
Engineering Distributed Software:
a Structural Discipline

Jeff Kramer and Jeff Magee
Department of Computing, Imperial College London

180 Queen’s Gate, London, SW7 2BZ, UK
{ jk, jnm}@doc.ic.ac.uk

ABSTRACT
The role of structure in specifying, designing, analysing,
constructing and evolving software has been the central theme of
our research in Distributed Software Engineering. This structural
discipline dictates formalisms and techniques that are
compositional, components that are context independent and
systems that can be constructed and evolved incrementally. This
extended abstract overviews our development of a structural
approach to engineering distributed software and gives indications
of our future work which moves from explicit to implicit
structural specification. With the benefit of hindsight we attempt
to give a “rational history” to our research.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques
D.2.2 [Software Engineering]: Software/Program Verification
D.2.11 [Software Engineering]: Software Architectures

General Terms
Design, Verification.

Keywords
Distributed software engineering, software architecture, structure,
software components, configuration programming, dynamic
configuration, evolution.

1. INTRODUCTION
Separation of structural concerns has its origins in the seminal
1975 paper by deRemer and Kron [1] which made the distinction
between programming-in-the-small and programming-in-the
large and advocated the need for a separate module
interconnection language. The structural view, we advocate, puts
structure at the heart of software architecture. Structure, as a
separable perspective, relies on sound techniques for composition
— whether of software components or specifications of the
behaviour of these components. These complementary concerns
of structure and composition are the themes we address here.

With hindsight, our work can be divided into three
overlapping phases. Firstly, explicit structure characterises our

work on configuration programming. The prototype distributed
system Conic included the ability to specify, construct and
dynamically evolve a distributed software system, using a
configuration language to explicitly compose software
components. Work on the general purpose ADL Darwin and its
industrial instantiation, Koala, followed. The second phase,
focused on modelling in a structural framework. The aim was to
analyse systems as structural compositions of their components'
behaviour. This led to work with labelled transition systems
(LTS), the process algebra, FSP (Finite State Processes) and
construction of the model checker, LTSA. Model animation and
model synthesis from scenarios has enriched this vein of research.
Our current work, is concerned with implicit structural
specifications. The aim is to generate and check structures which
satisfy constraints that can be imposed both statically and
dynamically. We believe that this is needed in realising self-
organising systems that both automatically configure themselves
and subsequently reconfigure themselves to accommodate
dynamically changing context and requirements without human
intervention.

2. EXPLICIT STRUCTURE
The Conic System [2,3] exhibited a separate structural language
that we referred to as a configuration language. This explicitly
described the structure of the system to be constructed as a set of
component types, the instances of these types and the
interconnections between instances. Conic provided a test-bed for
exploring ideas on system design [4], system construction and
evolution, including dynamic configuration [2,5] which exploited
an explicit structural description. For example, dynamic
configuration was performed by editing operations on the
elaborated system description which directed changes to the
running system.

The principles underlying the approach which we termed
Configuration Programming [6,7] are outlined below:

� The configuration language used to describe structure is

separate from the language used to program basic
components.

� Components are defined as context independent types with
well-defined interfaces that define both services provided
and services required.
� Complex components are described as a composition of

instances of component types using the configuration
language.

� Change is expressed at the configuration level, as changes
to component instances and/or their interconnections.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-9/05/0009...$5.00.

The Conic configuration language retained a number of
dependencies on the programming language (Pascal) used to
programming components. In particular, it assumed interfaces
typed in Pascal that used a fixed set of interaction primitives. A
deliberate effort was made to remove these language dependencies
in the configuration language we used in our next prototype
distributed systems — Rex followed by Regis [8]. These design
efforts eventually resulted in the final form of the Darwin
language which was parameterised by the interface type system
and, as a result, represented a purely structural description. It was
at this point that we realised that the objectives of Configuration
Programming given its focus on structure were very much in line
with those of Software Architecture [9,10] and Darwin came to be
known as an Architecture Description Language ADL[11,12].
Through a very fruitful collaboration with Philips, Darwin gave
birth to Koala [13], an ADL used successfully to construct the
software for a line of television products.

