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1 Introduction

Large scale shared-memory multiprocessors where hundreds or thousands of processors and
memory modules are interconnected through an “equidistant” [35] multistage interconnection
network have recently been designed and/or implemented. A typical “dance-hall” architec-
ture, where a set of processors is lined up on one side of a processor-memory interconnection
network and a set of memory modules lined up on the other side, is shown in Figure 1.
The memory hierarchy consists of private caches C, local memories I M, and a shared global
memory M. Examples of such architectures (although possibly without the complete memory
hierarchy) include the University of Illinois Cedar machine [15], the BBN Butterfly multi-
processor [5], the NYU Ultracomputer [18], and the IBM RP3 machine [31].

One of the major problems associated with these architectures is the slow global memory
access; thus the efficient management of local memory and private caches is very important.
Local memory is generally used to store code and private data although shared data can be
temporarily stored in local memory as in [6]. In some sense, we could say that local memory
allows single copy caching. The decision on what will be stored in local memory and for how
long, and on what will remain in global memory is entirely done at compile-time. On the
other hand, caching in its usual sense is a run-time process. It is automatic in hardware-based
caching mechanisms and can be prevented in some instances in software-assisted schemes.
The use of local memory is not incompatible with that of private caches. On the contrary,
they can complement each other. However, in this paper, we restrict ourselves to a study of

caching of shared variables.

The presence of multiple private caches introduces the well-known cache coherence problem
[7]. Hardware based protocols to solve the cache coherence problem are well understood in a
shared-bus environment (e.g., [17, 22, 32, 37]). However these solutions cannot be extended
to the dance-hall multiprocessors since they make use of the instantaneous broadcast and
“snoopy” mechanisms provided by the shared-bus. Software-assisted [10, 25, 27, 33, 38, 40]

and directory-based [1, 4, 7, 36, 41] schemes are usually advocated in such an environment.



In this paper, we propose a software-assisted cache coherence scheme which overcomes some
of the inefficiencies of previous approaches by using a combination of a compile-time marking
of references and a hardware-based local incoherence detection scheme. We also give a
performance evaluation of our proposed scheme. In Section 2, we give the notation used
throughout the paper. Section 3 reviews previous software-assisted approaches to enforcing
cache coherence. In Section 4, a complete description of our approach is given. A correctness
proof of our proposed scheme is given elsewhere [29] and is omitted here. Section 5 gives a
quantitative comparison of our scheme with previous approaches. Section 6 provides some

concluding remarks.

2 Definitions

Programs written for shared-memory multiprocessors may use explicit parallel constructs
or may be conventional sequential programs transformed into equivalent parallel ones by
a restructuring compiler or a preprocessor like Parafrase [24, 39], PFC [3] or PTRAN [2].
The parallelism is constrained by data dependences : flow-dependence, anti-dependence, and
outpul-dependence[23]. Let r and r’ be read operations and w and w’ be write operations in
a program. r is defined to be flow-dependent on w if the memory location written by w may
be read by r. w is defined to be anti-dependent on r if the memory location read by r may
be later written by w. w is defined to be output-dependent on w’ if the memory location

written by w’ may be later overwritten by w.

Data dependence relationship among statements in a program can be graphically represented
by a labeled directed multigraph called data dependence graph. The nodes of the graph are
statements in the program and (.5;, 5;,0) is in the arc set if and only if S; is 6-dependent on

Si.

In parallel programs, as in sequential programs, most of the execution time is spent in loops.
We distinguish between Serial loops, DoAll loops, and DoAcross loops. Serial loops are loops

with inter-iteration delay equal to the execution time of the whole loop body (i.e., iteration



i cannot begin until iteration ¢ — 1 finishes). DoAllloops are loops with the delay equal to 0
(i.e., all iterations of a DoAll loop can be executed completely in parallel). DoAcross loops
[11] have a delay between 0 and the execution time of the loop body caused by inter-iteration

dependences. DoAll and DoAcross loops will also be called parallel loops.

We assume that a parallel program is composed of a set of epochs [25] which are either
parallel loops or serial regions between them. Execution of an iteration of a parallel loop
constitutes an instance of the epoch of type parallel loop. A serial region is a special type
of epoch which has only one instance. Initially, we assume that only one level of nested Do
loops is to be executed concurrently (i.e., only different iterations of a parallel loop can be
executed in parallel on multiple processors). In Section 4.4, we will discuss the case where

the parallel program may have nested parallelism.

As an example, consider the program segment shown below. It has two epochs, one consisting
of the DoAcross loop ¢ and the other consisting of the serial code after the DoAcross loop (i.e.,
S « 0 and the serial loop k). The DoAcross loop has two dependences: a flow dependence 6,
caused by the dependency between A(¢,7) (in 1) and A(%, ) (in S3) and a flow dependence
63 caused by the dependency between A(7,7) (in S7) and A(i —1,7) (in S7).

DoAcross : = 1,n4

Do j=1,n9

Si A(t,7) = -+

52 e G+ AG 1)
END Do

END DoAcross
S0
Dok =1,n3

S — S+ Ak, 1)
END Do



3 Previous approaches to enforcing cache coherence

In [7], Censier and Feautrier defined a memory scheme to be coherent if the value returned
on a read is the value given by the latest store with the same address. Most of the previous
research done on enforcing cache coherence assumed shared resources such as a shared bus
[17, 22, 32, 37] or a directory [4, 7, 36, 41]. These shared resources are, however, a hindrance
towards scalability. A shared-bus is saturated as soon as the number of processors sharing
it exceeds some threshold (certainly below 100 processors). Directories either grow linearly
with the number of processor/cache pairs [7, 36, 41] or, if the encoding is more efficient,
the protocols rely on broadcasts [4] that should be avoided in a scalable multiprocessor. We
are therefore searching for alternatives that do not assume any shared resource but global
memory and that do not use broadcast. Our approach, an instance of a “self-invalidation”

cache coherence scheme, is based on software assists and local coherence checks.

The simplest software-assisted cache coherence scheme is to disallow caching of shared read /write
data for the entire program [40]. This is accomplished by a compile-time marking of shared
variables that are writable as non-cacheable. The mechanism is simple but inefficient in
the sense that every reference to non-cacheable data is to be forwarded to global memory
even though the addressed data could be cacheable during parts of the program where it is

read-only or accessed exclusively by a single processor.

To overcome this performance penalty, Veidenbaum [38] proposed a scheme that allows chang-
ing of the cacheability of data. He identified the conditions necessary to cause cache inco-
herence. From those conditions, he showed that all global memory references can be routed
through private caches inside DoAll loops and serial regions. But caching is prohibited in-
side loops with inter-iteration dependencies (DoAcross loops). In addition, caches that may
potentially contain stale copies of data are flushed at the boundaries of loops. Although this
scheme represents an obvious progress over no shared data caching at all, it still suffers from
two inefficiencies. First, caching of read-only shared variables and variables that are exclu-
sively accessed by only one processor inside DoAcross loops is disallowed. Second, the blind

invalidations at the boundaries of loops flush out many cache entries that hold up-to-date



copies of data.

