
0018-9162/04/$20.00 © 2004 IEEE56 Computer

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Middleware

Compositional adaptation

Separation of
concerns

Computational
reflection

Component-based
design

Figure 1. Main technologies supporting compositional adaptation: separation of
concerns, computational reflection, and component-based design.

Composing
Adaptive Software

I nterest in adaptive computing systems has
increased dramatically in the past few years,
and a variety of techniques now allow software
to adapt dynamically to its environment. Two
revolutions in the computing field are driving

this development. First is the emergence of ubiqui-
tous computing,1 which focuses on dissolving tra-
ditional boundaries for how, when, and where
humans and computers interact. For example,
mobile computing devices must adapt to variable
conditions on wireless networks and conserve lim-
ited battery life. Second is the growing demand for
autonomic computing,2 which focuses on devel-
oping systems that can manage and protect them-
selves with only high-level human guidance. This
capability is especially important to systems such as
financial networks and power grids that must sur-
vive hardware component failures and security
attacks.

There are two general approaches to implement-
ing software adaptation. Parameter adaptation
modifies program variables that determine behav-
ior. The Internet’s Transmission Control Protocol
is an often-cited example: TCP adjusts its behavior
by changing values that control window manage-
ment and retransmissions in response to apparent
network congestion. But parameter adaptation has
an inherent weakness. It does not allow new algo-
rithms and components to be added to an applica-
tion after the original design and construction. It
can tune parameters or direct an application to use
a different existing strategy, but it cannot adopt new
strategies.

By contrast, compositional adaptation exchanges
algorithmic or structural system components with
others that improve a program’s fit to its current
environment. With compositional adaptation, an
application can adopt new algorithms for address-
ing concerns that were unforeseen during develop-
ment. This flexibility supports more than simple
tuning of program variables or strategy selection.
It enables dynamic recomposition of the software
during execution—for example, to switch program
components in and out of a memory-limited device
or to add new behavior to deployed systems.

Dynamic recomposition of software dates back
to the earliest days of computing, when self-modi-
fying code supported runtime program optimiza-
tion and explicit management of physical memory.
However, such programs were difficult to write and
debug. Several new software tools and technologies
now help address these problems. Given the increas-
ing pace of research in compositional adaptation,
we offer a review of the supporting technologies,
proposed solutions, and areas that require further
study.

Compositional adaptation enables software to modify its structure and
behavior dynamically in response to changes in its execution environment.
A review of current technology compares how, when, and where
recomposition occurs.

Philip K.
McKinley
Seyed
Masoud
Sadjadi
Eric P.
Kasten
Betty H.C.
Cheng
Michigan State
University

ENABLING TECHNOLOGIES
At the core of all approaches to compositional

adaptation is a level of indirection for intercepting
and redirecting interactions among program enti-
ties. Figure 1 shows three technologies—separa-
tion of concerns, computational reflection, and
component-based design—that we consider as key
to reconfigurable software design. Programmers
can use these technologies to construct self-adap-
tive systems in a systematic and principled—as
opposed to ad hoc—manner.3

In addition, the widespread use of middleware
in distributed computing has been a catalyst for
compositional adaptation research. Middleware
provides a natural place to locate many types
of adaptive behavior, as the “Middleware and
Adaptation” sidebar describes.

Separation of concerns
Separation of concerns4 enables the separate

development of an application’s functional behav-
ior—that is, its business logic—and the code for

July 2004 57

Much recent research in adaptive software focuses on mid-
dleware—the layers of services separating applications from
operating systems and network protocols.

Douglas Schmidt decomposes middleware into four layers,1

shown in Figure A:

• Host-infrastructure middleware resides atop the operat-
ing system and provides a high-level API that hides the
heterogeneity of hardware devices, operating systems,
and—to some extent—network protocols.

• Distribution middleware provides a high-level program-
ming abstraction, such as remote objects, enabling devel-
opers to write distributed applications in a way similar to
stand-alone programs. Corba, DCOM, and Java RMI all
fit in this layer.

