Transparent Information Dissemination *

Amol Nayate', Mike Dahlin' and Arun Iyengar?

1 University of Texas at Austin, Austin TX 78712, USA
{nayate,dahlin}@cs.utexas.edu
2 IBM TJ Watson Research Center, Yorktown Heights, NY 10598, USA
aruni@us.ibm.com

Abstract. This paper describes Transparent Replication through In-
validation and Prefetching (TRIP), a self tuning data replication mid-
dleware system that enables transparent replication of large-scale infor-
mation dissemination services. The TRIP middleware is a key building
block for constructing information dissemination services, a class of ser-
vices where updates occur at an origin server and reads occur at a number
of replicas; examples information dissemination services include content
distribution networks such as Akamai [1] and IBM’s Sport and Event
replication system [2]. Furthermore, the TRIP middleware can be used
to build key parts of general applications that distribute content such as
file systems, distributed databases, and publish-subscribe systems.

Our data replication middleware supports transparent replication by pro-
viding two crucial properties: (1) sequential consistency to avoid intro-
ducing anomalous behavior to increasingly complex services and (2) self-
tuning transmission of updates to maximize performance and availabil-
ity given available system resources. Our analysis of simulations and our
evaluation of a prototype support the hypothesis that it is feasible to
provide transparent replication for dissemination services. For example,
in simulations, our system’s performance is a factor of three to four faster
than a demand-based middleware system for a wide range of configura-
tions.

1 Introduction

This paper explores integrating self-tuning updates and sequential consistency
to provide middleware support for replication of large-scale information dissem-
ination services. We pursue the aggressive goal of supporting transparent service
replication by providing two key properties.

1. The middleware provides self-tuning updates to maximize performance and
availability given the system resources available at any moment. Self-tuning
updates are crucial for transparent replication because static replication poli-
cies are more complex to maintain, less able to benefit from spare system

* This work was supported in part by the Texas Advanced Technology Program,
the National Science Foundation (CNS-0411026), and an IBM Faculty Partnership
Award.

resources, and more prone to catastrophic overload if they are mis-tuned or
during periods of high system load [3].

2. The middleware provides sequential consistency [4] with a tunable maximum-
staleness parameter to reduce application complexity. Weaker consistency
guarantees can introduce subtle bugs [5], and as Internet-scale applications
become more widespread, ambitious, and complex, simplifying the program-
ming model becomes increasingly desirable [6]. If we can provide sequential
consistency, then we can take a single machine’s or LAN cluster’s service
threads that access shared state via a file system or database and distribute
these threads across WAN edge servers without re-writing the service and
without introducing new bugs.

Not only is each of these properties important, but their combination is vital. Se-
quential consistency prevents the use of stale data, which could hurt performance
and availability, but prefetching replaces stale data with valid data. Conversely,
prefetching means that data are no longer fetched when they are used, so a
prefetching system must rely on its consistency protocol for correct operation.

Providing sequential consistency in a large scale system while providing good
availability [7] and performance [8] is fundamentally difficult. We therefore re-
strict our attention to replicated dissemination services, in which updates oc-
cur at one origin server and multiple edge server replicas treat the underlying
replicated data as read-only and perform data caching, fragment assembly, per-
user customization, and advertising insertion. Although this case is restrictive,
it represents an important class of services. For example, Akamai’s Edge Side
Include [1] and IBM’s Sport and Event replication system [2] both focus on
improving the performance, availability, and scale of dissemination services.

In this paper, we describe the TRIP (Transparent Replication through In-
validation and Prefetching) middleware that integrates self tuning updates with
sequential consistency to enable transparent replication for dissemination ser-
vices. We define the node where updates originate to be the origin server and
the receiving nodes the replicas of the system. Although we focus on dissemina-
tion services, more general services can make use of dissemination for subsets of
their workloads. We therefore believe that TRIP can be used as a building block
for services such as file systems, distributed databases, publisher/subscriber sys-
tems, and applications that use per-object-customized consistency [9)].

This paper evaluates the TRIP middleware using both trace-based simulation
and evaluation of an implementation. Our simulations use access/update traces
obtained for a highly accessed sporting and event web site [10]. We build an
NF'S loopback interface [11] to emulate a smaller version of this web service
on our TRIP middleware. Our configuration allows us to run unmodified edge
servers that provide both static HTML files and dynamic responses generated by
programs (e.g., CGI, Servelets, Server Side Include, or Edge Side Include), and
that share data through the file system. Although our implementation exports
a file system interface, a similar approach could be used to support a database
or publisher/subscriber interface to the shared state.

This paper makes three contributions. First, it provides evidence that sys-
tems can maintain sequential consistency for some key WAN distributed ser-
vices despite the CAP dilemma, which states that systems cannot get strong
Consistency and high Availability for systems vulnerable to Partitions [7]. The
replication middleware circumvents this dilemma by (a) restricting the workload
it considers and (b) integrating consistency with prefetching. Second, it presents
a novel middleware component that integrates prefetching and consistency by
(a) using a new self-tuning push-based prefetching algorithm and (b) carefully
ordering and delaying the application of messages at replicas. Third, it provides a
systematic evaluation and a working prototype of such a middleware component
to provide evidence for the effectiveness and practicality of the approach.

2 System model

IDaa Replication Replica Clients
' System |

Origin! Server ; Replica
%i

Fig. 1. High level system architecture.

Figure 1 provides a high level view of the environment we assume. An origin
server and several replicas (also called content distribution nodes or edge servers)
share data, and logical clients—either on the same machine or another—access
the service via the replicas, which run service-specific code to dynamically gener-
ate responses to requests [1,12-14]. The system typically uses some application-
specific mechanism [2] to direct client requests to a good (e.g., nearby, lightly
loaded, or available) replica. The design of such a redirection infrastructure is
outside the scope of the paper; instead, we focus on the data replication middle-
ware that provides shared state across the origin server and replicas. We focus
on supporting on the order of 10 to 100 long-lived replicas that each have suf-
ficient local storage to maintain a local copy of the full set of their service’s
shared data. Although our protocol remains correct under other assumptions
about the number of replicas, replica lifetimes, and whether replicas replicate

all shared data or only a subset, optimizing performance in other environments
may require different trade-offs.

