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ABSTRACT  
The role of structure in specifying, designing, analysing, 
constructing and evolving software has been the central theme of 
our research in Distributed Software Engineering. This structural 
discipline dictates formalisms and techniques that are 
compositional, components that are context independent and 
systems that can be constructed and evolved incrementally.  This 
extended abstract overviews our development of a structural 
approach to engineering distributed software and gives indications 
of our future work which moves from explicit to implicit 
structural specification. With the benefit of hindsight we attempt 
to give a “rational history” to our research. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques 
D.2.2 [Software Engineering]: Software/Program Verification 
D.2.11 [Software Engineering]: Software Architectures 

General Terms 
Design, Verification. 

Keywords 
Distributed software engineering, software architecture, structure, 
software components, configuration programming, dynamic 
configuration, evolution. 

1. INTRODUCTION 
Separation of structural concerns has its origins in the seminal 
1975 paper by deRemer and Kron [1] which made the distinction 
between programming-in-the-small and programming-in-the 
large and advocated the need for a separate module 
interconnection language. The structural view, we advocate, puts 
structure at the heart of software architecture. Structure, as a 
separable perspective, relies on sound techniques for composition 
— whether of software components or specifications of the 
behaviour of these components. These complementary concerns 
of structure and composition are the themes we address here.  

With hindsight, our work can be divided into three 
overlapping phases. Firstly, explicit structure characterises our 

work on configuration programming. The prototype distributed 
system Conic included the ability to specify, construct and 
dynamically evolve a distributed software system, using a 
configuration language to explicitly compose software 
components. Work on the general purpose ADL Darwin and its 
industrial instantiation, Koala, followed.  The second phase, 
focused on modelling in a structural framework.  The aim was to 
analyse systems as structural compositions of their components' 
behaviour. This led to work with labelled transition systems 
(LTS), the process algebra, FSP (Finite State Processes) and 
construction of the model checker, LTSA.  Model animation and 
model synthesis from scenarios has enriched this vein of research. 
Our current work, is concerned with implicit structural 
specifications. The aim is to generate and check structures which 
satisfy constraints that can be imposed both statically and 
dynamically. We believe that this is needed in realising self-
organising systems that both automatically configure themselves 
and subsequently reconfigure themselves to accommodate 
dynamically changing context and requirements without human 
intervention. 
 

2. EXPLICIT STRUCTURE 
The Conic System [2,3] exhibited a separate structural language 
that we referred to as a configuration language. This explicitly 
described the structure of the system to be constructed as a set of 
component types, the instances of these types and the 
interconnections between instances.  Conic provided a test-bed for 
exploring ideas on system design [4], system construction and 
evolution, including dynamic configuration [2,5] which exploited 
an explicit structural description. For example, dynamic 
configuration was performed by editing operations on the 
elaborated system description which directed changes to the 
running system.  

The principles underlying the approach which we termed 
Configuration Programming [6,7] are outlined below: 

 
� The configuration language used to describe structure is 

separate from the language used to program basic 
components. 

� Components are defined as context independent types with 
well-defined interfaces that define both services provided 
and services required. 
� Complex components are described as a composition of 

instances of component types using the configuration 
language. 

�  Change is expressed at the configuration level, as changes 
to component instances and/or their interconnections. 
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The Conic configuration language retained a number of 
dependencies on the programming language (Pascal) used to 
programming components. In particular, it assumed interfaces 
typed in Pascal that used a fixed set of interaction primitives. A 
deliberate effort was made to remove these language dependencies 
in the configuration language we used in our next prototype 
distributed systems — Rex followed by Regis [8]. These design 
efforts eventually resulted in the final form of the Darwin 
language which was parameterised by the interface type system 
and, as a result, represented a purely structural description. It was 
at this point that we realised that the objectives of Configuration 
Programming given its focus on structure were very much in line 
with those of Software Architecture [9,10] and Darwin came to be 
known as an Architecture Description Language ADL[11,12]. 
Through a very fruitful collaboration with Philips, Darwin gave 
birth to Koala [13], an ADL used successfully to construct the 
software for a line of television products. 

