generate interval subscriptions,
we can compare the effects of different lower bound and
upper bound of the interval in the subscriptions. Therefore,
we only generate one interval type of publication. The def-
inition is in Table 1. Figure 11 gives examples of different
subscription and publication types.

The attribute names for predicates are drawn from a pre-
defined set of names. The same set of attribute names is
used to draw the attribute names for publications. The total
number of names available is determined by nt. For each
attribute name, we provide a set of concepts (the number
of those concepts is nv) to be drawn as the uncertain con-
straints for attributes. A domain restricted by a lower and
an upper bound, lP and uP , respectively is also provided
to generate the possible membership functions to represent
the uncertain constraint. In this experiment, we use only a
trapezoidal form function, hence 4 points are selected from
the domain, governed by a uniform distribution, to form the
representation function.

5.2 Performance Evaluation

To evaluate performance metrics, we classify the imple-
mentations into 3 pairs according to different emphasis: 1.
algorithms: regular matching vs improved matching algo-
rithms; 2. matching result representation: float-wise (4
bytes) vs bit-wise (8 bits or 4 bits); 3. the data structure
for the association between predicates and subscriptions:
matrix-based vs list-based. We consider the following met-
rics: subscription loading time, matching time and used
memory space. The matching time measurement starts just
before the publication has been submitted to the system and
ends right after the system responds.

Figure 12 compares the matching time across all imple-
mentations. In this experiment we use the following work-
load specification: W0 = (nt = 42, nP = 2, nA =
4, nE = 10, nv = [2..5], nS = [10000..100000]). No
doubt, the matching time depends on the number of pred-
icates for each attribute and the number of subscriptions
that include those matched predicates, hence matching time
increases with increasing the number of subscriptions nS .
In this graph, we compare the float-wise, bit-wise and im-
proved matching implementations. The advantage of the
improved predicate matching algorithm is not distinguished
since the subscription evaluation step takes much more time
than predicate matching. The bit-wise implementation runs
more slowly than the float-wise one because it needs more
computation to set the bit values. To show the benefits of the
improved predicate matching algorithm, we ran the predi-
cate matching process only and it showed that the improved
one runs much faster.

In our experiment, the workload is generated randomly,
thus the number of subscriptions that contain the same pred-
icate is very small compared to the total number of subscrip-
tions. Therefore, both the matching time and memory using
the list-based approach is much less than the matrix-based
approach considering the size of the list for each predicate is
much smaller. The results are shown in the last two graphs
of Figure 12. In the case where each predicate is contained

Matching Time

0
20000
40000
60000
80000
100000
120000
140000
160000
180000

0 20000 40000 60000 80000 100000

Number of Subscriptions

float

bit-10values

bit-256values

improved

M
at

ch
in

g
 T

im
e

(m
s)

Subscription Loading Time

0

20000

40000

60000

80000

100000

120000

140000

0 20000 40000 60000 80000 100000

Number of Subscriptions

float-wise

bit-10value

bit-256values

improved

L
o

ad
in

g
 T

im
es

 (
m

s)

Figure 12. Matching performance(matching
processing time, memory resident size and
subscription loading time)

in most subscriptions, the matrix-based version should be
much better because access to the table is faster.

The loading time figure compares the loading time
among different algorithms. Contrary to the matching time,
the improved algorithm needs more time than the other
three. This is because predicates need to be inserted into
a sorted list based on the 4 points of the function. This is
a tradeoff between the loading time and matching time. In
a real application, most subscriptions stay in the system for
a long time and the matching time is more important to the
user. With the high publication submission rate, it is bet-
ter to process the matching quickly and respond as soon as
possible.

The memory comparison figure shows memory utiliza-
tion for the float-wise and bit-wise algorithms. The differ-
ence shows up only in the storage of matched result of pred-
icates and subscriptions, so we only consider the space used
here. We can see that bit-wise one uses less than the float
version due to the space saved by using several bits instead
of 4 bytes.

