Locating Objects in Mobile Computing*

Evaggelia Pitoura George Samaras
Department of Computer Science Department of Computer Science
University of Ioannina University of Cyprus
GR 45110 Ioannina, Greece CY 1678 Nicosia, Cyprus
pitoura@cs.uoi.gr cssamara@turing.cs.ucy.ac.cy

Abstract

In current distributed systems, the notion of mobility is emerging in many forms and appli-
cations. Mobility arises naturally in wireless computing, since the location of users changes as
they move. Besides mobility in wireless computing, software mobile agents are another popular
form of moving objects. Locating objects, i.e., identifying their current location, is central to
mobile computing. In this paper, we present a comprehensive survey of the various approaches
to the problem of storing, querying, and updating the location of objects in mobile computing.
The fundamental techniques underlying the proposed approaches are identified, analyzed and
classified along various dimensions.

Keywords: mobile computing, location management, location databases, caching, replication,
moving objects, spatio-temporal databases

1 Introduction

In current distributed systems, the notion of mobility is emerging in many forms and applications.
Increasingly many users are not tied to a fixed access point but instead use mobile hardware such as
dial-up services or wireless communications. Furthermore, mobile software, i.e., code or data that
move among network locations, is emerging as a new form of building distributed network-centric
applications. In the presence of mobility, the cost of communicating with a mobile user or using
mobile code and data is augmented by the cost of searching for their current location.

Mobility arises naturally in wireless mobile computing [17, 26, 50] since as mobile users move,
their point of attachment to the fixed network changes. Future Personal Communication Systems
(PCSs) will support a huge user population and offer numerous customer services. In such systems,
the signaling and database traffic for locating mobile users is expected to increase dramatically [67].
Thus, deriving efficient strategies for locating mobile users, i.e., identifying their current location,
is an issue central to wireless mobile computing research.

Besides mobility tied to wireless hardware, data or code may be relocated among different

network sites for reasons of performance or availability. Mobile software agents [66, 1] is a popular

*To appear in IEEE Transactions on Knowledge and Data Engineering

such form of mobile software. Mobile agents are processes that may be dispatched from a source
computer and be transported to remote servers for execution. Mobile agents can be launched into
an unstructured network and roam around to accomplish their task [2], thus providing an efficient,
asynchronous method for collecting information or attaining services in rapidly evolving networks.
Other applications of moving software include the relocation of a user’s personal environment to
support ubiquitous computing [68], or the migration of services to support load balancing, for
instance the active transfer of web pages to replication servers in the proximity of clients [8].

In this paper, we present a comprehensive survey of the various approaches to the problem
of storing, querying, and updating the location of objects in mobile computing. The emphasis
is on the fundamental techniques underlying the proposed approaches as well as on analyzing
and classifying them along various dimensions. By identifying various parameters and classifying
elemental techniques, new approaches to the problem can be developed by appropriately setting
the parameters and combining the techniques.

The rest of this paper is structured as follows. In Section 2, we introduce the location prob-
lem and its variations. In Section 3, we present the two most common architectures for location
directories, i.e., directories that hold the location of moving objects: one is a two-tier architecture
based on a pair of home/visitor location databases; the other is a hierarchically structured one. In
Section 4, we discuss optimizations and variations of these architectures. In the following sections,
we introduce a number of approaches that have been proposed to reduce the cost of lookups and
updates in both architectures. In particular, in Sections 5 and 6, we discuss caching and replication
of location information at selected network sites and in Section 7, we present forwarding pointer
techniques that only partially update the location directories. In Section 8, we present a taxonomy
of the approaches presented. In Section 9, we review approaches to the problems of deferring up-
dates of location databases and saving imprecise location information. In Section 10, we focus on
issues related to concurrency and fault-tolerance and in Section 11 on issues related to answering

complex queries about the location of moving objects. We conclude in Section 12 by summarizing.

2 Location Management

In mobile computing, mobile objects, e.g., mobile software or users using wireless hardware, may
relocate themselves from one network location to another. To enable the efficient tracking of
mobile objects, information about their current location may be stored at specific network sites.
In abstract terms, location management involves two basic operations, lookups and updates. A
lookup or search is invoked each time there is a need to locate a mobile object, e.g., to contact
a mobile user or invoke mobile software. Updates of the stored location of a mobile object are
initiated when the object moves to a new network location. In the rest of this section, we first
provide an overview of the problem and then introduce network architectures that are commonly

associated with mobile computing.

Extreme 2: -~ [Atdl sites
no location information o7 Tl
at any site -

At selective sites I

Set of locations

Extreme 1:
-7 up-to-date and exact

I

I

I

I

I

I

I

I

I

I

I

I

I

N |
S I
I

|

S o

N information at all sites

Figure 1: Approaches to Saving Location Information

2.1 Overview

Approaches to storing location information range between two extremes. At one extreme, up-to-
date information of the exact location of all users is maintained at each and every network location.
In this case, locating a user reduces to querying a local database. On the other hand, each time
the location of a user changes, a large number of associated location databases must be updated.
At the other extreme, no information is stored at any site of the network. In this case, to locate
a mobile user a global search at all network sites must be initiated. However, when a user moves,
there is no cost associated with updating location databases.

Between these two extremes, various approaches that balance the cost of lookups against the
cost of updates are plausible. These approaches compromise the availability, precision or currency
of the location information stored for each user (Figure 1). In terms of availability, choices range
between saving the location at all network sites to not storing the location at all. In between these
two approaches, location information may be maintained selectively at specific network sites. There
is a wide range of selection criteria for the sites at which to save location information for each user.
For example, a choice may be to save the location of users at the sites of their frequent callers.
Imprecision in location information takes many forms. For instance, instead of maintaining the
exact location of the user, a wider region or a set of possible locations is maintained. Currency
refers to when the stored location information is updated. For instance, for highly mobile users
it may make sense to defer updating the stored information about their location every time the
users move. When current and precise information about a user’s location is not available locally,
locating the user involves a combination of some search procedure and a number of queries posed

to databases storing locations.

2.2 Underlying Network Architecture

The networking infrastructure for providing ubiquitous wireless communication coverage is repre-
sented by the personal communication system (PCS) also known by a number of different names
such as personal communication network (PCN) and UMTS (universal mobile communication sys-
tem). While the architecture of the PCS has not evolved yet, it is expected that it will be partially
based on the existing digital cellular architecture (see Figure 2 adapted from [26]). This network
configuration consists of fixed backbone networks extended with a number of mobile hosts (MHs)
communicating directly with stationary transceivers called mobile support stations (MSS) or base
stations. The area covered by an individual transceiver’s signal is called a cell. The mobile host can
communicate with other units, mobile or fixed, only through the base station at the cell in which it
resides. Thus to communicate with a mobile user, the base station of the cell in which it currently
resides must be located. As a mobile host moves, it may cross the boundary of a cell, and enter an
area, covered by a different base station. This process is called handoff and may involve updating
any stored location information for the mobile host. It is speculated that ubiquitous communica-
tions will be provided by PCS in a hybrid fashion: heavily populated areas will be covered by cheap
base stations of small radius (picocells); less populated areas will be covered by base stations of
larger radius; and farm land, remote areas and highways with satellites that will provide the bridge
between these different islands of population density.

PCSs involve two types of mobility: terminal and personal mobility [43]. Terminal mobility
allows a terminal to be identified by a unique terminal identifier independent of its point of attach-
ment to the network. Personal mobility allows PCS users to make and receive calls independently
of both their network point of attachment and a specific PCS terminal. Each mobile user explicitly
registers itself to notify the system of its current location. The granularity of a registration area
ranges from that of a single cell to a group of cells. Once the registration area is identified, the user
can be tracked inside this area using some form of paging. Paging is the process whereby to locate
a mobile user, the system issues polling signals in a number of likely locations. By changing the
size of a registration area, the flexibility of any combination of registration and paging is attained
[62]. If not explicitly stated otherwise, we use the term cell or zone as synonyms with registration
area to indicate a uniquely identifiable location where a mobile user can be found.

In the cellular architecture, three levels are involved: the access, the fixed, and the intelligent
network [67]. The fized network is the wired backbone network. The access network is the interface
between the mobile user and the fixed network. The intelligent network is the network connecting
any location registers, i.e., registers used to store information about the location of mobile users.
This network is used to carry traffic related to tracking mobile users. The Signaling System No.
7 (SS7) [40] and its signaling network is a good candidate to carry the signaling traffic in the
intelligent network.

Location management is handled at the data link or networking layer transparently from the
layers above it [61], each time a call is placed or a change in the network point of attachment

occurs. Location management is an issue present at all wireless networks (e.g., cellular, wireless

Wireless radio cell

,* Mobile S
/" Host @ @ Mobile,
1 , Host |
I

' 9Kbps__ @ |
. _1---~" Mobile :
Fixed Network Host
1Mbps |~
| T Mbps to Gbps L L
" Mobile ® -
| Host ! Wirelessradio cell

Wireless LAN cell
Figure 2: Wireless Computing Architecture

LANS, satellites). Although most solutions so far relate to cellular architectures at the data link
layer and to wireless LAN architectures at the networking layer, most are general enough to be
applicable to different layers and architectures. In addition to handling mobility at lower layers,
the need for information about the location of moving objects is encountered at the application
level as well. Applications may need information about the location of mobile users to answer a
variety of queries that involve location (e.g., find the nearest restaurant) [25]. Other applications
may involve updating environmental parameters and selecting locally available computing resources
(e.g., nearest printer) [44]. There is no standard way for applications to acquire and use location
information. For example, applications may choose to maintain their own data structures for storing
location information.

The cellular architecture is not the sole infrastructure for wireless mobile computing. In its
absence, various techniques may be employed to identify the current location of mobile users, for
instance, users may be equipped with a Global Positioning System (GPS) [19, 18]. GPSs are
space-based radio positioning systems that provide three-dimensional position, velocity and time
information to suitably equipped users anywhere on or near the surface of the Earth. Common
applications in this area include digital battlefields in the military context and transportation sys-
tems in the civilian industry [69]. Finally, besides mobility tied to wireless hardware, the techniques
presented in this paper are also applicable when the objective is to locate mobile code and data.
Furthermore, similar techniques are also necessary when instead of location, the objective is to
efficiently retrieve other profile information related to mobile users. This information may include

QoS-related parameters or services.

3 Architectures of Location Databases

In this section, we describe basic architectures for distributed databases used for storing the location

of moving users. The two most common approaches are a two-tier scheme in which the current

location of each moving user is saved at two network locations and a tree-structured distributed
database in which space is hierarchically decomposed in sub-regions. We also describe a graph-
theoretic approach that employs regional directories. Finally, we refer briefly to a centralized

database approach.

3.1 Two-tier Schemes

In two-tier schemes, a home database, termed Home Location Register (HLR), is associated with
each mobile user. The HLR is located at a network location (zone) pre-specified for each user.
It maintains the current location of the user as part of the user’s profile. The search and update
procedures are quite simple. To locate a user z, z’s HLR is identified and queried. When a user z
moves to a new zone, x’s HLR is contacted and updated to maintain the new location.

As an enhancement to the above scheme, Visitor Location Registers (VLRs) are maintained at
each zone. The VLR at a zone stores copies of profiles of users not at their home location and
currently located inside that zone. When a call is placed from zone ¢ to user x, the VLR at zone i
is queried first and only if the user is not found there, is 2’s HLR contacted. When a user x moves
from zone i to j, in addition to updating z’s HLR, the entry for z is deleted from the VLR at zone
1, and a new entry for z is added to the VLR at zone j.

The two prevailing existing standards for cellular technologies, the Electronics Industry Associa-
tion Telecommunications Industry Associations (EIA/TIA) Interim Standard 41 (IS-41) commonly
used in North America and the Global System for Mobile Communications (GSM) used in Europe,
both support carrying out location strategies using HLRs and VLRs [43].

At the Internet networking level, mobile IP [47] is a modification to wireline IP that allows users
to continue to receive messages independently of their point of attachment to the Internet. Mobile
IP is designed within the IETF (Internet Engineering Task Force) and is outlined in a number
of Request for Comments (RFCs) [28]. Wireline IP assumes that the network address of a node
uniquely identifies the node’s point of attachment to the Internet. Thus, a node must be located
on the network indicated by its IP address to receive messages destined to it. To remedy this, in
mobile IP, there are two IP addresses associated with each mobile node. One address, known as
the home address of the node, is used to identify the node and is treated administratively just like
a permanent IP address. When away from its home network, a care-of-address is associated with
the mobile node and reflects the mobile node’s current point of attachment. The care-of-address is
either the address of a foreign agent which is a router on the visited network that provides services
to the mobile node or a co-located address which is an address temporarily acquired by the mobile
node. When a mobile node is away of its home, it registers its care-of-address with its home address.
Then to deliver any messages, the home agent tunnels them to the care-of-address.