2.1 Consistency and timeliness

Evaluating the semantic guarantees of large-scale replication systems requires
careful distinctions between consistency, which constrains the order that updates
across multiple memory locations become observable [5] to nodes in the system,
coherence, which constrains the order that updates to a single location become
observable but does not additionally constrain the ordering of updates across
different locations, and staleness, which constrains the real-time delay between
when an update completes and when it becomes observable. Adve discusses the
distinction between consistency and coherence in more detail [15].

To support transparency, we focus on providing sequential consistency. As
defined by Lamport, “The result of any execution is the same as if the [read and
write] operations by all processes were executed in some sequential order and
the operations of each individual processor appear in this sequence in the order
specified by its program.” [4] Sequential consistency is attractive for transparent
replication because the results of all read and write operations are consistent
with an order that could legally occur in a centralized system, so—absent time
or other communication channels outside of the shared state—a program that is
correct for all executions under a local model with a centralized storage system
is also correct for a distributed storage system.

Typically, providing sequential consistency is expensive in terms of latency |8,
16] or availability [7]. However, we restrict our study to dissemination services
that have one writer and many readers, and we enforce FIFO consistency [8]
under which writes by a process appear to all other processes in the order they
were issued, but different processes can observe different interleavings between
the writes issued by one process and the writes issued by another. Note that for
applications that include only a single writer, FIFO consistency is identical to
sequential consistency or the weaker causal consistency.

Although sequential consistency provides strong semantic guarantees at repli-
cas, clients of those replicas may observe unexpected behaviors in at least two
ways due to communication channels outside of the shared state.

First, because sequential consistency does not specify any real-time require-
ment, a client may observe stale (but consistent) data. For example, a network
partition between the origin server and replica could cause the client of a stock
ticker service to observe the anomalous behavior of a stock price not changing
for several minutes. We note that in this scenario, physical time acts as a com-
munications channel outside of the control of the data replication middleware
that allows a user to observe anomalous behavior from the replication system.
Hence, we allow systems to enforce timeliness constraints on data updates by
providing A-coherence, which requires that any read reflect at least all writes
that occurred before the current time minus A. By combining A-coherence with
sequential consistency, TRIP enforces a tunable staleness limit on the sequen-
tially consistent view. The A parameter reflects a per-service trade-off between

availability and worst case staleness: reducing A improves timeliness guarantees
but may hurt availability because disconnected edge servers may need to refuse
a request rather than serve overly stale data.

Second, some redirection infrastructures [2] may cause a client to switch
between replicas, allowing it to observe inconsistent state. For example, consider
two replicas r; and ry where 7o processes messages more slowly than ry, and
updates u; and wug such that uy happens before [17] us. If a client of r; sees
update wug, switches to ro (which has not seen u; yet) and sees data that should
have been modified by w; but is not, it observes an inconsistency. In [18] we
discuss how to adapt Bayou’s session consistency protocol [19] to our system to
ensure that each client observes a sequentially consistent view regardless of how
often the redirection infrastructure switches the client among replicas.

3 Algorithm

TRIP is based on a novel replication algorithm that revolves around two simple
parts: (1) the origin’s self-tuning efforts to send updates in priority order with-
out interfering with other network users and (2) each replica’s efforts to buffer
messages it receives, to apply them in an order that meets consistency con-
straints, and to delay applying some of these messages to improve availability
and performance. We describe the algorithm in the rest of the section.

3.1 Origin server

Algorithm 1 Origin server
State

seqNo; // Global sequence number
storage; // Seq number + body of each object
nReplicas; // Number of replicas
updtChnl[]; // Lossy, prior. order, low prior. link
invDemChnl[|; // Lossless, FIFO channels
On local call to write(objID, body, priority, timestamp):
seqNo++;
storage.update(objld, body, seqNo);
for (¢ = 0; i« < nReplicas; i++) do
invDemChnl[i].send(INV AL, objld, seqNo, timestamp);
updtChnlli].insert(UPDATE, objld, body, seqNo, priority);
On receiving (READ, objId) from replica:
(body, objSeqNo) = storage.get(objId);
invDemChnl[replica].send(REPLY, objId, body, objSeqNo);
updtChnllreplical.cancel(objId);

As we show in the pseudocode in Algorithm 1, the origin server maintains a
global monotonically increasing sequence number seqNo, local storage with the
body and sequence number of each object, per-replica channels invDem Chnl/] for
sending invalidations and demand replies, and per-replica channels updtChnl/] for

pushing updates. Each invDemChnlis a FIFO ordered, lossless network channel,
and each updtChnl is a priority ordered, low-priority channel.

The algorithm proceeds as follows. To write an object, an origin server incre-
ments seqNo, updates storage with seqNo and the object’s new body, sends inval-
idations on each replica’s invDemChnl, and enqueues updates on each replica’s
updtChnl. Each enqueued update includes a priority that specifies the update’s
relative ranking to other pending updates. These priorities can be calculated
using existing mechanisms [20-23], or using application-specific knowledge. By
adding a replicalD parameter to our write method, our algorithm can be ex-
tended to accommodate per-replica priorities as well.

When the origin server receives a demand read(objld) from a replica, it re-
trieves from its local store the object’s body and per-object sequence number,
and it sends on the replica’s invDemChnl a demand reply message. Notice that
this reply includes the sequence number stored with the object when it was last
updated, which may be smaller than the current global seqNo. Upon sending a
demand reply to a client, the origin server also cancels any push of the object
to that client still pending in the updtChnl for the receiving replica.