The decrease in space using bits instead of float results
in a loss of precision in the matched results. A performance
measure precision is defined as:

precision =
]Correct Subscriptions Returned

]Subscriptions Returned

In publish/subscribe systems, correctness means that the
matched subscriptions our system gets are exactly what
users want. For example, a user wants to be notified when
her subscription matches with a degree larger than 0.8. In

Figure 13. Precision space tradeoff

the 8 value bit-wise implementation (divide 0 to 1 into 8
parts), those matched degrees between 0.75 and 0.8 are
stored in the same bit as those between 0.8 and 0.875. Users
are only satisfied with the latter ones, however, all of them
will be returned. Compared to the float-wise implementa-
tion which always return the correct data, the bit-wise ver-
sion will also return some subscriptions that not satisfied
because of the precision loss. In our context, the precision
is computed by

precision =
]Subscriptions float-wise Returned

]Subscriptions bit-wise Returned

Figure 13 shows the precision of 8 value bit-wise (3 bits)
and 4 value bit-wise (2 bits) implementations. We are happy
to see that the precision of the 3 bits version is stable around
98% and the 2 bits is stable around 96%. Considering the
acceptance of users’ error range in the real world, the de-
crease of the bits don’t introduce much error.

5.3 Comparison Between Crisp and Approximate
Matching

In this set of experiments we compare the crisp and ap-
proximate publish/subscribe matching model with respect
to the number of matches identified under different condi-
tions. Table 2 shows the different numbers of matches based
on the evaluation of a fixed number of approximate publi-
cations over different kinds of subscriptions and different
thresholds. We use α as the thresholds to assess a mini-
mal possibility and necessity beyond which a subscription
is not counted as a match (i.e., ωΠ = ωN = α). We can
see that for one type of subscription, the number decreases
with increasing α, which indicates the threshold effect of α.
With the same α, the pessimistic case results in the largest
number of matches and the optimistic case results in the
fewest matches. The approximate case and the middle case
do not exhibit much difference. This is due to the wider re-
striction of subscription, the greater the probability of being
matched.

Table 2 then shows the numbers of matched subscrip-
tions for different type of event when subscription type is
fixed. When α = 0, the fuzzy publication returns the most

Subscription Type α = 0 α = 0.5 α = 1
appro 4628 184 7
pessi 4628 804 281

middle 4438 184 39
optim 3763 47 7

Publication Type α = 0 α = 0.5 α = 1
appro 4628 184 7

interval 3720 474 170
point 2960 1932 868

Table 2. Comparison of number of matches
for various types of subscriptions with
approximate publications and number of
matches for various types of publications
with approximate subscriptions, (nS =
70, 000, nE = 10.)

subscriptions and point type returns the least. This is the
same as for subscriptions. However, with the increase of α,
the fuzzy event matched a very small number of subscrip-
tions, whereas point-value event matched the most. This
is because α is used as the threshold for both possibilities
and necessities. Think of the intuitive meaning of possi-
bility and necessity we defined in the model section. For
the fuzzy event, the function restricting the attribute has a
wider domain, thus it is more likely that the event intersects
with the complementary region of subscriptions, therefore
the necessities is very likely to be 0, make it more difficult
to reach the α threshold. For the point-value event, it is
easy for such value located in the core of the subscription
function, thus more are matched with high α.

5.4 Effect of Choice of Aggregation Functions

To compute the overall degree of match for each sub-
scription, different operations can be chosen to aggregate
the degrees of match of predicates (e.g., min, weighted aver-
age etc.). For example, when students are looking for hous-
ing close to campus, they will consider, both the price and
the distance. One student may worry more about the price,
another student may be more indifferent and be satisfied
with a balanced average, while a third student maybe more
location-sensitive. In the proposed approximate matching
scheme one aggregation function evaluates the degree of
match of all subscriptions in the system, which maybe influ-
enced by different thresholds. However, it is also important
to understand the effect different aggregation functions have
on matching effectiveness. This effectiveness is evaluated
through precision and recall metrics. Three popular aggre-
gation operations: min, max and average are compared. The
definition of precision is given before, recall is defined as:

recall =
]Correct Subscriptions Returned

]Correct Subscriptions
.

The F-measure is a common metric for the evaluation of
information systems. It relates precision and recall. It is

computed as follows:

F −measure =
2 ∗ Precision ∗Recall

Precision+Recall

The relationship of the set of matching subscriptions us-
ing different aggregation operations is shown in Figure 14.
The experiment runs by distributing user’s aggregation ex-
pectation uniformly on 4 choices: min, max, average and
weighted average (assign a weight to each predicate.) The
correct data set should contain subscriptions whose overall
degree computed according to user’s expectation are larger
than the threshold (ωΠ, ωN). The data set we returned con-
tain subscriptions whose overall degree computed by only
one uniform function (either min, max or weighted average)
is larger than the thresholds. Among the set we returned,
there maybe some subscriptions whose overall degree is less
than threshold if computed according to user’s expectation,
which is a positive error. Similarly, outside the data set we
got, there maybe some subscription are not returned to user,
but the overall degree is larger than threshold, which is the
negative error. Figure 14 shows the comparison of the F-
measures on these operations. It can be observed that all
operations have high F-measures (around 95%), while the
result of the average aggregation performs best.