The first inefficiency of Veidenbaum’s scheme was partially remedied in the schemes proposed
by McAuliffe [27] and Lee [25]. Cacheability of variables is determined on an epoch by epoch
basis. If a variable is potentially referenced by more than one processor in a given epoch and
at least one of these references is a write, the variable is marked as non-cacheable for that
epoch. Otherwise, it is marked as cacheable. Although this scheme captures localities within
an epoch very well, it still suffers from performance penalties due to the cache flushes at the

end of epochs.

Subsequently Cheong and Veidenbaum [9, 10] proposed the fast-selective invalidation scheme
which is an improved version of Veidenbaum’s scheme. Figure 2 shows the two possible
conditions for a stale access [38] on which their reference marking scheme is based. In the
first condition, a cache entry is loaded by a write by processor 7« and becomes stale when
another processor j issues a write to the same memory location. The correctness criteria of
cache coherence would be violated if processor ¢ were still allowed to access what is now a
stale copy in its cache. Similarly a stale access is possible when the cache entry is loaded
by a read miss and becomes obsolete by a write from another processor. In their scheme,
each read reference is marked at compile-time as either memory-read (the reference may
potentially access a stale copy in the cache) or cache-read (on a hit, it is guaranteed that the
cache entry is up-to-date). Notice that since these reference markings are done at compile-
time, every reference to a shared variable that could be made after the variable was written
by two different processors should be marked as memory-read by the compiler (condition
1). Similarly, every reference to a shared variable that could be made after the variable
was read by one processor and then written by another processor should also be marked as
memory-read (condition 2). From the above two conditions, it is easy to see that most read
references to shared variables will be marked as memory-read by the compiler. In addition
to the above compile-time detection scheme for stale accesses, a change bit is associated with
each word in the cache. Its main purpose is to allow caching of memory-read references that
occur more than once during an instance of an epoch. The change bits of the entire cache are

set at the beginning of each epoch instance. A cache-read is executed as usual, irrespective of



the change bit. If a memory-read is issued and there is a copy of the corresponding memory
block in the cache with the change bit set, the cache controller has no idea of whether the
copy was loaded after the last write of the memory block or not. Therefore the controller has
to take a conservative approach and the request is serviced by the global memory. However,
it is possible that the copy was indeed loaded after the last write and is up-to-date. The
extraneous memory read is due to the limitation of the compile-time analysis. Many more
read requests than necessary will be directed to the global memory (recall that most reads
from shared variables are marked as memory-read). Therefore the network traffic will be

unduly increased and the scalability of the scheme is in question.

A scheme that is very similar to Cheong and Veidenbaum’s was independently proposed
by Cytron et al. [12]. This scheme uses the same compile-time analysis to detect stale
accesses and, therefore, suffers from the same scalability problem. In Cytron’s version, there
is no change bit. Instead, intra-instance localities are captured by carefully moving around
invalidation instructions so that cache entries loaded during the current instance are not

needlessly invalidated.

The scheme that we propose in the next section has many similarities with the version control
approach proposed at the same time, and independently, by Cheong and Veidenbaum [8]. We

will briefly compare these two schemes at the end of Section 4.3.

For completeness purposes, we mention Smith’s one time identifier scheme [33] which is more
geared towards the caching of variables in critical sections. Table 1 shows a summary of the

software-assisted cache coherence schemes discussed in this section.

4 Timestamp-based cache coherence scheme

4.1 Overview

We propose an extension of the previous methods that has for goal to capture more possibili-

ties for the caching and retention in the caches of shared variables by looking more deeply at



inter-epoch localities. Qur approach, like those in the previous section, is based on compile-
time analysis and, in addition, on hardware support in the form of counters and tag bits in

the cache.

The basic idea is as follows. We associate a “clock” (i.e., a counter) with each sharable data
structure (array or scalar) of interest. This clock is incremented at the end of each epoch in
which the data structure may be modified (a decision that is taken at compile-time). We also
associate a timestamp with each word (for the time being we assume that the block size is
equal to one word) in the cache. This timestamp is set to the value of the relevant clock + 1
when the word is updated in the cache. A reference to a cache word is valid if its timestamp

is equal to or greater than its associated clock value.

As an example, let us consider the program segment and the associated data-dependence
graph given in Figure 3. The output-dependence é; is caused by the dependency between
X(f()) and X(g()) and the flow-dependences 6, and 63 are caused by the dependencies
between X(g()) and X(p()) and between X (f()) and X(p()) respectively. In Cheong and
Veidenbaum’s scheme, the reference to array X in Ss will be marked as memory-read and,
therefore, will be directed to the global memory. The situation would be about the same in
Cytron’s scheme. In this scheme, the above reference would be preceded by an invalidation
instruction and be eventually serviced by the global memory. These are necessary because
when there is a corresponding word in the cache it is not known, at compile-time, whether

this cached word is stale (i.e., written in Loop;, ) or valid (i.e., written in Loop;, ).

In our approach, we would associate a clock with the array X. Its initial value is 0 and it
is incremented by 1 at the end of each epoch (here parallel loop) in which the variable X is
modified (here Loop;, and Loop;,). After the first loop, the cache blocks corresponding to
X (f()) would have a timestamp of 1 (0 (clock value) 4 1) and after the second loop the cache
blocks corresponding to X (g¢()) would have a timestamp of 2 (1 (clock value) + 1). When
the statement S35 is reached, and if there is a corresponding cache word for a reference to
X(p()), then this cache reference will be valid if the timestamp is 2, corresponding to X (g()),

and invalid otherwise.



As a second example, consider the program segment given in Figure 4. Again the reference
to array X in 54 will be directed to the global memory in Cheong and Veidenbaum’s scheme
since the compiler has to make the conservative assumption that the boolean expression b()
may evaluate to true. But if clocks and timestamps are maintained in the same way as in
the previous example, the reference to the array X in Loop;, can be satisfied by the cached
words if they are loaded into the cache in either Loop;, in the then case or Loop;, in the else

Ccase.

The above two examples show that some of the inefficiencies of previous software-assisted
cache coherence schemes can be remedied by history information which can be gathered at

execution time.

Figure 5 shows our approach to capturing localities across different epochs. We divide the
analysis into two parts: intra-epoch analysis and inter-epoch analysis. The intra-epoch anal-
ysis is done at compile-time and results in various markings of references. These markings
indicate that (1) for a cache entry to be re-used in future epochs it should be guaranteed
that there is no succeeding write reference to the same memory location in the same epoch,
and (2) for a read reference to use a cache entry loaded in past epochs it should be guaran-
teed that the read reference does not have any preceding write to the same memory location
in the same epoch. Inter-epoch analysis is performed at execution time using clocks and
timestamps as indicated in the previous examples. This inter-epoch analysis detects any
intervening write reference to the same memory location between the epoch in which the
cache entry was loaded by a processor and the one in which it is accessed by the same pro-
cessor. The above intra- and inter-epoch analyses, when combined, enable a processor on a
read access to a shared variable to detect any write reference to the same variable by other

processors since the last update in the associated cache entry in its local cache.

4.2 Support mechanism

Our cache coherence scheme requires the following hardware and software support mecha-

nisms.



4.2.1 Hardware support

o Clock registers
Reock 1s the set of ngyer-bit clock registers associated with each processor. For each

Telock € Relock and veoer of type subrange 0..27%¢leck — 1. the following operations are

defined.