One problem with the home location approach is that the assignment of the home register to a
mobile object is permanent. Thus, long-lived objects cannot be appropriately handled, since their
home location remains fixed even when the objects permanently move to a different region. Another

drawback of the two-tier approach is that it does not scale well with highly distributed systems

where sites are geographically widely dispersed. To contact an object, the possibly distant home
location must be contacted first. Similarly, even a move to a nearby location must be registered at

a potentially distant home location. Thus, locality of moves and calls is not taken advantage off.

3.2 Hierarchical Schemes

Hierarchical location schemes extend two-tier schemes by maintaining a hierarchy of location
databases. In this hierarchy, a location database at a higher level contains location information for
users located at levels below it. Usually, the hierarchy is tree-structured. In this case, the location
database at a leaf serves a single zone (cell) and contains entries for all users registered in this zone.
A database at an internal node maintains information about users registered in the set of zones in
its subtree. For each mobile user, this information is either a pointer to an entry at a lower level
database or the user’s actual current location. The databases are usually interconnected by the
links of the intelligent signaling network, e.g., a Common Channel Signaling (CCS) network. For
instance, in telephony, the databases may be placed at the telephone switches. It is often the case
that the only way that two zones can communicate with each other is through the hierarchy; no
other physical connection exists among them.

We introduce the following notation. We use the term LCA(i,j) to denote the least common
ancestor of nodes 7 and j. A parameter that affects the performance of most location management
schemes is the relative frequency of move and call operations of each user. This is captured by
the call to mobility ratio (CMR). Let C; be the expected number of calls to user P; over a time
period T and U; the number of moves made by P; over T', then CM R; = C;/U;. Another important
parameter is the local call to mobility ratio LCM R; ; that also involves the origin of the calls. Let
C;,; be the expected number of calls made from zone j to a user P; over a time period 7', then the
local call to mobility ratio LCMR, ; is defined as LCMR; j = C; ;/U;. For hierarchical location
schemes, the local call to mobility ratio (LCMR, ;) for an internal node j is extended as follows:
LCMR;; = 3, LCMR,}, where k is a child of j. That is, the local call to mobility ratio for a
user P; and an internal node j is the ratio of the number of calls to P; originated from any zone at
j’s subtree to the the number of moves made by P;.

The type of location information maintained in the location databases affects the relative cost
of updates and lookups as well as the load distribution among the links and nodes of the hierarchy.
Let’s consider first the case of keeping at all internal databases pointers to lower level databases.
For example, in Figure 3(left) for a user z residing at node (cell) 18, there is an entry in the database
at node 0 pointing to the entry for = in the database at node 2. The entry for = in the database at
node 2 points to the entry for z in the database at node 6, which in turns points to the entry for
z in the database at node 18. When user & moves from zone i to zone j, the entries for x in the
databases along the path from j to LC'A(3, 7), and from LCA(i, j) to ¢ are updated. For instance,
when user = moves from 18 to 20, the entries at nodes 20, 7, 2, 6, and 18 are updated. Specifically,
the entry for = is deleted from the databases at nodes 18 and 6, the entry for = at the database
at 2 is updated, and entries for x are added to the databases at nodes 7 and 20. When a caller

entries for user x when
the |ocation databases
maintain pointers

—— entriesfor user x when
—= the]ocation databases
! x 118 maintain actual iocations

‘x‘

mobile user x
— isatcell 18

Figure 3: Hierarchical Location Schema. Location databases’ entries at the left are pointers at

lower level databases, while location databases’ entries at the right are actual locations.

located at zone i places a call for a user z located at zone j, the lookup procedure queries databases
starting from node ¢ and proceeding upwards the tree until the first entry for x is encountered.
This happens at node LCA(7, j) (the least common ancestor of nodes i and j). Then, the lookup
procedure proceeds downwards following the pointers to node j. For instance, a call placed from
zone 21 to user z located at node 18 (Figure 3(left)), queries databases at nodes 21, 7 and finds
the first entry for z at node 2. Then, it follows the pointers to nodes 6 and 18.

Let’s now consider the case of database entries maintaining the actual location of each user.
Then, for user z registered at 18 (Figure 3(right)), there are entries in the databases at nodes 0,
2, 6, and 18, each containing a pointer to location 18. In this case, a move from zone ¢ to j causes
the update of all entries along the paths from j to the root, and from the root to 7. For example,
a relocation of user x from node 18 to node 20, involves the entries for x at 20, 7, 0, 2, 6, and
18. After the update, entries for z exist in the databases located at nodes 0, 2, 7, and 20, each
containing a pointer to 20, while the entries for x in the databases at nodes 6 and 18 were deleted.
On the other hand, the cost of a call from i to j is reduced, since once the LC A(3, j) is reached,
there is no need to query the databases on the downward path to j. For example, a call placed
from node 21 to user z (Figure 3(right)), queries databases at nodes 21, 7, 2, and then 18 directly
(without querying the database at node 6).

When hierarchical location databases are used, there is no need for binding a user to a home
location register (HLR). The user can be located by querying the databases in the hierarchy. In
the worst case, an entry for the user will be found in the database at the root.

Proposals for hierarchical versions have also been made within the context of Mobile IP [47].
In this case, the foreign agents are arranged hierarchically in the regional topology. Each ancestral

foreign agent considers the mobile node to be register at the foreign node just below it in the

+) No pre-assigned HLR

+) Support for locality

o) Increased number of operations (database operations
and communication messages)

) Increased load and storage requirements at higher-levels

Table 1: Summary of the Pros and Cons of Hierarchical Architectures

hierarchy. A hierarchical arrangement of location entries is also possible in ATM networks [65].

A hybrid scheme utilizing both hierarchical entries and pre-assigned home location registers
(HLRs) is also possible. Assume that database entries are maintained only at selective nodes of
the hierarchy and that an HLR is used. In this case, a call originating from zone 7 starts searching
for the callee from zone i. It proceeds following the path from ¢ to the LCA of i and the callee’s
HLR and then moves downwards to the callee’s HLR, unless an entry for the callee is found in any
database on this path. If such an entry is encountered, it is followed instead [67].

The hierarchical scheme leads to reductions in communication cost when most calls and moves
are geographically localized. In such cases, instead of contacting the HLR of the user that may
be located far away from the user’s current location, a small number of location databases in the
user’s neighborhood are accessed. However, the number of location databases that are updated and
queried increases relative to the two-tier scheme. Another problem with the hierarchical schemes
is that the databases located at higher-level must handle a relatively large number of messages.
Furthermore, they have large storage demands. One solution is to partition the databases at the
high-level nodes (e.g., at the root) into smaller databases at sub-nodes so that the entries of the
original database are shared appropriately among the databases at the sub-nodes [64]. Table 1

summarizes some of the pros and cons of the hierarchical architectures.

3.3 Non-tree Hierarchy: Regional Matching

The objective of the regional directories approach [6] is to favor local operations, in that moves to
nearby locations or searches for nearby users cost less. The approach guarantees communication
overheads that are polylogarithmic in the size (i.e., number of network sites) and the diameter (i.e.,
maximum distance between any two sites) of the network. The overhead is evaluated by comparing
the total cost of a sequence of move and call operations against the inherent cost, i.e., the cost
incurred by the operations assuming that information for the current location of each user exists
at all sites for free. The comparison is done over all possible sequences of move and call operations.

Location databases called regional directories are organized in a non-tree hierarchy. In par-
ticular, a hierarchy D of § regional directories is built, where § = logd, for d being the maximal
distance between any two network sites. The purpose of a regional directory RD; at level i is to
enable a potential searcher to track any user residing within distance 2° from it. Two sets of sites
are associated with each site u in an RD; directory: a readset Read;(u) and a writeset Write;(u)

with the property that the readset Read;(u) and the writeset Write;(w) intersect for any pair of

site u and w within a distance 2¢ from each other. The two sets of sites are used as follows. Each
site reports all users it hosts to every site in its writeset and upon looking for a user, it queries all
sites in its readset.

Whenever a user moves to a new location at distance k away, only the log k lowest levels of
the hierarchy are updated to point directly to the new address. Directory entries at higher level
directories continue pointing to the old address, where a forwarding pointer to the new location is
left. To bound the length of the chain of forwarding pointers, it is guaranteed that for every user
the distance C(z) traveled since its address was updated at the regional directory RD; is less or
equal to 271 — 1 for each level i. The complete search and update procedures follow.

Regional Matching Search Procedure

/* a call is placed from a user at site w to user z */
1< 0 address < nil
repeat

11+1

/* Search directory RD; */

for all sites u in Read(w)

query u

until address <> nil
repeat

follow forwarding pointers
until reaching z

Regional Matching Move Procedure
/* user z moves from site v to site w */
Let RD; be the highest directory for which C(z) > 2771 —1
for i =1 to mazx{J,d}
/* Update directory RD; */
for all sites u in Write(v)
update entry
add a forwarding pointer at RD;;1

3.4 A Centralized DBMS

The architectural alternatives presented so far are distributed, in that the locations of moving ob-
jects are stored in different network sites. For some applications, it is feasible to use a centralized
approach in which the locations of all moving objects are stored in a single centralized Database
Management System (DBMS). Such applications include for example a trucking company’s data-
base, a database representing the location of taxi-cabs or in the context of military applications,
a database that keeps track of the position of all moving objects in a battlefield. In this case, all
location queries and updates are directed to the central DBMS. Using an existing spatial DBMS
is not sufficient, since existing DBMS do not handle well continuously changing data, such as the
location of moving objects. Thus, most current research in this area [71] deals with extending
spatial databases with such capabilities.

10

4 Placement of Databases

Maintaining location information at all nodes in the hierarchy results in cost-effective lookups.
However, it increases the number of databases that must be updated during each move operation.
To reduce the update cost, database entries may be only selectively maintained at specific nodes in
the tree hierarchy. In this case, during the search and update procedures, only nodes that contain
location databases are queried or updated; others are skipped. For instance, when a call is made
from j to i the search procedure traverses the tree from node j up to the lowest level ancestor of
the LC'A(i, j) that contains a location database.

A possible placement of location databases is to maintain location entries for mobile hosts only
at the leaf nodes of the zone in which they reside currently. In this case, when there is no home
location register associated with a mobile host, some form of global searching in the hierarchy is
needed to find its current location. In this scenario, location strategies include flat, expanding,
and hybrid searches [7]. Let home be the zone at which a user registers initially. The flat search
procedure starts from the root, and then in turn queries in parallel all nodes at the next level of the
tree until the leaf level is reached. The ezpanding search procedure starts by querying the home of
the callee i, then queries the parent of the home, which in turn queries all its children and so on.
This type of search favors moves to nearby locations. Finally, the hybrid search procedure starts
as the expanding one, but if the location is not found at the children of the parent of the callee’s
home, a flat search is initiated. The hybrid scheme can locate quickly those users that when not
at home happen to be found far away from it.

Next we consider three alternative architectures: maintaining location information at selective
internal nodes so that some performance metric is optimized, a dynamic hierarchical database

architecture, and partitions.

4.1 Optimization

The placement of location databases in the hierarchy can be seen as an optimization problem.
Objective functions include minimizing: (a) the number of database updates and accesses, (b) the
communication cost, (c) the sum of the traffic on the network link or links, or any combination of
the above. Constraints that must be satisfied include: (a) an upper bound on the rate at which each
database can be updated or accessed, (b) the capacity of links, and (c) the available storage. Such
an optimization-based approach is taken in [5]. The objective there is to minimize the number
of updates and accesses per unit of time given a maximum database service capacity (i.e, the
maximum rate of updates and lookups that each database can service) and estimates of the call to
mobility ratio. In this approach, communication is not considered, and thus, if the service capacity
is sufficiently large, a single, central database at the root is the optimal placement. The problem is
formulated as a combinatorial optimization problem and is solved using a dynamic programming

algorithm.

11

4.2 Dynamic Hierarchical Database Architecture

The dynamic hierarchical scheme proposed in [24] extends the two-tier scheme by introducing a
new level of databases called directory registers (DRs). Each DR covers a number of location zones.
Its primary function is to periodically compute and store the location configuration for the mobile
units located in zones under its service. There are three types of location addresses that can be
stored at a DR. In particular, besides maintaining the local address of all mobile units located in
its coverage, each DR also maintains for selected mobile units either a direct remote address to
their current location or an indirect remote address to their current serving DR. For each particular
mobile unit, the selection of the set of DRs that maintain direct remote addresses or indirect remote
addresses for it is periodically determined based on the mobility and call arrival patterns of the unit.
The HLR may either store the current zone or the current DR of a mobile unit, again depending
on the mobility and call arrival patterns of the unit. In the cases that it is more cost effective not
to set up any remote addresses, the scheme reduces to the original two-tier scheme. In contrast to
the two-tier and the hierarchical architectures where the strategy for the distribution of location
information is the same for all mobile units, in this scheme, the distribution strategy is dynamically

adjusted for each mobile unit.

