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Abstract

MapReduce is a programming model (and an associated implementation) used
at Google for processing large amounts of input data (such as millions of docu-
ments) and generating keyed or indexed query results (such as the indexes used for
Google’s web search). The programming model is stunningly simple, and it allows
the programmer to largely abstract from the parallel and distributed execution of
the data-processing computations. Parallel execution is promoted by the assumed
skeleton of MapReduce computations. Load balancing, network performance and
fault tolerance are taken care of by the MapReduce implementation.

We revisit the MapReduce programming model in an attempt to provide a rig-
orous description of the model. We focus on the key abstraction for MapReduce
computations; this abstraction is parameterized by the problem-specific ingredi-
ents for data extraction and reduction. We use Haskell as a lightweight specifi-
cation language to capture the essence of MapReduce computations in a succinct,
executable and strongly typed manner. Our study substantiates that clarity, gener-
ality and correctness of designs (or the presentations thereof) are easily improved,
if modest functional programming skills are put to work.

Keywords: Data processing, MapReduce, parallel programming, distributed pro-
gramming, typed functional programming, map, reduce, list homomorphism, fold,
unfold, Haskell.



Contents

1 Introduction

2 The power of ¢’ and ¢ |’

3 Type discovery from prose

4 Reflection on types and designs
5 Type discovery vs. type inference

6 Getting the recursion schemes right
6.1 Lisp’smapandreduce . ... . ... . ... .. ...........
6.2 Haskell’'smapandreduce . . . . ... ... .. ... ... ....
6.3 MapReduce’smapandreduce . .. ... ... .. .. ........
6.4 The under-appreciatedunfold . . . . . .. ... ... ... ......

7 Completion of the executable specification

8 Parallelism and distribution
8.1 Opportunities for parallelism . . . . . ... ... ... ........
8.2 The basic distribution strategy . . . . . . . . ... ...
8.3 Distributed reduction . . . . ... ... o oL
8.4 Executable specification . . . .. ... ... ... 0.

9 Conclusion

A MapReduce computations in C#

10
11
12
13
14

15

17
17
18
19
21

23

25



1 Introduction

The paper discusses methods for improving the quality of software designs (and the
presentations thereof). The reader may immediately think of design patterns or mod-
eling languages like UML. By contrast, we discuss here the use of typed functional
programming for capturing certain parts of a software design. We are not going to
argue in favor of advanced formal specifications, which are certainly appropriate in
designated areas; neither should the reader expect any sorts of advanced functional pro-
gramming or any sorts of new theoretical results. Instead, we demonstrate the value of
down-to-earth typed functional programming, when it is added to the repertoire of de-
sign methods. Typed functional programming is particularly good at validating ‘design
prose’ that is centered around abstraction, composition, typing and algebraic proper-
ties. Our running example demonstrates that significant problems may go unnoticed
when design prose is not subjected to the scrutiny of a design method like ours.

The paper is dedicated to the MapReduce programming model used at Google,
as published in the paper “MapReduce: Simplified Data Processing on Large Clus-
ters” [6] by Jeffrey Dean and Sanjay Ghemawat. MapReduce is a programming model
(and an associated implementation) for processing large amounts of input data and
generating keyed or indexed outputs in a parallel and distributed manner. For instance,
Google’s web search requires processing millions of documents and generating in-
dexes from them. Thousands of MapReduce jobs are executed at Google every day on
large clusters of commodity machines. The MapReduce programming model provides
a stunningly simple but powerful enough abstraction for expressing data-processing
computations, without requiring that the programmer engages in the complicated de-
tails of fault-tolerance, network performance, load balancing and other aspects of par-
allel and distributed execution.

Road-map

We are mostly concerned with MapReduce’s abstraction for computations; we are
much less concerned with the technicalities of the MapReduce implementation. In
Section 2, we recall the informal MapReduce programming model, and we capture the
key abstraction as a higher-order function defined by plain function composition. In
Section 3 — Section 5, we study the typing of the MapReduce abstraction. In Sec-
tion 6, we take a closer took at the recursion or iteration schemes that are at the heart of
the MapReduce abstraction. In Section 7, we complete the strongly typed, executable
specification of the MapReduce abstraction. In Section 8, we refine the key abstraction
for MapReduce computations such that the key aspects of their parallel and distributed
execution are modeled. In Section 9, we conclude the paper.

We record several ‘lessons learned’ on the way.

No profound knowledge of Haskell is required. All idioms are explained in footnotes.



2 The power of ‘’ and 1’

We quote the MapReduce programming model [6]:

“The computation takes a set of input key/value pairs, and produces a set
of output key/value pairs. The user of the MapReduce library expresses
the computation as two functions: map and reduce.

Map, written by the user, takes an input pair and produces a set of inter-
mediate key/value pairs. The MapReduce library groups together all in-
termediate values associated with the same intermediate key I and passes
them to the reduce function.

The reduce function, also written by the user, accepts an intermediate key
I and a set of values for that key. It merges together these values to form
a possibly smaller set of values. Typically just zero or one output value is
produced per reduce invocation. The intermediate values are supplied to
the user’s reduce function via an iterator. This allows us to handle lists of
values that are too large to fit in memory.”

We also quote an example complete with pseudo-code [6]:

”Consider the problem of counting the number of occurrences of each
word in a large collection of documents. The user would write code similar
to the following pseudo-code:

map (String key, String value): reduce (String key, Iterator values):
// key: document name // key: a word
// value: document contents // values: a list of counts
for each word w in value: int result = 0;
EmitIntermediate (w, "1"); for each v in values:

result += Parselnt (v);
Emit (AsString(result));

The map function emits each word plus an associated count of occurrences
(just ‘1’ in this simple example). The reduce function sums together all
counts emitted for a particular word.”

We are not clearly told how the computation is composed together, but we can infer
the necessary details from the quoted text, the example and extra hints. Most impor-
tantly, both map' and reduce are described to process key/value pairs one by one
independently. So we assume that a MapReduce computation essentially iterates over
the key/value pairs to apply map and reduce to each pair. This circumstance clearly
hints at opportunities for parallelization.