— LOAD-CLOCK 7¢ock, Velock With the semantics rejock < Velock

— CLEAR-ALL with the semantics: ¥V reock € Retocks Telock — 0
e Cache memory. With each word in the cache, we associate:

— an Ngper-bit timestamp.

— a provisional bit (pb). This bit indicates when the entry has been loaded into the

cache (pb = 1 loaded during the current instance, pb = 0 otherwise).

— an invalid bit (¢b) (¢b = 0 valid, ib = 1 invalid).

Deciding a suitable value for nj,.; is a tradeoff between the increase in the storage taken up
by clocks and timestamps and the reduction in the number of clock or timestamp overflows

(cf. end of Section 4.3).

Note that the hardware support is proportional to the cache size while in directory-based
schemes, the extra hardware is proportional to the size of global memory. Let us assume
a system with N processors and associated caches and N memory modules. There are
M memory blocks/module and C' blocks/cache. In both directory and timestamped based
schemes, we need N more sophisticated controllers (N memory controllers in the directory
case, N cache controllers in the timestamped one). The amount of tag bits, i.e., the storage
overhead, is between 2N M (Archibald and Baer’s scheme [4]) and (N + 1)NM (Censier
and Feautrier’s scheme [7]) in directory-based schemes. In the timestamped case, there
are (neock + 2) extra tag bits per block for a total overhead of NC(ngecr + 2). If one
assumes M to be one order of magnitude greater than C', the timestamp-based scheme is

10(N + 1)/(nciock + 2) times more economical than Censier and Feautrier’s scheme in terms



of storage overhead. With N = 200 and n.,.z = 16, the storage overhead of Censier and
Feautrier’s scheme is two orders of magnitude greater than that of the timestamp-based
scheme. Notice that the relative space advantage of the timestamp-based scheme becomes
greater as the number of processors in the system is increased. Also note that with 16
bit timestamp, the storage overhead of the timestamp-based scheme is comparable to that
of Archibald and Baer’s scheme, which is most space-economic among the directory-based

schemes. (See Section 4.3 for the rationale behind the 16 bit timestamp.)

4.2.2 Software support

The software support consists of variables associated with shared data structures and a

marking mechanism.

We associate a variable v .. of type subrange 0..2"cteck — 1 with each shared variable ». Its
value is typically loaded into one of the clock registers before referencing v (See the formats

for reads and writes given in Section 4.3).

The reference marking scheme is based on a data-dependence analysis of a parallel program.
Various attributes are given to read and write operations. These attributes are used to decide

which actions to take for the associated operation at execution time.
Marking of write operations

A reference marking scheme for write operations is required in our scheme for both correctness
and efficiency purposes. For correctness purposes, a reference marking is necessary for each
write operation. This marking states whether the cache entry just written can be re-used
in future epochs. The above decision is based on whether the write reference may have a
succeeding write reference to the same memory location from other processors in the same
epoch. If a given write operation may have such a succeeding write reference, the resultant
cache entry cannot be re-used in future epochs and, therefore, the associated timestamp

should not be set to the value of clock + 1.

For efliciency purposes, it is advantageous to know whether it is beneficial to load the cache

10



or to simply bypass it for a given write operation. For example, we would choose the latter
alternative if the resultant cache entry cannot be re-used either in future epochs or in the

current epoch instance.

From the above considerations, each write operation to a shared variable in a parallel program
belongs to zero, one or both of the following two overlapping classes (cf. Figure 6; for a more

formal definition of the markings, see [29]).

1. TW (limestamped writes)

2. PW (provisional writes)

A write operation in an epoch belongs to the first class (i.e., is marked as timestamped-write,
TW) if the memory location written by it cannot be overwritten by writes from different
instances of the same epoch. As we will see later, the cache words updated by writes in 7W

are targeted for reads in later epochs.

A write operation in an epoch belongs to the second class (i.e., is marked as provisional-write,
PW) if there is at least one potential read in the same instance of the epoch that may read
the cache word updated by the PW write. Write operations in PW are targeted for reads

in the same instance of the epoch to which they belong.

Write operations which belong to neither of the above two classes are forced to bypass the
cache since there are no potential reads from the cache words that might have been updated
by them. This not only increases the effliciency of cache storage but also reduces the number
of requests the cache controller should handle. The containment relationship among the

markings of a write operation is depicted in Figure 6.

As an example of marking of write operations, let us consider the following DoAcross loop.

11



DoAcross 11 = 1, nq

Aliy) — -

A(’Ll—l)%

s A(g(i)) + -
END DoAcross

For ease of explanation, the synchronizations required to satisfy the inter-iteration dependen-
cies are omitted. The first write to the array (i.e., A(71)) cannot be marked as timestamped-
write since the memory location written by it can be overwritten by the write to A(¢; — 1) in
the subsequent iteration. It is marked as provisional-write if A(g(k)) may denote the same
memory location as A(k) for some k, 1 < k < ny to allow the cache word written by A(i;)
to service the read reference A(g(¢1)) generated in the same iteration. The second write to
the array A (i.e., A(ty — 1)) is marked as timestamped-write since it is guaranteed that the
memory locations written by it will not be overwritten by other writes. If both A(k —1) and
A(g(k)) may denote the same memory location for some k, 1 < k < nq, A(i; — 1) is also

marked as provisional-write.
Marking of read operations

For read operations, we need a slightly more complicated marking scheme than for write
operations to handle both cache misses and cache hits. In the case of a miss, a scheme
similar to that for write operations is needed to decide whether the resultant cache entry can
be re-used in future epochs and whether it is beneficial to load the cache. In the case when
there is a matching word in the cache, we need the same validity analysis as for a write. This

leads to the following marking policies for cache loading and cache access.

¢ Marking policy on read miss

On a read miss, we need a policy to decide whether the word fetched from the global

12



memory will be placed in the cache or not and, if so, whether the newly loaded cache
entry can be re-used in future epochs. For these purposes, each read operation can
be marked as timestamped-loading (i.e., TL) and/or provisional-loading (i.e., PL).
The meanings of timestamped-loading and provisional-loading are analogous to those
of timestamped-write and provisional-write, respectively. A read operation in an epoch
is marked as timestamped-loading if the memory location read by it cannot be written
by writes in other instances of the same epoch and, therefore, the resultant cache entry
can be re-used in future epochs. As in timestamped writes, the cache words loaded by
reads marked as 7L are targeted for reads in later epochs. A read operation in an
epoch is marked as provisional-loading if there is at least one other potential read in
the same instance of the epoch that may access the cache word loaded by the former
on a cache miss. In order to use the cache storage effectively, read operations marked
as neither timestamped-loading nor provisional-loading do not load the cache with the

word fetched from the global memory on cache misses.

Marking on read hit

As we mentioned before, for a read operation to utilize cache entries loaded in past
epochs, it should be guaranteed that it does not have any preceding write to the same
memory location in the same epoch. This test is necessary for correctness purposes.
On the other hand, for efliciency reasons, it is advantageous to know whether there
could be an up-to-date copy in the cache for a given read reference. For example, if
it is decided that the cache cannot have an up-to-date copy for a given read reference,
it would be beneficial to simply bypass the cache. This bypassing would reduce the

number of requests the cache should service.

From the above considerations, each read of a shared variable belongs to zero, one or

both of the following two sets.