min

max

avg
correct

Figure 14. F-measure on aggregations

6 Related Work

Much work has been devoted to developing pub-
lish/subscribe systems and event notification services such
as ELVIN, Gryphon, LeSubscribe, READY, Salamander,
and SIENA. LeSubscribe [10] aims at publish/subscribe
support for web-based applications. It focuses on the al-
gorithmic efficiency supporting millions of subscriptions
and high event processing rates. The supported language
and data model is based on an LDAP-like semi-structured
data model for expressing subscriptions and publications.
Elvin [20] is a notification service that targets applica-
tion integration environments and monitoring of distributed

systems. ELVIN supports a more expressive subscrip-
tion language including powerful string processing func-
tions and operators on built-in data types. SIENA [7] and
Gryphon [3] comprise other examples of publish/subscribe
research projects that expose a very similar publication data
model and subscription language model. Common to all
these systems is the crisp matching semantic – either a
match is established or no match is established; a gradual
match, as defined in this work, expressed as a confidence,
a degree of match, or a probability does not exist in any
previously studied models.

A number of techniques, including, probability theory,
fuzzy set theory, and a general similarity metric based ap-
proach have been applied to model uncertainty and impreci-
sion in query and data. A full exploration would go beyond
the scope of this paper. We discuss a number of represen-
tative examples. Fuhr introduced a probabilistic relational
algebra in [13] to represent imprecise attribute values and
integrate vague queries in database system. A similar ap-
proach, based on fuzzy set theory, is advocated by Ciaccia
et al. [8]. Another popular approach is based on a vector
space model as in [24], where the similarity between a doc-
ument and a profiled is computed by means of an Euclidean
distance measure. This metric gives rise to an “importance”
value, a notion comparable to gradual set membership or
probabilities.

The idea of using fuzzy sets in a multimedia retrieval
model appears in [11, 12]. Fagin uses fuzzy sets to assign
a grade of membership to each attribute of every object in
a database and develops a list merging algorithm based on
this rating of objects for multimedia databases. Nowadays,
applications of fuzzy logic are found in many fields, includ-
ing databases [4, 1, 19, 22], expert systems [15]. Wol-
ski et al. [23] propose a fuzzy database trigger where fuzzy
membership functions are used to model event-condition-
action rules and integrate approximate reasoning into a crisp
database rule evaluation mechanism. A similar idea is put
forward in [5]. [22] introduce a retrieval language based
on fuzzy logic and address the problem of retrieving using
relevance feedback, a method do automatically adapt the
representation of the underlying fuzzy set.

Although there is a large amount of related work in-
volving representation and processing of uncertainty in
databases and information management systems, none has
studied the use of possibility theory and fuzzy set theory to
model uncertainty in the language and data model of pub-
lish/subscribe systems. This paper is the first to use pos-
sibility theory and fuzzy set theory for expressing notions
of uncertainty and vagueness in publications and subscrip-
tions.

7 Conclusion

In this paper we propose an approximate pub-
lish/subscribe model to express uncertainties in both sub-
scriptions and publications when exact information is not
available. Fuzzy set theory and possibility theory are used
to represent uncertain notions in predicates and publica-
tions. Based on this model, we define an approximate
matching mechanism between publications and subscrip-
tions. In addition, an approximate algorithm and an im-
proved sequencing algorithm are designed to perform the
matching task. There are several key properties of this ap-
proximate publish/subscribe model: 1) The language model
is flexible and powerful in that it allows subscriptions and
publications to be either crisp or approximate. 2) The pos-
sibility and necessity measures are expressive, these two
matching degrees could be used for different optimistic and
pessimistic users. 3) We have demonstrated that the algo-
rithms we proposed can be used to process approximate
matching for millions of subscriptions. 4) In our implemen-
tation, we use min as the conjunction operation to evalu-
ate the overall matched degree of all the predicates within
one subscription, the algorithm also works for other aggre-
gation functions such as product since we use a two-step
algorithm to apply the aggregation function after the predi-
cate matching phase to pick out the matched subscriptions.
5) The algorithms are designed with respect to conjunctions
of predicates, but it can be easily extended to disjunctions
as long as we substitute the min operator with other boolean
combination functions like max.

References

[1] Special issue on imprecision in databases. Data Engineering
Bulletin, 12(2), 1989.