In functional programming terminology, we may say that map and reduce need
to be mapped (or perhaps folded) over the key/value pairs. We take for granted that

'We use sanserif style for MapReduce’s map and reduce so that we do not confuse these arguments of
a MapReduce computation with Lisp’s higher-order combinators map and reduce. MapReduce terminology
does not comply with functional programming standards.



a MapReduce computation can be decomposed and represented as a reusable Haskell
function mapReduce as follows:?

mapReduce map reduce

= reducePerKey reduce —— 3. Apply reduce to each group
groupByKey —— 2. Group intermediates per key
mapPerKey map —— 1. Apply map to each key/value pair

We note that the basic skeleton of MapReduce computations is stunningly simple. We
assume that mapPerKey, groupByKey and reducePerKey are components of
the MapReduce library. We will discover the types and definitions of these components
eventually. For now, we keep the functions undefined in our emerging specification:?

mapPerKey = 1 —— tobe discovered
groupByKey = 1 —- tobe discovered
reducePerKey = 1 —— tobe discovered

This sort of undefinedness idiom allows us to (partially) check our specification at all
times. That is, at least, we can check types. Of course, we have not yet specified any
types, but Haskell takes care of type checking with full type inference anyway. Some
readers may argue that a functional programming language with type inference offers
only little convenience over modern mainstream programming languages. For instance,
the undefinedness idiom has the following correspondence in C#:

public MyType MyMethod ()
{

throw new InvalidOperationException ("undefined");

}

Here is a challenge: What is a reasonable Java or C# representation of the trivial
Haskell function mapReduce given above? We are confident to claim that there is
none. One would need at least the additional type information that follows only in the
next section. Without such types, there is no proper way to transcribe our incomplete
specification to type-checkable Java or C# code.

Lesson learned 1

This lesson is quite obvious but worth reiterating: The informal description of designs
benefits from a machine-checked representation of the key abstractions, be it in the form
of higher-order functions, subject to an identification of major building blocks, param-
eters and forms of composition. The added values are: clarity and partial correctness
(due to type checks or other means of validation). &

Lesson learned 2

By taking advantage of type inference and the undefinedness idiom, one can perform
partial checks on emerging or incomplete designs, at least type checking. This fully
enables top-down design. It also enables validation of design prose for an implemen-
tation whose actual design is unattainable or non-presentable. <&

2We are using Haskell 98 [13] throughout the paper. We recall details where necessary. One thing to note
is that function composition “.” is defined as follows: (g. f) x = g (f ). We also note that functions have
names that begin in lower case, such as in mapReduce. Finally, line comments are prefixed by “--".

3The textual representation for Haskell’s ‘L’ (say, bottom) is ‘undefined’.



3 Type discovery from prose

The type of a MapReduce computation needs to be properly discovered by us.
Only the types of map and reduce are available, which we quote [6]:

”Conceptually the map and reduce functions [...] have associated types:

map (k1l,vl) -> list (k2,v2)
reduce (k2,1list(v2)) -> list (v2)

Le., the input keys and values are drawn from a different domain than the
output keys and values. Furthermore, the intermediate keys and values are
from the same domain as the output keys and values. ”

We also recall that “the computation takes a set of input key/value pairs, and produces
a set of output key/value pairs” [6]. We will later discuss the tension between ‘list’
(in the types) and ‘set’ (in the wording). For now, we just continue to use ‘list’, as
suggested by the above types. So let us turn prose into a type:*

computation :: [(k1l,v1)] —-> [(k2,Vv2)]

We feel confident about this discovery. If the quoted sentence has any suggestive mean-
ing, then it is the one stated by the type. Let us convert the quoted types for map and
reduce to Haskell notation, so that we operate in a single type system.

map t: k1 —> vl => [(k2,v2)]
reduce :: k2 —-—> [v2] —> [v2]

Consequently, we get the following completed type for mapReduce:

—— To be amended!

mapReduce (k1 => vl -> [(k2,v2)]) —-- The map function
-> (k2 —> [v2] -> [v2]) —— The reduce function
-> [(kl,v1)] —-- A setof input key/value pairs
-> [(k2,v2)] —- A setof output key/value pairs

Haskell sanity-checks this type for us. However, now that we can see the type, as
opposed to reading about it, we can spot an issue. The type of mapReduce seems
to suggest that a computation may produce multiple pairs with the same output key.
Admittedly, the type expression [ (k2,v2) ] does not rule out such data anyhow, but
this is not the point. The trouble is that reduce returns a /ist of output values per output
key, whereas the ultimate result of mapReduce seems to lose the grouping per key.
Even though the above type seems to follow from the given explanations, we contend
that the following type should be preferred:

4The list type constructor is denoted by [] in Haskell. Lower case ingredients of type expressions in
function signatures, such as k1 and v1 in the signature for computation, are type variables that facilitate
polymorphic types; these type variables are implicitly universally quantified.



mapReduce k1l -> vl -> [(k2,v2)]) —-- The map function
k2 -> [v2] —-> [v2]) —— The reduce function
(k1,v1)] —— A set of input key/value pairs

(

(
(
> [
[ (k2,[v2])] -- A setof output key/value-list pairs

->

Lesson learned 3

Types greatly help avoiding incorrect prose in communicating designs. <

4 Reflection on types and designs

We believe that readability (including succinctness) of types is essential for making
them useful in reflection on designs. By further reflecting on mapReduce’s type, one
easily arrives at a point where one asks: Why do we need to require a list type for output
values? (For instance, the example for word-occurrence counting is phrased such that
a single count is returned per word.) Also: Why is the type of output values identical
with the type of intermediate values? We will indeed advise a generalization to resolve
both issues.

Let us begin by remembering that the programming model was described such that
“typically just zero or one output value is produced per reduce invocation” [6]. So the
typical case would be covered by the following type:>

—-— A special case

mapReduce (k1 —> v1 -> [(k2,v2)]) —- The map function
-> (k2 -> [v2] -> Maybe v2) -- The reduce function
-> [(k1l,v1)] —-— A set of input key/value pairs
-> [(k2,v2)] —— A set of output key/optional value pairs

Here we assume that the use of Maybe allows the reduce function to express that
zero or one output value is produced from the given intermediate values. Further,
we assume that a key with the value Nothing as the result of reduction should not
contribute to the final result of mapReduce. (Hence, we omit Maybe in the result
type of mapReduce.) Instead of generalizing Maybe v2 to [v2], we introduce a
new type variable v3:

SHaskell’s Maybe type constructor models optional values; the presence of a value v is denoted by
Just v, whereas the absence is denoted by Nothing.