1. TR (timestamped reads)

2. PR (provisional reads)

For a read to be in the set 7R, it should be guaranteed that it is not preceded by

13



any write to the same memory location from different instances of the same epoch.
Read operations in 7R are marked as timestamped-read and utilize the cache words
updated by timestamped writes or loaded by reads marked as timestamped-loading on
cache misses. The cache word is considered to be up-to-date if its timestamp value is

equal to or greater than the current clock value of the corresponding variable.

A read operation r belongs to the second class (i.e., PR) if there is at least one reference
(write or read) to the same memory location in the same instance of the epoch that
can reach r. This indicates whether it is possible that r may be satisfied by the cache
word updated by a provisional write to the same memory location or loaded into the
cache by another read from the same memory location marked as provisional-loading

in the same instance of the epoch.

Read operations which belong to neither of the above two classes, called as memory-only
reads, are made to bypass the cache since the request cannot be satisfied by the cache.
It cannot be satisfied by cache words updated by provisional writes or loaded into the
cache by reads marked as provisional-loading because there are no such writes or reads
in the instance of the epoch to which the request belongs to (otherwise the request would
have been marked as provisional-read). Neither can it be satisfied by timestamped writes
or reads marked as timestamped-loading because the request can be preceded by a write
reference to the same memory location from other epoch instances in the same epoch,
that may make the previously loaded cache entry stale. The containment relationship

among the markings of a read operation is depicted in Figure 7.

We give below an example of marking of read operations.

14



DoAcross 11 = 1, nq

A(g(@r)) = -+

c= A(f() + -

s A(p(in)) + -
END DoAcross

Again we omit the synchronizations to simplify the discussion. The first read operation
(i.e., A(f(i1))) is marked as timestamped-read if f(k), 1 < k < ny is not equal to any g(k’)
for 1 < k' < k. If the above condition is satisfied, the read reference A(f(71)) can access
cache words brought in during past epochs. In addition, the read to A(f(71)) is marked as
provisional-read if f(k) = g(k) for some k, 1 < k < n; to take advantage of the case when the
cache word written by the reference to A(g(¢1)) is read by the reference to A(f(41)) executed
in the same iteration of the parallel loop. The marking of the second read operation (i.e.,

A(p(i1))) is done similarly.

For cache block loading purposes, the read to A(f(¢1)) is marked as timestamped-loading if
f(k), 1 <k < mnqis not equal to any ¢g(k') for k < k' < ny. In this case, it is guaranteed that
the cache words loaded into the cache on read misses on A(f(7;)) remain up-to-date at the
end of the parallel loop and may be referenced by timestamped reads in future epochs. In
addition, it is marked as provisional-loading if f(k) is equal to p(k) for some k, 1 < k < ny to
take advantage of the case when the cache word loaded by a read miss on A(f(¢1)) satisfies
the read reference A(p(i1)) generated in the same iteration of the parallel loop. However, the
read reference to A(p(i1)) cannot be marked as provisional-loading since there is no possible
read reference in the same iteration which can be satisfied by the cache word that might have

been loaded into the cache on misses on A(p(i1)).
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4.3 Overall scheme

In the following, we assume that each instance of an epoch is executed on a distinct processor
and that the block size of the cache is equal to one word. We will discuss the consequences

of removing these assumptions later in this section.

In our scheme, each write reference to a shared variable has the following format :

Pelock tw | pw operand specifier

where 7,0k 18 the clock register which holds the clock value of the variable being referenced,

tw stands for temestamped write, and pw for provisional write.

Table 2 lists the actions taken for possible combinations of the tw and pw bits for a write
to a shared variable. (Recall the tag bits for a cache entry described in Section 4.2.1.)
The semantics implies a write-through policy. We could have considered a limited write-back
policy where dirty cache words are written back to the global memory at the end of each epoch
instance but we would have had to add an enforcement of write-backs for variables involved
in data dependencies between epoch instances. In [28], a new global memory update policy,
called write-last policy, was proposed which combines the advantages of the write-through
and write-back policies by updating global memory as soon as possible but avoiding duplicate

global memory updates.

Notice that for a non-timestamped write the timestamp field is set to 7¢ocr. It is because
the corresponding memory location may be overwritten by a different processor in the same

epoch, thus making stale the newly loaded cache entry.

A read reference to a shared variable has the following format:
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Telock tr |pr|tl [Pl |pc operand specifier

where 7.,.; has the same meaning as before, and {r stands for temestamped read, pr for

provisional read, tl for timestamped loading, pl for provisional loading, and pe for preceded.

The preceded bit (pc) is set to 1 at compile-time if the read reference may be preceded by a

write to the same memory location in the same epoch. It is set to 0 otherwise.

The condition for a read hit, assuming there is a matching cache block in the cache, is
defined as : (the first term in each and condition depends on the instruction, i.e., is compiler

generated, while the second depends on cache bits set at run-time)

(tr=0 A pr=1) A (ib=0 A pb=1) (provisional read)
or
(tr=1ANpr=0) A (ib=0 A ts > Teock) (timestamped read)
or

(tr=1Apr=1) A (ib=0 A (pb=1 V s > reoek))(both)

If there is a hit and the above Boolean expression is satisfied, the corresponding read reference
is satisfied by the cache. Otherwise, the actions taken on a read reference are decided by the
loading policy specified by the tl, pl, and pec bits. The pc bit is used to indicate whether on a
read marked as timestamped-loading, we set the timestamp field of the referenced cache word
at clock+ 1 ( pc = 1, i.e., the read may have a preceding write to the same memory location
in the same epoch) or at clock (pc = 0). Table 3 specifies the actions taken on a read miss

based on the tl, pl, and pc bits.

An instruction which clears the provisional bits of the entire cache is inserted after each
DoAll and DoAcross statement. The clock values of the shared variables which may be
modified in a parallel loop (i.e., DoAll or DoAcross loop) are incremented by 1 in every

processor at the end of the execution of the parallel loop.
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At the beginning of a serial region, the processor assigned to execute that region clears the
provisional bits of the associated private cache. It also increments by 1 the clock values of
the shared variables modified by it during the serial region at the end of the serial region.
The remaining processors increment the clock values of the shared variables which may be
written in the serial region by 1. The instructions doing the above tasks (i.e., checking
whether the current processor is the processor assigned to execute the current serial region

and incrementing the clocks) are inserted at compile-time.

The invalid bits of the entire cache are set and the clock variables of all the shared variables
used in a program are initialized to 0 at the start of the parallel program. In the rare occasion
of a clock or a timestamp overflow, the entire contents of the private cache associated with the
processor causing the overflow are invalidated and all the clock variables and clock registers
in the processor are re-initialized to 0. If we assume nj,.t to be 16, the above cache flushing

and re-initialization would occur once every 26 epoch executions for the worse case.

As mentioned earlier, Cheong and Veidenbaum’s version control approach [8] and our ap-
proach have many similarities. The version control scheme uses a directed graph called task
execution graph to model the execution of a parallel program. In the graph, each node denotes
a task and each directed edge represents a dependency between the two involved tasks. The
tasks at the same level in the task execution graph correspond to an epoch in our proposed
scheme. Instead of clocks and timestamps, the version control approach uses current version
numbers and birth version numbers. Clocks and version numbers, and timestamps and birth
version numbers, are maintained in an analogous way. The main difference between the two
schemes is that, by incorporating (and paying the “price” of) more sophisticated reference
markings, our proposed scheme has a better chance of capturing localities between dependent

tasks that can occur in DoAcross loops.