4.3 Partitions

To avoid maintaining location entries at all levels of the hierarchy, and at the same time reduce the
search cost, partitions are deployed [7]. The partitions for each user are obtained by grouping the
zones (cells) among which it moves frequently and separating the zones between which it relocates
infrequently. Thus, partitions exploit locality of movement. Partitions can be used in many ways.
We describe next two such partition-based strategies.

For each partition, the information whether the user is currently in the partition is maintained
at the least common ancestor of all nodes in the partition, called the representative of the parti-
tion. The representative knows that a user is in its partition but not its exact location [7]. This
information is used during flat search (i.e., top-down search starting from the root) to decide which
subtree in the hierarchy to search. Thus, partitions reduce the overall search cost as compared to
flat search. There is an increase however on the update cost since, when a user crosses a partition,
the representatives of its previous and new partitions must be informed. For example, assume
that user z often moves inside four different set of nodes, i.e., partitions, and infrequently between
these sets. The nodes of each partition are {10, 12, 14, 15}, {16, 18}, {19,20,21} and {22, 23, 25,
26, 27} and are depicted in Figure 4. The representative node of each partition is high-lighted.
When user z is at node 14 in partition 1, the representative of the associated partition, node 1,
maintains the information that the user is inside its partition. When user z moves to node 16 that
is outside the current partition, both node 1, the representative of the old partition, and node 6,
the representative of the new partition, are updated to reflect the movement.

A slightly different use of partitions called redirection trees is proposed in [12]. A single partition,

called local region, is defined by including all nodes between which the user often moves. The

12

N

WO ® \@ W W@ 2638 ®®@

Partition 3 .
user X Pa(tltlon 2 Partition 4

user X _
new location

Figure 4: Partitions

representative of the local region called a redirection agent maintains the location of all users
that have appointed it as their redirection agent. When the user is located in its local region, its
redirection agent redirects any calls passing through it during any type of search (e.g., flat or using
HLRs) to the current location of the user. Movements inside a local region are recorded in the

redirection agent and not necessarily at location servers outside the region.

5 Caching

Caching is based on the premise that after a call is resolved, the information about the current
location of the callee should be reused by any subsequent calls originated from the same region.
To this end, in two-tier architectures, every time a user x is called, x’s location is cached at the
VLR in the caller’s zone, so that any subsequent call to x originated from that zone can reuse this
information [32]. Caching is useful for those users who receive calls frequently relative to the rate
at which they relocate. Similar to the idea of exploiting locality of file accesses, the method exploits
the spatial and temporal locality of calls received by users.

To locate a user, the cache at the VLR of the caller’s zone is queried first. If the location of the
user is found at the cache, then a query is launched to the indicated location without contacting
the user’s HLR. Otherwise, the HLR is queried.

Regarding cache invalidation, there are various approaches. In eager caching, every time a user
moves to a new location, all cache entries for this user’s location are updated. Thus, the cost of
move operations increases for those users whose address is cached. In this type of caching, the
locations of the cache entries for a user’s location must be centrally known in order for the updates
to be initiated. This leads to scalability problems as well as making the scheme susceptible to fault
tolerance problems. In lazy caching, a move operation signals no cache updates. Then, when at
lookup a cache entry is found there are two cases: either the user is still in the indicated location
and there is a cache hit, or it has moved out, in which case a cache miss is signaled. In the case of a

cache miss, the usual procedure is followed: the HLR is contacted and after the call is resolved the

13

cache entry is updated. Thus, in lazy caching, the cached location for any given user is updated
only upon a miss.

The basic overhead involved in lazy caching is in cases of cache misses, since the cached location
must be visited first. So, for lazy caching to produce savings over the non-caching scheme, the hit
ratio p for any given user at a specific zone must exceed a hit ratio threshold pr = Cy/Cp, where
Cp is the cost of a lookup when there is a hit and Cp the cost of the lookup in the non-caching
scheme. Among other factors, Cy and Cp depend on the relative cost of querying HLR’s and
VLR’s.

A performance study for lazy caching is presented in [32, 21]. There, an estimation of Cy and
Cp is computed for a given signaling architecture based on a Common Channel Signaling network
that uses the SS7 protocol [40] to set up calls. Conclusions are drawn on the benefits of caching
based on which of the factors participating in Cy and Cp dominate. The hit ratio for the cache of
user’s 7 location at zone j can also be directly related to the LCM R; ; of the user [32]. For instance,
when the incoming calls follow a Poisson distribution with arrival rate A and the intermove times
are exponentially distributed with mean u, then p = A/(A + 1) and the minimum LCM R, denoted
LCM Ry, required for caching to be beneficial is LCM Ry = pr/(1 — pr). So, caching can be
selectively done per user i at zone j, when the LCM; ; is larger than the LCM Rt bound. In
general, this threshold is lower when users accept calls more frequently from users located nearby.
In practice, it is expected that LCM Ry > 7 [32].

Another approach to cache invalidation, suggested in [38], is to consider cache entries obsolete
after a certain time period. To determine when a particular cache should be cleared, a threshold
T is used. T it dynamically adapted to the current call and mobility patterns such that the overall
network traffic is reduced.

When the cache size is limited, cache replacement policies, such as replacing the least recently
used (LRU) location, may be used. Another issue is how to initialize the cache entries. User profiles
and other types of domain knowledge may be used to initially populate the cache with the locations
of the users most likely to be called.

In mobile IP, route optimization [47] provides a means for any node to maintain a binding cache
containing the care-of-address of one or more mobile nodes. Such cache entries are used by the
sender to tunnel any messages directly to the care-of-address indicated in its cache. Each entry in
the binding cache has an associated lifetime that is specified when the entry is created. The entry
is to be deleted from the cache after the expiration of this time period. A lazy procedure is also
used to update out-of-date cache entries.

In the approach we have described, caching is performed on a per-user basis: the cache maintains
the address of the last called users. Another approach is to apply a static form of caching, e.g., by
caching the addresses of a certain group of users or certain parts of the network where the users’
call to mobility ratios (CM Rs) are known to be high on average.

Caching techniques can also be deployed to exploit locality of calls in tree-structured hierarchical
architectures. Recall that in hierarchical architectures, when a call is placed from zone 7 to user z

located at zone j, the search procedure traverses the tree upwards from i to LC A(i,j) and then

14

search procedure

Figure 5: Caching in Hierarchical Location Schemes. For simplicity, the acknowledgment message

is not shown; it follows the reverse route of the search procedure.

downwards to 5. We also consider an acknowledgment message that returns from j to ¢. To support
caching, during the return path, a pair of bypass pointers, called forward and reverse, is created
[30]. A forward bypass pointer is an entry at an ancestor of 4, say s, that points to an ancestor of
j say t; the reverse bypass pointer is from ¢ to s. During the next call from zone ¢ to user x, the
search message traverses the tree upwards until s is reached. Then, the message travels to database
t either via LC'A(i, j) or via a shorter route if such a route is available in the underlying network.
Similarly, the acknowledgment message can bypass all intermediate pointers on the path from ¢ to
S.

For example, let a call be placed from zone 13 to user x at zone 16 (Figure 5). A forward bypass
pointer is set at node 1 pointing to node 6; the reverse bypass pointer is from 6 to 1. During the
next call from zone 13 to user z, the search message traverses the tree from node 13 up to node 1
and then at node 6, either through LC A(1,6), that is node 0, or via a shorter path. In any case,
no queries are posed to databases at nodes 0 and 2.

The level of nodes s and t where the bypass pointers are set varies. In simple caching, s and ¢
are both leaf nodes, while in level caching, s and t are nodes belonging to any level and possibly
each to a different one (as in the previous example). Placing a bypass pointer at a high-level node
s, makes this entry available to all calls originated from zones at s’s subtree. However, calls must
traverse a longer path to reach s. Placing the pointer to point to a high-level node ¢, increases
the cost of lookup, since to locate a user, a longer path from ¢ to the leaf node must be followed.
On the other hand, the cache entry remains valid as long as the user moves inside ¢’s subtree. An
adaptive scheme can be considered to set the levels of s and ¢ dynamically.

As in the two-tier location scheme, there are many possible variations for performing cache
invalidations [30]. In lazy caching, the move operation remains unchanged, since cache entries
are updated only when a cache miss is signaled. In eager caching, cache entries are updated
at each move operation. Specifically, consider a move operation from zone ¢ to zone j, where a

registration/deregistration message propagates from j via LC A(4,4) to ¢. During this procedure,

15

the bypass pointers which are no longer valid are deleted. These pointers include any forward
bypass pointers found during the upward traversal of the registration message, and any reverse or
bypass pointers found during the downward traversal of the deregistration message [30].

Preliminary performance results are reported in [30]. The analysis is based on a quantity called
Regional Call-to-Mobility Ratio (RCMR) defined for a user z with respect to tree nodes s and ¢
as the average number of calls from the subtree rooted at s to user x, while user z is in the subtree
rooted at t. It is shown, that under certain assumptions, for users with RCM R > 5, caching can
result in up to a 30% reduction in the cost of both calls and moves, when considering only the
number of database operations.

Caching in the case of storing the exact location at internal nodes, as opposed to pointers to
lower level databases, can also be deployed in many ways again ranging from simple to level caching.
In simple caching, the current location of the user is cached only at leaf nodes. In level caching,
the current location of a user is cached at all nodes up to a given level.

Caching is orthogonal to partitions. In fact, in [63, 64] caching is used in conjunction with
partitions. In particular, instead of caching the current location of the callee, the location of its
representative is cached. For example, assume that partitions are defined as in Figure 4 and user
z is at node 14. Let a call be placed for user z. Instead of caching location 14 (or a pointer to it),
location 1, e.g., the representative of the current partition, is cached. This significantly reduces the
cost of cache updates, since a cache entry becomes obsolete only when a user moves outside the

current partition.

6 Replication

To reduce the lookup cost, the location of specific users may be replicated at selected sites. Repli-
cation reduces the lookup cost, since it increases the probability of finding the location of the callee
locally as opposed to issuing a high latency remote lookup. On the other hand, the update cost
incurred increases considerably, since replicas must be maintained consistent every time the user
moves.

In general, the location of a user 7 should be replicated at a zone j, only if the replication is
judicious, that is the savings due to replication exceed the update cost incurred. As in the case of
caching, the benefits depend on the LCM R. Intuitively, if many calls to ¢ originate from zone j,
then it makes sense to replicate ¢ at j. However, if 4 moves frequently, then replica updates incur
excessive costs. Let a be the cost savings when a local lookup, i.e., a query of the local VLR,
succeeds as opposed to a remote query and [the cost of updating a replica, then a replication of

the location of user ¢ at zone j is judicious if

axC;;>Bx*U; Inequality (1)

where C; ; is the expected number of calls made from zone j to ¢ over a time period T and U;

the number of moves made by ¢ over T'.

16

In addition to cost, the assignment of replicas to zones must take into account other parameters,
such as the service capacity of each database and the maximum memory available for storing
replicas. The replication sites for each user may be kept at its HLR. Besides location information,
other information associated with mobile users may also be replicated [56]. Such information may
include service information such as call blocking and call forwarding, as well as QoS requirements
such as minimum channel quality or acceptable bandwidth. Unlike location information which is
needed at the caller’s region, service and QoS information is needed at the location at which the
call is received. Approaches similar to those used for replication of location information can be
used to replicate service information at sites that are frequently visited by a mobile user in place
of sites from which most calls for that user originate.

Finally, instead of the exact location of a user, more coarse location information, e.g., the user’s
current partition, may be replicated. The coarseness or granularity of location replicas presents
location schemes with a trade-off between the update and the lookup costs. If the information
replicated is coarse then it needs to be updated less frequently in the expense of a higher lookup
resolution cost.

Choosing the network sites at which to maintain replicas of the current location of a mobile user
resembles the file allocation [15] and the database allocation [46] problem. These classical problems
are concerned with the selection of sites at which to maintain replicas of files or database partitions.
The selection of sites is based on the read /write pattern of each file or partition, that is the number of
read and write operations issued by each site. In the case of location management, this corresponds
to the lookup/update pattern of a user’s locations. Most schemes for file or database allocation are
static, that is they are based on the assumption that the read/write pattern does not change.