—— The proposed generalization

mapReduce :: (k1 -> vl —> [(k2,v2)]) —— The map function
-> (k2 -> [v2] -> Maybe v3) —- The reduce function
-> [(k1l,v1)] —-— A set of input key/value pairs
-> [(k2,v3)] —— A set of output key/value pairs

We can instantiate v3 as follows:

e v3—v2 We obtain the aforementioned (important) special case.

o v3— [v2] We obtain the original typing proposal — almost.

In the latter case, one is obliged to return Nothing for the proper eradication of a
group as opposed to an ad-hoc test for the empty list. We prefer a consistent criterion
for group eradication, which does not depend on the instantiation of v3. Some readers
may argue that this type scheme goes beyond ‘normal reduction’ but this is the case
anyhow, even for reduce’s original type; we return to this issue in Section 6.

Let us reconsider the issue of ‘lists vs. sets of key/value pairs’. We want to modify
mapReduce’s type one more time to gain in precision of typing. It is clear that saying
‘lists of key/value pairs’ does not strictly imply uniqueness of keys for these pairs.
The informal programming model used the word “set of key/value pairs” though [6].
However, this does not really resolve the issue. A strict reading of the term ‘set’ in this
context merely states irrelevance of order among the pairs in the set and the property
that the same key/value pair, e.g., (key88, val42), cannot occur several times. We rather
need an association map or a dictionary or a finite map, to mention a few names of
the concept. By using a dictionary type as opposed to a lists-of-pairs type, we make
explicit where we commit to the data invariant “there is one key/value pair for each
key at most”. We revise the type of mapReduce one more time, where we leverage
Haskell’s library ADT for dictionaries, Data.Map:®

import qualified Data.Map —— Library for dictionaries
type Dict k v = Data.Map.Map k v -- Alias for dictionary type
mapReduce :: (k1 -> vl -> [(k2,v2)]) —— The map function
-> (k2 -> [v2] -> Maybe v3) —- The reduce function
-> Diet k1 vl —— A key to input-value mapping
-> Dict k2 v3 —— A key to output-value mapping

We only use a few operations on dictionaries. In the following list, we label the opera-
tions with total vs. partial with regard to the aforementioned data invariant:

e toList —- expose dictionary as list of pairs. (total)
e fromList —- construct dictionary from list of pairs. (partial)
e empty — construct the empty dictionary. (total)
e insert — insert key/value pair into dictionary. (partial)

6We introduce an alias Dict for Data.Map.Map because we are facing already all sorts of ‘maps’
in this paper. The Data.Map library is available online: http://www.haskell.org/ghc/docs/
latest/html/libraries/base/Data-Map.html.
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e insertWith — insert with aggregating value domain. (total)
e mapWithKey — list map that preserves keys. (total)
e filterWithKey — filter dictionary according to predicate. (total)

(In an efficient implementation, toList and fromList would be refined to no-ops.)

Lesson learned 4

Systematic typing is helpful in reviewing the precision and the generality of designs.
Clearly, for types to serve this purpose effectively, we are in need of a type language
that is powerful and that allows for readable as well as succinct type expressions. <

As an aside, we do not argue in favor of generalizations that attempt to anticipate
powerful new use cases. (This is perhaps a common critique of excessively advanced
functional programming.) We rather argue in favor of generalizations that help with
simplification and normalization of designs.

5 Type discovery vs. type inference

We are now in the position to discover the types of the library functions mapPerKey,
groupByKey and reducePerKey. Despite Haskell’s capability to perform type
inference, there is no magic; we must discover these types actively. If we looked at
the inferred types, we see that very polymorphic types are chosen due to the undefined
right-hand sides:’

*Main> :t mapPerKey
mapPerKey :: a

*Main> :t groupByKey
groupByKey :: a

*Main> :t reducePerKey
reducePerKey :: a

We can actively discover the intended types by starting from the back of the function
composition for mapReduce knowing that we can propagate the input type of the
function. For convenience, we repeat the definition of mapReduce:

mapReduce map reduce
= reducePerKey reduce
groupByKey
mapPerKey map

The type of mapPerKey'’s first argument is clearly the type of map, and the type of
its second argument is clearly the type of mapReduce’s input. So we have so much
of mapPerKey’s type:

7In a Haskell interpreter session, we can let Haskell infer the type of an expression exp by entering “: t
exp” at the prompt.



mapPerKey :: (k1 -> vl —-> [(k2,v2)]) —— The map function
-> Dict k1 vl —— A key to input-value mapping
-> 2?2 27 ——  What’s the result and its type?

The application of mapPerKey is supposed to return a list of intermediate key/value
pairs. We assure ourselves that we need a list indeed; we cannot hope for a dictionary
because any number of pairs with the same intermediate key may be produced by the
various applications of map. (Recall the introductory example; think of the same word
occurring several times.) So we can complete the type:

mapPerKey :: (k1 -> vl —-> [(k2,v2)]) —-— The map function
-> Dict k1 vl —— A key to input-value mapping
-> [(k2,v2)] —— The intermediate key/value pairs

We move slowly from the back to the front of mapReduce; thus, we obtain:®

groupByKey :: [(k2,v2)] —— The intermediate key/value pairs
-> Dict k2 [v2] ~-- The grouped intermediate values
reducePerKey :: (k2 -> [v2] —-> Maybe v3) —- The reduce function
-> Dict k2 [v2] —- The grouped intermediate values
-> Dict k2 v3 —— A key to output-value mapping

These types are quite telling and we should have few problems to inhabit these types.

Lesson learned 5

There is the established dichotomy for top-down vs. bottom-up design; both directions
are often alternated in practice. A second (crosscutting) dichotomy concerns defini-
tions vs. types. That is, one may first define the type of an abstraction, and later provide
the definition, or vice versa. On the one hand, an interesting (non-trivial) type is likely
to suggest useful ways of inhabiting the type. On the other hand, uninteresting (per-
haps complicated) types are sometimes more easily inferred from interesting (perhaps
less complicated) definitions. &

In Appendix A, we illustrate that the typed MapReduce abstraction (outlined so far) can
be represented in a mainstream OO programming language. We recall that the untyped
version from the previous section was not yet amenable to such a representation.