Each updtChnl provides an abstraction suited for self-tuning push-based prefetch-
ing by (1) buffering updates in a priority queue and (2) sending them across the
network using a lossless, blocking, low priority network protocol. Three actions
manipulate each per-replica priority queue. First, an insert adds an update with
a specified priority, replacing any other update to the same objld. Second a can-
cel(objld) call removes any pending update for objld. Third, a worker thread
loops, removing the highest priority update from the queue and then doing a
low-priority network send of a push-update message containing the objld, body,
and seqNo of the item. The low priority network protocol should ensure that low
priority traffic does not delay, inflict losses on, or take bandwidth from normal-
priority traffic; a number of such protocols have been proposed [24]. Thus, when
sufficient bandwidth is available, an updtChnl behaves like a lossless FIFO chan-
nel and delivers all updates to its replica. When less bandwidth is available,
however, (1) it only allows valuable updates to be sent, and (2) it allows unsent
updates to the same object to be merged and sent later either when requested
by a replica or during a lull in network traffic.

3.2 Replica

The core of each replica is a novel scheduler that coordinates the application
of invalidations, updates, and demand read replies to the replica’s local state.
The scheduler has two conflicting goals. On one hand, it would like to delay
applying invalidations for as long as possible to minimize the amount of invalid
data and thereby maximize local hit rate, maximize availability, and minimize
response time. On the other hand, it must enforce sequential consistency and
A-coherence, so it must enforce two constraints:

C1 A replica must apply all invalidations with sequence numbers less than N
to its storage before it can apply an invalidation, update, or demand reply
with sequence number N.3

C2 A replica must apply an invalidation with timestamp ¢ to its storage no later
than t + A — mazSkew.

A specifies the maximum staleness allowed between when an update is ap-
plied at the origin server and when the update affects subsequent reads, and
maxSkew bounds the clock skew between the origin server and the replica.

Algorithm 2 Replica

State
storage; // Validity, sequence number, and body of each object
pendinglnval; // Received but unprocessed invalidation
pendingUpdate; // Received but unprocessed updates
delta; // Max staleness between server and replica
mazSkew; // Maz clock skew between server and replica

On receiving (INVAL, objId, seqNo, timestamp) on invDemChnl:
pendingInval.put(objld, seqNo, timestamp);

On receiving (UPDATE, objId, body, seqNo) on updtChnl:
pendingUpdate.put(objld, body, seqNo);

If pendingUpdate.head.seqNo<pendingInval.nextSeqToProcess():

// Scheduler applies an update
(objId, body, seqNo) = pendingUpdate.removeHead();
if (seqNo > storage.getSeqNo(objId)) then
storage.update(objld, VALID, seqNo, body);
if (seqNo == pendingInval.nextSeqToProcess()) then
pendingInval.doneProcessing(seqNo);
If currentTime() < pendingInval.head.timestamp+delta-maxSkew:

Scheduler applies an invalidate
applyNexztInval(); // See below
On local call to read(objId):
if (VALID == storage.getState(objld)) then
return storage.get Body(objId);
send(READ, objId) to origin server;
storage.waitUntilValid(objId);
return storage.getBody(objId);
On receiving (REPLY, objld, body, seqNo) on invDemChnl:
while (pendingInval.nextSeqToProcess() < seqNo) do
applyNextInval(); // See below
storage.update(objld, VALID, seqNo, body); // Unblock read
applyNextInval() // Internal private method called from above
(objlId, seqNo, timestamp) = pendinglnval.readHead();
if (seqNo > storage.getSeqNo(objld)) // ' At least once’ chnl then
storage.update(objld, INVALID, seqNo);
pendingInval.doneProcessing(seqNo);

Algorithm details. The pseudocode in Algorithm 2 describes the behavior of a
replica. Each replica maintains five main data structures. First, a replica main-
tains a local data store storage that maps each object ID for the shared state
to either the tuple (INVALID, seqNo) if the local copy of the object is in the

3 We show in [18] that enforcing condition C1 yields sequential consistency

invalid state or the tuple (VALID, seqNo, body) if the local copy of the object
is in the valid state. Second, a replica maintains pendinglnval, a list of pend-
ing invalidation messages that have been received over the network but not yet
applied to storage; these invalidation messages are sorted by sequence number.
Third, a replica maintains pendingUpdate, a list of pending pushed updates that
have been received over the network but not yet applied to the local data store;
notice that although the origin server sorts and sends these update messages
by priority, each replica sorts its list of pending updates by sequence number.
Finally, A specifies the maximum staleness allowed between when an update is
applied at the origin server and when the update affects subsequent reads, and
mazxSkew bounds the clock skew between the origin server and the replica.

Scheduler actions. After INVAL and UPDATE messages arrive and are enqueued
in pendinglnval and pendingUpdate, a scheduler applies these buffered messages
in a careful order to meet the two constraints above and to minimize the amount
of invalid data.

The scheduler removes the update message with the lowest sequence number
from its pendingUpdates and applies it to its storage as soon as it knows it has
applied all invalidations with lower sequence numbers from pendinglnvals. Ap-
plying a prefetched update normally entails updating the local sequence number
and body for the object, but if the locally stored sequence number already ex-
ceeds the update’s sequence number, the replica must discard the update because
a newer demand reply or invalidation has already been processed.

The scheduler removes the invalidation message with the lowest sequence
number from pendingInval and applies it to its storage when the invalidation’s
deadline arrives at timestamp + A — maxSkew. The pendinglnval queue and
network channel normally provide FIFO message delivery, and they guarantee
at least once delivery of each invalidation when crashes occur. To support end-
to-end at-least-once semantics, before applying an invalidation, a replica verifies
that it is a new one, and after applying an invalidation a replica calls pending-
Inval.doneProcessing(seqNo) to allow garbage collection of the message and to
acknowlege processing of invalidation seqNo to the origin server.