• Common middleware services include fault tolerance,
security, persistence, and transactions involving entities
such as remote objects.

• Domain-specific middleware services are tailored to match
a particular class of applications.

Most adaptive middleware is based on an object-oriented
programming paradigm and derived from popular middleware
platforms such as Corba, Java RMI, and DCOM/.NET.

Many adaptive middleware approaches work by intercept-
ing and modifying messages. Figure B shows the flow of a
request-reply sequence in a simplified Corba client-server appli-
cation. This application comprises two autonomous programs
hosted on two computers connected by a network.

Assume that the client has a valid Corba reference to the ser-
vant object. The client request to the servant goes first to the
stub, which represents the Corba object on the client side. The
stub marshals the request and sends it to the client object
request broker. The client ORB sends the request to the server
ORB, where a skeleton unmarshals the request and delivers it
to the servant. The servant replies to the request, by way of the
server ORB and skeleton. The client ORB will receive the reply
and dispatch it to the client.

In recent years, numerous studies have addressed the issue of
how middleware can adapt to dynamic, heterogeneous envi-
ronments to better serve applications.2,3 Middleware tradition-
ally hides resource distribution and platform heterogeneity from
the application business logic. Thus it is a logical place to put
adaptive behavior that is related to crosscutting concerns such as
QoS, energy management, fault tolerance, and security policy.

References
1. D.C. Schmidt, “Middleware for Real-Time and Embedded Sys-

tems,” Comm. ACM, June 2002, pp. 43-48.
2. Comm. ACM, special issue on adaptive middleware, June 2002,

pp. 30-64.
3. IEEE Distributed Systems Online, special issue on reflective mid-

dleware, June 2001; http://dsonline.computer.org/0105/features/
gei0105.htm.

Middleware and Adaptation

Domain-specific middleware services

Common middleware services

Distribution middleware

Applications

Host-infrastructure middleware

Operating systems and protocols

Hardware devices

Figure A. Four-layer decomposition of middleware to bridge the
gap between an application program and the underlying operating
systems, network protocols, and hardware devices.

Client application Server application

Skeleton

Request flow Reply flow

Applications

Distribution

Domain services
Common services

Host infrastructure
System platform

Network

Servant

Server ORB

Stub

Client

Client ORB

Figure B. Corba call sequence for a simplified client-server
application.

58 Computer

crosscutting concerns, such as quality of service
(QoS), energy consumption, fault tolerance, and
security. An application cannot implement a cross-
cutting concern at a single program location;
instead, it must add the code at many places.
Separating crosscutting concerns from functional
behavior simplifies development and maintenance,
while promoting software reuse.

Separation of concerns has become an important
principle in software engineering.5 Presently, the
most widely used approach appears to be aspect-
oriented programming.6 AOP provides abstraction
techniques and language constructs to manage
crosscutting concerns. The code implementing
these concerns, called aspects, is developed sepa-
rately from other parts of the system. In AOP,
pointcuts are sets of locations in the code where the
developer can weave in aspects. Pointcuts are typ-
ically identified during development. Later, for
example during compilation, the developer uses a
specialized compiler, called an aspect weaver, to
combine different aspects with an application’s
business logic to create a program with new behav-
ior. An example is the AspectJ compiler. AOP pro-
ponents argue that disentangling crosscutting
concerns leads to simpler software development,
maintenance, and evolution.

AOP is important to dynamic recomposition
because most adaptations are relative to some
crosscutting concern, such as QoS. AOP enables
these concerns to be isolated from the rest of the
program. However, in traditional AOP the com-
piled program is still tangled. To support dynamic
recomposition, the programmer needs a way to
maintain this separation at runtime.

Computational reflection
Computational reflection refers to a program’s

ability to reason about, and possibly alter, its own
behavior.7 Reflection enables a system to reveal
selected details of its implementation without com-
promising portability.

Reflection comprises two activities: introspection
to let an application observe its own behavior, and
intercession to let a system or application act on

these observations and modify its own behavior. In
a self-auditing distributed application, for exam-
ple, software “sensors” could use introspection to
observe and report usage patterns for various com-
ponents. Intercession would allow the system to
insert new types of sensors, as well as components
that implement corrective action, at runtime.