6 Getting the recursion schemes right

The MapReduce “abstraction is inspired by the map and reduce primitives present in
Lisp and many other functional languages” [6]. Functional programming does indeed
stand out when software designs can benefit from the employment of schemes for re-
cursion or iteration over data. These schemes allow powerful forms of decomposition.

8The reader well versed in Haskell may have noticed that the actual types of all the helpers are more
polymorphic than suggested by our explanations. That is, type variables are bound per function signature.
Hence, our use of the same type variables only provides an illusion; see Appendix A for a remedy. The
Haskell 98 extension for lexically scoped type variables [14] can also be put to work; cf. Section 8.
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In particular, they allow for the separation of the generic scheme from the problem-
specific ingredients. Also, the schemes typically suggests parallelism, if the problem-
specific ingredients are free of side effects and meet some algebraic properties. We will
now discover the precise correspondence between the map and reduce functions of
the MapReduce programming model vs. existing idioms in functional programming.

6.1 Lisp’s map and reduce

Due to the above-mentioned reference to Lisp, we should first recall the map and re-
duce combinators of Lisp — even though Lisp is untyped, and therefore not really
suited for our purposes. We include the following explanations of the map and reduce
combinators as they are described in “Common Lisp, the Language” [17]:°

map result-type function sequence &rest more-sequences

“The function must take as many arguments as there are sequences provided;
at least one sequence must be provided. The result of map is a sequence such that
element j is the result of applying function to element j of each of the argument
sequences. The result sequence is as long as the shortest of the input sequences.”

We note that this combinator actually provides two concepts that can be easily sepa-
rated: mapping over a single list while applying a given function to each element vs.
zipping n lists as a list of n-tuples and perhaps uncurrying the function (so that the
function takes a tuple as opposed to several curried arguments).

reduce function sequence &key :from-end :start :end :initial-value

“The reduce function combines all the elements of a sequence using a binary op-
eration; for example, using + one can add up all the elements.

The specified subsequence of the sequence is combined or “reduced” using the
funct ion, which must accept two arguments. The reduction is left-associative,
unless the : from—-end argument is true (it defaults to nil), in which case it
is right-associative. If an :initial-value argument is given, it is logically
placed before the subsequence (after it if : from—end is true) and included in the
reduction operation.

If the specified subsequence contains exactly one element and the keyword ar-
gument :initial-value is not given, then that element is returned and
the function is not called. If the specified subsequence is empty and an
rinitial-value is given, then the :initial-value is returned and the
function is not called.

If the specified subsequence is empty and no :initial-value is given, then
the function is called with zero arguments, and reduce returns whatever the
Sfunction does. (This is the only case where the function is called with other
than two arguments.)”

9The relevant quotes are available on-line: http://www.cs.cmu.edu/Groups/AI/html/
cltl/clm/nodel43.html.
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We note that the fundamental notion of reduction is more streamlined [2]: a list of
values is reduced to a single value of the same type by repeated applications of a binary
operation; the empty list is reduced to a default value. The argument and result types
of the binary operation are normally required to coincide with the element type, and
the operation is normally required to be associative, with the ‘default value’ as unit. It
is not too uncommon though to consider algebraically weaker and more flexibly typed
forms of reduction.

6.2 Haskell’s map and reduce

Haskell’s map combinator processes a single list.
As an example of using map, in the following session we double all numbers in a list:

*Prelude> map ((*) 2) [1,2,3]
[2,4,6]

In Haskell, reduction is expressed in terms of the foldl combinator (or its strict com-
panion foldl’), which defines a left-associative fold over a list. For instance, we can
aggregate the sum of all integers in a list, using foldl:

*Prelude> foldl (+) 0 [1,2,3]
6

Haskell provides map and fo1d1 in the Prelude.
The functions are easily defined by pattern matching on lists:'?

map :: (a —> b) —-> [a] —> [Db]

map £ [] = T[]

map £ (x:xs) = f x : map f xs

foldl :: (b -> a -> b) -> b -> [a] -> Db
foldl £ b [] =Db

foldl £ b (a:as) = foldl £ (f b a) as

We can restrict fold1 to reduction by type specialization:

reduce :: (a -> a —-> a) —> a —-> [a] -> a
reduce = foldl

For the record, we mention that the combinators map and foldl are actually both in-
stances of a more general and fundamental recursion scheme foldr for right-associative
folds [12, 11]; the functions that are expressible in terms of foldr are also known as
list catamorphisms or bananas.

10¢[] is the empty list constructor and *:’ is the infix constructor for constructing a non-empty list from a
head and a tail.
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6.3 MapReduce’s map and reduce

Equipped with this knowledge of map and reduce, we are ready to ask some questions:

e How do MapReduce’s map and reduce correspond to folklore map and reduce?
e In particular:

1. Does map perform a folklore map?

2. Does map serve as the argument of a folklore map?

3. Does reduce perform a folklore reduce?

4. Does reduce serve as the argument of a folklore reduce?

Let us reconsider the sample code for the problem of counting occurrences of words:

map (String key, String value): reduce (String key, Iterator values):
// key: document name // key: a word
// value: document contents // values: a list of counts
for each word w in value: int result = 0;
EmitIntermediate (w, "1"); for each v in values:

result += Parselnt (v);
Emit (AsString(result));

It is clear that both functions are applied on a per-key basis and each application pro-
duces a result that is independent of any previous application. Indeed, we will later
define mapPerKey and reducePerKey as variations on list map.

Fact: MapReduce’s map and reduce are arguments of list maps.

Let us now consider the inner workings of MapReduce’s map and reduce. The sit-
uation for reduce is straightforward only at first sight. The above-listed code is the
perfect example of an imperative aggregation, which corresponds to a reduction, in-
deed. This seems to be the case for most MapReduce examples that are listed in [6].

Fact: MapReduce’s reduce typically performs reduction.

In contrast with functional programming, the MapReduce programmer is not encour-
aged to identify the ingredients of reduction (i.e., an associative operation with its
unit). We also must note that the original proposal for the type of reduce does not
comply with the to-be-expected type of reduction, which should be a function of type
[v2] —> v2asopposedto [v2] —> [v2]. It turns out that MapReduce’s use of
the term reduction is intentionally lax. Here is an example that shows the occasional
deviation from ‘normal reduction’ [6]:

“Inverted index: The map function parses each document, and emits a
sequence of (word,document ID) pairs. The reduce function accepts all
pairs for a given word, sorts the corresponding document IDs and emits a
(word, list(document ID)) pair.”