Processing requests from clients. When servicing a client request that reads ob-
ject objId (either as input to a dynamic content-generation program or as the
reply to a request for a static data file), a replica uses the locally stored body
if objId is in the VALID state. But, if the object is in the INVALID state, the
replica sends a demand request message to the server and then waits for the
demand reply message. Note that by sending demand replies and invalidations
on the same FIFO network channel, the origin server guarantees that when a
demand reply with sequence number N arrives at a replica, the replica has al-
ready received all invalidations with sequence numbers less than N, though some
of these invalidations may still be buffered in pendinglnval. So when a demand
reply arrives, the replica enforces condition C1 by simply applying all invalida-
tion messages whose sequence numbers are at most the reply’s sequenceNumber

before applying the reply’s update to the local state and returning the reply’s
value to the read request.

Our protocol implements an additional optimization (not shown in the pseudo-
code for simplicity) by maintaining an index of pending updates searchable by
object ID. Then, when a read request encounters an invalid object, before send-
ing a demand request to the origin server, the replica checks the pending update
list. If a pending update for the requested object is in this list, the system ap-
plies all invalidations whose sequence numbers are no larger than the pending
update’s sequence number, applies that pending update, and returns the value
to the read request.

A remaining design choice is how to handle a second read request 7o for object
02 that arrives when a first read request r; for object o7 is blocked and waiting
to receive a demand reply from the origin server. Allowing ro to proceed and
potentially access a cached copy of 09 risks violating sequential consistency [15]
if program order specifies that r1 happens before ro. On the other hand, if r; and
ro are issued by independent threads of computation that are not synchronized,
then the threads are logically concurrent and it would be legal to allow read
ro to “pass” read 7y in the cache [4,5]. TRIP therefore provides two options.
Conservative mode preserves transparancy but requires a read issued while an
earlier read is blocking on a miss to block. Aggressive mode compromises trans-
parency because it requires knowledge of application internals, but it allows a
cached read to pass a pending read miss. Our experiments examine this trade-off
in more detail.

Operating during disconnection. When a replica becomes disconnected from the
server due to a network partition or server failure, the replica attempts to service
requests from its local store as long as possible. However, to enforce A-coherence,
a replica must block all reads if it has not communicated with the origin server
for A seconds. In a web service environment, blocking a client indefinitely is an
undesirable behavior. Therefore, TRIP provides three ways for services to give
up some transparancy in order to gain control of recovery in the case where a
replica blocks because it is disconnected from the origin server. First, TRIP can
reply to read requests from the calling edge server program by returning an error
code. Because this approach requires that the edge server program be designed
to expect such an error code, it prevents the replication layer from being fully
transparent. Second, TRIP can (1) signal the redirection layer [2] to stop sending
requests to this replica and (2) signal the local web server infrastructure to close
all existing client connections and to respond to subsequent client requests with
HTTP redirects [25] to different replicas. Although this approach requires web
servers to be augmented with the ability to handle signals from the replication
layer, we do not expect these changes to be invasive. Third, TRIP can increase
A (and thus increase observable data staleness) when it detects a disconnection
from the server. Increasing A allows the system to further delay applying pending
invalidations and thus maximize the amount of valid local data and maximize
the amount of time the replica can operate before suffering a miss.

3.3 Limitations and optimizations

Our current protocol faces two limitations that could be addressed with future
optimizations. First, as described in Section 2.1 our current protocol can al-
low a client that switches between replicas to observe violations of sequential
consistency. We speculate in [18] that a system could shield a client from in-
consistency by adapting Bayou’s session guarantees protocol [19]. Second, our
protocol sends each invalidation to all replicas even if a replica does not currently
have a valid copy of the object being invalidated. We take this approach for sim-
plicity, although our protocols could be extended to more traditional caching
environments where replicas maintain small subsets of data by adding callback
state [26].

4 Prototype

We have developed a prototype that implements the conservative version (Sec-
tion 3.2) of the algorithm described in Section 3. Deployment depends on two
subsystems that are outside the scope of this project: a protocol for limiting the
clock skew between each replica and the origin server [27] and a policy for prior-
itizing which documents to push to which replicas [21, 23], which may, in turn,
require some facility for gathering read frequency information from replicas [28].
We discuss limitations of our prototype in more detail in [18].

Our prototype is implemented in Java, C, and C++4+ on a Linux plat-
form, but we expect the server code to be readily portable to any standard
operating system and the replica code to be portable to any system that
supports mounting an NFS server. The code is available for download from
http://www.cs.utexas.edu/users/nayate/ TRIP.

The rest of this section discusses internal details and design decisions in the
server and replica implementations.

Origin Server The origin server uses the local file system for file storage. Note
that rather than store per-file sequence numbers, which the protocol sends with
demand read replies, our prototype only maintains a global sequence number.
The algorithm operates as described in Section 3, except the server includes
the current global sequence number when sending a demand reply rather than
the sequence number of the object’s most recent update. This simplification can
force a replica to process more invalidation messages before processing a demand
reply; the resulting protocol thus continues to provide sequential consistency, but
its performance and availability may be reduced compared to the full protocol.

To simplify handing failures, the origin server uses a custom persistent mes-
sage queue [29] for sending updates and invalidations to each replica. Because
our protocol only uses the update channel to push update data, the origin server
does not store out-bound updates to persistent storage and considers it per-
missible to lose these updates across crashes. To provide a low-priority network
channel for updates that does not interfere with other network traffic, we use an
implementation of TCP-Nice [24].

Replica The replica implements a single read method to access shared data.
The simplicity of this interface allows us to use TRIP as a building block for a
variety of replicated applications that require sophisticated interfaces. For ex-
ample, publish/subscribe systems can be implemented by having the publisher
perform write calls to publish data to the matching service, and the matching
service can later make read calls to request data to serve to clients. Chen et
al. [30] shows an approach that can be adopted to compute priorities for pages
in a publisher/subscriber model. For our prototype, however, we build TRIP to
export a subset of the interface used by the NF'S file system via a local user-level
NFS file server [11], allowing the replica to mount this local file server as if it
were a normal NF'S server. Shared objects are accessed as if they are stored in
a standard file system. For simplicity, we respond to reads to invalidated data
during disconnections by returning an NFS IO error code to the calling program.