As Figure 2 shows, a reflective system (repre-
sented as base-level objects) and its self-represen-
tation (represented as metalevel objects) are
causally connected, meaning that modifications to
either one will be reflected in the other.

A metaobject protocol (MOP) is an interface that
enables “systematic” introspection and interces-
sion of the base-level objects. MOPs support either
structural or behavioral reflection.3 Structural
reflection addresses issues related to class hier-
archy, object interconnection, and data types. As
an example, a metalevel object can examine a
base-level object to determine what methods are
available for invocation. Conversely, behavioral
reflection focuses on the application’s computa-
tional semantics. For instance, a distributed appli-
cation can use behavioral reflection to select and
load a communication protocol well suited to cur-
rent network conditions.

A developer can use reflective services that are
either native to a programming language—such as
Common Lisp Object System (CLOS), Python, or
various Java derivatives—or provided by a mid-
dleware platform. When combined with AOP,
reflection enables a MOP to weave code for cross-
cutting concerns into an application at runtime.
However, dynamically loading and unloading
adaptive code requires the target software modules
to exhibit a “plug-and-play” capability.

Component-based design
The third major technology supporting compo-

sitional adaptation is component-based design.
Software components are software units that third
parties can independently develop, deploy, and
compose.9 Popular component-based platforms
include COM/DCOM, .NET, Enterprise Java
Beans, and the Corba Component Model.

Component-based design supports two types of
composition. In static composition, a developer can
combine several components at compile time to
produce an application. In dynamic composition,
the developer can add, remove, or reconfigure com-
ponents within an application at runtime. To pro-
vide dynamic recomposition, a component-based
framework must support late binding, which
enables coupling of compatible components at run-

Base level
Application

MOPs

Objects

Metalevel

Structural Behavioral

Introspection
Intercession Intercession

Introspection

Figure 2. Metalevel understanding collected into metaobject protocols.

time through well-defined interfaces used as con-
tracts. In addition, to provide consistency with
other applications, a component-based framework
must support coexistence of multiple versions of
components.

By enabling the assembly of off-the-shelf com-
ponents from different vendors, component-based
design promotes software reuse. Moreover, mech-
anisms for maintaining a program’s component
structure after the initial deployment, when com-
bined with late binding, facilitate compositional
adaptation.

Middleware and other factors
In addition to the three main technologies sup-

porting dynamic recomposition, many other fac-
tors have contributed to the growth in this area.
Perhaps the most important is middleware’s

increasing role in distributed computing. Middle-
ware provides a layer that developers can exploit
to implement adaptive behavior. Indeed, many
approaches to compositional adaptation are real-
ized in various middleware layers.

Other technologies important to adaptive soft-
ware design include software design patterns,
mobile agents, generative programming, adaptive
programming, and intentional programming.5

COMPOSITIONAL ADAPTATION TAXONOMY
Researchers and developers have proposed a

wide variety of methods for supporting composi-
tional adaptation. Table 1 lists several research pro-
jects, commercial software packages, and standard
specifications that support some form of composi-
tional adaptation. The list is by no means exhaus-
tive. Rather, it includes projects that exemplify the

July 2004 59

Table 1. Example research projects, commercial packages, and standard specifications that provide
compositional adaptation.