4.4 Extensions

Parallel programs with nested parallelism

Our scheme is flexible enough to be applied to programs with nested parallel loops. For this
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purpose, we define an era as a segment of a parallel program delimited by two enclosing barrier
operations. In this framework, a write is marked as timestamped-write if it is guaranteed that
the memory location written by it cannot be overwritten in the era to which it belongs by
writes from other processes including those that are spawned by itsell. A write is marked as
provisional-write if there is at least one potential read reference of the same memory location
that may be issued by the same processor before the next synchronization point. As before,

timestamp-loading and provisional-loading are defined similarly.

For a read to be marked as timestamped-read, it should be guaranteed that it is not preceded
by any write to the same memory location from other processes in the same era. A read is
marked as provisional-read if there is at least one preceding reference to the same memory
location that may be executed by the same process after the most recent synchronization

point.

As an example, consider the program segment, a single era, shown in Figure 8. The read
operation from array B (i.e., B(i,n1)) is marked as timestamped-loading since there is no
succeeding write to the array. The read from array A (i.e., A(i,1)), however, cannot be
marked as timestamp-loading since the memory location read by it will be written by one of
its children processes spawned to execute the DoAll loop j. For cache access purposes, both
reads are marked as timestamped-read since they cannot be preceded by any writes to the
same locations from other processes in the era. Similarly, the write to array A inside the
DoAll loop j (i-e., A(i,j)) is marked as timestamped-write since it is guaranteed to be the last

write to that particular memory location in the era.
Multiple iterations of a parallel loop executed on the same processor.

The possibility that multiple iterations of a parallel loop are executed on the same processor
could enhance rather than degrade the performance of our scheme. In this case, it is possible
that a read marked as memory-only-read issued in an iteration of a parallel loop can be
satisfied by the cache word updated by a write marked as timestamped-write or a read marked
as timestamped-loading in an earlier iteration of the same parallel loop executed by the current

processor. A memory-only read request can be satisfied by the cache if ib = 0 A ts > 7¢ock.
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This increases the bandwidth requirement of the caches since they must be interrogated even
on a memory-only read. Caches could be designed so that the interrogation of their entries
on a memory-only read can be enabled or disabled under program’s control at run-time.
The default option would be disabled. Enabling would occur if the ratio of the number of
processors allocated to a parallel loop over the number of iterations of the loop is small

enough.
Block size of the cache larger than one word.

There are both advantages and disadvantages in having a cache block size larger than one
word. The main advantage of a larger-than-one-word block size is the implicit prefetching
of the other words in the block on a cache miss [34]. The prime disadvantage of having a
cache with a block size larger than one word in a shared-memory multiprocessor is over-
invalidations due to false sharing [14]. In an invalidation-based cache coherence scheme, an
invalidation of one word in a cache block invalidates other words in the block as well. This
may cause a cascade of invalidations if multiple words in the same block are written by
different processors at about the same time. In fact, as observed in [26], large block sizes can

penalize performance in the type of architectures that we are studying.

If the block size were larger than one word, all the words in a cache block loaded on a read
miss, except the requested one, will be assigned values of pb = 1 and ts = 7.k if they come
from the same variable (e.g., array) and the variable is not modified in the current epoch.
Otherwise, the invalid bits of those words are set to 1. It would be an easy task for a compiler
to allocate shared variables so that they do not cross the block boundaries. Note that for
caches with block size larger than one word, each word in a cache block has its own pb and b
bits. On a write miss, we advocate a variation of a store-allocate-non-fetch policy in which a
block is allocated, the write is reflected in the allocated block only on the referenced words,

and the invalid bits of the other words in the block are set to 1.
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5 Evaluation of software-assisted cache coherence schemes

The use of private caches is advocated in many proposed and/or implemented shared-memory
multiprocessors to reduce both the average memory access time and the network traffic. As
we briefly mentioned in Section 1, there are two general approaches to enforcing cache coher-
ence in large-scale shared-memory multiprocessors: directory-based and software-assisted. In
a directory-based cache coherence scheme, a directory entry, which is kept in the memory
controller, is associated with each memory block. This entry encodes the state of the block.
The state is used to decide whether there is a need for invalidations on a given write trans-
action to the block and if so, to locate the private caches which have a copy of the block to
be invalidated. It is also used to tell whether the corresponding memory block is stale or not
and if so, to locate the private cache which is guaranteed to have the most current copy of
the block. In addition to the state in the global directory, a local state is usually associated
with each cache block in private caches. This local state is used to allow a private cache to

service most requests from its associated processor without incurring any global actions.

Even though cache coherence schemes based on directories can be quite efficient in yielding
a high hit ratio because of their ability to dynamically keep track of the status of each
block, the network traffic generated for invalidation requests and for the manipulation of
local and/or global state information can be substantial. In our proposed scheme, cache
entries are invalidated solely by local processors and no globally-manipulated information is
associated either with cache blocks or with memory blocks. This eliminates the extra network
traffic at the expense of less efficient caching. An initial performance comparison between
our proposed timestamp-based scheme and a directory-based scheme was made in [30]. The
results indicated that the timestamp-based scheme generally yields miss ratios comparable to
those of the directory-based scheme with less network traffic for parallel programs written in
the SPMD (single program multiple data) model of parallel programming where parallelism
is expressed in terms of DoAll loops. Detailed results from the comparison are not repeated

here and interested readers are referred to [30].

In our comparative study [30], we have used the most efficient (in terms of hit ratio and
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network traffic) directory scheme. In order to have a fair comparison, we needed to determine
the most efficient software-assisted scheme. Therefore, in this section, we evaluate the relative
effectiveness of various software-assisted cache coherence schemes. Lee’s [25], Cheong and
Veidenbaum’s [9, 10], and our own timestamp-based cache coherence schemes are chosen
since they can exploit an increasing amount of program localities. Notice that Cheong and
Veidenbaum’s scheme being evaluated in this paper is the fast-selective scheme [9, 10], not
the version control scheme [8]. We expect that the performance of the version control scheme
would be essentially the same as that of the timestamp-based scheme for parallel programs

with only DoAll loops. Our evaluation methodology is trace-driven simulation.

The method used to get parallel traces and the simulator structure are described in Sec-
tion 5.1. Section 5.2 discusses the sample parallel programs traced. Section 5.3 presents our

simulation results.

5.1 Methodology

As shown in Figure 9, the simulation consists of three steps: generation of serial traces with

markers, preprocessing, and actual trace-driven simulation.

5.1.1 Generation of serial traces

Trace data used in the experiment is obtained by preprocessing traces from serial execution of
parallel programs with marking instructions embedded in them. Markers are placed on events
of interest such as start of an epoch, end of an instance of an epoch, etc. Since the programs
used to generate the traces were written using explicit parallel constructs (e.g., DoAll, END
DoAll), the insertion of marking instructions was straightforward. The original serial traces
are gathered by tracer, a trace generating program run on the VAX architecture under the
Ultrix V2.3 operating system [19]. For each memory reference the corresponding trace record
contains fields for the type of reference (e.g., read instruction, read data, write data, etc),

storage segment involved (i.e., data segment, stack segment or instruction segment), the size
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of the item being referenced, and the memory address.