We describe four per-user replication schemes. The first one takes into account resource restric-
tions and is centralized, whereas the second one does not place any such global restrictions and thus
is distributed. The first two algorithms are for two-tier schemes, while the third one is applicable
to tree-structured hierarchical architectures. The last algorithm is not developed specifically for
location management but treats the problem of dynamic data allocation in its general form. It is
a distributed algorithm that considers no global restrictions. It is applicable to any architecture,

but it is proven to be optimal for tree-structured hierarchical schemes.

6.1 Per User Profile Replication

The objective of the per user profile approach [57] is to minimize the total cost of moves and
calls, while maintaining constraints on the maximum number r; of replicas per user P; and on the
maximum number p; of replicas stored in the database at zone Z;. Let M be the number of users
and N be the number of zones. A replication assignment of a user’s profile P; to a set of zones
R(P;) is found, such that the system cost expressed as the sum: Y ¥ ij\il,zjeR(Pi) BxU;—axCy;
is minimized and any given constraints on the maximum number of replicas per database at each
zone and on the maximum number of replicas per user are maintained.

To this end, a flow network F' is constructed as follows. The vertices of the graph correspond

17

users Zones

Figure 6: Example of a Flow Network

to users P; and zones Z;. There are two special vertices, a source vertex s, and a sink vertex ¢. A
pair (c,p) of a cost, ¢, and a capacity, p, attribute is associated with each edge. An edge is added
from s to all P; with (¢,p) = (0,r;) and from all Z; to ¢ with (0,p;). An edge from P; to Z; with
(¢,p) = (B+xU; —ax*C;j 1) is added only if it is judicious to replicate P; at Zj, i.e., if Inequality
(1) holds. Then, computing a minimum-cost (min-cost) maximum-flow (max-flow) on F' finds the
requested assignment.

In Figure 6, a simple flow network of a system with four mobile users and 3 zones is depicted.
The capacity attribute 2 on edge (s, P;) indicates that P;’s profile can be replicated in at most two
zones. The capacity attribute 3 on edge (Z1,t) indicates that the database at zone Z; can store
at most three replicas. Finally, in the pair (—6,1) on edge (Z1, P1), the cost attribute -6 indicates
that replicating P;’s profile in zone Z; will yield a net cost saving of six over not replicating, while
the capacity attribute 1 indicates that P; should be replicated at most once in Z;.

In such a centralized approach, generating, distributing and applying to all sites, a particular
replica assignment decision is a time consuming, computational intensive, and bandwidth demand-
ing process. Thus, computing and applying a new replication plan is very expensive, and a graceful
adaptation of the replica assignment to changing calling and mobility patterns is very important
[56]. Let F,_,
F.

Told

represent the flow network solution for a new calling and mobility pattern 7, and
represent the flow network solution for the previous pattern 7,4. An algorithm is presented
that incrementally computes the min-cost max-flow of F, given the min-cost max-flow of F .
A desired property of the replica assignment algorithm is to keep the cost of evolution from F;_,
to Fr,.,

proposed: (1) a tempered min-cost max-flow, that factors in the cost of replica reassignments when

low by avoiding radical changes in the replication plan. To this end, two approaches are

augmenting paths, and (2) a minimum mean cycle canceling algorithm, that augments flow along

cycles with the minimum mean cost, where the cost expresses the number of replica reassignments.

18

6.2 Working Set Replication

The working set method [51] relies on the observation that each user communicates frequently with
a small number of sources, called its working set, thus it makes sense to maintain copies of its
location at the members of this set. The approach is similar to the per-user replication except from
the fact that no constraints are placed on the database storage capacity or the number of replicas
per user. Consequently, the decision to provide the information of the location of a mobile unit P,
at a zone Z; can be made independently at each unit P;.

Specifically, Inequality (1) is evaluated locally at the mobile unit each time at least one of the
quantities involved in the inequality changes. This happen: (a) each time a call is set up and (b)
when the mobile unit moves. In the former case, the inequality is evaluated only if the caller’s site
is not a member of the working set of the callee. If the inequality is found to hold, the caller’s site
becomes a member of the set. In the later case, the inequality is re-evaluated for all members of
the working set, and the members for which the inequality no longer holds are dropped off the set.
This way the scheme adapts to the current call and mobility pattern. Note that in case (a) all four
terms of Inequality (1) need to be recomputed, while in case (b) only the number of moves (U;)
needs to be re-evaluated.

Simulation studies in [51] show that, as expected, when the call to mobility ratio (CM R) value
is low the scheme performs like a scheme without replication. When the CM R value is high, the
scheme behaves like a static scheme in which the working set for a user is fixed. It is also shown
that the performance of this adaptive scheme is not primarily affected by the number of units in
the working set but rather by the CM R of each individual unit.

6.3 Replication in Hierarchical Architectures

In hierarchical architectures, in addition to leaf nodes, the location of a mobile user may be se-
lectively replicated at internal nodes of the hierarchy. As in the replication schemes for two-tier
architectures, the location of a user should be replicated at a node only if the cost of replication
does not exceed the cost of non replication. However, in a hierarchical location database scheme, if
a high LOCM R value is the determining factor for selecting replication sites, then the databases at
higher levels will tend to be selected as replication sites over databases at lower levels, since they
possess much higher LC' M R values. In particular, if a database at level j is selected, all it ancestors
are selected as well. Recall that the LCM R for an internal node is the sum of the LCM Rs of its
children. Such a selection would result in excessive update activities at higher-level databases. To
compensate, replication algorithms for hierarchical databases must also set some maximum level of
the hierarchy at which to replicate.

HiPer proposed in [33] is a family of location management techniques with four parameters:
Npazs Smin, Smaz and L, where Ny, determines the maximum number of replicas per user, Spn
and Sy,4, together determine when a node may be selected as a replication site, and L determines
the maximum level of the hierarchy at which replicas can be placed. The location of user ¢ is not
replicated at j if LCMR, ; is smaller than Sy;,, while it is replicated if LCMR; ; exceeds Spqz-

19

If Spin < LCMR; j < Spaz, then whether replication should be performed or not depends on
a number of constraints placed by the database topology. The constraints taken into account by
HiPer are Ny, and L. An off-line algorithm to compute the sites of replication for each user
1 proceeds in two phases. In the first phase, in a bottom-up traversal, it allocates replicas of 4
at all databases with LCMR; ; > Sy,4; as long as the number of allocated replicas n does not
exceed Npa.. In the second phase, if n < Npyqz, the algorithm allocates the remaining replicas to
databases below level L with the largest non negative LCMR; j — Sy4z in a top-down fashion.

The optimal values anpiiz and S%! for Sy, and Sp.; are determined based on whether
replication is judicious, that is, if the benefits of replication exceeds its costs. It is shown that
S = b,/(L(2E[LCA] — 1)) and 8%, = b, /b, where b, is the network cost of each update
message, b; is the network cost of a lookup message for adjacent nodes in the hierarchy, /; is the
level of node j and E[LCA] is the expected number of sites visited before a replica is found.

6.4 The ADR Algorithm

The Adaptive Data Replication (ADR) algorithm [70] presents a solution to the general problem
of determining an optimal (in terms of communication cost) set of replication sites for an object in
a distributed system, when the object’s read-write pattern changes dynamically. We will describe
the ADR algorithm for the case of tree-structured architectures. The tree represents a physical
or logical communication structure. Two sites are neighbor sites if they are connected through a
tree edge. Let R be the current replication set of object z, i.e., the sites at which x is replicated
currently. A read of object z is performed from the closest replica in R, while a write of z updates
all replicas in R.

Metaphorically, the replication set R forms a variable-size amoeba that stays connected at all
times and constantly moves towards the center of the read-write activity. The ADR algorithm
updates the replication set R of each object x periodically at a time period T'. The replication set
expands as the read activity increases and contracts as the write activity increases. Specifically, at
the end of the time period 7', specific sites of the network perform three tests, namely the expansion,
the contraction and the switch test described below. First, we introduce related terminology. A
site 4 is an R-neighbor, if it belongs to R but has a neighbor site that does not belong to R. If site
1 is not a singleton set, site 7 is an R-fringe site, if it is a leaf at a subgraph induced by R.

The ezpansion test is performed by each R-neighbor site i. Site 4 invites each of its neighbor j
not in R to join R, if the number of reads that ¢ received from j during the last period is greater
the number of writes that ¢ received during the same period from i itself or from a neighbor other
than j. The contraction test is executed by each R-fringe site i. Site ¢ requests permission from
its neighbor site j in R to exit R, if the number of writes that ¢ received from j during the last
time period is greater than the number of reads that 7 received during this period. If site 7 is both
an R-neighbor and an R-fringe, it executes the expansion test first, and if the test fails (i.e., no
site joins R), then it executes the contraction test. Finally, the switch test is executed, when R is

a singleton test and the expansion test that the single site 7 in R has executed fails. Site ¢ asks a

20

neighbor site n to be the new singleton site, if the number of requests received by ¢ from n during
the last time period is larger than the number of all other requests received by i during the same
period.

The ADR algorithm is shown to be convergent-optimal in the following sense. Starting at any
replication scheme, the algorithm converges to the replication scheme that is optimal to the current
read-write pattern. The convergence occurs within a number of time periods that is bounded by

the diameter of the network.

7 Forwarding Pointers

When the number of moves that a user makes is large relative to the number of calls it receives,
it may be too expensive, to update all database entries holding the user’s location, each time the
user moves. Instead, entries may be selectively updated and calls directed to the current location

of a user through the deployment of forwarding pointers.

7.1 Two-Tier Architectures

In two-tier architectures, if the mobility of a mobile unit is high while it is located far way from
its HLR, an excessive amount of messages is transmitted between the serving VLR and the HLR.
Thus, to reduce the communication overhead as well as the query load at the HLR, the entry in
z’s HLR is not updated, each time the mobile unit z moves to a new location [31]. Instead, at
the VLR at z’s previous location, a forwarding pointer is set up to point to the VLR in the new
location. Now, calls to a given user will first query the user’s HLR to determine the first VLR at
which the user was registered, and then follow a chain of forwarding pointers to the user’s current
VLR. To bound the time taken by the lookup procedure, the length of the chain of forwarding
pointers is allowed to grow up to a maximum value of K. An implicit pointer compression also
takes place, when loops are formed as users revisit the same areas. Since the approach is applied on
a per-user basis, the increase in the cost of call operations affects only the specific user. The router
optimization extensions to IETF Mobile IP protocol include pointer forwarding in conjunction with
lazy caching [34].

The pointer forwarding strategy as opposed to replication is useful for those users who receive
calls infrequently relative to the rate at which they relocate. Clearly, the benefits of forwarding
depend also upon the cost of setting up and traversing pointers relative to the costs of updating
the HLR. An analytical estimation of the benefits of forwarding is given in [31]. It is shown that
under certain assumptions and if pointer chains are kept short (K < 5), forwarding can reduce the
total network cost by 20%-60% for users with call to mobility ratio below 0.5.

A method for dynamically determining whether to update the HLR. or not is proposed in the
local anchoring scheme [23] where a pointer chain of length at most one is maintained. For each
mobile unit, a VLR close to it is selected as its local anchor (LA). In some cases, the LA may be

the same as its serving VLR. Otherwise, the LA maintains a forwarding pointer to the current VLR

21

of the mobile unit. For each mobile unit, the HLR maintains its serving LA. To locate a mobile
unit, the HLR is queried first and then the associated LA is contacted. If the LA happens to be
the serving VLR, no further querying is necessary, else the forwarding pointer is used to locate the
mobile unit. Since after a call delivery the HLR knows the current location of a mobile unit, the
HLR is always updated after a call to record the current VLR. Depending on whether the HLR is
updated upon a move. two schemes are proposed: static and dynamic local anchoring. In static
local anchoring, the HLR is never updated at a move. In dynamic local anchoring, the serving VLR

becomes the new LA if this will result in lower expected costs.

7.2 Hierarchical Architectures

To reduce the update cost, forwarding pointer strategies may be also deployed in the case of
hierarchical architectures. In a hierarchical location scheme, when a mobile user z moves from
zone i to zone j, entries for z are created in all databases on the path from j to LC'A(j,4), while
the entries for z on the path from LCA(j,1) to 4 are deleted. Using forwarding pointers, instead
of updating all databases on the path from j through LCA(j,7) to i, only the databases up to a
level m are updated. In addition, a forwarding pointer is set from node s to node ¢, where s is the
ancestor of ¢ at level m, and ¢ is the ancestor of j at level m (Figure 7). As in caching, the level of
s and t can vary. In simple forwarding, s and t are leaf nodes, while in level forwarding, s and t can
be nodes at any level. A subsequent caller reaches x through a combination of database lookups
and forwarding pointer traversals.