Project Institution/Organization

Language-based projects
AspectJ Xerox Palo Alto Research Center
Composition filters Universiteit Twente, The Netherlands
Program Control Language (PCL) University of Illinois
Open Java IBM Research
R-Java University Federal de São Carlos, Brazil
Kava University of Newcastle, UK
Adaptive Java Michigan State University
Transparent Reflective Aspect Programming in Java (TRAP/J) Michigan State University
Middleware-based projects
Domain-specific services layer:
Boeing Bold Stroke (BBS) Boeing
Common services layer:
CorbaServices Object Management Group
Quality objects (QuO) BBN Technologies
Adaptive Corba Template (ACT) Michigan State University
Interoperable Replication Logic (IRL) University of Rome, Italy
Distribution layer:
.NET remoting Microsoft
Open ORB and Open COM Lancaster University, UK
The ACE ORB (TAO) and Component Integrated ACE ORB (CIAO) Distributed Object Computing Group
DynamicTAO and Universally Interoperable Core (UIC) University of Illinois
Orbix, Orbix/E, and ORBacus Iona Technologies
Squirrel University of Kaiserslautern, Germany
AspectIX Friedrich-Alexander University, Germany
Host infrastructure layer:
Java virtual machine (JVM) Sun Microsystems
Common Language Runtime (CLR) Microsoft
Iguana/J Trinity College, Dublin
Prose Swiss Federal Institute of Technology
Adaptive Communication Environment (ACE) Distributed Object Computing Group
Ensemble Cornell University
Cross-layer projects
Distributed Extensible Open Systems (DEOS) Georgia Institute of Technology
Grace University of Illinois

60 Computer

distinctions in a taxonomy we have developed
based on how, when, and where software compo-
sition takes place. We have applied the taxonomy
to many additional projects.10

How to compose
The first dimension of our taxonomy addresses

the specific software mechanisms that enable com-
positional adaptation. Table 2 lists several key tech-
niques with brief descriptions and examples.
Mehmet Aksit and Zièd Choukair8 provide an
excellent discussion of such methods.

All of the techniques in Table 2 create a level of
indirection in the interactions between program
entities. Some techniques use specific software
design patterns to realize this indirection, whereas
others use AOP, reflection, or both. The two mid-
dleware techniques both modify interaction
between the application and middleware services,
but they differ in the following way: Middleware
interception is not visible to the application,
whereas integrated middleware provides adaptive
services invoked explicitly by the application.

We use the term composer to refer to the entity
that uses these techniques to adapt an application.
The composer might be a human—a software devel-
oper or an administrator interacting with a running
program through a graphical user interface—or a
piece of software—an aspect weaver, a component

loader, a runtime system, or a metaobject. Indeed,
autonomic computing promises that, increasingly,
composers will be software components.

When and where the composer modifies the pro-
gram determines the transparency of the recom-
position. Transparency refers to whether an
application or system is aware of the “infrastruc-
ture” needed for recomposition. For example, a
middleware approach to adaptation is transparent
with respect to the application source code if the
application does not need to be modified to take
advantage of the adaptive features. Different
degrees of transparency (with respect to applica-
tion source, virtual machine, middleware source,
and so on) determine both the proposed solution’s
portability across platforms and how easily it can
add new adaptive behavior to existing programs.10

When to compose
Second, we differentiate approaches according

to when the adaptive behavior is composed with
the business logic. Generally speaking, later com-
position time supports more powerful adaptation
methods, but it also complicates the problem of
ensuring consistency in the adapted program. For
example, when composition occurs at develop-
ment, compile, or load time, dynamism is limited
but it is easier to ensure that the adaptation will
not produce anomalous behavior. On the other

Table 2. Software recomposition techniques.

Technique Description Examples

Function pointers Application execution path is dynamically Vtables in COM, delegates and events in
redirected through modification of function .NET, callback functions in Corba
pointers.

Wrappers Objects are subclassed or encapsulated by other ACE, R-Java, PCL, QuO, TRAP/J
objects (wrappers), enabling the wrapper to control
method execution.

Proxies Surrogates (proxies) are used in place of objects, ACT, AspectIX
enabling the surrogate to redirect method calls to
different object implementations.

Strategy pattern Each algorithm implementation is encapsulated, DynamicTAO and UIC
enabling transparent replacement of one
implementation with another.

Virtual component pattern Component placeholders (virtual components) are ACE and TAO
inserted into the object graph and replaced as
needed during program execution.

Metaobject protocol Mechanisms supporting intercession and Open Java, Kava, TRAP/J, Open ORB,
introspection enable modification of program Open COM, Iguana/J
behavior.