 

3. MODELLING 
Darwin was initially used to describe and generate distributed 

software systems, with components providing and requiring 
services at their interfaces and with implementation elaborations 
for the primitive components. Service were typically accessed by 
a Remote Method call mechanism such as that provided by 
CORBA[14]. However, Darwin proved to be sufficiently abstract 
to support multiple views (cf. Kruchten [15]). Two important 
views are the service view (for construction) and the behavioural 
view (for behaviour analysis) (see Figure 1). Each view is an 
elaboration of the basic structural view: the skeleton upon which 
we hang the flesh of behaviour specification or service 
implementation.  

 

Behavioural View Service View

Structural View

Analysis Construction/
implementation  

Figure 1. Common Structural View with Service and 
Behavioural Views 

 
We can easily restate the four principles outlined before, in the 
context of description and construction, in the specification and 
analysis context as follows: 
� The configuration language used to specify structure is 

separate from the language used to specify basic component 
behaviour. 

� Component specifications define the behaviour visible at the 
component interface. 
� Complex components are described as a composition of 

more basic component behaviours. 

� Change is expressed at the configuration level, as changes 
to component specification interconnection. 

We use Labelled Transitions Systems (LTS) to specify and 
(predominately) Compositional Reachability Analysis to analyse 
the behaviour of systems. These LTSs are generated from 
specifications in the process algebra FSP [16]. Basic components 
are described using the dynamic combinators – action prefix, 
choice and recursion while compositions of basic components are 
modelled using the static combinators – parallel composition and 
relabelling. This rather elegant separation found in process 
algebras allows Darwin structural descriptions to be directly 
translated into FSP composition specifications using parallel 
composition for component instantiation and relabelling for 
component interconnection/binding [17].  

We have focused on making modelling and analysis accessible 
to practising software architects. This has led to work on how to 
specify and check properties [18,19,20] and more recently on 
generating initial behavioural specifications from Message 
Sequence Charts (MSC) gathered during requirements capture 
[21].  

 

4. IMPLICIT STRUCTURE 
Our initial work permitted the specification of a limited form 

of dynamic software structure for distributed systems in which the 
set of components and their interaction change as execution 
progresses and the system evolves [2]. A change to the software 
architecture can occur either as the result of some computation 
performed by the system or as a result of some external 
management action such as to insert a new component and to 
change those connections within the system to accommodate the 
new component. Management actions can be performed by a 
configuration manager which maintains an overall view of the 
structure of a system in terms of components and their 
interconnections and performs changes in the context of that view. 
In essence, the configuration manager is responsible for ensuring 
that an executing system conforms precisely to its architectural 
specification. This approach is however too restrictive for current 
dynamic, open systems. 

In our current work, we consider systems in which it is neither 
necessary nor desirable to explicitly manage structure. For 
example, in large open distributed systems components may 
appear dynamically as the result of individual user action and 
disappear as the result of user action or failure. There is no overall 
management control of the system, which may span many 
organisational boundaries. Components must bind to the services 
they require as a result of their own actions without the help of 
explicit configuration (structure) management. They are expected 
to be self-organizing.  

Why a structural approach? In addition to the autonomy 
inherent in self-organizing systems, we wish to retain the benefits 
of an overall structural specification so that, despite the 
introduction and removal of components, the system will remain 
well-formed with respect to its specification. In this way the 
system can be made to preserve the architectural properties 
implied by its specification. The architectural specification of a 
self-organising system is not an explicit description of component 
instances and their interconnection but rather a set of constraints 
on the way components may be composed – an implicit structural 
specification. This implicit specification can be used to generate 
and/or check a specific architectural instance for conformance. 



Furthermore, if a disturbance occurs, correcting changes can be 
generated. 

Currently, we have built some decentralised [22] and 
centralised systems [23] that utilise the idea of implicit structural 
spepcification and have looked at analysing strucural constraints. 
However, there are many open questions that remain in building 
large and scalable systems and in specifying and analysing the 
behaviour of such systems. 
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