5.1.2 Preprocessing

The original serial traces are restructured through the preprocessing step based on various
types of markers as shown in Figure 10. Attributes required during the actual simulation
are assigned to each reference during this step. These include markings of references used in
the cache coherence schemes simulated, the value of the associated clock register, etc. (for a
complete list, see Table 4). The markings represent an upper bound on the accuracy of data
dependence information that could be obtained from a parallelizing compiler. For example,
in the program segment shown in Figure 11 the memory location corresponding to A(2) is
marked as cacheable in our experiment for Lee’s scheme if the then path is taken at execution
time during the third iteration of the DoAcross loop. However, the compiler would mark it
as non-cacheable since the compiler should make the conservative assumption that the else
path could be taken. This slightly increases the hit ratio of Lee’s scheme. These kinds of
optimistic markings are used throughout but do not bias the experiment since about the

same degree of favor is given to the three schemes evaluated.

In order to remove the degree of freedom brought upon by the sophistication of the register
allocation techniques used in the compiler, two different parallel traces from the same serial
trace were simulated. The first trace (unfiltered version) contains all the references that the
original serial trace has. In the second trace (filtered version), all the registerable references
are filtered out. A read reference is defined to be registerable if it has at least one preceding
reference (either read or write) to the same memory location in the same epoch instance
whereas a write is defined to be so if it has at least one succeeding write reference to the
same memory location in the same instance. These registerable references represent an
upper bound of references that can be captured by registers. Even though the unfiltered
trace is more realistic, especially when we do not know how many registers will be used
in a compiler, the filtered one allows us to see the importance of inter-epoch locality since

the intra-instance locality is captured by the registerable references. We think that the
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evaluation based on filtered traces becomes more important with the existence of increasingly

sophisticated register allocation techniques.

5.1.3 Trace-driven simulation

Traces restructured by the preprocessing step are used to drive a cache simulator in order to
obtain various performance measures such as the hit ratio and the amount of network traffic
for various cache organizations. The input parameters to the simulator are the cache size, set
associativity, type of cache coherence scheme, global memory update policy, replacement pol-
icy, number of processors allocated, and processor scheduling policy. A direct-mapped cache
with one-word block size, so that false sharing effects are eliminated, is assumed through-
out the experiment. Table 5 shows the ranges of the parameters which define the space
actually explored by our experiment. Only data references (both private and shared data
references) are simulated since requests for instructions can be handled similarly in the three
schemes. The output from the simulator includes the miss ratio for each type of reference
and the amount of network traffic. Reasons for cache misses such as block miss, timestamp
mismatch, etc. are also provided. We report the above performance figures for only one
processor. This is sufficient because of the self-invalidating nature of the schemes under

evaluation.

The actual scheduling of parallel iterations on processors, based on the number of allocated
processors, is done when the restructured trace is processed by the simulator. Two different
types of scheduling policies are used: pre-scheduling and random scheduling. In the pre-
scheduling policy the i*" iteration of a parallel loop is executed on processor; yoqp where P
is the number of processors allocated. In this policy, it is also assumed that one designated
processor called MASTER always executes all the serial regions in the program. In the
random scheduling case, whenever there is an instance of an epoch for execution (including

a serial region), a processor is randomly selected to execute it.
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5.2 Parallel programs traced

Three parallel application programs are used to generate the traces. They follow the same

parallel programming paradigm, namely: SPMD (single program multiple data).

The first program, sim [20], simulates a multistage interconnection network which serves
vector load/store requests from processors to memory modules. The second program, gauss

[13], uses the Gauss elimination technique to solve the following linear system of equations.

a1121 + a1222 + - - -+ @12, = by

(911 + a2 + -+ -+ 2,2, = by

U121 + Gpo2o + -+ Appy = by

The last application, mhd, is a program for the numerical solution of two-dimensional mag-
netohydrodynamic (MHD) differential equations [16]. The first two programs are written
in pep, a parallel extension of the C programming language [21]. The last one is a slightly
modified version of the program originally written in HEP FORTRAN. These programs do
not contain any DoAcross loop; this slightly favors the cache coherence schemes with little or
no ability to capture inter-iteration locality. Table 6 shows a summary of the characteristics
of the three traces used in the experiment. In the table, a value (or contents of a memory

location) is considered shared if it is accessed by more than one process.

5.3 Results

There are three types of temporal localities in parallel programs: intra-instance, inter-
instance, and inter-epoch localities. The main difference among the three schemes evaluated
here is in their ability to exploit the above types of localities. All three schemes can exploit
the first two types, although the amount of inter-instance locality captured by Lee’s and
Cheong and Veidenbaum’s schemes is limited. It is because caching is restricted to references

to read-only shared variables in the former case and to read references marked as cache-read
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in the latter. Only Cheong and Veidenbaum’s and the timestamp-based schemes can explore
inter-epoch locality since in Lee’s scheme caches are flushed at the end of each epoch. As
we mentioned in Section 4.1, the amount of inter-epoch locality captured by Cheong and

Veidenbaum’s scheme is very limited.

This qualitative assessment is validated by the data shown in Figure 12 where the miss ratios
of the three schemes are shown along with the miss ratio of the serial execution case when the
parallel programs happen to be executed on a single processor. The serial execution always

yields the highest hit ratio since no cache entry is needlessly invalidated.

For small caches there is not much difference among the three schemes. It is because the
three schemes respond well to intra-epoch locality (i.e., intra-instance + inter-instance) which
can be captured even with small caches. But the effect of inter-epoch locality becomes the
dominant factor once all of the intra-epoch locality is captured by the cache. This is the
main reason why Cheong and Veidenbaum’s and the timestamp-based schemes yield better
hit ratios than Lee’s scheme for larger caches with the exception of the gauss program (cf.
Figure 12). In the gauss application, however, Lee’s scheme yields better hit ratios than
Cheong and Veidenbaum’s scheme. This is because Lee’s scheme can capture more effectively
the localities caused by read-only sharing of shared memory locations, in this case read-only
sharing of pivot rows, across different iterations of a parallel epoch. Another interesting
point to notice is the rapid drop in miss ratios in the gauss program when the cache size is
increased from 256 words to 512 words in Lee’s and the timestamp-based schemes. A careful
inspection of the corresponding trace shows that 256 words is the threshold cache size beyond

which the localities due to the above read-only sharing are captured by the caches.

The above trends are more apparent if we consider the miss ratios for the same configuration
for filtered traces as depicted in Figure 13. (Recall that in filtered traces the intra-instance
localities are captured by registers.) The remaining sole source of locality for Lee’s scheme is
inter-instance localities due to read-only sharing of shared variables across different instances
of the same epoch. This is the reason why Lee’s scheme yields miss ratios near one for

the mhd program in which there is little such read-only sharing. Cheong and Veidenbaum’s
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scheme still captures some inter-instance and inter-epoch localities but to a limited degree
as we can see in the figure. The timestamp-based scheme, however, consistently manages to

maintain miss ratios comparable to those of the serial execution case.