Aspect weaving Code fragments (aspects) that implement a AspectJ, Composition Filters, TRAP/J,
crosscutting concern are woven into an application AspectIX, Iguana/J, Prose
dynamically.

Middleware interception Method calls and responses passing through a ACT, IRL, Prose
middleware layer are intercepted and redirected.

Integrated middleware An application makes explicit calls to adaptive Adaptive Java, Orbix, Orbix/E, ORBacus,
services provided by a middleware layer. BBS, CIAO, Iguana/J, Ensemble

July 2004 61

hand, while runtime composition is very powerful,
it is difficult to use traditional testing and formal
verification techniques to check safety and other
correctness properties. Figure 3 illustrates the use
of composition time as the classification metric for
adaptive applications. The vertical axis lists appli-
cation types that implement either static or dynamic
composition. Static composition methods take
place at development, compile, or load time,
whereas dynamic composition refers to methods
that a composer can apply at runtime.

Static composition. If an adaptive program is com-
posed at development time, then any adaptive
behavior is hardwired into the program and can-
not be changed without recoding.

Alternatively, a developer or user can implement
a limited form of adaptation at compile time or link
time by configuring the application for a particu-
lar environment. For example, aspect-oriented
programming languages such as AspectJ enable
weaving of aspects into programs during compila-
tion. Aspects might implement an environment-
specific security or fault-tolerance policy. Such cus-
tomizable applications require only recompilation
or relinking to fit to a new environment.

Configurable applications delay the final deci-
sion on the algorithmic units to use in the current
environment until a running application loads
the corresponding component. For example, the
Java virtual machine (JVM) loads classes when
a Java application first uses them. Although we con-
sider load-time composition a type of static com-
position, it offers more dynamism than other static
methods. When the application requests the load-
ing of a new component, decision logic might select
from a list of components with different capabili-
ties or implementations, choosing the one that most
closely matches the current needs. For example, if
a user starts an application on a handheld com-
puter, the runtime system might load a minimal dis-
play component to guarantee proper presentation.

Other load-time approaches work by dynami-
cally modifying the class itself as it is loaded. For

example, to provide runtime monitoring and
debugging capabilities, Kava enables the JVM to
modify the bytecode as it loads a class.

Dynamic composition. The most flexible approaches
to compositional adaptation implement it at run-
time. A composer can replace or extend algorith-
mic and structural units during execution without
halting and restarting the program. We differenti-
ate two types of approaches according to whether
or not the composer can modify the application’s
business logic.

Tunable software prohibits modification of code
for the business logic. Instead, it supports fine-tun-
ing of crosscutting concerns in response to chang-
ing environmental conditions, such as dynamic
conditions encountered in mobile computing envi-
ronments. An example is the fragment object model
used in AspectIX, which enables runtime tuning of
a Corba application’s distribution behavior.

In contrast, mutable software allows the com-
poser to change even the program’s imperative func-
tion, enabling dynamic recomposition of a running
program into one that is functionally different. For
example, in the OpenORB middleware platform,
all objects in the middleware and application code
have reflective interfaces, so at runtime the reflec-
tive application can change virtually any object in
any way, including modifying its interface and inter-
nal implementation. While very powerful, in most
cases the developer must constrain this flexibility to
ensure the system’s integrity across adaptations.

Where to compose
The final dimension in which we compare

approaches to compositional adaptation centers on
where in the system the composer inserts the adap-
tive code. The possibilities include one of the mid-
dleware layers (see Figure A in the “Middleware
and Adaptation” sidebar) or the application code
itself. In this survey, we do not discuss changes to
the operating system; however, we note that oper-
ating system extensibility is an active research area.
Moreover, adaptations in cross-layer frameworks

Dynamic
composition

Static
compositionAp

pl
ic

at
io

n
ty

pe

Increasing dynamism

Compile/link
time

Load
time

RuntimeDevelopment
time

Hardwired

Customizable

Configurable

Tunable

Mutable

Figure 3.
Classification
for software
composition using
the time of
composition or
recomposition as
a classification
metric.