5 Evaluation

We evaluate our traces using two approaches: by employing a trace-driven sim-
ulator and evaluating a prototype.

5.1 Simulation methodology

Our trace-driven simulator models an origin server and twenty replicas and
assumes that the primary bottleneck in the system is the network band-
width from the origin server. To simplify analysis and comparisons among
algorithms, we assume that the bandwidth available to the system does not
change throughout a simulation. We also assume that bandwidth consumed
by control information (invalidate messages, message queue acknowledgments,
meta data, etc.) is insignificant compared to the bandwidth consumed trans-
ferring objects; we confirm using our prototype that control messages account
for less than 1% of the data transferred by the system. Transferring an ob-
ject over the network thus consumes a link for objectsize/bandwidth seconds,
and the delay from when a message is sent to when it is received is given by
nwLatency+messageSize /bandwidth. By default we simulate a round-trip time
(or 2 * nwLatency) of 200ms +/- 90% between the origin server and a replica.

We compare TRIP’s FIFO-Delayed-Invalidation/Priority-Delayed-Update al-
gorithm with two algorithms: Demand Only, which delivers invalidates eagerly
in FIFO order but does no prefetching, and Push All which eagerly pushes all
updates to all replicas in FIFO order. We initially assume that the system re-
quires (1) sequential consistency, which all of these algorithms provide, and (2) a
A-coherence guarantee of A = 60 seconds, which Demand Only naturally meets,
TRIP consciously enforces, and Push All may or may not meet depending on
available bandwidth. We will later modify these assumptions.

We evaluate our algorithms using a trace-based workload of the Web site of a
major sporting event [10] hosted at several geographically distributed locations.
In order to simplify simulations we ignore those entries in our trace files that

contain dynamic/malformed requests, result in invalid server return codes, or
that appear out of order.

Prediction policy Our interface allows a server to use any algorithm to choose
the priority of an update, and this paper does not attempt to extend the state of
the art in prefetch prediction. A number of standard prefetching prediction algo-
rithms exist [20-23] or the server may make use of application-specific knowledge
to prioritize an item. Our simple default heuristic for estimating the benefit/cost
ratio of one update compared to another is to first approximate the probability
that the new version of an object will be read before it is written as the observed
read frequency of the object divided by the observed write frequency of the object
and then to set the relative priority of the object to be this probability divided
by the object’s size [23]. This algorithm appears to be a reasonable heuristic
for server push-update protocols: it favors read-often objects over write-often
objects and it favors small objects over large ones.

5.2 Simulation results

Our primary simulation results are that (1) self-tuning prefetching can dramat-
ically improve the response time of serving requests at replicas compared to
demand-based strategies, (2) although a Push All strategy enjoys excellent re-
sponse times by serving all requests directly from replicas’ local storage, this
strategy is fragile in that if update rates exceed available bandwidth for an
extended period of time, the service must either violate its A-consistency guar-
antee or become unavailable, (3) when prefetching is used, delaying application
of invalidation messages by up to 60 seconds provides a modest additional im-
provement in response times, and (4) by maximizing the amount of valid data at
replicas, prefetching can improve availability by masking disconnections between
a replica and the origin server.

Response times and staleness In Figure 2 we quantify the effects of different
replication strategies on client-perceived response times as we vary available
bandwidth. We assume that client requests for valid objects at the replica are
satisfied in 20ms, whereas requests for invalidated objects are forwarded from the
replica to the origin over a network with an average round-trip latency of 200ms
as noted above. To put these results in perspective, Figure 3 plots the average
staleness observed by a request. We define staleness as follows. If a replica serves
version k of an object after the origin site has already (in simulated time) written
version j (j > k), we define the staleness of a request to be the difference between
when the request arrived at the replica and when version k£ 4+ 1 was written.
To facilitate comparison across algorithms, this average staleness figure includes
non-stale requests in the calculations. We omit due to space constraints a second
graph that shows the (higher) average staleness observed by the subset of reads
under each algorithm that receives stale data.

Demand Only

01 [b

Response time (s)

\<—TRIP Static Threshold (p=0.5)

Available bandwidth (MB/s)

Fig. 2. The effect of bandwidth availability on response times

10000 I T y T
| K Demand-Only —+—
' Pudhal
ush-all -
1000 £] X Static-threshold (p=0.5) & 7
‘X
100 | 3
10 b 4
@ * “
< 1F Xl o, % 3
] e
s ot b T]
001 o TR
4
0.001 !
0.0001 | \\"’_.‘ 1
16-05
0 1 2 3 4 5 6 7 8 9 10

Available bandwidth (MB/s)

Fig. 3. Average staleness of data served by replicas.

We also show in figures 2 and 3 the latency and staleness yielded when us-
ing the static-threshold-prefetching algorithm, which prefetches objects when the
predicted likelihood of their being accessed exceeds a statically chosen thresh-
old. We plot the behavior of this algorithm when it is tuned to prefetch ob-
jects that have a greater than 50% estimated chance of being accessed (denoted
Static Threhold (p = 0.5) on the graph). We note that Push All and Demand
Only represent extreme cases of this algorithm with thresholds of 0 (push an
update regardless of its likelihood of being accessed) and 1 (only push an update
if it is certain to be accessed), respectively.

The data indicate that the simple Push All algorithm provides much better
response time than the Demand Only strategy, speeding up responses by a factor
of at least four for all bandwidth budgets examined. However, this comparison
is a bit misleading as Figure 3 indicates: for bandwidth budgets below 2.1MB/s,
Push All fails to deliver all of the updates and serves data that becomes in-
creasingly stale as the simulation progresses. If the system enforces A-coherence

with A = 60 seconds, Push All replicas would be forced to either violate this
freshness guarantee or become unavailable when the available bandwidth falls
below about 5MB/s.