Take, for example, user = located at node 14 that moves to node 17 (Figure 7). Let level m = 2.
A new entry for zx is created in the databases at nodes 17, 6 and 2, the entries for z in the databases
at nodes 14 and 5 are deleted, and a pointer is set at x’s entry in the database at node 1 pointing
to the entry of z in the database at node 2. The entry for at node 0 is not updated. When a
user, say at zone 23, calls z, the search message traverses the tree from node 23 up to the root
node 0 where the first entry for z is found, then goes down to 1, follows the forwarding pointer to
2, and traverses downwards the path from 2 to 17. On the other hand, a call placed by a user at
15, results in a shorter route: it goes up to 1, then to 2, and follows the path downwards to 17.

Forwarding techniques can also be deployed for hierarchical architectures in which the entries of
the internal nodes are actual addresses, rather than pointers to the corresponding entries in lower
level databases. The example above is repeated in Figure 8 for this case. Entries for z are updated
up to level m = 2, and a forwarding pointer at leaf node 14 is set to redirect calls to the new
location 17.

Such an architecture with internal nodes storing actual addresses rather than tree pointers is
considered in [37] where a performance analysis of forwarding is presented. Besides forwarding, the
scheme in [37] also supports caching: leaf caching (i.e., caching the address of the callee only at the
zone of the caller) that is called jump updates and level caching (i.e., caching the address of the callee
on all nodes on the search path) that is called path compression. All combinations of forwarding

(no forwarding (NF), simple forwarding (SF) and level forwarding (LF)) and of caching (jump

22

S " ;
lovelm = o FomardingPote _

4 user x L. X
old location new location — old entriesfor x
- - - new entriesfor x

Figure 7: Forwarding Pointers Example (entries are pointers to lower level databases)

@ Li(LJ.fl:‘ (this entry is not updated)
o / \
©)

DO ® BB © O®

A >

x|14) [Ix| 175 - = (x| 17"
/' ~Forwarding Pointer ™~ D oldentriesfor x
/ .
user X, user X -= =, new entriesfor x
old location new location - -

Figure 8: Forwarding Pointers Example (entries are exact addresses)

23

updates (JU), path compression updates (PC) and no caching (NU)) are considered. Preliminary
simulation results are presented for two types of environments: (a) arbitrary moves and calls and
(b) short moves and stability of calls (i.e., most calls are received from a specific set of callers).
The aggregate cost of search and update is considered. The cost metric is the number of messages
for each operation.

For the type (a) environment, the simulation showed the combination SF-PC to outperform
all other combinations. The strategies using either NF or LF incurred a high cost of updates at
each move. The SF-NU combination suffered due to the very high search costs. Finally, the SF—
JU did not perform well as the cached entries were not used very frequently since the calls were
arbitrary. For the type (b) environment, SF-PC performed better as well except from the cases of
high communication and low mobility and low communication and high mobility. In these cases,
the combination SF-JU performed better because jump updates were more effective in reducing the
search cost, since there was a specific set of callers. A per-user adaptive scheme was suggested to
choose between the SF-PC and SF-JU combinations based on the call and mobility characteristics.
To determine those characteristics, for each mobile unit a sequence is maintained of all moves made
and calls received. This sequence determines the degree of mobility of the host (low or high) and
whether it has a large number of frequent callers.

Obsolete entries in databases at levels higher than m (e.g., the entry at node 0 in Figures 7
and 8) may be updated after a successful lookup. Another possibility for updates is for each node
to send a location update message to the location servers on its path to the root during off-peak
hours.

To avoid the creation of long chains of forwarding pointers, some form of pointer reduction
is necessary. To reduce the number of forwarding pointers, a variation of caching is proposed in
[49]. After a call to user z, the actual location of the user is cached at the first node of the chain.
Thus, any subsequent calls to = directed to the first node of the chain use this cache entry to
directly access the current location of z, bypassing the forwarding pointer chain. Besides, this
form of caching that reduces the number of forwarding pointers that need to be traversed to locate
a user, the database hierarchy must also be updated to avoid excessive look-up costs. Besides
deleting forwarding pointers, this also involves the deletion of all entries in internal databases on
the path from the first node, ¢, of the chain to the LC A of i and the current location, j, and the
addition of entries in internal databases on the path from the LC' A to j. Take for example, chain
11 — 18 — 26 — 14 that resulted from user & moving from node 11, to nodes 18, 26, and 14, in
that order. The entries for x at nodes 11, 18, and 26 are deleted. Then, the entries in higher-level
databases leading to 11 are also deleted. In particular, the entry for x at 4 is deleted and entries
are set at nodes 1, 5, and 14 leading to 14, the new location (see Figure 9). Two conditions for
initiating updates are proposed and evaluated based on setting a threshold either on the number
of forwarding pointers or on the maximum distance between the first node of the chain and the
current location.

Forwarding pointer techniques find applications in mobile software systems, to maintain refer-

ences to mobile objects, such as in the Emerald System and in SSP chains. Emerald [35] is an

24

— old entriesfor x
- - - new entriesfor x

Figure 9: Example of Pointer Purging

object-based system in which objects can move within the system. SSP chains [55] are chains of
forwarding pointers for transparently migrating object references between processes in distributed

computing. The SSP-chain short-cutting technique is similar to the simple update at calls method.

8 Taxonomy of Location Management Techniques

The techniques proposed in the previous sections are based on exploiting knowledge about the call-
ing and moving behavior of mobile objects. Basically, two characteristics are considered: stability
of calls and moves and locality of moves and calls. Stability in the case of calls means that most
calls for each user originate from the same set of locations, for example, each user may receive
most calls from a specific set of friends, family and business associates. Stability of moves refers
to the fact that users tend to move inside a specific set of regions. For instance, they may follow a
daily routine, e.g., drive from their home to their office, visit a predetermined number of customers,
return to their office, and then back to their home. This pattern can change but remains fixed for
short periods of time. Locality refers to the fact that local operations are common. In particular,
in the case of calls, a user frequently receives calls from nearby places, while in the case of moves,
the user moves to neighbor locations more often than to remote ones.

Another determinant factor in designing location techniques is the relative frequency of calls and
moves expressed in the form of some call to mobility ratio. In general, techniques tend to decrease
the cost of either the move or call operation in the expense of the other. Thus, the call to mobility
ratio determines the efficacy of the technique. Figure 10 summarizes the various techniques that
exploit locality, stability and the call to mobility ratio. These techniques are orthogonal; they can
be combined with each other.

Besides developing techniques for the efficient storage of location information, the advancement
of models of movement can be used in guiding the search for the current location of a mobile object
(see for example, [54, 4]), when the stored information about its location is not current or precise.
For instance, potential locations may be searched in descending order of the probability of the user
being there.

An important parameter of any calling and movement model is time. The models should capture

25

Pattern of Moves and Calls

/ \

Stability Locality
calls Moves Hierarchical structures
Cache (replicate) at frequent callers Partition the locations

Relative Frequence of Moves and Calls (LCMR)

Small LCMR Large LCMR

Partial updates - forward pointers Cache (replicate)

Figure 10: Techniques along the Dimensions of Locality, Stability, and CMR (call to mobility ratio).

/ Dynamic (adaptive) or static
Variations

Per object, group of objects, geographical region

Figure 11: Further Taxonomy of Location Techniques.

temporal changes in the movement and calling patterns and their relative frequency as they appear
during the day, the week or even the year. For instance, the traffic volume in weekends is different
than that during a workday. Thus, dynamic adaptation to the current pattern and ratio is a
desirable characteristic of location techniques. Another issue is the basis on which each location
technique is employed. For instance, a specific location technique may be employed on a per user
basis. Alternatively, the technique may be adopted for all PCS users or for a group of users based
either on their geographical location (i.e, all users in a specific region), on their mobility and calling
characteristics (i.e., all users that receive a large number of calls) or a combination of both. Figure
11 summarizes these two dimensions of location techniques.

Table 2 and 3 summarizes correspondingly the variations of the two-tier and hierarchical location
scheme and their properties.

Since the performance of most location techniques depends on the call to mobility ratio (CMR),
in order for the system to adapt to the most appropriate technique based on the current CMR,
dynamically estimating the current value of the CM R is a central issue. One approach to estimating
CMRs is to calculate running estimates of CM Rs on a per user basis. Two such strategies are
proposed in [32]. The running average algorithm maintains for every user the running counts of the
number of incoming calls and the number of times that the user changes location. One problem
with the running average algorithm is that estimations are taken from the entire past history of
the user’s movement and thus the algorithm may not be sufficiently dynamic to adequately reflect

the recent history of the user’s behavior. When the distribution of the incoming call process or

26

Method Variations Applicable when:

cachi E hing: Cache update overhead
aching ager caching: occurs at moves Large LCMR
When x iscalled by y, Call Stability
cache x'slocation at Lazy caching: Cache update overhead
y'szone i 9 occursat calls
Replication Additional constraints are set
:) Per-user Profile on the number of replicas per
Selectively replicate Replication: site and on the number
X's address at the of replicas per user
zones from which Large LCMR
it receives the most Adaptive and distributed: Call Stability
cdls Working Set: the replication sites are computed

dynamically by each
mobile host locally

Forwarding Pointers
When x moves,
add aforwarding
pointer fromitsold
to its new address

Restrict the length of the chain of forwarding

i Small LCMR
pointers

Table 2: Summary of Enhancements to the Basic Two-Tier Scheme. LCOM R stands for the Local
Call to Mobility Ratio.

the user movement process changes, a variation of this procedure, called the reset-K algorithm,
gives more accurate estimations. With reset-K, running averages are estimated every K incoming
calls. Another approach is to maintain information about the CM R, for instance in the HLR, and
download it during off-peak hours. Analytical estimations of the CM R are also possible. Finally,
traces of actual moving users can be used (for example, the Stanford University Mobile Activity
TRAces (SUMATRA)[59]).

Finally, another parameter that affects the deployment of a location strategy is the topology
of network sites, how they are populated and their geographical connectivity. How the strategy
scales with the number of mobile objects, location operation and geographical distribution is also
an important consideration.

Location strategies are evaluated based on two criteria, namely, the associated database and
network overhead. In terms of database operations, various objectives are set including minimizing
(a) the total number of database updates and queries, (b) the database load and size, and (c) the
latency of each database operation. In terms of communication, location schemes aim at reducing
among others (a) the total number of messages, (b) the number of hops, (c¢) the distance traveled,

(d) the number of bytes generated, and (e) the sum of the traffic on each link or over all links.

9 Precision and Currency of Location Information

The focus of the previous sections was on efficiently storing, updating and retrieving information
about the location of moving objects. However, in some cases, to reduce the update cost, the stored
information may not be precise in that it may cover more than one zone (cell). Then, to actually
locate the user, after retrieving its stored location, a search is necessary inside all zones covered by
the stored location. Another possibility is that the stored location is not kept current, that is, it is

not updated after each move. In this case, the cost of actually locating the user includes also the

27

Method Issues/Variations Appropriate when:

Caching Up to which tree level
When x at zonei iscalled by user y at zonej, to maintain cache entries LargeCMR
cache at anode on the path from j to LCA(i, j) Call Stability
apointer to anode on the path from i to LCA(i, j) When to update cache entries

to be used by any subsequent call to x from zonej.

Replication Large CMR
Selectively replicate x’s location at internal and/or call Stability
leaf databases.
Forwarding Pointers When and how to purge
‘When x moves from cell i to cell j, instead of updating the forwarding pointers
al databases on the path from i to LCAC(i, j) and from Small LCMR

LCA(i, j) toj, update all databases up to some level m
and add aforwarding pointer at the level m ancestor
of i to point to the level m ancestor of j.

Setting the level m

Partitions
Divide the locations into sets (partitions) so that
the user movesinside apartition frequently and Move Stability
crosses the boundary of a partition rarely.
Keep information about the partition in which the user
residesinstead of its exact location

Table 3: Summary of Proposed Enhancements to Hierarchical Location Schemes.
cost of finding the current location based on the stored one.

9.1 Granularity of Location Information

The granularity of location information differs with respect to how many location zones it covers.
In the cellular architecture, this translates to how many and which cells are covered by each
registration area. Then to locate a user all cells in the area are polled; a process called paging.
There is a trade-off in defining the granularity of a registration area. If it covers a small number of
cells, the cost of updates is large, while if it covers a large number of cells, then the cost of searching
increases.