62 Computer

such as DEOS and Grace involve the coop-
eration of the operating system, middleware,
and application.

Middleware layers. Projects involving com-
positional adaptation at the host-infrastruc-
ture middleware layer generally fall in one
of two groups. One approach is to construct
a layer of adaptable communication services.
ACE is an early example that used service
wrappers and C++ dynamic binding to sup-
port adaptable interprocess communication
and event handling services. Ensemble pro-
vides a layered architecture that enables a

distributed application to select a particular com-
munication protocol.

The second approach is to provide a virtual
machine with facilities to intercept and redirect
interactions in the functional code. For example,
JVM and common language runtime (CLR) facil-
itate dynamic recomposition through reflection
facilities provided by the Java language and .NET
platform, respectively. R-Java supports metaob-
jects by adding a new instruction to the Java inter-
preter, while Prose and Iguana/J use aspect weaving
to add behavioral reflection to the standard JVM.
In general, approaches in this category are very
flexible with respect to dynamic reconfiguration in
that they allow new code to be introduced at run-
time. However, they use customized virtual
machines to provide transparency to the applica-
tion, which may reduce portability.

Introducing adaptive behavior in higher mid-
dleware layers—distribution, common services,
and domain-specific services—enables portability
across virtual machines. These approaches typi-
cally involve middleware components that inter-
cept messages associated with remote method
invocations and redirect or modify them in a man-
ner that accounts for current conditions. For some
frameworks, the application developer constructs
explicit calls to adaptive middleware services.
Examples include Orbix, Orbix/E, ORBacus,
CIAO, and Boeing Bold Stroke. QuO uses wrap-
pers around Corba stubs and skeletons to gain con-
trol of the call sequence, whereas IRL and ACT
use Corba portable interceptors to do so. Portable
interceptors serve as “generic” hooks that a com-
poser can use at runtime to load other types of
interceptors. Since a user can load a portable inter-
ceptor using a command-line parameter, this
approach enables the composer to integrate adap-
tive components into the program without modi-
fying either the application or the middleware
code.

Application code. Although middleware approaches
support transparent adaptation, they apply only to
programs that are written against a specific mid-
dleware platform. A more general approach is for
developers to implement compositional adaptation
in the application program itself.

Two main techniques are available. The first is to
program all or part of the application code using a
language that directly supports dynamic recompo-
sition. Some languages, such as CLOS or Python,
provide support inherently, while others have been
extended to support adaptation. For example, Open
Java, R-Java, Handi-Wrap, PCL, and Adaptive Java
all extend Java to include new keywords and con-
structs that enhance the adaptive code’s expres-
siveness. However, this approach requires the
developer to use these features explicitly in con-
structing the program.

The second technique is to weave the adaptive
code into the functional code. AspectJ and
Composition Filters weave adaptive behavior into
existing applications at compile time. In contrast,
tools such as TRAP/J use a two-step approach to
enable dynamic recomposition. In the first step, an
aspect weaver inserts generic interception hooks,
in this case implemented as aspects, into the appli-
cation code at compile time. In the second step, a
composer dynamically weaves new adaptive com-
ponents into the application at runtime, and a
metaobject protocol uses reflection to forward
intercepted operations to the adaptive components.
This approach offers a way to add adaptive behav-
ior to existing applications transparently with
respect to the original code. Such a capability is
important as users expect legacy applications to
execute effectively across an increasingly diverse
computing infrastructure.

KEY CHALLENGES
Despite many advances in mechanisms to sup-

port compositional adaptation, the full potential
of dynamically recomposable software systems
depends on fundamental advances on four other
fronts.

Assurance
Recomposable software design requires a pro-

gramming paradigm that supports automated
checking of both functional and nonfunctional sys-
tem properties.11

To help ensure the adapted system’s correctness,
developers must first certify all components for cor-
rectness with respect to their specifications. They
can obtain this certification either by selecting com-

Introducing
adaptive behavior

in higher
middleware

layers enables
portability across
virtual machines.

ponents that have already been verified and vali-
dated offline using traditional techniques, such as
testing, inspection, and model checking, or by gen-
erating code automatically from specifications. The
certification can include nonfunctional require-
ments, such as security and performance, as well
as functional requirements.