The static-threshold line illustrates precisely the problem with static thresh-
olds. When the system has less than 2MB/s available bandwidth, the static-
threshold algorithm yields lower response times than the TRIP algorithm. How-
ever, we note that for this bandwidth range the static-threshold algorithm also
violates staleness guarantees. Similarly, when the system has more than 2MB/s
bandwidth available, the static-threshold algorithm fails to utilize it to reduce
response times.

Even at low bandwidths, TRIP gets significantly better response times than
the Demand Only algorithm because (a) the self-tuning network scheduler allows
prefetching to occur during lulls in demand traffic even for a heavily loaded sys-
tem [3] and (b) the priority queue at the origin server ensures that the prefetching
that occurs is of high benefit/cost items. TRIP’s ability to exploit lulls in de-
mand bandwidth also constitutes the reason that when the system has 2MB/s
available bandwidth TRIP can outperform static-threshold while still retaining
its timeliness guarantees.

Variations of TRIP Due to space constraints, we omit a graph that plots
response times for two variations of TRIP. In the first variation, we reduce the
A parameter to 0 to evaluate the behavior of TRIP when we require replicas to
apply all invalidate messages immediately. Under this scenario we find that val-
ues of A below 60s inflict a modest cost on response times, but this cost falls as
available bandwidth increases. For example, at 1MB/s of available bandwidth,
the A = 60s case yields 12.6% lower response times than the A = 0s case.
However, our second variation of TRIP, TRIP-aggressive, which sacrifices some
transparency and assumes that parallel read requests are independent, can re-
sult in substantial benefits. For example, for a system with 500KB/s of available
bandwidth, this optimization improves response time by a factor of 2.5. But, this
benefit falls as available bandwidth increases, suggesting that this optimization
may become less valuable as network costs fall relative to the cost of requir-
ing programmers to carefully analyze applications to rule out the possibility of
unexpected interactions [6].

5.3 Availability

We measure the replication policies’ effect on availability as follows. For each of
50 runs of our simulator for a given set of parameters, we randomly choose a point
in time when we assume that the origin server becomes unreachable to replicas.
We simulate a failure at that moment and measure the length of time before any
replica receives a request that it cannot mask due to disconnection. We refer to
this duration as the mask duration. We assume that systems enforce A-coherence
with A = 60 seconds before the disconnection but that disconnected replicas
maximize their mask duration by stopping their processing of invalidations and

100000

—— Demand-only
-->--- TRIP (delta=0)
% TRIP T
10000 F . sk 4

1000 F x E

100 | / E|

Failure Mask duration (s)

Bandwidth (MB/s)

Fig. 4. Dependence of mask duration on bandwidth.
updates during disconnections and extending A as long as they can continue to
service requests. Thus, during periods of disconnectivity, our system chooses to
provide stale data rather than failing to satisfy client requests. Note that given
these data, the impact of enforcing shorter As during disconnections can be
estimated as the minimum of the time reported here and the A limit enforced.

Figure 4 shows how the average mask duration varies with bandwidth for the
TRIP, TRIP (A = 0), and Demand Only algorithms. Because mask duration is
highly sensitive to the timing of a failure, different trials show high variability.
We quantify this variability in more detail in an extended technical report [18].

Note that the traditional Demand Only algorithm performs poorly. In Fig-
ure 4, the line closely follow y = 0, indicating virtually no ability to mask failures.
This poor behavior arises because the first request for an object after that object
is modified causes a disconnected replica to experience an unmaskable failure.
On the other hand, the Push All algorithm can mask all failures due to the fact
that at any point in time, the entries in a replica’s cache form a sequentially
consistent (though potentially stale) view of data.

The TRIP algorithm outperforms the Demand Only algorithm in the graph
by maximizing the amount of local valid data. We note that both TRIP variations
provide average masking times of thousands of seconds for bandwidth of 1.5MB/s
and above and that providing additional bandwidth allows these systems to
prefetch more data and hence mask a failure for a longer duration. As noted in
Section 3, systems may choose to relax their A-coherence time bound to some
longer A’ value during periods of disconnection to improve availability. These
data suggest that systems may often be able to completely mask failures that
last the maximum maskable duration even for relatively large A’ limits.

5.4 Prototype measurements

We evaluate our prototype on the Emulab testbed [31]. We configure the network
to consist of an origin server and 4 replicas that receive 5MBps of bandwidth and

200ms round-trip times. We mount the local user-level file server using NFS with
attribute caching disabled. For simplicity, we do not monitor object replication
priorities in real time but instead pre-calculate them using each object’s average
read rate, write rate, and size [23].

40

35 |

30 |

25 |

Mean response time (ms)

0)

0)

=0)
0)

Demand-only
TRIP (delta:

TRIP

Demand-only
TRIP (delta
TRIP

Demand-only
TRIP (delta
Demand-only
TRIP (delta:

TRIP

Replica 1 Replica 2 Replica 3 Replica 4

Fig. 5. Replica-perceived response times yielded by the Demand-fetch-only, FIFO-
push-all; and the TRIP algorithms

Since the goal of the prototype is to evaluate how our system performs in
practice, we use a more realistic evaluation methodology from the one we use for
our simulator. In particular, when evaluating our prototype we do not remove
any entries from our traces and make no simplifying assumptions about the size
of invalidate messages or the behavior of network links. However, due to the lack
of data on which resources or objects get accessed to handle dynamic requests,
our system incorrectly treats dynamic requests as accesses to static objects.

Figure 5 shows the response times as seen at each of the 4 replicas. We collect
these data by replaying at the origin and at each replica the first hour of our
update trace and web traces in real time. The response time for a given request
is calculated as the difference between when the request arrives at a replica and
when its reply is generated. Note that these response times do not represent
the end-to-end delay experienced by clients because they do not include the
network delays between clients and replicas. However, one can easily compute
total end-to-end delays by adding client-replica network delays to this data.