The same analysis holds in the multiprocessor simulations for the sim and mhd programs
under a pre-scheduling policy (see Figure 14 for sim; similar data for mhd can be found
in [28]). This is a consequence of the pre-scheduling which allows shared memory locations
written by one processor to be subsequently read by the same processor. In the sim program,
the rows of the multistage interconnection network are simulated in parallel for each network
cycle and, with pre-scheduling, the same row is always simulated by the same processor. This
increases the chance of the reuse of the cache contents before they become stale. A similar
behavior occurs in mhd. These characteristics provide the timestamp-based scheme ample

opportunities to exploit inter-epoch localities.

In general, however, the chances for shared-memory locations written by a processor to be
referenced by the same processor before they become stale are decreased as more proces-
sors are allocated in the random scheduling case. This is shown in Figure 15 for the sim
application. Miss ratios in the random scheduling case are worse than their pre-scheduling
counterparts for the sim and mhd applications. Furthermore, the difference in miss ratios
between the timestamp-based scheme and the better of the other two schemes is reduced
as more processors are allocated in the random scheduling case as we can see in the figure.
One interesting point to notice is that for the timestamp-based scheme the miss ratios of
caches are lowered as more processors are allocated for the sim and mhd applications (cf.
Figure 12 and Figure 14 for sim). It is because, as more processors are allocated, the amount
of shared data to be cached per processor is reduced, thus reducing the number of misses due

to replacements.

On the other hand, as the number of processors is increased, the miss ratios for the gauss
application are not lower as we can see in Figure 16. It is because the amount of inter-
instance locality, which is one of the main components of cache hits in the gauss application,

decreases. Also, the hit ratios under pre-scheduling are worse than those obtained under ran-
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dom scheduling for some cache sizes (cf. Figure 16 and Figure 17). This seemingly anomalous
behavior can be explained by looking carefully inside the Gauss Elimination algorithm. The
algorithm consists of two major steps: reduction and back substitution. The code segment
corresponding to the reduction step is given in Figure 18. It starts with a parallel reduction
with a11 as a pivot, i.e., the elements of the first column are zeroed out and the other elements
are modified adequately on a row by row basis. The process is then repeated for the (new)

second column and so on until the matrix A is reduced to an upper triangular matrix.

Accesses to each row of the matrix A by processors for each invocation of the DoAll loop
are shown in Figure 19, assuming that three processors are allocated and that they are
pre-scheduled naively, i.e., processor i executes the i*" instance of the DoAll loop on every
invocation of the DoAll loop. In the figure, we can notice that each processor reads the row
of the matrix A which was last written by some other processor in the previous invocation
of the DoAll loop. This drastically reduces the chance of capturing inter-epoch locality since
most of the cache contents associated with the matrix A become stale whenever a new step
of the reduction is started. Therefore none of the three cache coherence schemes work well
in this situation; this fact is well illustrated in Figure 20 in which the reasons for misses
are shown for the unfiltered gauss trace when eight processors are pre-scheduled (See also
Figure 16 which shows an overall miss ratio of 0.2 to 0.4 depending on the cache size for 8
processor case). As can be seen, most misses for large caches are due to timestamp mismatch
rather than block misses. On the other hand, if we use random scheduling, there is some
chance, although small, that elements of the matrix A written by a processor are read by
the same processor during the next invocation of the DoAll loop. This is the main reason
why, in the gauss program, the random scheduling yields slightly better hit ratios than the

pre-scheduling for some cache sizes.

Naturally, better performance could be achieved by tailoring the scheduling to the application
by using some form of data-constrained scheduling. Figure 21 shows such a schedule for gauss
assuming three processors are allocated. In this schedule, the processor that has executed the
1th

E** instance of the DoAll loop during the previous invocation is assigned to execute the k—

instance to maximize the reuse of the cache entries associated with the array A. The results

28



from the new simulation for 8 processors are compared to those from the pre-scheduling case

in Figure 22.

The results from the data-constrained scheduling case are quite consistent with our expec-
tations. With the new schedule, the timestamp-based scheme yields better hit ratios than
in the pre-scheduling and random scheduling cases especially for large caches. Most of the
improvements result from the fact that most of the cache entries associated with the matrix
A are now re-used over different invocations of the DoAll loop in the new schedule. On
the other hand, the miss ratios from the other two schemes are barely improved because of
their limitation to exploit inter-epoch locality. This enlarges the performance gap between
the timestamp-based scheme and the other two schemes. One interesting point to note from
the figure is that the miss ratios for the pre-scheduling case are better than those for the
data-constrained scheduling for small caches ( < 4K words). This is because, in the new
schedule, p; (from which we measured the miss ratios) executes fewer iterations of the DoAll
loop during the reduction step than in the pre-scheduling case. This, in turn, reduces the
amount of inter-instance locality due to the read-only sharing of the pivot rows for py, thus
yielding lower hit ratios than in the pre-scheduling case. Such an effect would have been
minimized if we used a much larger A matrix than that used in the experiment or if the miss

ratios were averaged over all processors.

The data gathered by the traces allows us to also provide some information on the potential
network traffic. Figure 23 and Figure 24 depict the ratios of write-back traffic to write-
through traffic for different cache sizes for p = 1 and p = 64 respectively. The three schemes
evaluated here are assumed to have the same write-back traffic because global memory update
policy used in one of the schemes can be equally used in the others. The result shows that,
except for sim the ratio is almost insensitive to cache size. This indicates that few memory
locations are written in a single epoch instance in our experiment. The exception for the sim
program (from 0.33 to 0.26 for p = 1 and from 0.34 to 0.28 for p = 64) occurs when the cache
size is increased from 1 Kwords to 2 Kwords because of access to some large data structures
larger than 1024 words. This can be also seen in Figure 12, Figure 14, and Figure 15 in which

hit ratios for the sim program are significantly improved when the cache size is increased from
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1 Kwords to 2 Kwords independently of the number of allocated processors and the scheduling
policy. The high write-back ratios of the gauss application arise because most of the writes
are to shared memory locations and these locations are rarely written more than once inside

a single instance.

The above results indicate that the write-back policy may reduce the write traffic substan-
tially at the possible expense of transient fluctuations in the network traffic at the end of
epoch instances. This, in turn, provides a ground for our write-last global memory update

policy that tries to minimize these fluctuations without increasing the network traffic.

6 Conclusions

The efficient enforcement of coherence of multiple private caches is essential to the effective
performance of dance-hall type architectures. In this paper, we propose a self-invalidating
cache coherence scheme which overcomes some of the inefficiencies of previous software-
assisted schemes. Our approach is based on compile-time marking of read/write operations
and on execution time incoherence detection which makes use of locally maintained clocks
and timestamps. We show, through trace-driven simulation, that our timestamp-based cache
coherence has a better performance (hit ratio) than previous schemes especially when the
processors are carefully scheduled so as to maximize the re-use of cache contents. We also
investigate the effects of register allocation on cache performance through trace filtering and
show that the ability to capture localities across different epochs, the main strong point of
our approach, becomes relatively more important as more sophisticated register allocation

techniques are applied.