Second, techniques are needed to ensure that the
system still executes in an acceptable, or safe, man-
ner during the adaptation process. Our group and
others are using dependency analysis to address this
problem. In addition, developers can use high-level
contracts12 and invariants to monitor system cor-
rectness before, during, and after adaptation.

Security
Whereas assurance deals primarily with system

integrity, security addresses protection from mali-
cious entities—preventing would-be attackers from
exploiting the adaptation mechanisms. In addition
to verifying component sources, an adaptive software
system must protect its core from attackers. Various
well-studied security mechanisms are available, such
as strong encryption to ensure the confidentiality and
authenticity of messages related to adaptation.

However, the system must also hide adaptation
management from would-be intruders and prevent
them from impeding or corrupting the adaptation
process. A comprehensive approach to this prob-
lem must ensure the integrity of the data used in
decision-making and conceal the adaptive actions,
perhaps by obscuring them within other system
activities.

Interoperability
Distributed systems that can adapt to their envi-

ronment must both adapt individual components
and coordinate adaptation across system layers and
platforms. Software components are likely to come
from different vendors, so the developer may need
to integrate different adaptive mechanisms to meet
an application’s requirements. The problem is com-
plicated by the diversity of adaptive software ap-
proaches at different system layers. Even solutions
within the same layer are often not compatible.

Developers need tools and methods to integrate
the operation of adaptive components across the
layers of a single system, among multiple comput-
ing systems, and between different adaptive frame-
works.

Decision making
Adaptive systems respond to a dynamic physical

world. They must act autonomously, modifying

software composition to better fit the current
environment while preventing damage or loss
of service. Decision-making software uses
input from software and hardware sensors
to decide how, when, and where to adapt the
system. Interactive systems may even require
the decision maker to learn about and adapt
to user behavior.

Some researchers have constructed soft-
ware decision makers using rule-based
approaches or control theory. Others have
designed decision makers whose actions are
inspired by biological processes, such as the human
nervous system and emergent behavior in insect
species that form colonies.

These approaches to decision making in adaptive
software have been effective in certain domains, but
environmental dynamics and software complexity
have limited their general application. More exten-
sive research in decision making for adaptive soft-
ware is needed. Future systems must accommodate
high-dimensional sensory data, continue to learn
from new experience, and take advantage of new
adaptations as they become available.

M any of the mechanisms for compositional
adaptation are available now, and we expect
their use to increase as programmers become

more familiar with adaptive software technologies
and society comes to expect computer systems to
manage themselves. There is a potential downside,
however, in the lack of supporting development envi-
ronments. Compositional adaptation is powerful,
but without appropriate tools to automatically gen-
erate and verify code, its use can negatively impact—
rather than improve—system integrity and security.

The computer science community must build
development technologies and tools, well grounded
in rigorous software engineering, to support com-
positional adaptation. This foundation will raise
the next generation of computing to new levels of
flexibility, autonomy, and maintainability without
sacrificing assurance and security. �

Acknowledgments
We express our gratitude to the many individu-

als who have contributed to this emerging area of
study. Discussions with researchers associated with
many of the projects listed in Table 1 have greatly
improved our understanding of this area. We also
thank the faculty and students in the Software
Engineering and Network Systems Laboratory at

July 2004 63

The system
must also hide

adaptation
management

from would-be
intruders.

64 Computer

Michigan State University for their contributions
to RAPIDware, Meridian, and related projects.

This work was supported in part by National
Science Foundation grants CCR-9901017, CCR-
9912407, EIA-0000433, EIA-0130724, and ITR-
0313142, and by the US Department of the Navy,
Office of Naval Research, under grant no. N00014-
01-1-0744.