3. MODELLING
Darwin was initially used to describe and generate distributed

software systems, with components providing and requiring
services at their interfaces and with implementation elaborations
for the primitive components. Service were typically accessed by
a Remote Method call mechanism such as that provided by
CORBA[14]. However, Darwin proved to be sufficiently abstract
to support multiple views (cf. Kruchten [15]). Two important
views are the service view (for construction) and the behavioural
view (for behaviour analysis) (see Figure 1). Each view is an
elaboration of the basic structural view: the skeleton upon which
we hang the flesh of behaviour specification or service
implementation.

Behavioural View Service View

Structural View

Analysis Construction/
implementation

Figure 1. Common Structural View with Service and
Behavioural Views

We can easily restate the four principles outlined before, in the
context of description and construction, in the specification and
analysis context as follows:
� The configuration language used to specify structure is

separate from the language used to specify basic component
behaviour.

� Component specifications define the behaviour visible at the
component interface.
� Complex components are described as a composition of

more basic component behaviours.

� Change is expressed at the configuration level, as changes
to component specification interconnection.

We use Labelled Transitions Systems (LTS) to specify and
(predominately) Compositional Reachability Analysis to analyse
the behaviour of systems. These LTSs are generated from
specifications in the process algebra FSP [16]. Basic components
are described using the dynamic combinators – action prefix,
choice and recursion while compositions of basic components are
modelled using the static combinators – parallel composition and
relabelling. This rather elegant separation found in process
algebras allows Darwin structural descriptions to be directly
translated into FSP composition specifications using parallel
composition for component instantiation and relabelling for
component interconnection/binding [17].

We have focused on making modelling and analysis accessible
to practising software architects. This has led to work on how to
specify and check properties [18,19,20] and more recently on
generating initial behavioural specifications from Message
Sequence Charts (MSC) gathered during requirements capture
[21].

4. IMPLICIT STRUCTURE
Our initial work permitted the specification of a limited form

of dynamic software structure for distributed systems in which the
set of components and their interaction change as execution
progresses and the system evolves [2]. A change to the software
architecture can occur either as the result of some computation
performed by the system or as a result of some external
management action such as to insert a new component and to
change those connections within the system to accommodate the
new component. Management actions can be performed by a
configuration manager which maintains an overall view of the
structure of a system in terms of components and their
interconnections and performs changes in the context of that view.
In essence, the configuration manager is responsible for ensuring
that an executing system conforms precisely to its architectural
specification. This approach is however too restrictive for current
dynamic, open systems.

In our current work, we consider systems in which it is neither
necessary nor desirable to explicitly manage structure. For
example, in large open distributed systems components may
appear dynamically as the result of individual user action and
disappear as the result of user action or failure. There is no overall
management control of the system, which may span many
organisational boundaries. Components must bind to the services
they require as a result of their own actions without the help of
explicit configuration (structure) management. They are expected
to be self-organizing.

Why a structural approach? In addition to the autonomy
inherent in self-organizing systems, we wish to retain the benefits
of an overall structural specification so that, despite the
introduction and removal of components, the system will remain
well-formed with respect to its specification. In this way the
system can be made to preserve the architectural properties
implied by its specification. The architectural specification of a
self-organising system is not an explicit description of component
instances and their interconnection but rather a set of constraints
on the way components may be composed – an implicit structural
specification. This implicit specification can be used to generate
and/or check a specific architectural instance for conformance.

Furthermore, if a disturbance occurs, correcting changes can be
generated.

Currently, we have built some decentralised [22] and
centralised systems [23] that utilise the idea of implicit structural
spepcification and have looked at analysing strucural constraints.
However, there are many open questions that remain in building
large and scalable systems and in specifying and analysing the
behaviour of such systems.

5. ACKNOWLEDGMENTS
The authors would like acknowledge their co-workers in the
Distributed Software Engineering group at Imperial College who
over the years have contributed hugely to the work we have
outlined and referenced in this extended abstract. Much of the
research has been supported by the Engineering and Physical
Sciences Research Council and is currently partly supported by
EPSRC grant READS GR/S03270/01.

6. REFERENCES
[1] DeRemer F.and HH Kron, Programming-in-the-large versus

Programming-in-the-small, IEEE Trans. on Software
Engineering, 2(2): 80-86, June 1976.