Defining the shape and size of each registration area is formulated as a combinatorial optimiza-
tion problem in [3]. The objective is to minimize the location update cost subject to a constraint
on the search cost to locate the user inside the registration area. Since, it turns out that the rectan-
gular shapes are a good approximation to the optimum registration area shapes, the optimization
problem is also stated for rectangular registration areas. The optimal registration area is calculated
for each particular mobile unit or for each particular class of mobile units based on their respective
mobility and call arrival patterns. In [72], the optimal registration area size is calculated for a mesh
cell configuration with square shaped cells given the costs of location updates and of searching
inside a registration area. Each registration area consists of k x k cells arranged in a square and
the value of k is selected on a per-user basis. The work in [72] uses a different model of mobility

from the work in [3].

9.2 Frequency of Updates

So far, we have assumed that the stored information about the location of a moving object is

updated each and every time the user moves. However, to reduce the update cost, the stored

28

location information may be updated less frequently. Three strategies for initiating location updates
are proposed in [10]: the time-based strategy, the movement-based strategy and the distance-
based strategy. In the time-based update strategy, the stored location for each mobile user is
updated periodically every 1" units of time. In the movement-based update strategy, the stored
location is updated after the user has performed a predefined number of movements across zones
boundaries. Finally, in the distance-based update strategy, the stored location is updated when
the distance of the stored location from the actual location of the user exceeds a predefined value
D. Analytical performance results show that the distance-based update approach outperforms the
other approaches in most cases. However, distance based approaches are more difficult to implement
since they require knowing and computing a distance function.

A different approach to signaling location updates is presented in [9]. A subset of all cells is
selected and designated as reporting cells. The location of a mobile user is updated only when it
enters a reporting cell. The search to locate a mobile user is restricted to all cells that are in the
vicinity of the reporting center to which the user last reported. For an arbitrary cellular topology,
finding an optimal set of reporting cells is shown to be an NP-complete problem. Thus, optimal and
near optimal solutions are advanced for special cases such as for the common topology of hexagonal
cells. The reporting cells strategy is static in the sense that the set of reporting cells is fixed. It is
also global since the set of reporting cells is the same for all mobile users.

A timer-based approach to location updates is developed in [52]. A timeout parameter T, is
defined as the maximum amount of time to wait before updating the stored location given that the
last stored location was m. The set of the time-out parameters T}, can be calculated by the system
and communicated to the mobile users as necessary or calculated by the user directly.

A distance-based update strategy is taken by the DOMINO (Databases fOr MovINg Objects)
project [58, 69]. In particular, a set of distance-based update strategies, called dead-reckoning
policies [45], are proposed that update the database location whenever the distance between the
current location and the stored location exceeds a given threshold h. A cost model is developed
to estimate the threshold ~. The model takes into account the deviation and uncertainty in the
estimation of the moving object’s position as well as the communication cost of a location update.
The deviation of a moving object at a particular time is the distance between the actual location
of object £ and the location of z stored in the database, e.g, one mile. The uncertainty of a moving
object z is the size of the area in which the object x can possibly be, e.g., a circle with radius
one mile. Both uncertainty and deviation have a cost or penalty in terms of incorrect decision
making which is proportional to the size of the uncertainty and deviation respectively. In the speed
dead-reckoning policy, the threshold is fixed for each mobile object. In the adaptive dead reckoning
policy, the threshold h is computed anew after each update so that it minimizes the cost until
the next update. The disconnection detecting dead-reckoning policy considers the case in which for
some reason the object is unable to generate updates. To avoid explicitly contacting the object,

the threshold A is continuously decreasing as the tine interval from the last updates increases.

29

9.3 Search Procedures

When the registration area covers a number of possible locations or the stored location is not
current, besides retrieving the stored location of the user, additional searching is necessary. The
search procedure first identifies the set of potential locations and then queries the locations in the
set. The set of potential locations depends on the update policy and the granularity of the stored
information. For instance, in the case of a distance-based strategy, all possible locations are in
distance smaller that D from the stored location.

Depending on whether we set any constraints on the delay or on the maximum number of
locations that are polled before locating the mobile user, a search is called constrained or uncon-
strained. The straightforward approach, also known as the “blanket polling” strategy is to query
all potential location simultaneously. For the unconstrained case, it is shown in [53] that given a
probability distribution on user location, the search strategy that minimizes the expected number
of locations polled is to query each location sequentially in order of decreasing probability. It is
also shown that this strategy substantially reduces the mean number of polling requests over the
blanket approach even after moderate constraints are imposed. The results are extended in [73] for
the case where mobile units are allowed to move during the search procedure. It is shown that the
optimal strategy is to search the conditionally most likely locations after each polling failure.

In [41], a distance-based update strategy is adopted. An iterative algorithm is proposed based
on dynamic programming for generating the optimal threshold distance D. Locations are searched
in a shortest-distance-first order such that locations closest to the location where the last location
update occurred are queried first. This an unconstrained search; the delay to locate an mobile user
is proportional to the distance traveled since the last location update.

In [22], constrained searching is considered for a distance-based update strategy. The delay to
locate a user is constrained to be smaller than or equal to a predefined maximum value. When
a call arrives, the residing area of a mobile user is partitioned into a number of subareas. These
subareas are then searched sequentially. The search in each subareas is by blanket polling, that
is all locations in the subarea are simultaneously polled. By limiting the number of subareas to a
given value m, the time to locate a mobile user is smaller than or equal to the time required for

the m polling operations.

10 Consistency and Recovery

The focus of this section is on consistency and recovery issues for location databases. Moves
and calls are issued asynchronously and concurrently. Since each of them results in number of
database operations, concurrency control is required to ensure correctness of the execution of these
operations. In the case of a location database failure, database recovery is also required. We
discuss recovery in the context of two-tier location schemes. Approaches to handling recovery in

hierarchical schemes and their enhancements is an interesting, but less studied, research problem.

30

10.1 Concurrency Control

Since call and move operations arrive concurrently and asynchronously, concurrency control issues
arise. If no special treatment is provided for concurrency, a call may read obsolete location data
and fail to track the callee. In this case, the call is lost and is reissued anew. This simple method
does not provide any upper bound on the number of tries a call has to make before locating a
moving user.

Concurrency issues get more involved in hierarchical location schemes. In such schemes, a
lookup operation results in a sequence of query operations issued at location databases at various
levels in the hierarchy. Similarly, a move operation causes a sequence of update operations to be
executed on various location databases. The underlying assumption so far was that moves and
calls arrive sequentially and they are handled one at a time. Thus, it was assumed that there is
no interleaving between the queries and the updates of the various call and move operations. This
is a reasonable assumption only if all network and database operations are performed in negligible
time. There are various approaches to the problem. For instance, setting at the old address a
forwarding pointer to the new location is necessary to ensure that calls that were issued prior to
the movement and thus arrive at the old address will not be lost. If a transactional approach is
adopted, traditional database concurrency control techniques are used to enforce that each call
and move operation is executed as a transaction, i.e., an isolated unit. This approach is highly
impractical, since, for instance, acquiring locks at all distributed databases involved in a call or
move operation causes prohibitive delays.

A more practical approach is based on imposing a specific order on the way updates are per-
formed. In particular, upon a move operation from % to j, first entries at the path from j to
LCA(i,j) are added in a bottom-up fashion and then the entries at the path from the LC'A(3, j) to
1 are deleted in a top-down fashion. Special care must be given so that during the delete phase of
a move operation, an entry at a level K — 1 database is deleted only after servicing all lookups for
higher-level databases. For an application of this approach to the regional matching method refer
to [6] and for an application to tree-structure architectures to [49].

When a replication scheme is used, there is a need for deploying coherency control protocols,
to maintain consistent replicas every time the user moves. Coherency control is a well-studied
problem in transaction management [11]. However, traditional approaches based on distributed
locks or timestamps may be expensive, thus other techniques that ensure a less strict form of
replica consistency may be advanced. For example, if there is an HLR or a master copy that is
always consistent, i.e, maintains the most up-to-date location, then a lookup can rely on this copy
to locate the user when the location at a replica proves to be obsolete. Another approach is to use
forwarding pointers at the old location to handle any incoming calls directed there from obsolete

replicas.

31

10.2 Failure Recovery

Database recovery is required after the failure of a location database. In the case of the VLR/HLR
either the VLR, the HLR, or both may be periodically checkpointed. If this is the case, after the

failure the backup is restored. However, some of the records of the backup may be obsolete.

10.2.1 VLR Failure Restoration

If the VLR is checkpointed, the backup record is recovered and used upon a failure. If the backup
is obsolete, then all areas within the VLR must be paged to identify the mobile users currently in
the VLR’s zone. Thus, the restoration procedure is not improved by the checkpointing process. In
[39], the optimal VLR checkpointing interval is derived to balance the checkpointing cost against
the paging cost. GSM exercises periodic location updating: the mobile users periodically establish
contact with the network to confirm their location. It is shown that periodic confirmation does
not improve the restoration process, if the confirmation frequency is lower than 0.1 times of the
portable moving rate [39]. A mechanism is proposed, called location update on demand, which
eliminates the need for periodic confirmation messages. After a failure, a VLR restoration message
is broadcasted to all mobile users in the area associated with the VLR. The mobile users then send
a confirmation message. To avoid congesting the base station, each such message is sent within a

random period from the receipt of the request.

10.2.2 HLR Failure Restoration

In GSM, the HLR database is periodically checkpointed. After a HLR failure, the database is
restored by reloading the backup. If a backup record is obsolete, then when a call delivery arrives,
the call is lost. The obsolete data will be updated by either a call origination or a location con-
firmation from the corresponding mobile user. An estimation of the probability of lost calls can
be found in [39]. In IS-41, after a HLR failure, the HLR initiates a recovery procedure by sending
an “Unreliable Roamer Data Directive” to all its associated VLRs. The VLRs then remove all
records of mobile users associated with that HLR. Later, when a base station detects the presence
of a mobile portable within its coverage area and the portable is registered at the local VLR, the
VLR sends a registration message to the HLR allowing it to reconstruct its internal structures in
an incremental fashion. Before the location is reconstructed, call deliveries to the corresponding
mobile user are lost.

A method called aggressive restoration is proposed in [39]. Following this method, the HLR
restores its data by requesting all the VLRs referenced in its backup copy to provide exact location
information of the mobile users. The probability pyy that the HLR fails to request information from
a VLR is estimated. An algorithm is also proposed to identify VLRs that are not mentioned in the
backup copy. These VLRs are such that there are portables that move in the VLR between the
last HLR checkpointing and the HLR failure and do not move out of the VLR before the failure.

32

11 Querying Location Databases

Besides the efficient support of location lookups and updates, a challenging issue is the management
of more advanced location queries. Examples of such queries include finding the nearest service
when the service or the user is mobile (which is a form of a nearest-neighbor query), or identify-
ing the route with the best traffic condition (which requires applying an aggregation operator to
estimate the number of moving users in each route). Another application is sending a message
to all users within a specified geographical area for example to perform geographically targeted
advertising [27]. Location queries may be imposed by either static or mobile users. In the case in
which a single centralized DBMS is used to store the location of all moving objects, most research
proposals follow the approach of building additional capabilities for handling moving objects on top
of existing DBMSs. There is not much work on providing advanced query capabilities in distributed
architectures. However, there is some very recent work on querying network directories that may

be applicable to location directories as well.

11.1 Issues

A number of issues render processing location queries different from query processing in traditional

database systems in both the centralized and the distributed case:

e The data values representing the location of mobile users are continuously changing.

e Besides a spatial dimension, querying location data has also a temporal dimension, thus an
important issue is how to express and answer spatio-temporal queries, for instance queries of

the following form: what is the location of moving object = at time £.

e There are interesting queries that refer to future time, for example: “find all objects that will
enter a specified region in the next hour”. The answer to such queries is only tentative, that

is it should be considered correct according to what is currently known.

e Location queries may include transient data, that is data whose value changes while the

queries are being processed, e.g., a moving user asking for nearby hospitals.

e Another possible type of location queries are continuous queries, e.g., a moving car asking
for hotels locating within a radius of 5 miles and requesting the answer to the query to be
continuously updated. Issues related to continuous queries include when and how often should

they be re-evaluated and the possibility of a partial or incremental evaluation.

e An issue that complicates further the processing of location queries is the introduction of
uncertainty, since to control the volume of location updates, the stored information about
the location of a mobile object may be imprecise or out-of-date. Furthermore, in a variety of
location queries, knowing the exact location of some users may not be necessary. Interesting

question are:

33

— how to model and quantify imprecision in query answering, and

— besides retrieving the stored locations, what is the optimal way to search to acquire the

exact locations.

e The protocols for placing, replicating, caching and updating location data must be re-designed
to efficiently handle advanced queries in addition to workloads based on look-up and move

operations.

e Since the number of moving objects may be large, to answer queries efficiently, we would like
to avoid examining the location of all objects. Thus, we would like to build an index on the

location attribute. The type of index depends on the architecture of the location databases.