(As an aside, we note that the sample prose commits to a mental type error by saying
that “reduce [...] emits a [...] pair”. This is a recurring issue. Again, validation of such
prose by means of a machine-checkable representation would be easily feasible.) In

13



this example, reduce is supposed to perform sorting as opposed to reduction. In other
examples, reduce may be supposed to filter. This observation about the behavioral
flexibility of reduce further motivates our earlier generalization of mapReduce’s
type. For instance, the generalization allows us to define a reduce function in terms of
foldl — without restricting the type of fo1d1 to the reduction scheme. In Section 8,
we will revisit reduce in the context of discussing parallelization and distribution.

Fact: MapReduce’s reduce occasionally deviates from reduction.

Let us now turn to map. In the example, map splits up the input string into words, and
it iterates over these words to emit one intermediate value per word. A normal map
consumes list shape and preserves it. By contrast, we face an operation that introduces
(or produces) list shape.

Fact: MapReduce’s map cannot be viewed as a normal list map.

Admittedly, the ‘for-each’ loop in the above code performs a map-like operation. How-
ever, it is crucial to notice that the mapping from a given word w to a pair (w,"1")
is a trivial helper step. The central part of MapReduce’s map lies in the act of list
introduction. In the example, this central part is concealed in the following code:

word w in value

A mapping from a value to a list of values (words) is not a map.

We may often define such a mapping in terms of the foldl/foldr combinators.
We may sometimes employ the notion of unfold — as discussed below.

In all remaining cases, we define the mapping as a free-wheeling recursive function.

6.4 The under-appreciated unfold

The recursion scheme for list producers is normally provided as the so-called unfold
combinator for lists; the functions that are expressible in terms of unfold are also called
anamorphisms or (concave) lenses [ 12, 7, 1]. The unfold combinator for lists is defined
in Haskell as follows:!!

unfold :: (u -> Either () (x,u)) -> u —> [x]
unfold £ u = case f u of
Left () > []

Right (x,u’) -> x : unfold f u’

That is, the argument of unfold looks at the input at hand, and either decides to stop
unfolding, or it returns the head of a non-empty list complete with the remaining input
that can be recursively unfold to compute the tail. As an illustration, we define the
words function in terms of unfold:'?

"We use the Ei t her type constructor for sums. A term of type Either a b is either of the form Le ft x
(with x of type a) or of the form Right y (with y of type b). We use a case expression to discriminate on
values of the Either type.

12The Haskell Prelude defines words in some style, but we reconstruct it here anyway in terms of
unfold. We use some library functions: dropWhile keeps dropping the head of a list until the given
predicate is no longer true. Hence, dropWhile isSpace removes all leading spaces. span splits up a
given list into two segments as controlled by the given argument. The first segment contains the prefix for
which the predicate was true, the second segment contains the remainder of the input.
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words :: String -> [String]
words = unfold (split . dropWhile isSpace)

where
split u = case span (not . isSpace) u of
([1,101) => ZLeft ()
(w,u”) -> Right (w,u’)

Here is an illustrative Haskell session:

*Main> words "the under-appreciated unfold"
["the", "under—-appreciated", "unfold"]

The alert reader may argue whether or not words is intrinsically an instance of the
unfold notion, for one can define it in terms of fold1, too. This may be a reasonable
choice indeed, but we reiterate the point that we cannot expect to encode the words
function in terms of list map. Here is the fold1-based encoding:

words :: String -> [String]
words = reverse . snd . foldl transition (False, [])
where
transition (state, words) char =
if state

then if isSpace char

then (not state, words)

else (state, (head words ++ [char]) : tail words)
else if isSpace char

then (state, words)

else (not state, [char]:words)

This specification essentially uses the fold operation to scan the input on a per-character
basis, while it maintains a pair consisting of a state (in the sense of a deterministic, finite
automaton) and the list of words encountered so far. There are two states: False —
not currently scanning a word, True — the opposite.

7 Completion of the executable specification
We recall the key abstraction from Section 2:

mapReduce map reduce

= reducePerKey reduce —-— 3. Apply reduce to each group
groupByKey —— 2. Group intermediates per key
mapPerKey map —-— 1. Apply map to each key/value pair

All what is missing are these helper abstractions:

e mapPerKey
e groupByKey

e reducePerKey
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The helper mapPerKey is really just a little more than the normal list map. That is,
we first need to turn the dictionary into a plain list of pairs (‘a no-op’ — conceptually);
then we map mapPerKey’s argument over this list; finally we concatenate the many
intermediate result lists to one single list:'?

mapPerKey f = concat —— 3. Concatenate per-key lists
map (uncurry f) —- 2.Map f over list of pairs
Data.Map.toList ~—- 1. Turn dictionary into list

The helper groupByKey folds over all intermediate key/value pairs and builds a new
dictionary keyed by the intermediate key type. Each entry can hold a list of interme-
diate values. Since the same key may be encountered several times, an aggregating
insert operation is used to potentially extend the existing dictionary entry for a key by
appending (cf. ++) the new value:

groupByKey = foldl insert Data.Map.empty
where
insert m (k2,v2) = Data.Map.insertWith (++) k2 [v2] m

Mapping MapReduce’s reduce over the groups is essentially a key-aware list map.
Some extra effort is necessary to eliminate groups that are reduced “away”’. (Remember
the use of Maybe in the revised type of reduce.)

reducePerKey f = Data.Map.mapWithKey h —— 3. Eliminate Maybe
Data.Map.filterWithKey g —— 2. Filter Justs
Data.Map.mapWithKey £ —-— 1. Apply reduce per key
where
g k2 Nothing = False
g k2 (Just _) = True

h k2 (Just x) X

Here, the operation Data .Map .mapWithKey is essentially the normal list map, and
Data.Map.filterWithKey is essentially a predicated-controlled filter on a nor-
mal list. (The Haskell Prelude offers a general £i1lter operation, indeed.) The defi-
nition looks more difficult than it should. Firstly, a single fold over the key/value pairs
would be sufficient in principle, but Data .Map does not happen to provide an oper-
ation that combines list map and filter. Secondly, any instance of reduce that cannot
possibly eradicate groups, would require only a single list map.