[2] G. Ashayer, H. K. Y. Leung, and H.-A. Jacobsen. Predicate
matching and subscription matching in publish/subscribe
systems. In Workshop on Distributed Event-based Systems,
22nd International Conference on Distributed Computing
Systems, Vienna, Austria, 2nd-5th July 2002. IEEE Com-
puter Society.

[3] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao,
R. Storm, and D. Sturman. An efficient multicast proto-
cal for content-based publish-subscribe systems. In Interna-
tional Conference on Distributed Computing Systems, 1999.

[4] P. Bose, M. Galibourg, and G. Hamon. Fuzzy querying with
sql: Extensions and implementation aspects. Fuzzy Sets and
Systems, 28, 1988.

[5] T. Bouaziz and A. Wolski. Applying Fuzzy Events to
Approximate Reasoning in Active Databases. In Proc.
Sixth IEEE International Conference on Fuzzy Systems,
Barcelona, Catalonia, Spain, July 1997. .

[6] I. Burcea and H.-A. Jacobsen. L-ToPSS: Towards push-
oriented location-based servives. Technical report, March
2003. (submitted for publication).

[7] A. Carzaniga, D. Rosenblum, and A. Wolf. Design of a scal-
able event notification service: Interface and architecture. In
Technical Report CU-CS-863-98, Department of Computer
Science, University of Colorado, August 1998.

[8] P. Ciaccia, D. Montesi, W. Penzo, and A. Trombetta. Fuzzy
query languages for multimedia data.

[9] D. Dubois and H. Prade. Possibility Theory: An Approach
to Computerized Processing of Uncertainty. Plenum Press,
New York, 1988.

[10] F. Fabret, H. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and
D. Shasha. Filtering algorithm and implementation for very
fast publish/subscribe systems. In ACM SIGMOD confer-
ence, Santa Barbara, California, USA, May 2001.

[11] R. Fagin. Combining fuzzy information from multiple sys-
tems. In Proc. ACM SIGMOND/SIGACT conf. on Princ. of
Database Syst. (PODS), Montreal, Canada, 1996.

[12] R. Fagin. Fuzzy queries in multimedia database systems. In
Proc. ACM SIGMOND/SIGACT conf. on Princ. of Database
Syst. (PODS), Seattle, WA, USA, 1998.

[13] N. Fuhr and T. Rolleke. A probabilistic relational algebra for
integration of information retrieval and database systems.
ACM Transactions on Information Systems, 15(1), 1997.

[14] G. J. Klir and T. A. Folger. Fuzzy Sets, Uncertainty, and
Information. Prentice Hall International Editions, 1992.

[15] K. Leung, M. Wong, and W. Lam. A fuzzy expert database
system. Data and Knowledge Engineering, 4:287–304,
1989.

[16] H. Liu and H.-A. Jacobsen. A-topss – a publish/subscribe
system supporting approximate matching. In 28 th Interna-
tional Conference on Very Large Data Bases, Hong Kong,
China, 2002.

[17] J. Pereira, F. Fabret, H.-A. Jacobesen, F. Llirbat,
R. Preotiuc-Prieto, K. Ross, and D. Shasha. Le
subscribe: Publish and subscribe on the web at ex-
treme speed. In SIGMOD digital library, 2001.
http://caravel.inria.fr/LeSubscribe/LeSubscribe.html.

[18] J. Pereira, F. Fabret, H.-A. Jacobesen, F. Llirbat, and
D. Shasha. WebFilter: A high-throughput XML-based pub-
lish and subscribe system. In VLDB conference, 2002.

[19] F. Petry. Fuzzy databases: Principles and applications, with
contribution by patrick bose. International Series in Intelli-
gent Technologies, page 240, 1996.

[20] B. Segall and D. Arnold. Elvin has left the building: A pub-
lish/subscribe notification service with quenching. In Pro-
ceedings of AUUG97, Brisbane, Australia, September 1997.

[21] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman. A taxon-
omy of wireless microsensor network models, 2002.

[22] O. Wolfson, A. Lelescu, and B. Xu. Approximate retrieval
from multimedia databases using relevance feedback.

[23] A. Wolski and T. Bouaziz. Fuzzy Triggers: Incorporating
Imprecise Reasoning into Active Databases. In Proceedings
of the 14th International Conference on Data Engineering,
pages 108–115. IEEE Computer Society Press, 1998.

[24] T. Yan and H. Molina. Index structures for information fil-
tering under the vector space model. In Proceedings of the
International Conference on Data Engineering, November
1993.