There are numerous open areas for future research. One such area is an integration of the
timestamp-based cache coherence scheme into a parallelizing compiler such as Parafrase [24],
PFC [3], and PTRAN [2]. We think that such an integration also provides a ground for a
fair comparison of software-assisted schemes with directory based cache coherence schemes

and user-controlled local memory. It remains to assess (via simulation of parallel programs)
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which scheme or which combination of the three schemes is most advantageous in terms of

processor utilization and overall throughput.

Another interesting topic for future research is an investigation of multilevel cache hierarchies
in which the first level cache employs a software-assisted cache coherence scheme whereas
the second level uses a directory-based scheme. This configuration seems to be a nice match
since the first level cache will not be disturbed unduly by unrelated coherence events and the

second level cache will have a high hit ratio because it is directory-based.
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Figure 1: Dance-hall type architecture
Figure 2: Conditions for a stale cache access

Figure 3: Sample program segment which exhibits the inefficiencies of the previous ap-

proaches

Figure 4: Another sample program segment showing the inefficiencies of the previous ap-

proaches

Figure 5: Overall approach to capture inter-epoch localities
Figure 6: Containment relationship among various write markings
Figure 7: Containment relationship among various read markings
Figure 8: Example of parallel program with nested parallelism
Figure 9: Overall structure of simulation process
Figure 10: Restructuring of a serial trace into a parallel trace
Figure 11: Example of an optimistic marking
Figure 12: Miss ratio for single processor case for the original (unfiltered) traces
Figure 13: Miss ratio for single processor case for the filtered traces
Figure 14: Miss ratio for the sim application for p = 8 and p = 64 (pre-scheduling case)
Figure 15: Miss ratio for the sim application for p = 8 and p = 64 (random-scheduling case)
Figure 16: Miss ratio for the gauss application for p = 8 and p = 64 (pre-scheduling case)

Figure 17: Miss ratio for the gauss application for p = 8 and p = 64 (random-scheduling
case)
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Figure 18: The reduction step of the Gauss Elimination algorithm

Figure 19: Accesses to matrix A by processors when p = 3

Figure 20: Decomposition of misses according to sources for p = 8 for the unfiltered gauss
trace (pre-sched)

Figure 21: Accesses to matrix A by processors in the data-constrained schedule

Figure 22: Miss ratio for p = 8 for the unfiltered gauss trace (data-constrained sched)

Figure 23: Ratios of write-back traffic to write-through traffic when p =1

Figure 24: Ratios of write-back traffic to write-through traffic when p = 64
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Wulf Veidenbaum McAuliffe Lee Veidenbaum Cytron et al. Smith
Bell Cheong
coherence each all each each each each each
enforcement variable variables variable variable reference reference page
unit
coherence
enforcement program loop computational epoch program program critical
region unit (CU) section
detection of usage of loop nesting usage of usage of data-dependence
incoherence variables structure variables variables flow analysis analysis OTI
in a program in a CU in an epoch
invalidation — boundary boundary boundary boundary end of critical
place — of loops of CU’s of epochs of loops each reference section
global memory write-through
update policy — write-through write-back write-back write-through hybrid scheme (for shared
writable data)

Table 1: Summary of software-assisted cache

coherence schemes.

H Type of write ‘

‘ Actions taken

Memory-only | tw = 0 | Update the global memory.
write &
pw =10
if block miss then allocate a new cache entry.
Provisional | tw =0 | Update both the global memory and the associated cache entry.
write & 1S «— Telock
pw=1]|pb « 1
if b = 1 then 2b — 0
if block miss then allocate a new cache entry.
Timestamped | tw = 1 | Update both the global memory and the associated cache entry.
write & ts «— Teock + 1
pw=0|pb <0
if b = 1 then 2b «— 0
Timestamped if block miss then allocate a new cache entry.
& tw =1 | Update both the global memory and the associated cache entry.
provisional & ts «— Teoek + 1
write pw=1]|pb « 1
if b = 1 then ¢b — 0

Table 2: Actions taken for a write to a shared variable
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H Type of read ‘

‘ Actions taken

No tH=0
loading & Fetch from the global memory and do not cache.
pl=20
Provisional | 11 =0 | Fetch from the global memory and load into the cache.
loading 1S — Toock
& pb — 1
if b = 1 then tb «— 0
pl=1
Timestamped | tl = 1 | Fetch from the global memory and load into the cache.
loading if pc =1 then ts «— 7eoer + 1
& else 15 — Toopck
pb — 0
pl=10 |if¢b =1 then b «— 0
Timestamped | tl = 1 | Fetch from the global memory and load into the cache.
& if pc =1 then ts «— 7eoer + 1
provisional & else ts «— ryock
loading pb — 1
pl=1]if b = 1 then b «— 0

Table 3: Actions taken on a read miss
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Attribute Scheme Type of | Condition
reference
non-cacheable Lee’s scheme read if and only if the associated variable
& is referenced by more than one
write process in the epoch to which it belongs
and at least one of these references is a
write
memory- Cheong & read after the corresponding location is written
read Veidenbaum’s more than twice in different epochs
scheme
cache- Cheong & read if and only if it is not memory-read
read Veidenbaum’s
scheme
timestamped- | timestamp-based write if and only if it has no succeeding write
write scheme to the same location in the same epoch
provisional- | timestamp-based write if and only if there is at least one
wrile scheme succeeding read reference to the same
location in the same instance
timestamped- | timestamp-based read if and only if it has no preceding write
read scheme to the same location in the same epoch
provisional- | timestamp-based read if and only if there is at least one
read scheme preceding reference to the same
location in the same instance
timestamped- | timestamp-based read if and only if it has no succeeding write
loading scheme to the same location in the same epoch
provisional- | timestamp-based read if and only if there is at least one
loading scheme succeeding read reference to the same
location in the same instance
preceded timestamp-based read if and only if there is at least one
scheme preceding write reference to the same
location in the same epoch
clock timestamp-based | read & | the value of the associated clock
value scheme write register

Table 4: Various attributes of references gathered during the preprocessing step
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Parameter

Range

Scheme

Lee, Cheong and Veidenbaum, timestamp-based

Scheduling policy

pre-sched, random-sched

Trace type

unfiltered, filtered

Number of processors

124816 3264

Cache sizes

128 256 512 1K 2K 4K 8K 16K 32K oo (infinite cache) (in words)

Table 5: Range of parameters used in the experiment

stm gauss mhd
unfiltered ‘ filtered | unfiltered ‘ filtered | unfiltered ‘ filtered ‘
number of instructions | 7973367 | 7973367 | 4470574 | 4470574 | 5626036 | 5626036
traced
number of data 5855877 | 1010014 | 4499205 | 2096148 | 1533562 | 640969
references
number of data reads 4689713 707285 3792278 | 1409077 | 1087221 385378
number of data writes | 1166164 | 302729 706927 687071 446341 255591
number of registerable | 3982428 0 2383201 0 701843 0
reads
number of registerable 863435 0 19856 0 190750 0
writes
number of epochs 641 641 201 201 73 73
number of serial 161 161 102 102 13 13
epochs
number of parallel 480 480 99 99 60 60
epochs
number of parallel 26080 26080 5049 5049 2148 2148
instances
number of shared 158351 158351 667009 667009 199898 199898
values
number of reads 518462 251569 2354402 | 1339154 704584 365195
to shared values

Table 6: Characteristics of the traces used in the experiment
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