Now that we have worked out the helpers of mapReduce, the earlier type of
groupByKey turns out to be too polymorphic. The use of Data.Map.insertWith
implies that an explicit type of groupByKey needs to establish that intermediate/output
keys can be compared. The Haskell type checker (here: GHC’s type checker) readily
tells us what the problem is and what to do:

No instance for (Ord k2)
arising from use of ‘insert’ at <file, line number, character position>.
Probable fix: add (Ord k2) tothe type signature(s) for ‘groupByKey .

13The argument of mapPerKey takes its two arguments one-by-one. Hence, we need to uncurry it, so
that it can take a pair instead.
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So we constrain the signature of groupByKey.!'4
(We also need to constrain the type of mapReduce like that, which is omitted here.)

groupByKey :: Ord k2 => [(k2,v2)] -> Dict k2 [v2]

Our Haskell specification is executable.
Here is the MapReduce computation for counting occurrences of words in documents: !>

wordOccurrenceCount = mapReduce myMap myReduce

where
myMap = const (map (flip (,) 1) . words)
myReduce = const (Just . sum) --— ..oruselength!

Here is a main function and its demonstration:'®

main = print

$ wordOccurrenceCount

$ Data.Map.insert "doc2" "appreciate the unfold"
$ Data.Map.insert "docl" "fold the fold"

$

Data.Map.empty

*Main> main
{"appreciate":=1,"fold":=2, "the":=2, "unfold":=1}

8 Parallelism and distribution

We will now describe and specify conceptual issues of the parallelization and distri-
bution of MapReduce computations. The MapReduce programmer may largely ab-
stract from the parallel and distributed execution of MapReduce computations — even
though not completely: the programming model comprises some extra arguments for
controlling parallelization and distribution.

8.1 Opportunities for parallelism

The skeleton for MapReduce computations readily exhibits the following opportunities
for parallelism, which we label for subsequent reference:

e list map: Conceptually, the use of a normal list map for processing input values
and intermediate value groups implies that the corresponding steps mapPerKey
and reducePerKey are amenable to a form of data parallelism [3, 16]. That
is, in principle, a list map can be executed totally in parallel with regard to the
elements of the processed list.

14The standard Haskell type class Ord comprises comparison functions. A polymorphic function signa-
ture is constrained by listing class constraints c¢s on the type variables before the actual function type ¢ such
asin ‘es => 1.

15The uses of const express that the user functions of the computation do not observe the keys. The first
argument of mapReduce splits up a document into words and then pairs each word with the constant ‘1°.
Here, ‘(,)’ is the pair constructor while £11ip inverts the parameter order of (,)’.

16<¢> denotes infix right-associative function application. (Recall normal function application, as in
‘f x y’,is left-associative.) ‘$’ saves us from extensive parenthesization.
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e reduction: We assume here that reduce happens to define a proper reduction.
Each application of reduce can be massively parallelized by computing subre-
ductions in a tree-like structure while applying the associative operation at the
nodes [2, 5, 15, 4, 8, 9]. If the binary operation is also commutative, then the
order of combining intermediate results is negligible, thereby reducing synchro-
nization constraints.

e homomorphism: The mapPerKey step, as a whole, is a list homomorphism [2]
and thereby amenable to parallelism. It is a list homomorphism because it com-
poses a list map and the application of concat, which is a reduction based on
append (++) as associative operation.

e sort: The groupByKey step, which precedes the reducePerKey step, boils
down to sorting on the intermediate key, for which various efficient parallel for-
mulations exist, again including some that use list homomorphisms.

Of course, these simple insights do not suggest an evidently efficient parallelization
and distribution on a specific architecture such as a cluster of commodity machines.
The chief challenge is network performance: distributed processing of huge data sets
requires specific insights as to manage the scarce resource network bandwidth.

8.2 The basic distribution strategy

Figure 1 depicts the overall strategy adopted by Google’s MapReduce implementa-
tion [6]. Basically, input data is split up into pieces and intermediate data is partitioned
(by key) so that these different pieces and partitions can be processed by different ma-
chines with local store. Here are the details:

e The input data is split up into M pieces to be processed by M map tasks, which
are eventually assigned to worker machines. The number M is implied by a
programmer-specified limit for the size of a piece. Hence, the mapPerKey step
is explicitly parallelized [16] due to the explicit control on size or number of
pieces. This parallelization is justified by the item list map above.

e There is a single master per MapReduce computation (not shown in the figure),
which controls distribution such as the assignment of worker machines to tasks
and the propagation of local filenames for remote download. The master also
manages fault tolerance by pinging working machines, by re-assigning tasks for
crashed workers, and by speculatively assigning new workers to compete with
the slowest map tasks.

e Each worker for a map task downloads the relevant piece of input data for local
processing. The results are locally stored, too. In fact, the results are readily
stored in R partitions, where R is the number of programmer-specified reduce
tasks. Hence, the reducePerKey step is explicitly parallelized [16] due to the
explicit control on partitioning the key domain. This parallelization is justified by
the item list map above. The local grouping essentially leverages the parallelism
admitted for sorting (grouping); cf. the item sort above.

18



Input data Intermediate data Output data
k1| vl
partition 1 | k2| v2

piece 1 ka|v3
|
| 11
| 1|1
| 11
| 1|1
| 11
| 1|1
| 1|1
| (N
| 1|1
| (N
| 1|1
| 11
| 1|1
| (N
|
|
|
|
|

iece M .

P partition R

Figure 1: Splitting input data and partitioning intermediate keys

e Once all map tasks have been completed, the workers for the reduce tasks may
download and merge the partitions of the intermediate results from the workers
for the map tasks so that reduce can be applied to each partition. (We note that
each partition is scattered over the workers for the map tasks.) The merging step
is the completion of parallel sorting (grouping); cf. the item sort above.

e Finally, the results of the reduce tasks can be essentially concatenated.

8.3 Distributed reduction

There is one important refinement of the aforementioned basic distribution strategy. To
reduce the volume of intermediate data to be transmitted from map tasks to reduce
tasks, there is a new optional argument, combiner, which is a function “that does
partial merging of this data before it is sent over the network. [...] Typically the
same code is used to implement both the combiner and reduce functions” [6]. This
refinement aims to leverage the reduction opportunity for parallelism that we listed
above. We need to constrain reduce and combiner so that the distribution is correct,
i.e., the end result of the computation does not depend on the number of map or reduce
tasks. A sufficient condition for correctness is the following: reduce and combiner
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indeed implement the same function, and they perform proper reduction based on an
associative operation.