As we see in the graph, the Push All algorithm yields the best response time.
For example, it outperforms the Demand Only algorithm by a factor of 2 for 3 of
the 4 replicas. We note that at 5MBps bandwidth available to the system, TRIP
incurs only minor increases in response times over Push All: 7.5%, 6.2%, 1.4%,
and 3.4% overhead for each replica respectively. We also note that by delaying
the application of invalidate messages, TRIP with A = 60s reduces response
times compared to A = 0 by 4.4%, 8.7%, 5.0%, and 3.0% respectively. Because

we use real traces instead of simulated workloads, we notice that our response
times vary greatly between replicas. However, our TRIP algorithms consistently
outperform the Demand Only algorithm on each replica.

6 Related work

In contrast with TRIP, most existing and proposed replication systems provide
neither self-tuning replication nor sequential consistency with tunable staleness.

In particular, most replication systems use static replication policies such as
always-conservative demand fetching [1,32], always-aggressive push-all [2,33],
or hand-tuned threshold-based prefetching [20-22]. Davison et al. [34] propose
using a connectionless transport protocol and using low priority datagrams (the
infrastructure for which is assumed) to reduce network interference. Chen et
al. [30] study content delivery and caching in publish/subscribe systems and
discuss methods to estimate the benefit of caching pages that are directly appli-
cable in computing update priorities in our system. In earlier work, we describe
a threshold-free prefetching system called NPS [3] that like TRIP makes use of
TCP-Nice [24] to avoid network interference. The rest of NPS’s design is quite
different than TRIP’s: NPS focuses on supporting prefetching of soon-to-be-
accessed objects by client browsers rather than pushing of updates by origin
servers to replicas, and it does not consider the problem of maintaining consis-
tency for data that may be prefetched long before being used.

Most proposed Internet-scale data replication systems focus on ensuring var-
ious levels of coherence or staleness or both [35-38], but few provide explicit con-
sistency guarantees. Bradley and Bestavros [39] argue that increasingly complex
Internet-scale services will demand sequential consistency and propose a vector-
clock-based algorithm for achieving it. They focus on developing a backwards-
compatible browser-server protocol and do not explore prefetching. The IBM
Sporting and Event CDN system uses a push-all replication strategy and en-
forces delta coherence via invalidations [40]. Akamai’s EdgeSuite [1] primarily
relies on demand reads and enforces delta coherence via polling with stronger
consistency available via object renaming. Most of these systems use demand
reads, but several strategies for mixing updates and invalidates have been ex-
plored for multicast networks [41, 35] or broadcast media [42]. These proposals
all use static thresholds to control prefetching and provide best-effort consis-
tency, coherence, and timeliness semantics by sending and applying all messages
eagerly. A potential avenue for future work is to develop a way for TRIP to make
use of multicast or hierarchies to scale to larger numbers of replicas.

In replicated databases, several systems have explored ways to allow dif-
ferent updates to specify different consistency requirements. Lazy Replica-
tion [43] allows an update to enforce causal, sequential, or linearizable consis-
tency. Bayou [33] maintains causal consistency at all times and asynchronously
reorders operations to eventually reach a global sequentially-consistent ordering
of updates. These systems both focus on multi-writer environments and even-
tually propagate all updates to all replicas. Yu and Vahdat [44] show that in

such systems minimizing the time between when an update occurs and when it
propagates maximizes system availability for any given consistency constraint.
Our protocol exploits this observation for dissemination workloads by integrating
consistency and self-tuning prefetch.

Our argument for sequential consistency is similar in spirit to Hill’s position
that multiprocessors should support simple memory consistency models like se-
quential consistency rather than weaker models [6]. Hill argues that speculative
execution reduces the performance benefit that weaker models provide to the
point that their additional complexity is not worth it. We similarly argue that
for dissemination workloads, as technology trends reduce the cost of bandwidth,
prefetching can reduce the cost of sequential consistency so that little additional
benefit is gained by using a weaker model and exposing more complexity to the
programmer.

7 Conclusion

This paper explores integrating self-tuning updates and sequential consistency to
enable transparent replication of large-scale dissemination services. Our novel ar-
chitecture succeeds in this goal by (1) providing self-tuning push-based prefetch
from the server and (2) buffering and carefully scheduling the application of
invalidations and updates at replicas to maximize the amount of valid data—
and thus maximize the hit rate, minimize the response time, and maximize
availability—at a replica. Our analysis of simulations and our evaluation of a
prototype support the hypothesis that it is feasible to provide transparent repli-
cation for dissemination applications by integrating consistency and prefetching.

A limitation of this work is its focus on information dissemination applica-
tions. This class of applications is important, but in the future we hope to apply
our protocol as one part of a more general system where one subset of the data
is read-only at the replicas, where another subset is read/write at the replicas,
and where different subsets use different consistency algorithms [9].

Acknowledgments

We thank Paul Dantzig for his help in obtaining access and update logs, Arun
Venkataramani for his crucial help in the design of the algorithm, and Jian Yin
for his helpful comments on the presentation.

References

1. Turbo-charging dynamic web data with akamai edgesuite. Akamai White Paper
(2001)

2. Challenger, J., Dantzig, P., Iyengar, A.: A scalable and highly available system
for serving dynamic data at frequently accessed web sites. In: ACM/IEEE, Super-
computing "98. (1998)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Kokku, R., Yalagandula, P., Venkatramani, A., Dahlin, M.: NPS: A non-interfering
deployable web prefetching system. In: 4th USENIX Symposium on Internet Tech-
nologies and Systems. (2003)

Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers C-28 (1979) 690-691
Frigo, M., Luchangco, V.: Computation-Centric Memory Models. In: Tenth Annual
ACM Symposium on Parallel Algorithms and Architectures. (1998)

Hill, M.: Multiprocessors should support simple memory consistency models,. In:
IEEE Computer. (1998)

Brewer, E.: Lessons from giant-scale services. IEEE Internet Computing (2001)
Lipton, R., Sandberg, J.: PRAM: A scalable shared memory. Technical Report
CS-TR-180-88, Princeton (1988)