[2] Kramer J. and Magee J., Dynamic Configuration for
Distributed Systems, IEEE Trans. on Software Eng., SE-11
(4), (1985), 424-436.

[3] Magee J., Kramer J., and Sloman M.S., Constructing
Distributed Systems in Conic, IEEE Trans. on Software Eng.,
SE-15 (6), (1989), 663-675.

[4] Kramer J., Magee J. and Finkelstein A., A Constructive
Approach to the Design of Distributed Systems, (10th IEEE
Int. Conf on Distributed Computing Systems) Paris, (1990),
580-587

[5] Kramer J. and Magee J., The Evolving Philosophers
Problem: Dynamic Change Management, IEEE Trans. on
Software Eng., SE-16 (11), (1990), 1293-1306.

[6] Kramer J., Magee J. and Ng K., Graphical Configuration
Programming, IEEE Computer, 22 (10), (1989), 53-65.

[7] Kramer J., Configuration Programming - A Framework for
the Development of Distributable Systems, (IEEE Int. Conf.
on Computer Systems and Software Engineering (CompEuro
90)), Tel-Aviv, Israel, (1990), 374-384.

[8] Magee J., Dulay N. and Kramer J., Regis: A Constructive
Development Environment for Distributed Programs,
Distributed Systems Engineering Journal, 1 (5), Special Issue
on Configurable Distributed Systems, (1994), 304-312.

[9] Perry D. E. and Wolf A. L, Foundations for the Study of
Software Architectures, ACM SIGSOFT Software
Engineering Notes, Vol. 17, No. 4, pp. 40-52.

[10] Shaw M. and Garlan D., Software Architecture:
Perspectives on an Emerging Discipline, Prentice Hall, 96.

[11] Magee J., Dulay N., Eisenbach S., Kramer J., Specifying
Distributed Software Architectures, (5th European Software
Engineering Conference (ESEC ‘95), Sitges, September
1995), LNCS 989, (Springer-Verlag), 1995, 137-153.

[12] Magee J. and Kramer J., Dynamic Structure in Software
Architectures, (4th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE 4)), San
Francisco, (October 1996), SEN, Vol.21, No.6, November
1996, 3-14.

[13] van Ommering, R., van der Linden, F., Kramer, J., and
Magee, J. The Koala Component Model for Consumer
Electronics Software. Computer 33, 3 (2000), 33-85.

[14] Magee J. and Kramer J., Composing Distributed Objects in
CORBA, in Information Systems Interoperability,
Krmer B., Papazoglou M. and Schmidt H., Research Studies
Press / John Wiley & Sons Inc., England, 1998.

[15] Kruchten, P.: The 4+1 view model of architecture. IEEE
Software 12(6), IEEE Computer Society Press (1995) 42—
50.

[16] Magee J. and Kramer J., Concurrency: State Models and
Java Programs, Wiley 1999.

[17] Magee J., Kramer J. and Giannakopoulou D., Behaviour
Analysis of Software Architectures, First Working IFIP
Conference on Software Architecture (WICSA1), San
Antonio, Texas, 22-24 February 1999, pages 35 –50.

[18] Cheung S.C. and Kramer J., Checking Subsystem Safety
Properties in Compositional Reachability Analysis, (18th
IEEE Int. Conf. on Software Engineering (ICSE-18), Berlin,
1996), 144-154.

[19] Giannakopoulou D., Magee J. and Kramer J. Checking
progress with Action Priority: Is it Fair?, ESEC / SIGSOFT
FSE 1999, LNCS 1687, p511-527

[20] Giannakopoulou D. and Magee J., Fluent model checking
for event-based systems. ESEC / SIGSOFT FSE 2003: 257-
266.

[21] Uchitel S., Kramer J. and Magee J., Incremental elaboration
of scenario-based specifications and behavior models using
implied scenarios. ACM Trans. Softw. Eng. Methodol.
TOSEM 13(1): 37-85 (2004)

[22] Georgiadis I., Magee J. and Kramer J.: Self-organising
software architectures for distributed systems. ACM WOSS
2002, p 33-38.

[23] Chatley R., Eisenbach S., Kramer J., Magee J., Uchitel S.,
Predictable Dynamic Plugin Systems. FASE 2004, p129-
143.