As an example, we consider counting word occurrences again. There are many
words with a high frequency, e.g., ‘the’. These words would result in many interme-
diate key/value pairs such as (‘the’,1). Transmitting all such intermediate data from a
map task to a reduce task would be a considerable waste of network bandwidth. The
map task may already combine all such pairs for each word in a single pair.

The distribution-enabled type of mapReduce looks as follows:!’

mapReduce :: forall k1 k2 vl v2 v3 v4. (Ord k1, Ord k2)
=> (vl -=> Int) -- Size of input values
-> Int —— Split size for map tasks
-> Int —— Number of partitions
-> (k2 => Int) —- Partitioning for keys
-> (k1 -> vl —> [(k2,v2)]) —— The map function
-> (k2 => [v2] -> Maybe v3) —— The combiner function
-> (k2 -> [v3] -> Maybe v4) —— The reduce function
-> Dict k1 vl —— Input data
-> Dict k2 v4 —— Output data

mapReduce size split parts keycode map combiner reduce
= ... —— tobe continued

The argument size defines a size function for input values; sizes are represented
as Int values. The argument split defines a limit for the size of pieces of input
data. (Remember: there are as many map tasks as pieces.) The argument parts
defines the number of partitions for intermediate data (which equals the number of
reduce tasks R). The argument keycode defines the partitioning function on the
intermediate key domain; it is supposed to map keys to the range 1, ..., parts. The
argument combiner defines the combiner function for reducing the data volume
per map task. We give it the same general type as reduce (modulo type variables);
the result type of combiner is the element type reduced by reduce. The intended
optionality of combiner is modeled by admitting its definition as the identity function
under the type specialization v3 — [v2] (and modulo the trivial embedding into
Maybe). It is not difficult to observe that the result of a MapReduce computation does
not depend on M and R, if one of the following conditions holds:

. reduce is an arbitrary function; combiner is the identity function.

. reduce is an arbitrary function; combiner performs a list map.

1
2
3. reduce and combiner perform the same proper reduction.
4. Like (3.) but combiner is pre-composed with a list map.

5

. (3.) and (4.) but reduce is post-composed with an arbitrary function.

This enumeration does not come with any claim of completeness.

17We explicitly quantify the function signature (cf. V, i.e., ‘forall’). Thereby, we can take advantage of a
convenient Haskell 98 extension for lexically scoped type variables [ 14]. That is, we bind the type variables
of mapReduce’s signature for further reference in signatures of local helper functions.
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8.4 Executable specification

We owe to specify the new function mapReduce. The plan is not to go here as far as to
specify a proper distributed application with the details of storage in local file systems
and communication between the various tasks. Instead, we want to be explicit about
splitting and partitioning. At the top-level, we may decompose MapReduce computa-
tions as follows:!8

mapReduce size split parts keycode map combiner reduce =

concatReducts —— 9. Concatenate results
Prelude.map (
reducePerKey —-— 8. Apply reduce to each partition
groupByKey ) —— 7. Group intermediates per key
mergeParts —— 6. Merge scattered partitions

Prelude.map (
Prelude.map (

combinePerKey —-— 5. Apply combiner locally
groupByKey ) —— 4. Group local intermediate data
partition —— 3. Partition local intermediate data
mapPerKey ) —— 2. Apply map locally to each piece
splitInput —— 1. Split up input data into pieces

where
—— To be continued.

The factored applications of list map immediately express opportunities for paral-
lelism. The two bold ones are indeed those list maps that are exploited for paralleliza-
tion by Google’s implementation as described earlier. The functions mapPerKey,
groupByKey and reducePerKey are defined just as in the earlier version, even
though they are applied more locally now. The function combinePerKey is just a
clone of reducePerKey, except that it applies combiner for reduction as opposed
to reduce. We need to go into details of the local functions for splitting input data (1.),
partitioning intermediate data (3.) and merging partitions again eventually (6.).

The function for splitting the input essentially folds over the key/value pairs such
that a new piece is started whenever the size limit has been reached for the current
piece. Given a dictionary from input keys to input values, splitInput returns a list
of such dictionaries.

splitInput :: Dict k1l vl —-> [Dict k1l v1]
splitInput =
Prelude.map Data.Map.fromList —— 4. Turn list of pairs into dictionary
Prelude. fst —— 3. Project away size of last piece
Prelude.foldl splitHelper ([[]]1,0) —- 2.Splitting as a list fold
Data.Map.toList —— 1. Access dictionary as list of pairs
where
splitHelper :: ([[(k1l,v1)]],Int) —— Pieces so far with size of head
-> (k1,vl) —— The key/value pair to be considered
-> ([[(k1l,v1)]],Int) —-- New setof pieces and size of head

18We systematically qualify all library functions for the reader’s convenience.
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splitHelper (ps,s) x@(kl,vl) =

if size vl + s < split || Prelude.null (Prelude.head ps)
then (((x:Prelude.head ps):Prelude.tail ps), size vl + s)
else ([x]:ps,size vl)

The function for partitioning intermediate data refers to parts (number of reduce
tasks R) and keycode (the partitioning function for the intermediate key domain).
For each partitioning code (i.e., for each value in 1 .. parts), the relevant intermediate
key/value pairs are extracted and placed in a separate list:

partition :: [(k2,v2)] —> [[(k2,v2)]]
partition all = Prelude.map partitionHelper [1l..parts]
where
partitionHelper :: Int -> [(k2,v2)]
partitionHelper p = Prelude.filter
( (==) p
keycode

Prelude.fst) all

Prior to the normal application of reducePerKey, we need to unite the scattered
contributions to each partition as they are hold by the workers for the various map
tasks. To this end, we need to transpose the map-task-biased grouping to the reduce-
task-biased grouping. (The term transposition refers to the same concept in matrix
manipulation.) That is:

mergeParts :: [[Dict k2 v3]] -> [[(k2,Vv3)]]
mergeParts =
Prelude.map ( Prelude.concat —— 3. Unite partition
Prelude.map Data.Map.toList) —-— 2. Access dictionaries
Data.List.transpose —— 1. Transpose grouping