Gao, L., Dahlin, M., Nayate, A., Zheng, J., Iyengar, A.: Application specific data
replication for edge services. In: International World Wide Web Conference. (2003)
Sydney Olympic Games Web Site. http://www.olympic.com—site is no longer
available (2000)

Mazi eres, D.: A toolkit for user-level file systems. In: 2001 USENIX Technical
Conference. (2001) 261274

Awadallah, A., Rosenblum, M.: The vMatrix: A network of virtual machine mon-
itors for dynamic content distribution. In: Internat. Workshop on Web Caching
and Content Distribution. (2002)

Vahdat, A., Dahlin, M., Anderson, T., Aggarwal, A.: Active Naming: Flexible
Location and Transport of Wide-Area Resources. In: 2nd USENIX Symposium on
Internet Technologies and Systems. (1999)

Whitaker, A., Shaw, M., Gribble, S.: Denali: Lightweight virtual machines for
distributed and networked applications. In: 2002 USENIX Technical Conference.
(2002)

Adve, S., Gharachorloo, K.: Shared memory consistency models: A tutorial. IEEE
Computer 29 (1996) 66-76

Burns, R., Rees, R., Long, D.: Consistency and locking for distributing updates to
web servers using a file system. In: Workshop on Performance and Architecture of
Web Servers. (2000)

Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Comm. of the ACM 21 (1978)

Nayate, A., Dahlin, M., Iyengar, A.: Integrating Prefetching and Invalidation for
Transparent Replication of Dissemination Services. Technical Report TR-03-44,
University of Texas at Austin (2003)

Terry, B., Demers, A., Petersen, K., Spreitzer, M.J., Theimer, M., Welch, B.: Ses-
sion guarantees for weakly consistent replicated data. In: International Conference
on Parallel and Distributed Information Systems. (1994) 140-149

Duchamp, D.: Prefetching Hyperlinks. In: 2nd USENIX Symposium on Internet
Technologies and Systems. (1999)

Gwertzman, J., Seltzer, M.: The case for geographical pushcaching. In: HOTOS95.
(1995) 51-55

Padmanabhan, V., Mogul, J.: Using Predictive Prefetching to Improve World Wide
Web Latency. In: ACM SIGCOMM Conference. (1996) 22-36

Venkataramani, A., Yalagandula, P., Kokku, R., Sharif, S., Dahlin, M.: Poten-
tial costs and benefits of long-term prefetching for content-distribution. In: Web
Caching and Content Distribution Workshop. (2001)

Venkataramani, A., Kokku, R., Dahlin, M.: TCP-Nice: A mechanism for back-
ground transfers. In: OSDI02. (2002)

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Misinter, L., Leach, P., Berners-Lee,
T.: Hypertext Transfer Protocol - HTTP/1.1. RFC 2616, IETF (1999)

Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M., Sidebotham,
R., West, M.: Scale and Performance in a Distributed File System. ACM Trans.
on Computer Systems 6 (1988) 51-81

Mills, D.: Network time protocol (version 3) specification, implementation and
analysis. Technical report, IETF (1992)

Yalagandula, P.; Dahlin, M.: SDIMS: A scalable distributed information manage-
ment system. Technical Report TR-03-47, University of Texas Dept. of CS (2003)
MQSeries: An introduction to messaging and queueing. IBM Corporation GC33-
0805-01 (1995)

Chen, M., LaPaugh, A., Singh, J.P.: Content distribution for publish/subscribe
services. In: Proceedings of the International Middleware Conference. (2003)
White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: 5th Symp on Operating Systems Design and Impl. (2002)
Chankhunthod, A., Danzig, P., Neerdaels, C., Schwartz, M., Worrell, K.: A Hier-
archical Internet Object Cache. In: 1996 USENIX Technical Conference. (1996)
Petersen, K., Spreitzer, M., Terry, D., Theimer, M., Demers, A.: Flexible Update
Propagation for Weakly Consistent Replication. In: 16th ACM Symposium on
Operating Systems Principles. (1997)

Davison, B.D., Liberatore, V.: Pushing politely: Improving Web responsiveness one
packet at a time (extended abstract). Performance Evaluation Review 28 (2000)
43-49

Li, D., Cheriton, D.R.: Scalable web caching of frequently updated objects using
reliable multicast. In: Proceedings of the 1999 Usenix Symposium on Internet
Technologies and Systems (USITS’99). (1999)

Worrell, K.: Invalidation in Large Scale Network Object Caches. Master’s thesis,
University of Colorado, Boulder (1994)

Yin, J., Alvisi, L., Dahlin, M., Lin, C.: Volume Leases to Support Consistency in
Large-Scale Systems. IEEE Transactions on Knowledge and Data Engineering 11
(1999) 563-576

Yin, J., Alvisi, L., Dahlin, M., Iyengar, A.: Engineering web cache consistency.
ACM Transactions on Internet Technologies 2 (2002)

Bradley, A., Bestavros, A.: Basis token consistency: Supporting strong web cache
consistency. In: GLOBECOMM. (2003)

Challenger, J., Dantzig, P., Iyengar, A., Squillante, M., Zhang, L.: Efficiently
serving dynamic data at highly accessed web sites. IEEE/ACM Transactions on
Networking 12 (2004) 233-246

Fei, Z.: A novel approach to managing consistency in content distribution networks.
In: Internat. Workshop on Web Caching and Content Distribution. (2001)
Acharya, S., Franklin, M., Zdonik, S.: Balancing push and pull for data broadcast.
In: Proceedings of the 1997 ACM SIGMOD international conference on Manage-
ment of data, ACM Press (1997) 183-194

Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing high availability using
lazy replication. ACM Trans. on Computer Systems 10 (1992) 360-361

Yu, H., Vahdat, A.: The costs and limits of availability for replicated services. In:
18th ACM Symposium on Operating Systems Principles. (2001)