A spatio-temporal query language, called FTL, with temporal operators that refer to the future
has been proposed in [58]. FTL augments SQL with temporal (e.g., until, late) and spatial (e.g.,

inside-region) operators.

11.2 Centralized Database Architecture

Querying moving object databases has been discussed in the context of spatio-temporal databases
(for a survey on spatio-temporal databases see for example Chapter 7 of [42] and in particular for
indexing [62]). Spatio-temporal databases deal with geometries changing over time; that is with
spatial objects whose position as well their extent (i.e., the region they cover) changes with time
[16]; queries refer to both the past and the future histories of moving objects. Here we focus on
continuously moving objects having a zero extent. We focus on an important type of spatial queries
called range queries. An example of a range query is “retrieve the objects that are currently inside
a given region P”. How such queries are processed depends on how the objects are modeled, and

how they are stored and indexed.

Modeling. To model the location of moving objects, a new data model, called MOST was in-
troduced in [58]. The novelty of MOST is the concept of a dynamic attribute, i.e., an attribute
whose value changes continuously as a function of time without being explicitly updated. Location
is modeled as a dynamic attribute. The value of the dynamic attribute depends on time ¢. For-
mally, a dynamic attribute A is represented by three subattributes: A.value, A.updatetime and a
A. function. A.function is a function of a single variable ¢ that has value 0 at time ¢ = 0. At time
A.updatetime the value of A is A.value and until the next update of A, the value of A at time
A.updatetime-+ty is given by A.value + A.function(ty), that is it changes with time according to
f- An explicit update of the dynamic attribute may update any of its sub-attributes, e.g., update
the function sub-attribute.

The above model has been extended for the case in which mobile objects move on pre-specified
routes [69]. This is the case for example of airplanes or vehicles moving on a highway. In this
case, three sub-attributes: A.route, A.direction and A.speed are used instead of the function

attribute. A.route is a line spatial object denoting the route the object is moving on, A.direction

34

is a binary indicator having value 0 or 1 indicating towards which endpoint of the route the object
is moving, and A.speed is a linear function indicating the speed of the moving object. The model
is also extended to include information about the potential uncertainty and deviation of the stored
location [69, 45].

Representing and Indexing Moving Objects. The indexing problem can be best described by
decomposing it into two sub-problems [71]. The first problem concerns the geometric representation
of the location attributes in multidimensional space. The issues involved are how to define the
multidimensional space and how to map the attributes of a moving object into a region (e.g., point,
line) in this space. The object’s region is not updated continuously but only when the attributes
are explicitly updated. The second problem concerns developing an indexing method appropriate
for the proposed representation. Existing spatial methods can be used, however, it is still unclear
which one is more appropriate for the location distribution of mobile objects and for the specific
geometric representation.

First, assume that objects move on an 1-dimensional line, that is the location y of each object
is described as a linear function of time, y(t) = v(t — tg) + yo, where v is the velocity of the object

and gy the location of the object at time tg.

Value-Time Representation and Indexing [71, 36]. This method plots the function y representing
the way location changes with time. Thus, the horizontal-axis represents time (¢) and the vertical-
axis represents the value of location (y). An object is mapped to a trajectory that plots the
location as a function of time. In fact, the trajectory is not a line but a semi-line starting at point
(to,y0)- One way to index the lines is to use a spatial access method, for example each line could
be approximated by a minimum bounding rectangle which is then indexed using an R-tree or a
R*-tree. However, this approach is problematic [36]. First, the corresponding minimum bounding
rectangle covers a large portion of the space, whereas the actual space occupied by the line is small,
thus leading to extremely large and overlapping rectangles [62]. Second, it cannot represent infinite
objects well. Another approach is to decompose the data space into disjoint cells and store with
each cell the set of lines it intersects. A drawback of this approach is that each line has many copies.
This approach is taken in [60] that uses a quadtree-based index. The infinite time dimension is
partitioned into equal-sized time slices and an index is created for each slice. Theoretically, the
union of these indexes is the master index of the whole time-value space being indexed. In practice,
however, since the storage space is limited, when the period AT of an index is over, the index is
disposed and the next index is generated. Thus, the index is reconstructed every AT time units;
AT is called the index reconstruction period. An index reconstruction algorithm is also proposed

that is optimal in CPU and disk access overheads.

Intercept-Slope [71] or Dual Space [36] Representation and Indexing. Consider an object whose
location as a function of time is y(t) = a + ut, a is called the intercept and u is called the slope.
Then the representation space is constructed by the horizontal-axis representing the intercept and

the vertical-axis representing the slope. Thus, the object is mapped to the point (a,) in this space.

35

The query region is transformed into a polygon. A number of indexing techniques are proposed

and analyzed in [36].

The problem becomes more difficult if we consider moving objects in the plane. An important case
is when objects move in the plane but their movement is restricted on using a given set of routes
on the finite terrain. This is called the 1-5 dimensional problem in [36]. They propose representing
each predefined route as a sequence of connected line segments and indexing the positions of these
line segments using a standard spatial access method. The full 2-dimensional problem is harder. In
this case, in the value-time representation, the trajectories of moving objects are lines in the space.
The dual space representation is not directly applicable. One way to get the dual [36] is to project
the lines on the (z,t) and (y,t) planes and then take the dual (intercept-slope) representation for
the two lines on these planes. Thus, now a line can be represented by a 4-dimensional point. In
[48], the case is considered in which the trajectory of moving objects in the plane is obtained by
discretely sampling the movement of objects in time and then using linear interpolation between
these samples. Each line of the trajectory is then approximated by a minimum bounding box. An
extension of the R-tree is proposed that keeps line segments that belong to the same trajectory
together, i.e., in the same or neighbor nodes. This work does not address queries that refer to the

future.

Uncertainty in Query Processing. Since the stored location of a moving object may deviate
from its actual current location, there is some uncertainty in answering a query. Depending on
the bound on the uncertainty of the stored location, it should be possible to calculate a bound on
the uncertainty of the answer. The DOMINO project offers two approaches, a qualitative and a
quantitative one. In the qualitative approach [58, 71], two kinds of semantics, namely the may and
must semantics, are incorporated. Under the may semantics, the answer to a range query is the set of
all objects that are possibly inside the query polygon P, i.e., the objects whose uncertainty interval
intersects P. Under the must semantics, the answer is the set of all objects that are definitely inside
P, i.e., the objects whose uncertainty interval are entirely inside P. In the quantitative approach
[45], the answer is a set of objects each of which is associated with a probability that the object is
inside P.

To support such semantics, indexing should be extended. How to extend the value-time repre-
sentation for the 1-dimensional case to support the may-must semantics is considered in [71]. In
this representation, two lines are plotted for each object, one represents the maximum distance
from yy and the other the minimum distance from yy. Thus, at time ¢ the value of location is an
interval, the uncertainty interval, instead of a point. In this case, instead of being represented by

a line or trajectory, an object is represented by a plane (the one between the two lines).

11.3 Distributed Database Architectures

There is not much research in querying distributed location directories. Query processing depends

on the type of the architecture, for example in the case of hierarchical architectures, location

36

databases are physically structured based on location. For example, an internal node in the hierar-
chy, contains location information for all mobile users currently in the geographical area it covers.
Thus, it can be viewed as a distributed spatial index.

Location queries in distributed architectures were introduced in [25]. In this approach, the
architecture is based on partitions which are sets of locations between which the user relocates very
often. A mobile user moves only infrequently to locations that belong to different partitions. The
stored location information about a moving object is not its actual location but just the partition
to which its actual location belongs. Thus, only movements among partitions generate database
updates. The system guarantees bounded ignorance, in that the actual and stored location of a user
are always in the same partition. To determine the actual location of a user, searching all locations
in the partition of its stored location is necessary. Thus, deriving an optimal execution plan for a
query involves determining an optimal sequence in which to search inside the partitions involved

in the query. A tree-representation of this problem is proposed.

11.4 Service Discovery Protocols

With the wide-spread use of networking and the increasing number of network devises, there is
a need for a scalable means to locate services. The location directories we have considered so
far associate the name of a mobile object (service) with its location. Many recent approaches
consider the problem of finding an appropriate object (service) by specifying a number of desired
characteristics for the service.

The Service Location Protocol (SLP) [20] provides a flexible and scalable framework for provid-
ing hosts with access to information about the existence, location and configuration of networked
services. Traditionally, to locate a service, users provide the name of a network host (which is an
alias for its network address) that supports the service. SLP eliminates the need for a user to know
the name of a network host. Rather, the user supplies the desired type of service along with a set
of attributes which describe the service. Based on this description, the SLP resolves the network
address of the service for the user. Client applications are modeled as user agents and services are
advertised by service agents. The user agent issues a service request on behalf of the client applica-
tion specifying the characteristics of the service. The user agent receives a service reply specifying
the location of all services in the network with the requested characteristics. The user agent may
directly contact the service agents or in larger networks a directory agent. The directory agent
functions as a cache. Service agents register the services they advertise in the directory agents.
These advertisements must be refreshed or they expire. Services are grouped together using scopes.
A scope may indicate a location, administrative grouping, proximity in a network topology or some
other category.

Interesting problems related to service location protocols include:

e Modeling services whose location change, e.g., how is the location of a moving service specified,

e storing, caching and replicating directory entries when either the services are mobile and/or

the requests originate from mobile clients,

37

e updating directory entries and refreshing directory caches when the services are mobile and

thus their location is fast changing,

e efficient location-aware querying, e.g., finding services based on location attributes, when the
client requested the service, or the service is mobile: should the directory be hierarchically
structured based on location or should an appropriate spatial index be built on top of it; what

is a an appropriate index in this case;

e interoperability: how to relate information available at different layers in the network, e.g.,

information stored at an HLR, to actually locate a service using a directory service protocol.

Most of the above questions remain open. A hierarchical architecture for service discovery
directory is proposed in [14] which is based on the use of a hash-based index. Finally, there
has been some very recent research in incorporating database techniques in manipulating network
directories including developing a data model and a declarative language for network directories
[29] and semantic caching of directory entries [13]. Extending this work for the case of directories

that include the location of moving objects is an interesting problem.

12 Conclusions

Managing the location of moving objects is becoming increasingly important as mobility of users,
devices and programs becomes widespread. This paper focuses on data management techniques for
locating, i.e., identifying the current location, of mobile objects. The efficiency of techniques for
locating mobile objects is critical since the cost of communicating with a mobile object is augmented
by the cost of finding its location. Location management techniques use information concerning the
location of moving objects stored in location databases in combination with search procedures that
exploit knowledge about the objects’ previous moving behavior. Various enhancements of these
techniques include caching, replication, forwarding pointers and partitioning. The databases for
storing the location of mobile objects are distributed in nature and must support very high update
rates since the location of objects changes as they move. The support of advanced queries involving

the location of moving objects is a promising research topic.

References

[1] Special Issue on Intelligent Agents. Communications of the ACM, 37(7), 1994.
[2] Special Issue on Internet-based Agents. IEEE Internet Computing, 1(4), 1997.

[3] A. Abutaleb and V. O. K. Li. Location Update Optimization in Personal Communication Systems.
ACM/Baltzer Wireless Networks Journal, 3:205-216, 1997.

[4] 1. F. Akyildiz and J. S. M. Ho. Dynamic Mobile User Location Update for Wireless PCS Networks.
ACM/Baltzer Wireless Networks Journal, 1(2), 1995.

38

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]

V. Anantharam, M. L. Honig, U. Madhow, and V. K. Kei. Optimization of a Database Hierarchy for
Mobility Tracking in a Personal Communications Network. Performance Fvaluation, 20:287-300, 1994.

B. Awerbuch and D. Peleg. Online Tracking of Mobile Users. Journal of the ACM, 42(5), 1995.

B. R. Badrinath, T. Imielinski, and A. Virmani. Locating Strategies for Personal Communications Net-
works. In Proceedings of the 1992 International Conference on Networks for Personal Communications,
1992.

M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm. Enhancing the Web’s Infrastructure:
From Caching to Replication. IEEFE Internet Computing, 1(2):18-27, March 1997.

A. Bar-Noy and I. Kessler. Tracking Mobile Users in Wireless Communications Networks. IEEE
Transactions on Information Theory, 39:1877-1886, 1993.

A. Bar-Noy, I. Kessler, and M. Sidi. Mobile Users: To Update or not to Update? ACM/Baltzer Wireless
Networks Journal, 1(2), 1995.