We refer to the paper’s web site for the full specification. One may actually argue
whether or not the amount of explicit configuration is necessary (cf. size, split,
parts, keycode). For instance, it is not easy to see why a MapReduce program-
mer would want to define a problem-specific size limit; it seems that the computing
power of the given architecture and on overall fairness constraint for simultaneously
executed MapReduce computations are more meaningful controls. The paper’s web
site also comprises a specification that illustrates MapReduce computations without
any configuration burden. The following assumptions underly this advanced approach:
(1) The MapReduce computing cluster defines the size limit for pieces of input data to
be processed by workers on map tasks; (ii) the same limit (or another general limit)
also applies to the size of partitions for the workers on reduce tasks; (iii) the number
of partitions is determined once the map tasks have completed their tasks by sum-
ming up the size of intermediate values; (iv) the intermediate key domain implements
a partitioning function that is parameterized by the number of partitions. Among these
assumptions, the only debatable one seems to be (iii) because it restricts the interleaved
operation of map and reduce tasks.
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9 Conclusion

The original formulation of the MapReduce programming model seems to stretch some
of the established terminology of functional programming. Nevertheless, the actual
assembly of concepts and their evident usefulness in practice is an impressive testa-
ment to the power of functional programming primitives for list processing. It is also
quite surprising to realize (for the author of the present paper anyway) that the rela-
tively restricted model of MapReduce fits so many different problems as encountered
in Google’s problem domain. This insight sheds some new light on distributed pro-
gramming as a whole. We believe that our analysis of the MapReduce programming
model helps with a deeper understanding of the ramifications of Google’s results.

We have used the strongly typed functional language Haskell for the discovery of
the rigorous description of the programming model. Thereby, we have substantiated,
once again: functional programming is an excellent specification tool in the context
of exploring designs that can benefit from functional composition, higher-order com-
binators and type inference. (This insight has been described more appropriately by
Hughes, Thompson, and surely others [10, 18].) We have shared all the lessons learned
in the MapReduce exercise so that others may receive new incentives for the deploy-
ment of functional programming as a design tool for their future projects, be in the
context of distributed computing, data processing, or elsewhere.
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A MapReduce computations in C#

We will now represent the MapReduce types and the overall functional decomposition
for MapReduce computations in C#. This is an exercise in comparing the specification
capabilities of a mainstream OO language and a pure, higher-order functional with
type inference. To prepare the C# encoding, we provide a more OO-enabled Haskell
encoding of sections 4 and 5. That is, we group user functions (map and reduce)
as well as library functions (mapPerKey etc.) in designated record types that are
explicitly parametric in the corresponding key and value types.

The following code is self-contained. For brevity, we do not re-include the imple-
mentations of the helpers that we gave in Section 7; we use the undefinedness idiom,
again. (As a side note, the record-based encoding properly restricts the polymorphism
of all involved functions, and it is therefore more precise than the original Haskell
encoding.)

import Prelude hiding (map) —— Name clash with normal list map
import qualified Data.Map —— Library for dictionaries
type Dict k v = Data.Map.Map k v —— Alias for dictionary type

data MapReduceUser kl k2 vl v2 v3 = MapReduceUser ({
map :: k1l —> vl -> [(k2,v2)],

reduce :: k2 -> [v2] -> v3

}

data MapReducelibrary k1l k2 vl v2 v3 = MapReducelLibrary {

mapReduce :: MapReduceUser kl k2 vl v2 v3 -> Dict k1 vl -> Dict k2 v3
, mapPerKey :: (k1 -> vl -> [(k2,v2)]) -> Dict k1l vl -> [(k2,v2)]
, groupByKey :: [(k2,v2)] -> Dict k2 [v2]
, reducePerKey :: (k2 -> [v2] -> v3) —-> Dict k2 [v2] -> Dict k2 v3

}

mapReducelibrary = MapReducelLibrary {
mapReduce = \user —-> reducePerKey mapReducelibrary (reduce user)
. groupByKey mapReducelibrary
. mapPerKey mapReducelibrary (map user)

, mapPerKey = 1 —- omitted for brevity; see Section 7
, groupByKey = 1 —- omitted for brevity; see Section 7
, reducePerKey = | -- omitted for brevity; see Section 7

}

In transcribing the Haskell specification to C#, we aim to be as ‘structure-preserving’
as possible. In particular, the Haskell record type MapReduceUser is transcribed to
an C# interface, while the library functionality is gathered in a static (and sealed) class
with only static methods (i.e., ‘functions’). We are able to reuse an existing collection
type for dictionaries. We provide a (trivial) Pair class (since the .NET 2.0 library
does not have one readily). We are forced to introduce delegate types so that we are
able to express the higher-order types of MapPerKey and ReducePerKey. Again,
we put the undefinedness idiom to work so that we omit the routine implementations
of the helpers. We leave it to the reader’s judgment to assess the merits of the Haskell
and C# encodings.

using System;
using System.Collections.Generic;
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namespace MapReducelLibrary

{

public class Pair<a, b>
{
public a fst;
public b snd;

public interface MapReduceUser<kl, k2, vl, v2, v3>

{
IEnumerable<Pair<k2, v2>> Map(kl key, vl value);
v3 Reduce (k2 key, IEnumerable<v2> iterator);

public sealed class MapReducelibrary<kl, k2, vl, v2, v3>
{
public static Dictionary<k2, v3> MapReduce (
MapReduceUser<kl, k2, vl, v2, v3> user
, Dictionary<kl, v2> input)
return ReducePerKey (user.Reduce,

GroupByKey (
MapPerKey (user.Map, input)));

delegate IEnumerable<Pair<k2, v2>> MapType (kl key, vl value);
delegate v3 ReduceType (k2 key, IEnumerable<v2> iterator);
static List<Pair<k2, v2>> MapPerKey (
MapType map
, Dictionary<kl, wv2> input)
throw new InvalidOperationException ("undefined");
static Dictionary<k2, List<v2>> GroupByKey (
List<Pair<k2, v2>> intermediate)
throw new InvalidOperationException ("undefined");
static Dictionary<k2, v3> ReducePerKey (
ReduceType reduce

, Dictionary<k?2,List<v2>> grouped)

throw new InvalidOperationException ("undefined");
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