Further information
Our group is participating in compositional

adaptation research through two projects:
RAPIDware (www.cse.msu.edu/rapidware) ad-
dresses adaptive software for protecting critical
infrastructures, and Meridian (www.cse.msu.edu/
meridian) addresses automated software engi-
neering for mobile computing. Among other arti-
facts, these projects produced ACT, Adaptive Java,
and TRAP/J. The technical report on our taxon-
omy is a “living document” available through the
RAPIDware URL.

References
1. M. Weiser, “Hot Topics: Ubiquitous Computing,”

Computer, Oct. 1993, pp. 71-72.
2. J.O. Kephart and D.M. Chess, “The Vision of Auto-

nomic Computing,” Computer, Jan. 2003, pp. 41-50.
3. G.S. Blair et al., “An Architecture for Next-Genera-

tion Middleware,” Proc. IFIP Int’l Conf. Distributed
Systems Platforms and Open Distributed Processing
(Middleware 98), Springer, 1998, pp. 191-206.

4. D.L. Parnas, “On the Criteria to Be Used in Decom-
posing Systems into Modules,” Comm. ACM, Dec.
1972, pp. 1053-1058.

5. K. Czarnecki and U. Eisenecker, Generative Pro-
gramming, Addison-Wesley, 2000.

6. G. Kiczales et al., “Aspect-Oriented Programming,”
Proc. European Conf. Object-Oriented Program-
ming (ECOOP), LNCS 1241, Springer-Verlag, 1997,
pp. 220-242.

7. P. Maes, “Concepts and Experiments in Computa-
tional Reflection,” Proc. ACM Conf. Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), ACM Press, 1987, pp. 147-155.

8. M. Aksit and Z. Choukair, “Dynamic, Adaptive, and
Reconfigurable Systems Overview and Prospective
Vision,” Proc. 23rd Int’l Conf. Distributed Com-
puting Systems Workshops (ICDCSW03), IEEE CS
Press, May 2003, pp. 84-89.

9. C. Szyperski, Component Software: Beyond Object-
Oriented Programming, 2nd ed., Addison-Wesley,
2002.

10. P.K. McKinley et al., “A Taxonomy of Compositional
Adaptation,” tech. report MSU-CSE-04-17, Dept.
Computer Science and Engineering, Michigan State
Univ., 2004.

11. N. Venkatasubramanian, “Safe ‘Composability’ of
Middleware Services,” Comm. ACM, June 2002, pp.
49-52.

12. A. Beugnard et al., “Making Components Contract
Aware,” Computer, July 1999, pp. 38-45.

Philip K. McKinley is a professor in the Depart-
ment of Computer Science and Engineering at
Michigan State University. His research interests
include adaptive middleware, mobile computing,
pervasive computing, distributed systems, and
group communication. McKinley received a PhD
in computer science from the University of Illinois
at Urbana-Champaign. He is a member of the
IEEE Computer Society and the ACM. Contact
him at mckinley@cse.msu.edu.

Sayed Masoud Sadjadi is a PhD candidate in the
Department of Computer Science and Engineering
at Michigan State University. His research interests
include adaptive software, middleware, pervasive
computing, autonomic computing, and sensor net-
works. Sadjadi received an MS in software engi-
neering from Azad University at Tehran. He is a
student member of the IEEE Computer Society and
the ACM. Contact him at sadjadis@cse.msu.edu.

Eric P. Kasten is a PhD candidate in the Depart-
ment of Computer Science and Engineering and a
software developer in the National Superconduct-
ing Cyclotron Laboratory, both at Michigan State
University. His research interests include autonomic
computing and learning algorithms for adaptable
software. Kasten received an MS in computer sci-
ence from Michigan State University. He is a mem-
ber of the IEEE Computer Society and the ACM.
Contact him at kasten@cse.msu.edu.

Betty H.C. Cheng is a professor in the Department
of Computer Science and Engineering at Michigan
State University. Her research interests include for-
mal methods for software engineering, component-
based software development, object-oriented
analysis and design, embedded systems develop-
ment, and visualization. Cheng received a PhD in
computer science from the University of Illinois at
Urbana-Champaign. She is a senior member of the
IEEE Computer Society and a member of the
ACM. Contact her at chengb@cse.msu.edu.