P. A. Bernstein, V. Hadjilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

G. Cho and L. F. Marshall. An Efficient Location and Routing Schema for Mobile Computing Envi-
ronments. IEEE Journal on Selected Areas in Communications, 13(5), June 1995.

S. Cluet, O. Kapitskaia, and D. Srivastava. Using LDAP Directory Caches. In Proceedings of the PODS
Conference, 1999.

S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz. An Architecture for a Secure
Service Discovery Service. In Proceedings of the 5th ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom’99), 1999.

L. W. Dowdy and D. V. Foster. Comparative Models of the File Assignment Problem. ACM Computing
Surveys, 14(2):288-313, June 1982.

M. Erwig, R. H. Goting, M. Schneider, and M. Vazirgiannis. Spatio-Temporal Data Types: An Approach
to Modeling and Querying Moving Objects in Databases. GeolInformatica, 3(3), 1999.

G. H. Forman and J. Zahorjan. The Challenges of Mobile Computing. IEEE Computer, 27(6):38-47,
April 1994.

GPS - Introduction to GPS Applications. www.redsword.com/gps/apps/index.htm.
GPS - USCG Navigation Center GPS Page. www.navcen.uscg.mil/gps/.

E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Protocol, Version 2. In IETF, RFC
2608, June 1999. ftp://ftp.isi.edu/in-notes/rfc2608.txt.

H. Harjono, R. Jain, and S. Mohan. Analysis and Simulation of a Cache-Based Auxiliary User Location
Strategy for PCS. In Proceedings of the 1994 International Conference on Networks for Personal
Communications, March 1994.

J. S. M. Ho and I. F. Akyildiz. A Mobile User Location Update and Paging Mechanism Under Delay
Constraints. ACM/Baltzer Journal of Wireless Networks, 1(4), 1995.

J. S. M. Ho and I. F. Akyildiz. Local Anchor Scheme for Reducing Signalling Cost in Personal Com-
munication Networks. IEEE/ACM Transactions on Networking, 4(5), 1996.

39

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

J.S. M. Ho and I. F. Akyildiz. Dynamic Hierarchical Database Architecture for Location Management
in PCS Networks. IEFEE/ACM Transactions on Networking, 5(5), 1997.

T. Imielinski and B. R. Badrinath. Querying in Highly Mobile Distributed Environments. In Proceedings
of the 18th International Conference on Very Large Data Bases (VLDB 92), 1992.

T. Imielinski and B. R. Badrinath. Wireless Mobile Computing: Challenges in Data Management.
Communications of the ACM, 37(10), October 1994.

T. Imielinski and J. C. Navas. GPS-Based Geographic Addressing, Routing, and Resource Discovery.
Communications of the ACM, 42(4), 1999.

IP Routing for Wireless/Mobile Hosts Working Group. RFC Documents.
http://www.ietf.org/html.charters/mobileip-charter.html.

H. V. Jagadish, L. V. S. Lakshmanan, T. Milo, D. Srivastava, and D Vista. Querying Network Direc-
tories. In Proceedings of the SIGMOD Conference, 1999.

R. Jain. Reducing Traffic Impacts of PCS Using Hierarchical User Location Databases. In Proceedings
of the IEEE International Conference on Communications, 1996.

R. Jain and Y-B. Lin. A Auxiliary User Location Strategy Employing Forwarding Pointers to Reduce
Network Impacts of PCS. Wireless Networks, 1:197-210, 1995.

R. Jain, Y-B. Lin, C. Lo, and S. Mohan. A Caching Strategy to Reduce Network Impacts of PCS. IEFE
Journal on Selected Areas in Communications, 12(8):1434-44, October 1994.

J. Jannink, D. Lam, N. Shivakumar, J. Widom, and D.C. Cox. Efficient and Flexible Location Man-
agement Techniques for Wireless Communication Systems. ACM/Baltzer Journal of Mobile Networks
and Applications, 3(5):361-374, 1997.

D. B. Johnson and D. A. Maltz. Protocols for Adaptive Wireless and Mobile Networking. IEEE Personal
Communications, 3(1), 1996.

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-Grained Mobility in the Emerald System. ACM
Transactions on Computer Systems, 8(1):109-133, February 1988.

G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing Mobile Objects. In Proceedings of the 18th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1999.

P. Krishna, N. H. Vaidya, and D. K. Pradhan. Static and Dynamic Location Management in Mobile

Wireless Networks. Journal of Computer Communications (special issue on Mobile Computing), 19(4),
March 1996.

Y. B. Lin. Determining the User Location for Personal Communications Service Networks. IEEE
Transactions on Vehicular Technology, 43(3), August 1994.

Y-B. Lin. Failure Restoration of Mobility Databases for Personal Communication Networks. Wireless
Networks, 1:367-372, 1995.

Y. B. Lin and S. K. DeVries. PCS Network Signaling Using SS7. IEEE Personal Communications, June
1995.

U. Madhow, M. L. Honig, and K. Steiglitz. Optimization of Wireless Resources for Personal Commu-
nications Mobility Tracking. IEEE/ACM Transactions on Networking, 3(6):698-707, 1995.

40

[42]

[43]

[44]

[45]

[46]
[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Y. Manolopoulos, Y. Theodoridis, and V. Tsotras. Advanced Database Indexing. Kluwer Academic
Publishers, 1999.

S. Mohan and R. Jain. Two User Location Strategies for Personal Communication Services. IEEFE
Personal Communications, 1(1):42-50, 1st Quarter 1994.

B. Clifford Neuman, S. S. Augart, and S. Upasani. Using Prospero to Support Integrated Location-
Independent Computing. In Proceedings USENIX Symposium on Mobile €& Location-Independent Com-
puting, pages 29-34. USENIX, August 1993.

A. P. Sistla O. Wolfson, S. Chamberlain, and Y. Yesha. Updating and Querying Databases that Track
Mobile Units. Distributed and Parallel Databases, 7(3), 1999.

M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall, 1991.
C. E. Perkins. Mobile IP: Design Principles and Practices. Addison Wesley, 1998.

D. Pfoser, Y. Theodoridis, and C. S. Jensen. Indexing Trajectories of Moving Point Objects. Technical
Report Chorochronos Technical Report, CH-99-3, October 1999.

E. Pitoura and I. Fudos. An Efficient Hierarchical Scheme for Locating Highly Mobile Users. In Pro-
ceedings of the Tth International Conference on Information and Knowledge Management (CIKM’98),
pages 218225, November 1998.

E. Pitoura and G. Samaras. Data Management for Mobile Computing. Kluwer Academic Publishers,
1998.

S. Rajagopalan and B. R. Badrinath. An Adaptive Location Management Strategy for Mobile IP. In
Proceedings of the 1st ACM International Conference on Mobile Computing and Networking (Mobi-
com’95), Berkeley, CA, October 1995.

C. Rose. Minimizing the Average Cost of Paging and Registration: A Timer-Based Method.
ACM/Baltzer Wireless Networks Journal, 2:109-116, 1996.

C. Rose and R. Yates. Minimizing the Average Cost of Paging Under Delay Constraints. ACM/Baltzer
Journal of Wireless Networks, 1(2), 1995.

C. Rose and R. Yates. Location Uncertainty in Mobile Networks: a Theoretical Framework. IEEFE
Communications Magazine, 35(2), 1997.

M. Shapiro, P. Dickman, and D. Plainfosse. SSP Chains: Robust, Distributed References Supporting
Acyclic Garbage Collection. Technical Report Technical Report 1799, INRIA, Rocquentcourt, France,
November 1992.

N. Shivakumar, J. Jannink, and J. Widom. Per-User Profile Replication in Mobile Environments: Algo-
rithms, Analysis, and Simulation Results. ACM/Baltzer Journal of Mobile Networks and Applications,
2(2):129-140, 1997.

N. Shivakumar and J. Widom. User Profile Replication for Faster Location Lookup in Mobile Environ-
ments. In Proceedings of the 1st ACM International Conference on Mobile Computing and Networking
(Mobicom’95), 161-169, October 1995.

A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying Moving Objects. In
Proceedings of the 13th International Conference on Data Engineering (ICDE 97), 1997.

41

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Stanford Pleiades Research Group. Stanford University Mobile Activity TRAces (SUMATRA). www-
db.stanford.edu/sumatra.

J. Tayeb and O. Wolfson O. Ulusoy. A Quadtree-Based Dynamic Attribute Indexing Method. The
Computer Journal, 41(3), 1998.

F. Teraoka, Y. Yokote, and M. Tokoro. A Network Architecture Providing Host Migration Transparency.
In Proceedings of the ACM SIGCOMM Symposium on Communications, Architectures and Protocols,
pages 209220, September 1991.

Y. Theodoridis, T. Sellis, T. Papadopoulos, and Y. Manolopoulos. Specification of Efficient Indexing
in Spatiotemporal Databases. In Proceedings of the 10th International Conference on Scientific and
Statistical Database Management, 1998.

M. van Steen, F. J. Hauck, G. Ballintijin, and A. S. Tanenbaum. Algorithmic Design of the Globe
Wide-Area Location Service. The Computer Journal, 41(5):297-310, 1998.

M. van Steen, F. J. Hauck, P. Homburg, and A. S. Tanenbaum. Locating Objects in Wide-Area Systems.
IEEE Communications Magazine, pages 2—7, January 1998.

M. Veeraraghavan and G. Dommety. Mobile Location Management in ATM Networks. IEEE Journal

on Selected Areas in Communications, 15(8), 1997.

J. Vitek and C. Tschudin, editors. Mobile Object Systems: Towards the Programmable Internet. Springer
Verlag, LNCS 1222, 1997.

J.Z. Wang. A Fully Distributed Location Registration Strategy for Universal Personal Communication
Systems. IEEE Journal on Selected Areas in Communications, 11(6):850-860, August 1993.

M. Weiser. Some Computer Science Issues in Ubiquitous Computing. Communications of the ACM,
36(7):75-84, July 1993.

0. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. Mendez. Cost and Imprecision in Modeling the
Position of Moving Objects. In Proceedings of the 14th International Conference on Data Engineering
(ICDE 98), 1998.

0. Wolfson, S. Jajodia, and Y. Huang. An Adaptive Data Replication Algorithm. ACM Transactions
on Database Systems, 22(2):255-314, June 1997.

0. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving Objects Databases: Issues and Solutions.
In Proceedings of the 10th International Conference on Scientific and Statistical Database Management,
1998.

H. Xije, S. Tabbane, and D. Goodman. Dynamic Location Area Management and Performance Analysis.
In Proceedings of the IEEE Vehicular Technology Conference, 1993.

A. Yener and C. Rose. Highly Mobile Users and Paging: Optimal Polling Strategies. IEEE Transactions
on Vehicular Technology, 47(4), 1998.

42

Evaggelia Pitoura received her BSc from the Department of Computer Science and Engineering
of the University of Patras, Greece in 1990 and her MSc and PhD in Computer Science from
Purdue University in 1993 and 1995 respectively. Since September 1995, she is on the faculty of
the Department of Computer Science of the University of Ioannina, Greece. Her main research
interests are data management for mobile computing and multidatabases. Her publications include
several journal and conference articles and a recently published book on mobile computing. She
received the best paper award in the IEEE ICDE 1999 for her work on mobile agents. Evaggelia
Pitoura has served on a number of program committees and was program co-chair of the MobiDE

workshop held in conjunction with MobiCom 99.

George Samaras received a PhD in computer science from Rensselaer Polytechnic Institute, USA,
in 1989. He is currently an Associate Professor at the University of Cyprus. He was previously
at IBM Research Triangle Park, USA and taught at the University of North Carolina at Chapel
Hill (adjunct Assistant Professor, 1990-93). He served as the lead architect of IBM’s distributed
commit architecture (1990-94) and co-authored the final publication of the architecture (IBM Book,
SC31-8134-00, September 1994). He was member of IBM’s wireless division and participated in
the design/architecture of IBM’s WebExpress, a wireless Web browsing system. He recently (1997)
co-authored a book on data management for mobile computing (Kluwer A.P). He has a number
of patents relating to transaction processing technology and numerous technical conference and
journal publications. His work on utilizing mobile agents for Web database access has received the
best paper award of the 1999 IEEE International Conference on Data Engineering (ICDE/99). He
has served as proposal evaluator at a national and international level and he is regularly invited
by the European Commission to serve as project evaluator and auditor in areas related to mobile
computing and mobile agents. He also served on IBM’s internal international standards committees
for issues related to distributed transaction processing (OSI/TP, XOPEN, OMG). His research
interest includes mobile computing, mobile agents, transaction processing, commit protocols and
resource recovery, and real-time systems. He is a voting member of the ACM and IEEE Computer

Society.

43

